VCC Assessment Activity Report Marsh Lumber Company VCC Number 16-5858-RP Pamplico, South Carolina S&ME Project No. 1584-98-146C

Prepared for:

Marsh Furniture Company, Inc.
Post Office Box 870
1001 S. Centennial Street
High Point, North Carolina 27261

Prepared by: S&ME, Inc. 8646 W, Market Street, Suite 105 Greensboro, North Carolina 27409

October 31, 2016

October 31, 2016

Marsh Furniture Company, Inc. Post Office Box 870 1001 S. Centennial Street High Point, North Carolina 27261

Attention: Mr. Bill Bumgarner

Reference: VCC Assessment Activity Report

Marsh Lumber Company VCC

Pamplico, South Carolina

S&ME Project No. 1584-98-146C

Dear Mr. Bumgarner:

S&ME, Inc. is pleased to present this report of the VCC assessment activities conducted at the referenced site. This report describes the methods used to assess potential contaminant impact to the site and establishing a baseline for the pending bio-sparge pilot test as described in the Voluntary Cleanup Contract (VCC) VCC 16-5858-RP.

S&ME appreciates the opportunity to be of service to you on this project. If you have questions or if you need additional information, please contact Edmund Henriques at 336-288-7180.

Sincerely,

S&ME, Inc.

Project Manager / Senior Geologist

John Whitehead, P.G. Senior Geologist

Table of Contents

1.0	Site Location	
2.0		
3.0		
3.1	Soil Evaluation	2
3.2	3.2 Groundwater Quality Evaluation – New Sentine	el Wells2
3	3.2.1 Monitoring Well Installation	
3	3.2.2 Groundwater Sampling and Analysis	
3.3		
3	3.3.1 Monitoring Well and Bio-Sparge Well Installation	
3	3.3.2 Groundwater Sampling and Analysis	
3.4	Modification of Existing Monitoring Wells	6
3.5	Groundwater Elevation Monitoring	
4.0	Investigation Derived Waste Disposal	8
5.0	Summary of Findings	8
5.1	5.1 Soil Sample Results	8
5	5.1.1 Metals (totals)	8
5	5.1.2 Semi-Volatile Organic Compounds	
5.2	New Sentinel Monitoring Well - Groundwater R	Results10
5.3	5.3 Bio-Sparge Baseline Event – Groundwater Resul	lts10

List of Figures

Figure 1 – USGS Topographic Map

Figure 2 – Site Plan

Figure 3 - Groundwater Data Drawing

List of Tables

Table 1 – Well Construction Details

Table 2 – Summary of Field Parameters

Table 3 – Summary of Soil Sample Analytical Data, TAL Metals

Table 4 – Summary of Soil Sample Analytical Data, Semi-Volatile Organic Compounds

Table 5 – Summary of Groundwater Sample Analyses

October 31, 2016

VCC Assessment Activity Report Marsh Lumber Company VCC

Pamplico, South Carolina S&ME Project No. 1584-98-146C

Appendices

Appendix I – Laboratory Analytical Reports

Appendix II – Monitoring Well Logs

October 31, 2016

1.0 Site Location

The subject property is located at 119 Sixth Avenue, Pamplico, Florence County, South Carolina. The subject property includes approximately 15 acres of an approximate 28 acre parcel identified by the County of Florence as Tax Map Series Number 60005-01-003 (the property does not include the portion of the parcel east of the railroad tracks). The current owner is listed as Marsh Furniture Company, Inc. (MARSH). The subject site is zoned industrial and occupied by MARSH operations. The site location is shown on **Figure 1**.

2.0 Site History

Multiple environmental assessments have been completed on the subject site over the past 25 years. The Work Plan associated with this phase of assessment provided a list of the assessment reports completed for the subject site. The vast majority of the reports listed relate to the discovery, assessment, and remediation of pentachlorophenol (PCP) dissolved in groundwater beneath a portion of the site. The PCP incident is the focus of this Voluntary Cleanup Contract (i.e. VCC 16-5858-RP).

Based on S&ME's understanding of the site assessment work completed to date the following data gaps related to the PCP incident assessment were identified. The associated additional assessment activities are focused on refining the assessment of the horizontal extent of the dissolved phase plume and further assessment of plume stability. The additional data will also aid in pending evaluations of remedial alternatives for addressing the PCP contamination at the subject site.

- It is known that PCP was used in the area of the former Green Chain conveyor, hereafter referred to as the Green Chain. Prior soil sampling was conducted at points along the perimeter of the former Green Chain. PCP was not detected in the soil above the water table. In recent years MARSH terminated site saw mill operations. In 2007, the saw mill building and Green Chain concrete pad were removed. As a result of these changes, it is now possible to sample the soils below the former Green Chain and conclude the assessment of soils as secondary source of PCP to the underlying groundwater.
- Although the horizontal limits of the groundwater PCP plume have been generally defined, the installation and sampling of a few additional groundwater monitoring wells in the down-gradient regions of the PCP plume would enhance our understanding of the extent and stability of the plume. These data will be valuable to the pending assessment of remedial alternatives.
- A second Bio-Sparge Pilot test conducted in another portion of the PCP plume is needed to further evaluate the feasibility of this remedial alternative. The second pilot test will focus on monitoring for evidence of the bio-degradation of dissolved phase PCP verses the potential for sparging inducted PCP migration.

Historic site assessment efforts included the collection of seventeen soil samples at points adjacent to the perimeter of the former Green Chain area. Soil sample analyses included semi-volatile organic compounds and the 8-RCRA metals (totals). During a March 2, 2016, meeting between MARSH representatives and SCDHEC representatives, SCDHEC requested that the VCC Work Plan include the collection soil and groundwater samples in the area of the PCP plume, with the samples analyzed total metals. Since MARSH is not aware of any historic site use of wood-preservatives with formulations based

on metals, and considering that the prior site assessment laboratory results did not evidence metals as a concern; the Work Plan incorporated the collection of a limited number of soil and groundwater samples.

The scope of services completed for the assessment discussed herein were conducted in general accordance with the VCC Work Plan – Revision 2, dated July 12, 2016, which was approved by SCDHEC on July 19, 2016.

3.0 VCC Methodologies

3.1 Soil Evaluation

Between September 7 - 9, 2016, soil sampling was conducted in the former Green Chain area utilizing direct push drilling techniques. Three soil borings were completed along the alignment of the former Green Chain conveyor (locations GC-1, GC-2, and GC-3) and one soil boring (location GC-4) was completed to the west in the adjacent former treated wood stacking area. The samples were collected by advancing the direct push sampler, as needed to collect continuous soil sample cores down to approximately six feet below the land surface (bls.). At each boring, a surficial soil sample was collected from approximately zero to one foot bls., and a subsurface soil sample was collected from approximately 5.5 to six feet bls. The location of each soil boring were recorded using a non-survey grade GPS. Approximate locations for the soil borings are shown on **Figure 2**.

The soils samples from the designated depths were placed in laboratory prepared containers and placed in a cooler with ice for shipment to the analytical laboratory. Chain of Custody documentation accompanied the samples to the laboratory. Each of the soil samples was analyzed for TAL Metals (various methods) and TCL Semi-Volatile Organic Compounds (SVOCs) by EPA Method 8270. The soil analytical results were compared to the Residential and Industrial regional screening levels (RSL) and to the applicable protection of groundwater site screening levels (Groundwater SSLs) published by the U.S. Environmental Protection Agency (EPA) and used by SCDHEC to evaluate contaminant concentrations from VCC assessments.

Analytical testing of soil samples was performed by PACE Analytical Services, Inc. of Huntersville, North Carolina. Their South Carolina certification numbers are: Metals # 99030001, SVOCs # 99006001. **Appendix I** contains copies of the laboratory analytical reports.

3.2 Groundwater Quality Evaluation – New Sentinel Wells

3.2.1 Monitoring Well Installation

Between September 7 - 9, 2016, three permanent groundwater monitoring wells were installed at the site, as new down-gradient sentinel wells. The locations of the monitoring wells are shown on **Figure 2**. The wells were installed at the following locations:

- Monitoring well MW-19, approximately 120 feet west and down-gradient of MW-16.
- Monitoring well MW-20, approximately 110 feet west and down-gradient of MW-10, and
- Monitoring well MW-17A will be installed in the general vicinity of abandoned well MW-17.

The monitoring wells were installed utilizing a direct push drilling rig equipped with 3.25-inch inside diameter, hollow-stem augers. The wells were completed utilizing two-inch diameter, schedule 40 PVC pipe and 0.01-inch slotted screen. The screen intervals were typically 10 feet in length. An artificial sand pack was installed around the screen section to approximately two-feet above the top of the screen. A bentonite seal was installed above the sand pack. The remainder of the well annulus was filled with cement grout to the surface. The wells were completed at the surface with a two-foot square concrete pad and locking post-type covers. The monitoring well construction details are summarized on **Table 1**. The Well Logs and SCDHEC 1903 forms are attached in **Appendix II**.

The wells were developed using an electric submersible pump to remove clay, silt, and sand particles that may have been introduced into the formation or filter pack during installation.

3.2.2 Groundwater Sampling and Analysis

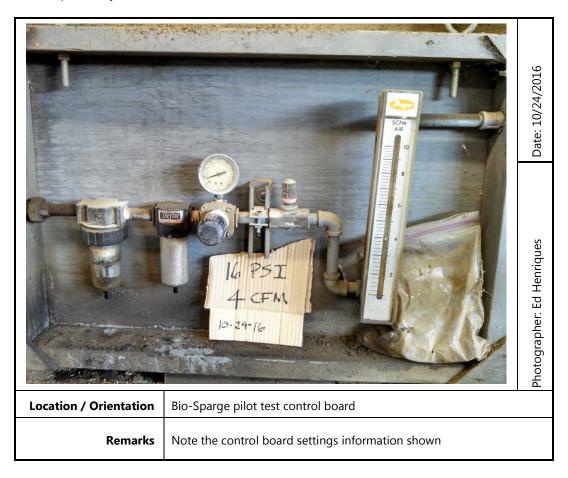
On September 15, 2016, groundwater samples were collected from monitoring wells MW-17A, MW-19, and MW-20 using a peristaltic pump with silicone and polyethylene tubing. The polyethylene tubing was lowered to the lowermost portion of well screen interval, consistent with prior sampling events. Each well was purged using low flow rates and monitored for pH, temperature, conductivity, dissolved oxygen (DO), oxidation reduction potential (ORP), and turbidity using a flow cell and Horiba U-5000 meter. At a minimum, the time interval between measurements was the time required for one complete exchange of the volume of water in the flow cell. Sample collection generally commenced when the changes in those readings fluctuate within $\pm 10\%$ or less. For turbidity a target of less than or equal to 10 Nephelometric Turbidity Units (NTU) was used as a guide for sample collection. Professional judgement was utilized in certain cases when other field parameter readings were stable; however, the target NTU value was not achieved. **Table 2** provides a summary of field parameter data collected.

Groundwater samples were placed into appropriate sample containers supplied by the analytical laboratory and then placed into coolers with ice. Chain of Custody documentation accompanied the samples to the laboratory. The samples were shipped via dedicated courier to the analytical laboratory. Samples from the monitoring wells were analyzed for TCL SVOCs by Method 8270 by PACE Analytical located in Huntersville, North Carolina. **Appendix I** contains copies of the laboratory analytical reports.

3.3 Bio-Sparge Pilot Test Baseline

In 2009, MARSH initiated a long-term bio-sparge pilot test in the region up-gradient of monitoring well MW-3. Analytical results for groundwater samples obtained from monitoring well MW-3 provide evidence for long-term reductions in the dissolved PCP concentrations at monitoring well MW-3. Recognizing the success of the first long-term bio-sparge pilot test, the VCC Work Plan included a second bio-sparge pilot test to be conducted up-gradient of well MW-14. Data collected from the long-term pilot tests will be utilized in the ensuing analysis of remedial alternatives for the PCP incident.

The Work Plan included installing one bio-sparge well identified as BSW-3 and three permanent groundwater monitoring wells identified as MW-21, MW-22, and MW-23 to be installed in the vicinity of BSW-3 to supplement existing monitoring well network for performance monitoring of bio-sparge pilot test #2. The three new monitoring wells plus existing monitoring wells MW-10, MW-14, and MW-15 will be utilized to monitor groundwater quality for evidence of bio-degradation of PCP and for an assessment of the potential for localized pilot test induced PCP migration.


October 31, 2016

To establish a groundwater quality base-line for the pilot test area, groundwater samples were to be obtained and analyses performed prior to the initiation of the pilot test. Following initiation of the pilot test, the groundwater monitoring program will include quarterly monitoring events, conducted for up to two years. For the base-line and quarterly events monitoring wells MW-10, MW-14, MW-15, MW-21, MW-22, and MW-23 will represent the pilot test monitoring network.

SCDHEC issued a Permit to Construct one Class V.A.-I injection well at the Marsh Lumber Company site (bio-sparge well BSW-3), UIC Permit #SCHE03020255M, dated June 27, 2016. The bio-sparge system obtains compressed air from an air-compressor used for multiple purposes at the Marsh facility. Compressed air is supplied to the bio-sprage system control board located in a building north of the former Green Chain Area (see **Figure 2**). The same control board was used during bio-sparge test #1. The control board (see photograph below) contains a particulate filter, a coalescing filter, a pressure regulator, and a flow controller. The pressure regulator provides for control over the air-pressure (pounds per square inch – PSI) delivered to the sparge well, whereas the flow controller provides for the control over the air flow rate (cubic feet per minute – CFM) delivered to the sparge well. During September 2016, an air-line was installed underground between control board and well BSW-3 (see **Figure 2**). Fittings necessary to connect the airline to the BSW-3 well head were also installed. The underground airline was not connected to the control board until October 24, 2016, following the October 17, 2016, issuance of the permit to operate by SCDHEC.

		es Date: 10/24/2016
		Photographer: Ed Henriques
Location / Orientation	Bio-Sparge Well BSW-3	
Remarks	Note pressure gauge at well head. The red compressed air-line connected to well was run underground from this point and over the bio-sparge pilot test control board located in the shed style building to the north as shown on Figure 2.	to

3.3.1 Monitoring Well and Bio-Sparge Well Installation

Between September 7 - 9, 2016, one bio-sparge well (BSW-3) and three permanent groundwater monitoring wells (MW-21, MW-22, and MW-23) were installed. The locations of these wells are shown on **Figure 2**.

The monitoring wells and bio-sparge were installed utilizing a direct push drilling rig equipped with 3.25-inch inside diameter, hollow-stem augers. The wells were completed utilizing two-inch diameter, schedule 40 PVC pipe and 0.01-inch slotted screen. The screen intervals for each well are noted in **Table 1**. An artificial sand pack was installed around the screen section to approximately two-feet above the top of the screen. A bentonite seal was installed above the sand pack. The remainder of the well annulus was filled with cement grout to the surface. Each well was completed at the surface with a two-foot square concrete pad and post-type cover. The monitoring well construction details are summarized on **Table 1**. The Well Logs and SCDHEC 1903 forms are attached in **Appendix II**.

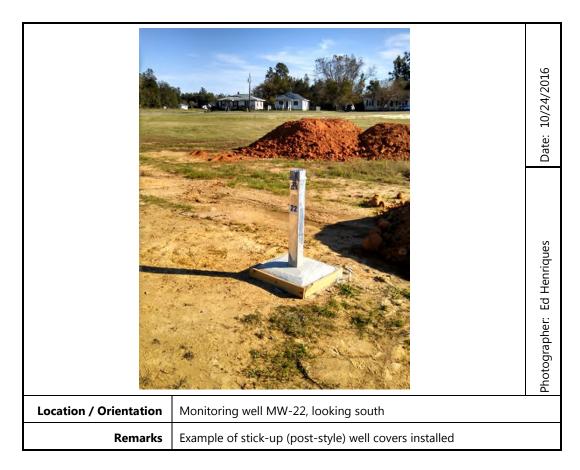
The wells were developed using an electric submersible pump to remove clay, silt, and sand particles that may have been introduced into the formation or filter pack during installation.

VCC Assessment Activity Report Marsh Lumber Company VCC

Pamplico, South Carolina S&ME Project No. 1584-98-146C

3.3.2 Groundwater Sampling and Analysis

From September 14 - 15, 2016, groundwater samples were collected for the base-line monitoring event. Monitoring wells MW-10, MW-14, MW-15, MW-21, MW-22, and MW-23 were sampled using a peristaltic pump using silicone and polyethylene tubing. The polyethylene tubing was lowered to the lowermost portion of well screen interval. Each well was purged and monitored for pH, temperature, conductivity, ORP, DO, and turbidity using a flow cell and Horiba U-5000 meter. At a minimum, the time interval between measurements was the time required for one complete exchange of the volume of water in the flow cell. Sample collection generally commence when the changes in those readings fluctuate within ±10% or less. For turbidity a target of less than or equal to 10 NTU was used as a guide for sample collection. However, professional judgement was utilized when the field parameter readings were stable and the target NTU value had not been achieved. At the time of sample collection, ferrous iron was field measured using a HACH DR/890 Colorimeter. **Table 2** provides a summary of the field data collected prior to sample collection.


Groundwater samples were placed into appropriate sample containers supplied by the analytical laboratory and then placed into coolers with ice. Chain of Custody documentation accompanied the samples to the laboratory. The samples were be shipped via dedicated courier to the analytical laboratory. The groundwater samples were analyzed for TCL SVOCs by Method 8270, Chloride by Method 4500, Total Organic Carbon by Method 5310B, and Alkalinity by Method 2320B, by PACE Analytical located in Huntersville, North Carolina. **Appendix I** contains copies of the laboratory analytical reports.

3.4 Modification of Existing Monitoring Wells

The pre-existing site monitoring wells were installed with flush-mount well covers due to historic site heavy equipment traffic. Several of these monitoring wells were located in low-lying areas, and it has been observed that well vaults fill with water after rain events. To avoid problems associated with rain water ponding inside wells vaults pre-existing monitoring wells MW-3A, MW-10, MW-11, MW-13, MW-14, MW-15, and MW-16 were retrofitted with stick-up (e.g. post) well covers. Monitoring wells MW-1, MW-9, BSW-1, and BSW-2 were not modified based on potential vehicular traffic concerns or the observed integrity of the current flush well cover systems. These monitoring well improvements altered the top of casing elevations for those wells converted from flush covers over to stick-up covers.

The conversion of certain existing monitoring wells from flush-mount covers to stick-up type covers was completed by September 30, 2016, substantially after the depth to groundwater data was collected as part of this monitoring event. The well conversions altered the top of casings elevations. These two factors combined made it impractical to provide comparable groundwater elevations for monitoring wells MW-10, MW-14, and MW-5, utilizing depth to groundwater data obtained September 14-15, 2016.

S&ME contracted Nesbitt Surveying Company, Inc. to survey the locations and top of casing elevations for the monitoring wells (existing and new) associated with the monitoring of the PCP groundwater plume. They also surveyed the location of the new storm water drainage line system installed within a portion of the Marsh Lumber site. **Figure 2** depicts the updated survey well locations and the location of the new storm water drainage line system installed by the South Carolina Department of Transportation (SCDOT) and Town of Pamplico.

3.5 Groundwater Elevation Monitoring

The elevation of the top of well casings and locations of the wells were established by Nesbitt Surveying Company, Inc. (see Section 3.4). Groundwater levels were measured in new monitoring wells MW-17A, MW-19, MW-21, MW-22, and MW-23 following stabilization of the water table for at least 24 hours. The groundwater levels were measured utilizing an electronic water level indicator. The probe of the water level indicator was lowered into the well until the probe contacted the water surface indicated by a solid tone or illumination of a light. The depth to groundwater was measured from the established top of casing elevation and was recorded to the nearest 0.01- foot. The groundwater level data was subtracted from the top of casing elevation to provide a relative groundwater elevation. The groundwater elevation data is shown on **Table 1**.

The groundwater elevation data was placed on a site map and contoured providing an approximation of the groundwater surface below the site. The groundwater surface is shown on **Figure 3**. Based on the depth to groundwater measurements obtained, groundwater flow in this portion of the site appears to be

toward the west under an approximate hydraulic gradient of 0.02 feet per foot (ft/ft), generally consistent with prior observations.

4.0 Investigation Derived Waste Disposal

Investigative-derived waste (IDW) in the form of soil cuttings and monitoring well purge water was generated during this phase of assessment. The cuttings and purge water were placed into new 55-gallon drums, labeled, and left on the site pending the results of the laboratory analysis of the soil and groundwater samples, which were considered representative of the drummed materials. A composite sample labeled D-1, was collected to represent the drummed soil cuttings. Soil sample D-1 was submitted for laboratory analysis for TCL SVOCs and TAL Metals (totals) by PACE Analytical located in Huntersville, North Carolina. No target SVOCs were detected and no total metal concentration was greater than the corresponding EPA Characteristic Hazardous Waste level applying the 20 times rule. Soil cuttings disposal remains pending. **Appendix I** contains copies of the laboratory analytical report.

On October 24, 2016, a composite sample was collected representative of the monitoring well development and purge water stored on-site in 55-gallon drums. The sample was collected on this date which represented the end of this purge water accumulation period. The collected sample was submitted for laboratory analysis for SVOCs by Method 8270 for waste characterization. Following receipt of the analytical results, waste profiles will be developed, and the IDW transported off-site for proper disposal.

5.0 Summary of Findings

5.1 Soil Sample Results

For the eight soil samples collected in the Green Chain area the sample IDs ending with a "1" indicate samples obtained between approximately 0.5 foot and one foot bls. The sample IDs ending with a "6" indicate samples obtained between approximately 5.5 feet and six feet bls. **Table 3** provides a summary of the TAL Metals detections. **Table 4** provides a summary of the SVOC detections. The soil analytical results were compared to the Residential and Industrial regional screening levels (RSL) and to the applicable protection of groundwater site screening levels (Groundwater SSLs) published by the U.S. Environmental Protection Agency (EPA) and used by SCDHEC to evaluate contaminant concentrations from VCC assessments.

5.1.1 Metals (totals)

As noted in the Work Plan, MARSH is not aware of any historic site use of wood-preservatives with formulations based on metals. Historic site assessment laboratory test results did not evidence metals as a concern; however, SCDHEC requested that the VCC assessment include the collection of a limited number of representative soil samples to assess the former Green Chain area. With this understanding, the soil sample analytical results obtained during this assessment were examined for plausible evidence of soil impacts commonly associated with other wood treatment methods. Therefore, a broader assessment of site-specific naturally occurring metal concentrations was not conducted.

As summarized in **Table 3**, multiple target metal (totals) were detected in each soil sample. The following provides a summary of each metal with a reported concentration greater than one or more of the referenced screening levels.

- Antimony concentrations reported for each near surface samples (approximately 0.5 foot to one foot bls) were less than the corresponding Residential RSL, with three of the four samples reporting concentrations greater than the corresponding Groundwater SSL. Analytical results for soil samples representing the deeper soil interval (approximately 5.5 feet to six feet bls.) reported concentrations less than the laboratory reporting limit.
- Arsenic concentrations reported for each near surface samples were greater than the
 corresponding Residential RSL but less than the Industrial RSL. The detected concentrations for
 soil samples representing the deeper soil interval were greater than the corresponding
 Groundwater SSL.
- Iron concentrations reported for each near surface samples were less than the corresponding Residential RSL. Analytical results for soil samples representing the deeper soil interval reported concentrations greater than the corresponding Groundwater SSL.
- Lead was detected in two of four near surface soil samples, the detected concentrations were less than the corresponding Residential RSL. Analytical results for soil samples representing the deeper soil interval reported concentrations less than the corresponding Groundwater SSL
- Manganese concentrations reported for each near surface sample were less than the
 corresponding Residential RSL, with all four samples reporting concentrations greater than the
 corresponding Groundwater SSL. Analytical results for soil samples representing the deeper soil
 interval reported concentrations greater than the corresponding Groundwater SSL.
- Selenium was detected in one of four near surface soil samples, the detected concentration was less than the corresponding Residential RSL. Selenium was detected two of the four soil samples representing the deeper soil interval. The detected concentrations were greater than the corresponding Groundwater SSL.

Since this assessment did not include an assessment of site-specific naturally occurring metal concentrations, the reported total metal concentrations were broadly compared with background concentrations reported in *Elements In South Carolina Inferred Background Soil and Stream Sediment Samples*, by Judy Conova 1999. The total metal concentrations reported in **Table 3** generally fall within the ranges of published background concentrations for coastal plain sediments, or state wide concentrations if a coastal plain reference was not published. Furthermore, the total metals concentrations reported for these samples do not provide plausible evidence of soil impacted by metals associated with other common wood treatment methods. This finding is consistent with known historic site use activities. Acknowledging that the objective of this additional soil assessment was to assess the Green Chain area for evidence of soil impacted by metals associated with other common wood treatment methods, no additional assessment of total metals in soils is warranted.

5.1.2 Semi-Volatile Organic Compounds

It is known that PCP was used in the former Green Chain area. Previous assessment soil sampling was conducted at points along the perimeter of the former Green Chain and PCP was not detected in the soil above the water table. In 2007, the saw mill building and Green Chain concrete pad were removed. To conclude the assessment of site soils as secondary source of PCP to the underlying groundwater, eight

soil samples were collected in the Green Chain area during September 2016. **Table 4** provides a summary of analytical results for SVOCs by Method 8270.

- ◆ PCP was detected in sample GC-2-1, representing the 0.5 to one foot below land surface interval at probe location GC-2. The detected concentrations was less than the corresponding Industrial, Regional Screening Level (RSL) and greater than the corresponding Groundwater SSL. PCP was not detected in the deeper sample (GC-2-6) representing 5.5 feet to six feet bls. Location GC-2 is in close proximity of monitoring well MW-1, which has historically reported PCP concentrations in the groundwater as less than the method reporting limit.
- 2, 3, 4, 6-Tetrachlorophenol was detected in sample GC-1-1, representing the 0.5 to one foot bls interval at probe location GC-1. It was not detected in the deeper sample (GC-2-6) representing 5.5 feet to six feet bls. The detected concentrations was greater than the corresponding Industrial RSL and greater than the corresponding Groundwater SSL. This compound is a probable first-order PCP degradation daughter compound.
- No other semi-volatile organic compounds were detected in the remaining soil samples collected within the Green Chain Area, representing both shallow soil sampled intervals (0.5 to one foot bls) and deeper soil sample intervals (5.5 feet to six feet bls).

5.2 New Sentinel Monitoring Well - Groundwater Results

As summarized in **Table 5**, PCP was not detected in the groundwater samples obtained at monitoring wells MW-19, MW-20, and MW-17A (which replaced MW-17) at concentrations greater than the reporting limit. These findings generally validated prior estimated extents of the dissolved phase PCP plume in the areas represented by these monitoring wells.

5.3 Bio-Sparge Baseline Event – Groundwater Results

The bio-sparge baseline sampling event was completed to establish baseline water quality conditions at monitoring wells MW-10, MW-14, MW-15, MW-21, MW-22, and MW-23, prior to the initiation of the bio-sparge pilot test. Monitoring well MW-14 represented the known dissolved-phase PCP hot spot. As summarized in **Table 5**:

- PCP was detected at monitoring well MW-14 at a concentration that is identical to the concentration reported for the February 2, 2016 monitoring event. The detected concentration exceeds the MCL for PCP set a 1 microgram per liter (μg/L).
- PCP was detected at monitoring well MW-21 at an estimated concentration of 16.6, which exceeds the MCL for PCP. The quality assurance sample collected at well MW-21, identified as "duplicate" reported a similar, estimated concentration of 21.5 μg/L.
- Benzoic Acid was detected at monitoring well MW-23 at an estimated concentration that is less than the corresponding RSL for Tap Water. There is no corresponding MCL for benzoic acid.
- Laboratory analytical results for alkalinity, chloride, and total organic carbon provide baseline data for bio-sparge pilot test. Similarly, groundwater field parameters including depth to groundwater, temperature, pH, conductivity, dissolved oxygen, and oxidation reduction potential, were also collected to establish the baseline. Future quarterly monitoring data will be compared with this baseline data to assess the potential effectiveness of bio-sparging to reduce groundwater PCP concentrations in the pilot test area.

VCC Assessment Activity Report Marsh Lumber Company VCC

Pamplico, South Carolina S&ME Project No. 1584-98-146C

Groundwater analytical data for this baseline monitoring event suggests that the horizontal extent PCP in the area surrounding monitoring well MW-14 may be less that what was estimated following the February 2016 annual monitoring event. New monitoring wells MW-21, MW-22, and MW-23 provide a more refined wells spacing than previously available. The refined well spacing was essential for monitoring of the bio-sparge pilot test.

Figure 3 depicts the distribution of PCP in groundwater based on the analytical results obtained for the September 2016 monitoring event. This drawing was prepared assuming a logarithmic distribution of PCP between the sampled locations. Since an estimated PCP concentration was reported, the method detection limit level for each sample was used for contouring, when no quantified or estimated PCP concentration was reported. The analytical report for the February 2016 annual groundwater monitoring event listed quantitation limits for PCP; however, no corresponding method detection limits. Accordingly, February 2016 and September 2016 data sets were not pooled to prepare a single PCP isoconcentration map for inclusion in this report.

Table 1
Well Construction Details
Marsh Lumber Company
Pamplico, South Carolina
S&ME Project No. 1584-98-146C

Well	Date	Top of Casing	Depth to	Groundwater	Total	Well	Scr	een	Riser*	Installed	Comments
ID	Well	Elevation ₁	Groundater	Elevation	Depth	Diameter				Ву	
			September 2016	September 2016							
	Completed	(mean sea level)	(feet below TOC)	(mean sea level)	(feet bls.)	(inches)	(feet	bls.)	(feet bls.)		
MW-1	1/4/1993	85.55	not measured	not determined	15.3	2	5.3	15.3	0.0 - 5.3	LAW	
MW-2	1/4/1993	85.04	not measured	not determined	15.3	2	5.3	15.3	0.0 - 5.3	LAW	
MW-3A	12/14/2004	88.59	not measured	not determined	15.0	2	5.0	15	0.0 - 5.0	S&ME	replaced MW-3
MW-9	10/8/1993	83.50	not measured	not determined	18.0	2	8.0	18	0.0 - 8.0	LAW	
MW-10	10/8/1993	83.30	6.77	76.53	15.0	2	5.0	15	0.0 - 5.0	LAW	
MW-11	10/11/1993	85.61	not measured	not determined	15.0	2	5.0	15	0.0 - 5.0	LAW	
MW-13A	12/14/2004	83.52	not measured	not determined	22.0	2	7.0	22	0.0 - 7.0	S&ME	replaced MW-13
MW-14	8/16/2000	82.18	5.51	76.67	16.0	2	6.0	16	0.0 - 6.0	S&ME	
MW-15	8/16/2000	82.32	8.34	73.98	15.0	2	5.0	15	0.0 - 5.0	S&ME	
MW-16	8/16/2000	83.65	not measured	not determined	16.0	2	6.0	16	0.0 - 6.0	S&ME	
MW-17A	9/9/2016	82.37	8.91	73.46	15.9	2	5.9	15.9	0.0 - 15.9	S&ME	replaced MW-17
MW-18A	1/7/2009	80.17	not measured	not determined	15.2	2	13.2	15.2	0.0 -13.2	S&ME	
MW-18B	1/7/2009	80.27	not measured	not determined	6.7	2	4.7	6.7	0.0 - 4.7	S&ME	
MW-19	9/8/2016	79.56	5.76	73.80	17.6	2	7.4	17.4	0.0 - 7.4	S&ME	
MW-20	9/9/2016	80.59	7.37	73.22	13.9	2	3.9	13.9	0.0 - 3.9	S&ME	
MW-21	9/9/2016	84.04	7.94	76.10	15.8	2	5.8	15.8	0.0 - 5.8	S&ME	
MW-22	9/9/2016	81.74	5.79	75.95	17.1	2	7.1	17.1	0.0 - 7.1	S&ME	
MW-23	9/9/2016	81.37	7.57	73.80	11.8	2	6.8	11.8	0.0 - 6.8	S&ME	
BSW-1	1/9/2009	no data	not measured	not determined	18.5	2	16.0	18.5	0.0 - 16.0	S&ME	Bio-sparge well
BSW-2	1/9/2009	no data	not measured	not determined	20.0	2.0	10.0	20.0	0.0 - 10.0	S&ME	
BSW-3	9/9/2016	81.34	not measured	not determined	16.8	2	15	16.8	0.0 - 15.0	S&ME	Bio-Sparge well

Top of Casing Elevations₁ = Based data provided by Nesbitt Surveying Company, Inc. on 10/27/2016

Yellow shaded cells indicate the top of casing elevations were changed after depth to groundwater elevations were measured. Groundwater elevation data not comparable.

feet bls. = feet below land surface

feet below TOC = feet below top of well casing

Riser* = relative to top of casing

Table 2
Summary of Field Parameters
Groundwater Monitoring
Marsh Lumber Company
Pamplico, South Carolina
S&ME Project No. 1584-98-146C

Well ID	Date Sampled	Total Depth	Depth to Groundwater	Groundwater Temperature	рН	Conductivity	D.O.	ORP	Turbidity	Ferrous Iron
		(feet)	(feet)	(Celsius)	(s.u.)	(μs/cm ³⁾	(mg/L)	(millivolts)	(NTU)	(mg/L)
MW-10	9/14/2016	16.40	6.77	25.2	6.7	0.546	0.0	-8	8.8	0.18
MW-14	9/14/2016	13.00	5.51	26.5	5.1	0.130	0.0	77	4.9	2.26
MW-15	9/14/2016	18.10	8.34	26.0	6.1	0.663	0.3	-64	14.9	3.30
MW-17A	9/15/2016	18.90	8.91	26.6	7.1	0.368	0.0	-2	19.2	not measured
MW-19	9/15/2016	20.40	5.76	24.6	5.9	0.510	0.0	-17	10.0	not measured
MW-20	9/15/2016	16.90	7.37	24.9	6.8	0.368	0.0	-97	2.5	not measured
MW-21	9/15/2016	19.10	7.94	28.8	5.5	0.161	0.0	189	19.0	0.11
MW-22	9/15/2016	20.50	5.79	29.0	6.5	0.308	0.0	-56	13.0	0.52
MW-23	9/15/2016	15.50	7.57	27.0	6.2	0.558	0.0	-36	11.9	3.3

Total Depth and Depth To Groundwater measurements are relative to top of well casing.

pH measured in S.U. = Standard Units.

Conductivity (Specific Conductance) measured in μs /cm indicates micro Siemens per centimeter.

D.O. = dissolved oxygen, measured in milligrams per liter

ORP = Oxidation Reduction Potential, mV-NHE indicates millivolts-Normal Hydrogen Electrode.

NTU indicates Nephelometric Turbidity Units.

Table 3
Summary of Soil Sample Analytical Data
TAL Metals
Marsh Lumber Site
Pamplico, South Carolina
S&ME Project No. 1584-98-146C

Parameter	Method	Units	3	ening Levels - Ma k = 1E-06, Hazard Qu									Soil Sai	mple ID							
						GC-:	1-1	GC-	L-6	GC-2	2-1	GC-2	2-6	GC-3	B- 1	GC-3	3-6	GC-4	4-1	GC-4	1 -6
						9/9/2	2016	9/9/2	016	9/7/2	016	9/7/2	016	9/9/2	016	9/7/2	016	9/9/2	016	9/7/2	016
			Residential	Industrial	Groundwater SSL	Value	Qual	Value	Qual	Value	Qual	Value	Qual	Value	Qual	Value	Qual	Value	Qual	Value	Qual
Aluminum	6010C	mg/kg	77,000	1,100,000	30,000	2,980		6,950		8,230		5,910		3,500		14,500		3,420		13,500	
Antimony	6010C	mg/kg	31.0	470	0.27	0.70		<0.43		0.69		< 0.42		< 0.35		<0.46		0.60		<0.36	
Arsenic	6010C	mg/kg	0.68	3.0	0.29	1.6		<0.87		1.9		1.5		1.1		4.5		2.7		4.0	
Barium	6010C	mg/kg	15,000	220,000	82	74.7		10.9		33.7		17.9		45.0		14.1		53.9		10.6	
Beryllium	6010C	mg/kg	160	2,300	3.2	0.077		<0.087		0.15		0.089		0.15		0.24		0.12		0.20	
Cadmium	6010C	mg/kg	71.0	980	0.38	< 0.074		<0.087		0.10		<0.084		< 0.070		<0.092		< 0.064		< 0.072	
Calcium	6010C	mg/kg	not listed	not listed	not listed	6,030		1,270		3,060		695		4,260		466		56,700		942	
Chromium	6010C	mg/kg	not listed	not listed	180,000	4.1		6.0		18.2		10.4		5.4		28.8		15.0		30.4	
Cobalt	6010C	mg/kg	23.0	350	2.7	0.64		< 0.43		0.49		<0.42		0.42		<0.46		0.63		<0.36	
Copper	6010C	mg/kg	3,100	47,000	46	7.1		0.63		5.3		1.2		4.4		1.6		12.0		1.6	
Iron	6010C	mg/kg	55,000	820,000	350	3,930		5,370		18,500		9,170		4,830		30,400		8,900		29,900	
Lead	6010C	mg/kg	400	800	14	16.7		6.4		9.1		4.6		40.8		8.4		12.2		7.8	
Magnesium	6010C	mg/kg	not listed	not listed	not listed	433		190		298		189		389		603		1,370		316	
Manganese	6010C	mg/kg	1,800	26,000	28	128		6.7		81.1		18.6		85.9		2.7		159		5.2	
Nickel	6010C	mg/kg	1,500	22,000	26	1.6		0.66		2.1		0.86		1.1		1.3		5.2		1.1	
Potassium	6010C	mg/kg	not listed	not listed	not listed	393		<433		500		<418		585		862		438		766	
Selenium	6010C	mg/kg	390	5,800	0.26	< 0.74		<0.87		1.6		<0.84		< 0.70		2.7		< 0.64		2.3	
Silver	6010C	mg/kg	390	5,800	0.80	< 0.37		< 0.43		<0.37		<0.42		< 0.35		<0.46		<0.32		<0.36	
Sodium	6010C	mg/kg	not listed	not listed	not listed	<370		<433		<368		<418		<352		<459		<321		<360	
Thallium	6010C	mg/kg	0.78	12.0	0.14	< 0.74		<0.87		<0.74		<0.84		< 0.70		<0.92		< 0.64		<0.72	
Vanadium	6010C	mg/kg	390	5,800	86	9.4		12.2		38.7		20.6		11.7		60.8		12.6		60.9	
Zinc	6010C	mg/kg	23,000	350,000	370	19.9		<0.87		248		1.9		10.1		1.2		107		1.3	
Mercury	7471	mg/kg	11.0	46.0	0.1	0.038		0.018		0.038		0.011		0.0082		0.027		0.053		0.020	

Bold value indicates a detection above the reporting detection limit (RDL)

Groundwater soil screening level (SSL) is based on risk-based data (black font) or maximum contaminant level (MCL) data (red font)

Yellow shaded cell indicates detected concentration exceeds one or more of the screening criteria

Table 4
Summary of Soil Sample Analytical Data
Semi-Volatile Organics Compounds
Marsh Lumber Site
Pamplico, South Carolina
S&ME Project No. 1584-98-146C

Parameter	Method	Units	•	ening Levels - Mag k = 1E-06, Hazard Qu								9	Soil Sar	nple ID							
						GC-1	-1	GC-1	-6	GC-2	-1	GC-2	-6	GC-3	-1	GC-3	-6	GC-4	-1	GC-4	-6
						9/7/20	016	9/7/20)16	9/9/20	016	9/9/20	016	9/7/20)16	9/9/20)16	9/7/20	016	9/9/20)16
					Groundwater	Value	01	Value	01	Value	01	Value	01	Value	01	Value	Oual	Value	01	Value	Overl
			Residential	Industrial	SSL	Value	Qual	value	Quai	value	Quai	Value	Quai	value	Quai	Value	Quai	Value	Quai	Value	Quai
Pentachlorophenol	8270	μg/kg	1,000	4,000	1.4	<192,000		<19,100		1,980		<2,000		<2,020		<2,000		<2,070		<2,070	
2,3,4,6-Tetrachlorophenol	8270	μg/kg	190	2,500	0.18	5,010		<3,820		<369		<401		<403		<401		<413		<414	

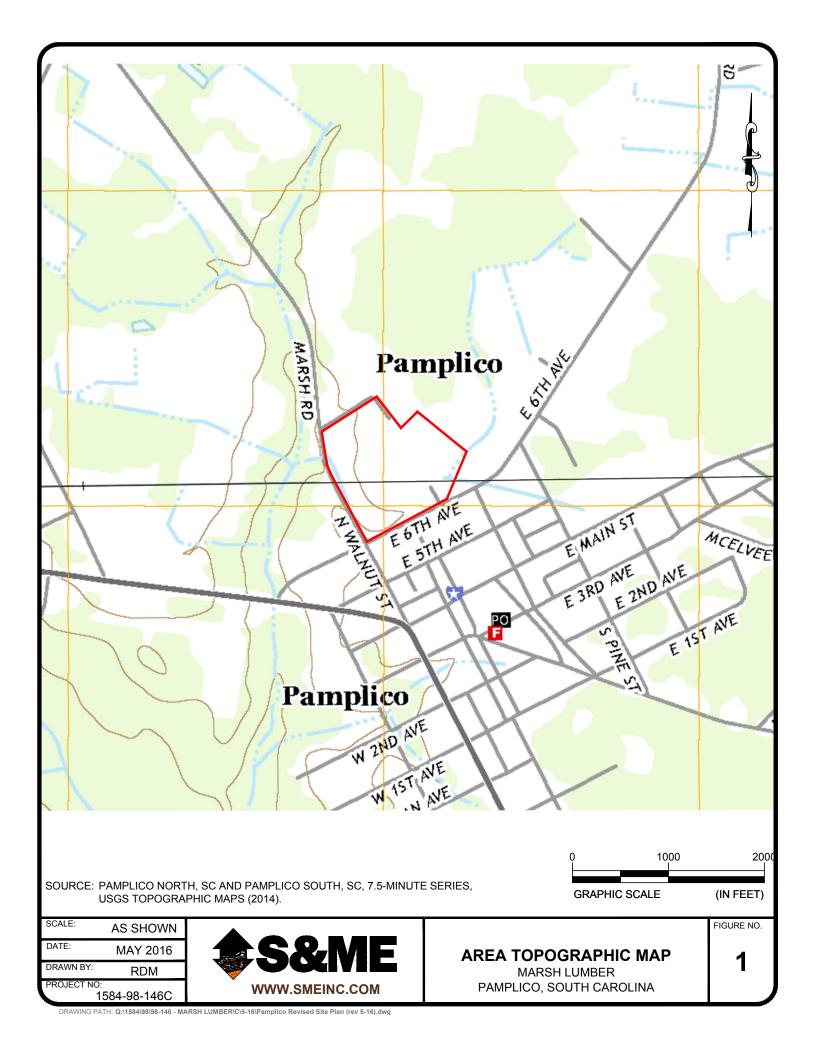
Bold value indicates a detection above the reporting detection limit (RDL)

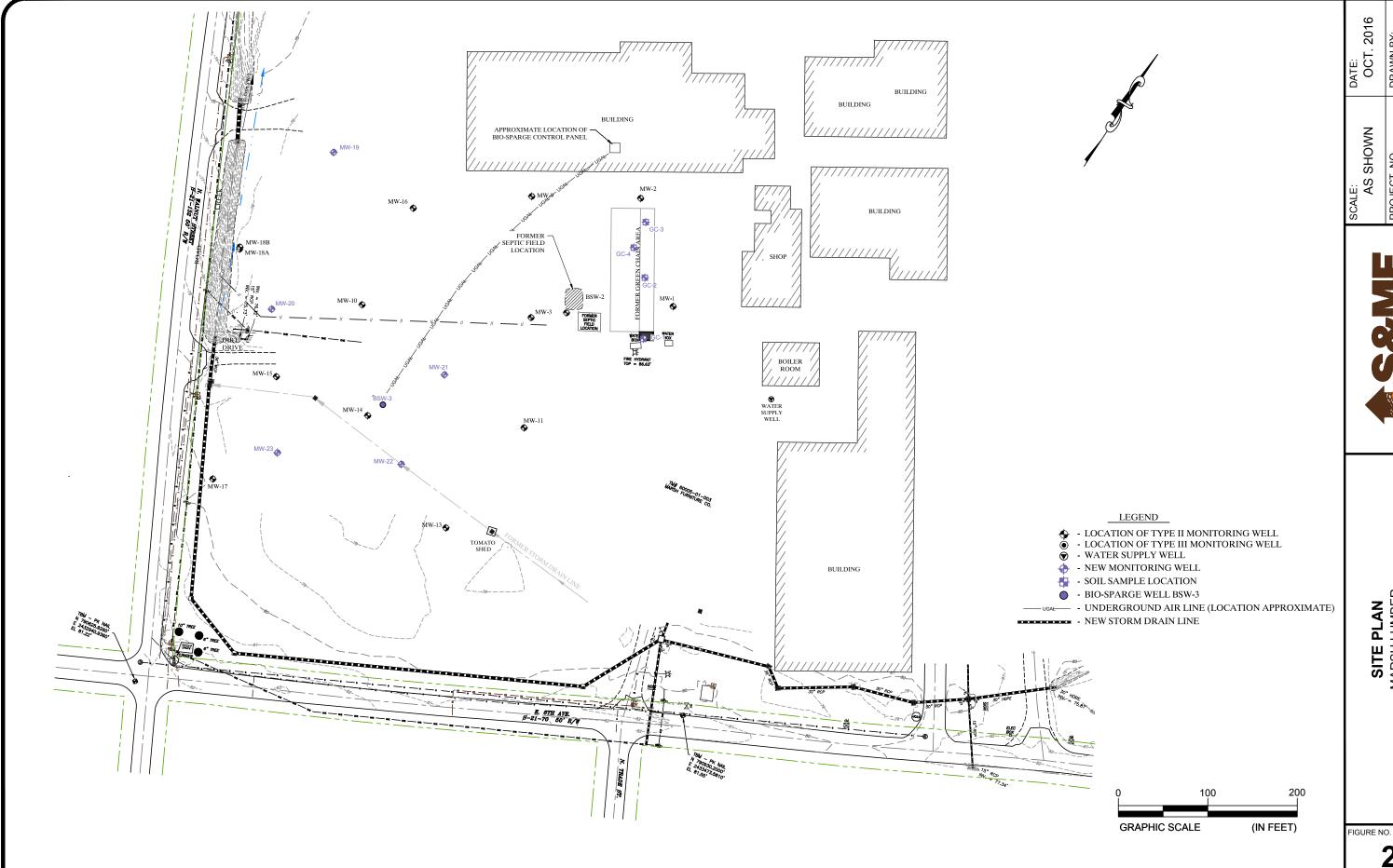
Groundwater soil screening level (SSL) is based on risk-based data (black font) or maximum contaminant level (MCL) data (red font)

Yellow shaded cell indicates detected concentration exceeds one or more of the screening criteria

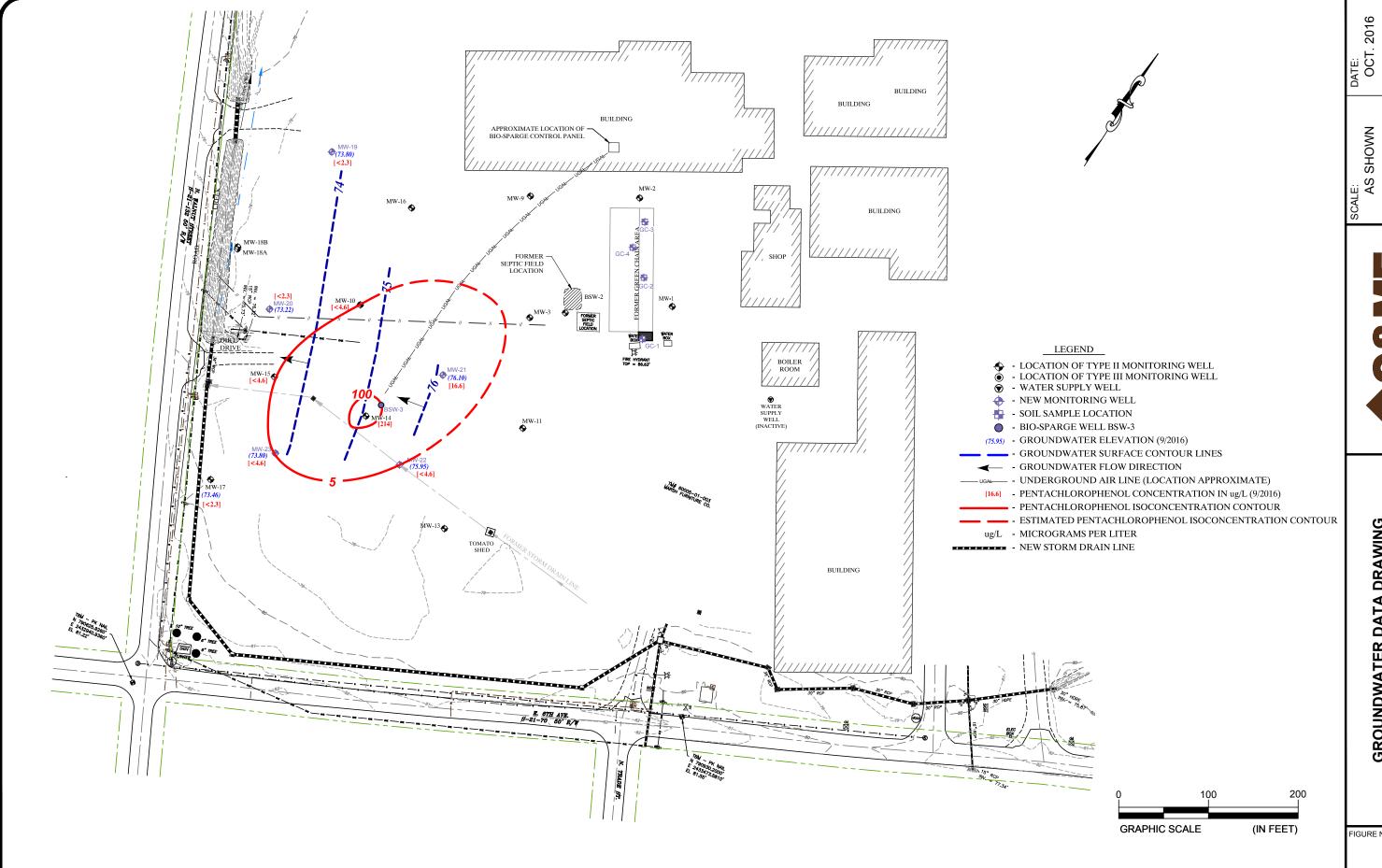
Qual = laboratory result qualifier

Table 5
Summary of Groundwater Sample Analyses
March Lumber Company
Pamplico, South Carolina
S&ME Project No. 1584-98-146C


Sample	Date	Method 82	270 (BNA)	Bio-S	parge Laboratory Para	meters
Location	Collected	Pentachlorophenol	Benzoic Acid	Alkalinity	Chloride	Total Organic Carbon
		(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)
MW-10	9/14/2016	<50	<50	302	12.0	1.9
MW-14	9/14/2016	214	<50	35.7	8.4	4.7
MW-15	9/14/2016	<50	<50	346	25.2	9.1
MW-17A	9/15/2016	<50	<50	not requested	not requested	not requested
MW-19	9/15/2016	<50	<50	not requested	not requested	not requested
MW-20	9/15/2016	<50	<50	not requested	not requested	not requested
MW-21	9/15/2016	16.6 J	<50	26.7	8.9	2.1
MW-22	9/15/2016	<50	<50	178	5.7	<1.0
MW-23	9/15/2016	<50	30.9 J	297	7.1	11.8
Duplicate	9/15/2016	21.5 J	<50	not requested	not requested	not requested
	RSL - Tapwater	0.041	7,500	no standard	no standard	no standard
Maximum Cont	aminant Level (MCL)	1	no standard	no standard	no standard	no standard

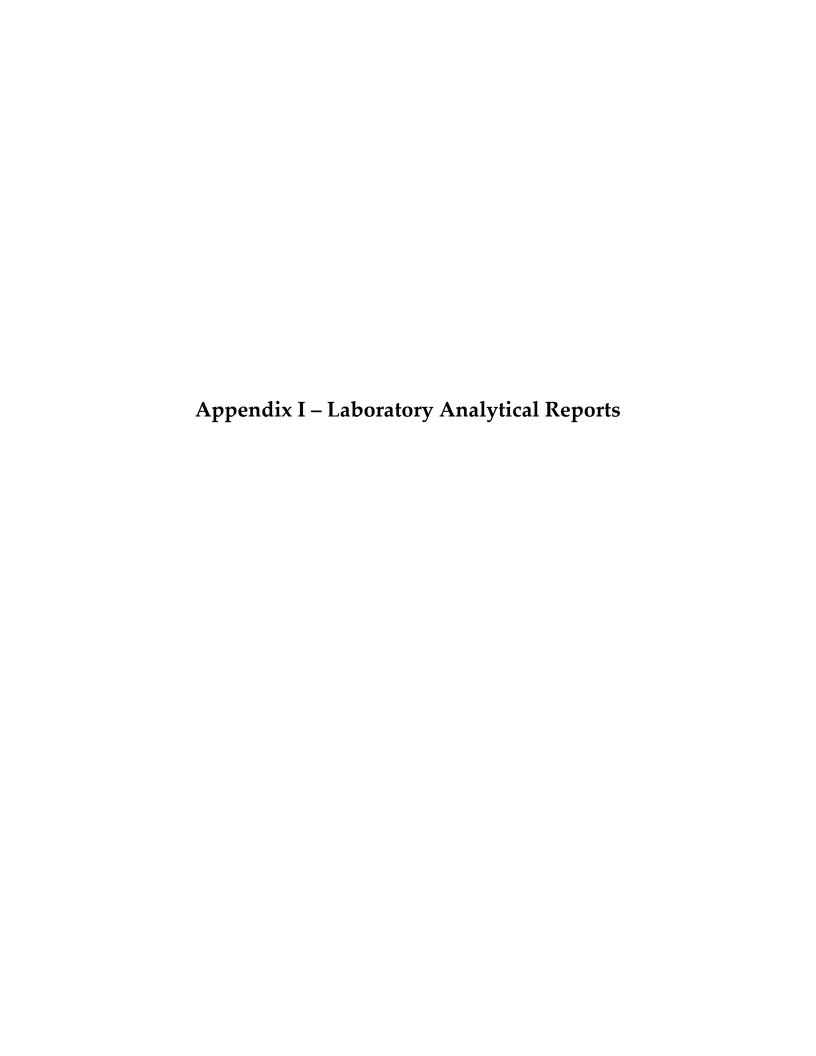

J =concentration shown is estimated

Bold value indicates a detection above the reporting detection limit (RDL)


Yellow shaded cell indicates detected concentration is greater than the corresponding MCL

QA/QC sample "Duplicate" collected at MW-21




SITE PLAN
MARSH LUMBER
PAMPLICO, SOUTH CAROLINA

GROUNDWATER DATA DRAWING
MARSH LUMBER
PAMPLICO, SOUTH CAROLINA

FIGURE NO.

September 23, 2016

Mr. Ed Henriques S&ME, Inc. 8646 West Market Street Suite 105 Greensboro, NC 27409

RE: Project: Marsh Pamplico
Pace Project No.: 92311939

Dear Mr. Henriques:

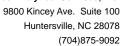
Enclosed are the analytical results for sample(s) received by the laboratory on September 12, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Trey Carter


trey.carter@pacelabs.com

They Cot

Project Manager

Enclosures

CERTIFICATIONS

Project: Marsh Pamplico
Pace Project No.: 92311939

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

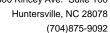
North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

(704)875-9092

SAMPLE ANALYTE COUNT

Project: Marsh Pamplico
Pace Project No.: 92311939

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92311939001	GC-4-1	EPA 8270	BPJ	73	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92311939002	GC-1-1	EPA 8270	BPJ	73	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92311939003	GC-1-6	EPA 8270	BPJ	73	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92311939004	GC-3-1	EPA 8270	BPJ	73	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92311939005	GC-2-1	EPA 8270	BPJ	73	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92311939006	GC-2-6	EPA 8270	BPJ	73	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92311939007	GC-4-6	EPA 8270	BPJ	73	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92311939008	GC-3-6	EPA 8270	BPJ	73	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92311939009	D-1	EPA 6010	SH1	22	PASI-A
		EPA 7471	WAB	1	PASI-A
		EPA 8270	BPJ	73	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92311939010	GC-2-1	EPA 6010	SH1	22	PASI-A
		EPA 7471	WAB	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
92311939011	GC-2-6	EPA 6010	SH1	22	PASI-A
		EPA 7471	WAB	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
92311939012	GC-4-6	EPA 6010	SH1	22	PASI-A
		EPA 7471	WAB	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
92311939013	GC-3-6	EPA 6010	SH1	22	PASI-A
		EPA 7471	WAB	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
2311939014	GC-1-1	EPA 6010	SH1	22	PASI-A
		EPA 7471	WAB	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
92311939015	GC-1-6	EPA 6010	SH1	22	PASI-A
		EPA 7471	WAB	1	PASI-A



SAMPLE ANALYTE COUNT

Project: Marsh Pamplico
Pace Project No.: 92311939

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		ASTM D2974-87	KDF	1	PASI-C
92311939016	GC-4-1	EPA 6010	SH1	22	PASI-A
		EPA 7471	WAB	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C
92311939017	GC-3-1	EPA 6010	SH1	22	PASI-A
		EPA 7471	WAB	1	PASI-A
		ASTM D2974-87	KDF	1	PASI-C

PROJECT NARRATIVE

Project: Marsh Pamplico
Pace Project No.: 92311939

Method: EPA 6010
Description: 6010 MET ICP
Client: S&ME - Greensboro
Date: September 23, 2016

General Information:

9 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 328346

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92311651001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1819775)
 - Aluminum
 - Calcium
 - Iron
 - Manganese
- MSD (Lab ID: 1819776)
 - Aluminum
 - Iron
 - Magnesium
 - Manganese

R1: RPD value was outside control limits.

- MSD (Lab ID: 1819776)
 - Iron

Additional Comments:

PROJECT NARRATIVE

Project: Marsh Pamplico
Pace Project No.: 92311939

Method: EPA 7471
Description: 7471 Mercury
Client: S&ME - Greensboro
Date: September 23, 2016

General Information:

9 samples were analyzed for EPA 7471. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

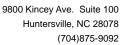
All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: Marsh Pamplico
Pace Project No.: 92311939

Method: EPA 8270

Description: 8270 MSSV Microwave
Client: S&ME - Greensboro
Date: September 23, 2016

General Information:

9 samples were analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 328501

S0: Surrogate recovery outside laboratory control limits.

- MS (Lab ID: 1820775)
 - 2-Fluorobiphenyl (S)
 - Nitrobenzene-d5 (S)
 - Phenol-d6 (S)

S4: Surrogate recovery not evaluated against control limits due to sample dilution.

- GC-1-1 (Lab ID: 92311939002)
 - 2,4,6-Tribromophenol (S)
 - 2-Fluorobiphenyl (S)
 - 2-Fluorophenol (S)
 - Nitrobenzene-d5 (S)
 - Phenol-d6 (S)
 - Terphenyl-d14 (S)
- GC-1-6 (Lab ID: 92311939003)
 - 2,4,6-Tribromophenol (S)
 - 2-Fluorobiphenyl (S)
 - 2-Fluorophenol (S)
 - Nitrobenzene-d5 (S)
 - Phenol-d6 (S)
 - Terphenyl-d14 (S)

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: Marsh Pamplico
Pace Project No.: 92311939

Method: EPA 8270

Description:8270 MSSV MicrowaveClient:S&ME - GreensboroDate:September 23, 2016

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 328501

L0: Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

LCS (Lab ID: 1820774)Benzaldehyde

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 328501

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92311939008

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

• MS (Lab ID: 1820775)

• Benzaldehyde

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1820775)
 - 1,2,4,5-Tetrachlorobenzene
 - 2,2'-Oxybis(1-chloropropane)
 - 2-Nitrophenol
 - Acetophenone
 - Atrazine
 - Biphenyl (Diphenyl)
 - Caprolactam
 - Carbazole
 - Isophorone
 - N-Nitroso-di-n-propylamine
 - Naphthalene

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 328501

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- GC-1-1 (Lab ID: 92311939002)
 - 2-Fluorobiphenyl (S)

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: Marsh Pamplico
Pace Project No.: 92311939

Method: EPA 8270

Description:8270 MSSV MicrowaveClient:S&ME - GreensboroDate:September 23, 2016

Analyte Comments: QC Batch: 328501

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

• GC-1-6 (Lab ID: 92311939003) • 2-Fluorobiphenyl (S)

This data package has been reviewed for quality and completeness and is approved for release.

Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-4-1 Collected: 09/07/16 11:26 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939001

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 8270	Preparation Meth	nod: EF	PA 3546			
Acenaphthene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	83-32-9	
Acenaphthylene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	208-96-8	
Acetophenone	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	98-86-2	
Anthracene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	120-12-7	
Atrazine	<827	ug/kg	827	1	09/14/16 14:30	09/19/16 17:26	1912-24-9	
Benzaldehyde	<827	ug/kg	827	1	09/14/16 14:30	09/19/16 17:26	100-52-7	L2
Benzo(a)anthracene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	56-55-3	
Benzo(a)pyrene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	50-32-8	
Benzo(b)fluoranthene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	205-99-2	
Benzo(g,h,i)perylene	<413	ug/kg	413	1		09/19/16 17:26		
Benzo(k)fluoranthene	<413	ug/kg	413	1		09/19/16 17:26		
Biphenyl (Diphenyl)	<413	ug/kg	413	1		09/19/16 17:26		
I-Bromophenylphenyl ether	<413	ug/kg	413	1		09/19/16 17:26		
Butylbenzylphthalate	<413	ug/kg	413	1		09/19/16 17:26		
Caprolactam	<413	ug/kg	413	1		09/19/16 17:26		
Carbazole	<413	ug/kg	413	1		09/19/16 17:26		
I-Chloro-3-methylphenol	<827	ug/kg	827	1		09/19/16 17:26		
-Chloroaniline	<2070	ug/kg	2070	1		09/19/16 17:26		
is(2-Chloroethoxy)methane	<413	ug/kg	413	1		09/19/16 17:26		
sis(2-Chloroethyl) ether	<413	ug/kg	413	1		09/19/16 17:26		
-Chloronaphthalene	<413	ug/kg	413	1		09/19/16 17:26		
:-Chlorophenol	<413	ug/kg	413	1		09/19/16 17:26		
-Chlorophenylphenyl ether	<413	ug/kg ug/kg	413	1		09/19/16 17:26		
	<413 <413		413	1		09/19/16 17:26		
Chrysene	<413 <413	ug/kg	413	1		09/19/16 17:26		
Dibenz(a,h)anthracene	<413 <413	ug/kg	413	1		09/19/16 17:26		
Dibenzofuran		ug/kg						
3,3'-Dichlorobenzidine	<2070	ug/kg	2070	1		09/19/16 17:26		
4,4-Dichlorophenol	<413	ug/kg	413	1		09/19/16 17:26		
Diethylphthalate	<413	ug/kg	413	1		09/19/16 17:26		
4,4-Dimethylphenol	<413	ug/kg	413	1		09/19/16 17:26		
Dimethylphthalate	<413	ug/kg	413	1		09/19/16 17:26		
Di-n-butylphthalate	<413	ug/kg	413	1		09/19/16 17:26		
I,6-Dinitro-2-methylphenol	<827	ug/kg	827	1		09/19/16 17:26		
2,4-Dinitrophenol	<2070	ug/kg	2070	1		09/19/16 17:26		
2,4-Dinitrotoluene	<413	ug/kg	413	1		09/19/16 17:26		
2,6-Dinitrotoluene	<413	ug/kg	413	1		09/19/16 17:26		
0i-n-octylphthalate	<413	ug/kg	413	1		09/19/16 17:26		
is(2-Ethylhexyl)phthalate	<413	ug/kg	413	1		09/19/16 17:26		
luoranthene	<413	ug/kg	413	1		09/19/16 17:26		
luorene	<413	ug/kg	413	1		09/19/16 17:26		
lexachloro-1,3-butadiene	<413	ug/kg	413	1		09/19/16 17:26		
lexachlorobenzene	<413	ug/kg	413	1		09/19/16 17:26		
lexachlorocyclopentadiene	<413	ug/kg	413	1		09/19/16 17:26		
lexachloroethane	<413	ug/kg	413	1		09/19/16 17:26		
ndeno(1,2,3-cd)pyrene	<413	ug/kg	413	1		09/19/16 17:26		
sophorone	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	78-59-1	

Huntersville, NC 28078 (704)875-9092

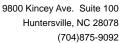
Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-4-1 Collected: 09/07/16 11:26 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939001

Parameters	Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV Microwave	Analytical Meth	nod: EPA 8270	Preparation Meth	nod: EP	A 3546			
2-Methylnaphthalene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	91-57-6	
2-Methylphenol(o-Cresol)	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	95-48-7	
3&4-Methylphenol(m&p Cresol)	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26		
Naphthalene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	91-20-3	
2-Nitroaniline	<2070	ug/kg	2070	1	09/14/16 14:30	09/19/16 17:26	88-74-4	
3-Nitroaniline	<2070	ug/kg	2070	1	09/14/16 14:30	09/19/16 17:26	99-09-2	
1-Nitroaniline	<827	ug/kg	827	1	09/14/16 14:30	09/19/16 17:26	100-01-6	
Nitrobenzene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	98-95-3	
2-Nitrophenol	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	88-75-5	
1-Nitrophenol	<2070	ug/kg	2070	1	09/14/16 14:30	09/19/16 17:26	100-02-7	
N-Nitroso-di-n-propylamine	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	621-64-7	
N-Nitrosodiphenylamine	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	86-30-6	
2,2'-Oxybis(1-chloropropane)	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	108-60-1	
Pentachlorophenol	<2070	ug/kg	2070	1	09/14/16 14:30	09/19/16 17:26	87-86-5	
Phenanthrene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	85-01-8	
Phenol	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26		
Pyrene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	129-00-0	
1,2,4,5-Tetrachlorobenzene	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	95-94-3	
2,3,4,6-Tetrachlorophenol	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	58-90-2	
2,4,5-Trichlorophenol	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	95-95-4	
2,4,6-Trichlorophenol	<413	ug/kg	413	1	09/14/16 14:30	09/19/16 17:26	88-06-2	
Surrogates								
2-Fluorobiphenyl (S)	52	%	30-110	1	09/14/16 14:30	09/19/16 17:26	321-60-8	
Геrphenyl-d14 (S)	49	%	28-110	1	09/14/16 14:30	09/19/16 17:26	1718-51-0	
Phenol-d6 (S)	41	%	22-110	1	09/14/16 14:30			
2-Fluorophenol (S)	35	%	13-110	1	09/14/16 14:30	09/19/16 17:26	367-12-4	
2,4,6-Tribromophenol (S)	50	%	27-110	1	09/14/16 14:30	09/19/16 17:26	118-79-6	
Nitrobenzene-d5 (S)	44	%	23-110	1	09/14/16 14:30	09/19/16 17:26	4165-60-0	
Percent Moisture	Analytical Meth	nod: ASTM D29	974-87					
Percent Moisture	20.2	%	0.10	1		09/14/16 09:21		



ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-1-1 Collected: 09/07/16 11:53 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939002

Acetophenone	09/14/16 14:30 09/14/16 14:30			
Acetophenone	09/14/16 14:30			
Acetophenone		09/23/16 11:42	83-32-9	
Anthracene Atrazine Artazine Benzol(a) ug/kg Artazine Benzol(a) myke Artazine Benzol(a) myke Benzol(a) myke Artazine Benzol(a) myke Benzol(b) fluoranthene Artazine Art	00/44/40 44:00	09/23/16 11:42	208-96-8	
Atrazine	09/14/16 14:30	09/23/16 11:42	98-86-2	
Atrazine	09/14/16 14:30	09/23/16 11:42	120-12-7	
Senzo(a)anthracene 3850	09/14/16 14:30	09/23/16 11:42	1912-24-9	
Senzo(a)anthracene 3850	09/14/16 14:30	09/23/16 11:42	100-52-7	L2
Senzo(b)fluoranthene 3850 ug/kg 3850 10 0 0 0 0 0 0 0 0	09/14/16 14:30	09/23/16 11:42	56-55-3	
Senzo(b)fluoranthene	09/14/16 14:30	09/23/16 11:42	50-32-8	
Senzo(g,h,i)perylene	09/14/16 14:30	09/23/16 11:42	205-99-2	
Senzo(k)fluoranthene	09/14/16 14:30	09/23/16 11:42	191-24-2	
Siphenyl (Diphenyl) Sas50	09/14/16 14:30	09/23/16 11:42	207-08-9	
A-Bromophenylphenyl ether 3850 ug/kg 3850 10 0 0 0 0 0 0 0 0	09/14/16 14:30	09/23/16 11:42	92-52-4	
Sutylbenzylphthalate		09/23/16 11:42		
Caprolactam <3850 ug/kg 3850 10 0 Carbazole <3850		09/23/16 11:42		
Carbazole		09/23/16 11:42		
A-Chloro-3-methylphenol	09/14/16 14:30	09/23/16 11:42	86-74-8	
Choloroaniline		09/23/16 11:42		
cis(2-Chloroethoxy)methane <3850		09/23/16 11:42		
ais(2-Chloroethyl) ether <3850		09/23/16 11:42		
C-Chloronaphthalene		09/23/16 11:42		
C-Chlorophenol C-Chlorophenol C-Chlorophenylphenyl ether C-Chlorophenylphenyl C-Chlorophenylphenyl C-Chlorophenylphenyl C-Chlorophenylphenylphenyl C-Chlorophenylphen		09/23/16 11:42		
-Chlorophenylphenyl ether		09/23/16 11:42		
Chrysene		09/23/16 11:42		
Dibenz(a,h)anthracene <3850 ug/kg 3850 10 0 Dibenzofuran <3850		09/23/16 11:42		
Sibenzofuran Sibenzofuran Sibenzofuran Sibenzofuran Sising Sibenzofuran Sibenzofuran Sising Sibenzofuran Sibenzofuran Sising Sibenzofuran Sibenza		09/23/16 11:42		
4,3'-Dichlorobenzidine <19200 ug/kg 19200 10 0 2,4-Dichlorophenol <3850		09/23/16 11:42		
3850 ug/kg 3850 10 0 0 0 0 0 0 0 0		09/23/16 11:42		
Diethylphthalate <3850 ug/kg 3850 10 0 4,4-Dimethylphenol <3850		09/23/16 11:42		
3850 ug/kg 3850 10 0 0 0 0 0 0 0 0		09/23/16 11:42		
Dimethylphthalate <3850 ug/kg 3850 10 0 Di-n-butylphthalate <3850		09/23/16 11:42		
Di-n-butylphthalate <3850 ug/kg 3850 10 0 c,6-Dinitro-2-methylphenol <7690		09/23/16 11:42		
4,6-Dinitro-2-methylphenol <7690		09/23/16 11:42		
2,4-Dinitrophenol <19200		09/23/16 11:42		
2,4-Dinitrotoluene		09/23/16 11:42		
2,6-Dinitrotoluene <3850 ug/kg 3850 10 0 Di-n-octylphthalate <3850		09/23/16 11:42		
Di-n-octylphthalate <3850 ug/kg 3850 10 0 ois(2-Ethylhexyl)phthalate <3850		09/23/16 11:42		
is(2-Ethylhexyl)phthalate				
luoranthene <3850 ug/kg 3850 10 0		09/23/16 11:42 09/23/16 11:42		
		09/23/16 11:42		
5 5		09/23/16 11:42		
		09/23/16 11:42		
5 5		09/23/16 11:42		
, ,		09/23/16 11:42		
9 0		09/23/16 11:42		
()		09/23/16 11:42 09/23/16 11:42		

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-1-1 Collected: 09/07/16 11:53 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939002

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 827	0 Preparation Meth	nod: EF	PA 3546			
2-Methylnaphthalene	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	91-57-6	
2-Methylphenol(o-Cresol)	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	95-48-7	
3&4-Methylphenol(m&p Cresol)	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42		
Naphthalene	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	91-20-3	
2-Nitroaniline	<19200	ug/kg	19200	10	09/14/16 14:30	09/23/16 11:42	88-74-4	
3-Nitroaniline	<19200	ug/kg	19200	10	09/14/16 14:30	09/23/16 11:42	99-09-2	
4-Nitroaniline	<7690	ug/kg	7690	10	09/14/16 14:30	09/23/16 11:42	100-01-6	
Nitrobenzene	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	98-95-3	
2-Nitrophenol	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	88-75-5	
4-Nitrophenol	<19200	ug/kg	19200	10	09/14/16 14:30	09/23/16 11:42	100-02-7	
N-Nitroso-di-n-propylamine	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	621-64-7	
N-Nitrosodiphenylamine	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	86-30-6	
2,2'-Oxybis(1-chloropropane)	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	108-60-1	
Pentachlorophenol	<192000	ug/kg	192000	100	09/14/16 14:30	09/23/16 15:06	87-86-5	
Phenanthrene	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	85-01-8	
Phenol	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42		
Pyrene	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	129-00-0	
1,2,4,5-Tetrachlorobenzene	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	95-94-3	
2,3,4,6-Tetrachlorophenol	5010	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	58-90-2	
2,4,5-Trichlorophenol	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	95-95-4	
2,4,6-Trichlorophenol	<3850	ug/kg	3850	10	09/14/16 14:30	09/23/16 11:42	88-06-2	
Surrogates								
2-Fluorobiphenyl (S)	0	%	30-110	10	09/14/16 14:30	09/23/16 11:42	321-60-8	D3,S4
Terphenyl-d14 (S)	0	%	28-110	10	09/14/16 14:30	09/23/16 11:42	1718-51-0	S4
Phenol-d6 (S)	0	%	22-110	10	09/14/16 14:30	09/23/16 11:42	13127-88-3	S4
2-Fluorophenol (S)	0	%	13-110	10	09/14/16 14:30	09/23/16 11:42	367-12-4	S4
2,4,6-Tribromophenol (S)	0	%	27-110	10	09/14/16 14:30	09/23/16 11:42	118-79-6	S4
Nitrobenzene-d5 (S)	0	%	23-110	10	09/14/16 14:30	09/23/16 11:42	4165-60-0	S4
Percent Moisture	Analytical Meth	nod: ASTM D	2974-87					
Percent Moisture	14.2	%	0.10	1		09/14/16 09:21		

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-1-6 Collected: 09/07/16 13:36 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939003

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 827	O Preparation Meth	nod: EF	PA 3546			
Acenaphthene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	83-32-9	
Acenaphthylene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	208-96-8	
Acetophenone	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	98-86-2	
Anthracene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	120-12-7	
Atrazine	<7640	ug/kg	7640	10	09/14/16 14:30	09/23/16 12:10	1912-24-9	
Benzaldehyde	<7640	ug/kg	7640	10	09/14/16 14:30	09/23/16 12:10	100-52-7	L2
Benzo(a)anthracene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	56-55-3	
Benzo(a)pyrene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	50-32-8	
Benzo(b)fluoranthene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	205-99-2	
Benzo(g,h,i)perylene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	191-24-2	
Benzo(k)fluoranthene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	207-08-9	
Biphenyl (Diphenyl)	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	92-52-4	
1-Bromophenylphenyl ether	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	101-55-3	
Butylbenzylphthalate	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	85-68-7	
Caprolactam	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	105-60-2	
Carbazole	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	86-74-8	
1-Chloro-3-methylphenol	<7640	ug/kg	7640	10	09/14/16 14:30	09/23/16 12:10	59-50-7	
I-Chloroaniline	<19100	ug/kg	19100	10	09/14/16 14:30	09/23/16 12:10	106-47-8	
ois(2-Chloroethoxy)methane	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	111-91-1	
ois(2-Chloroethyl) ether	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	111-44-4	
2-Chloronaphthalene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	91-58-7	
P-Chlorophenol	<3820	ug/kg	3820	10		09/23/16 12:10		
I-Chlorophenylphenyl ether	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	7005-72-3	
Chrysene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	218-01-9	
Dibenz(a,h)anthracene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	53-70-3	
Dibenzofuran	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	132-64-9	
3,3'-Dichlorobenzidine	<19100	ug/kg	19100	10		09/23/16 12:10		
2,4-Dichlorophenol	<3820	ug/kg	3820	10		09/23/16 12:10		
Diethylphthalate	<3820	ug/kg	3820	10		09/23/16 12:10		
2,4-Dimethylphenol	<3820	ug/kg	3820	10		09/23/16 12:10		
Dimethylphthalate	<3820	ug/kg	3820	10		09/23/16 12:10		
Di-n-butylphthalate	<3820	ug/kg	3820	10		09/23/16 12:10		
I,6-Dinitro-2-methylphenol	<7640	ug/kg	7640	10	09/14/16 14:30	09/23/16 12:10	534-52-1	
2,4-Dinitrophenol	<19100	ug/kg	19100	10		09/23/16 12:10		
2,4-Dinitrotoluene	<3820	ug/kg	3820	10		09/23/16 12:10		
2,6-Dinitrotoluene	<3820	ug/kg	3820	10		09/23/16 12:10		
Di-n-octylphthalate	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	117-84-0	
ois(2-Ethylhexyl)phthalate	<3820	ug/kg	3820	10		09/23/16 12:10		
luoranthene	<3820	ug/kg	3820	10		09/23/16 12:10		
luorene	<3820	ug/kg	3820	10		09/23/16 12:10		
lexachloro-1,3-butadiene	<3820	ug/kg	3820	10		09/23/16 12:10		
Hexachlorobenzene	<3820	ug/kg	3820	10		09/23/16 12:10		
Hexachlorocyclopentadiene	<3820	ug/kg	3820	10		09/23/16 12:10		
Hexachloroethane	<3820	ug/kg	3820	10		09/23/16 12:10		
ndeno(1,2,3-cd)pyrene	<3820	ug/kg	3820	10		09/23/16 12:10		
sophorone	<3820	ug/kg	3820	10		09/23/16 12:10		

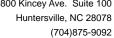
Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

Sample: GC-1-6 Lab ID: 92311939003 Collected: 09/07/16 13:36 Received: 09/12/16 10:54 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 8270	Preparation Meth	nod: EF	PA 3546			
2-Methylnaphthalene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	91-57-6	
2-Methylphenol(o-Cresol)	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	95-48-7	
3&4-Methylphenol(m&p Cresol)	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10		
Naphthalene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	91-20-3	
2-Nitroaniline	<19100	ug/kg	19100	10	09/14/16 14:30	09/23/16 12:10	88-74-4	
3-Nitroaniline	<19100	ug/kg	19100	10	09/14/16 14:30	09/23/16 12:10	99-09-2	
4-Nitroaniline	<7640	ug/kg	7640	10	09/14/16 14:30	09/23/16 12:10	100-01-6	
Nitrobenzene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	98-95-3	
2-Nitrophenol	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	88-75-5	
4-Nitrophenol	<19100	ug/kg	19100	10	09/14/16 14:30	09/23/16 12:10	100-02-7	
N-Nitroso-di-n-propylamine	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	621-64-7	
N-Nitrosodiphenylamine	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	86-30-6	
2,2'-Oxybis(1-chloropropane)	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	108-60-1	
Pentachlorophenol	<19100	ug/kg	19100	10	09/14/16 14:30	09/23/16 12:10	87-86-5	
Phenanthrene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	85-01-8	
Phenol	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10		
Pyrene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	129-00-0	
1,2,4,5-Tetrachlorobenzene	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	95-94-3	
2,3,4,6-Tetrachlorophenol	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	58-90-2	
2,4,5-Trichlorophenol	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	95-95-4	
2,4,6-Trichlorophenol	<3820	ug/kg	3820	10	09/14/16 14:30	09/23/16 12:10	88-06-2	
Surrogates								
2-Fluorobiphenyl (S)	0	%	30-110	10	09/14/16 14:30	09/23/16 12:10	321-60-8	D3,S4
Terphenyl-d14 (S)	0	%	28-110	10	09/14/16 14:30	09/23/16 12:10	1718-51-0	S4
Phenol-d6 (S)	0	%	22-110	10		09/23/16 12:10		S4
2-Fluorophenol (S)	0	%	13-110	10	09/14/16 14:30	09/23/16 12:10	367-12-4	S4
2,4,6-Tribromophenol (S)	0	%	27-110	10	09/14/16 14:30	09/23/16 12:10	118-79-6	S4
Nitrobenzene-d5 (S)	0	%	23-110	10	09/14/16 14:30	09/23/16 12:10	4165-60-0	S4
Percent Moisture	Analytical Meth	nod: ASTM D2	974-87					
Percent Moisture	13.6	%	0.10	1		09/14/16 09:21		



ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-3-1 Collected: 09/07/16 13:56 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939004

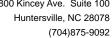
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 8270	Preparation Meth	nod: EF		•	_	
Acenaphthene	· <403	ug/kg	403	1		09/23/16 10:46	83-32-0	
Acenaphthylene	<403	ug/kg ug/kg	403	1		09/23/16 10:46		
Acetophenone	<403	ug/kg ug/kg	403	1		09/23/16 10:46		
Anthracene	<403	ug/kg ug/kg	403	1		09/23/16 10:46		
Atrazine	<806	ug/kg ug/kg	806	1		09/23/16 10:46		
Benzaldehyde	<806	ug/kg ug/kg	806	1		09/23/16 10:46		L2
Benzo(a)anthracene	<403	ug/kg ug/kg	403	1		09/23/16 10:46		LZ
Benzo(a)pyrene	<403	ug/kg ug/kg	403	1		09/23/16 10:46		
	<403 <403		403	1		09/23/16 10:46		
Benzo(b)fluoranthene Benzo(g,h,i)perylene	<403 <403	ug/kg	403	1		09/23/16 10:46		
	<403 <403	ug/kg	403	1		09/23/16 10:46		
Benzo(k)fluoranthene		ug/kg	403	1				
Biphenyl (Diphenyl)	<403	ug/kg				09/23/16 10:46 09/23/16 10:46		
4-Bromophenylphenyl ether	<403	ug/kg	403	1				
Butylbenzylphthalate	<403	ug/kg	403	1		09/23/16 10:46 09/23/16 10:46		
Caprolactam	<403	ug/kg	403	1				
Carbazole	<403	ug/kg	403	1		09/23/16 10:46		
4-Chloro-3-methylphenol	<806	ug/kg	806	1		09/23/16 10:46		
4-Chloroaniline	<2020	ug/kg	2020	1		09/23/16 10:46		
ois(2-Chloroethoxy)methane	<403	ug/kg	403	1		09/23/16 10:46		
ois(2-Chloroethyl) ether	<403	ug/kg	403	1		09/23/16 10:46		
2-Chloronaphthalene	<403	ug/kg	403	1		09/23/16 10:46		
2-Chlorophenol	<403	ug/kg	403	1		09/23/16 10:46		
4-Chlorophenylphenyl ether	<403	ug/kg	403	1		09/23/16 10:46		
Chrysene	<403	ug/kg	403	1		09/23/16 10:46		
Dibenz(a,h)anthracene	<403	ug/kg	403	1		09/23/16 10:46		
Dibenzofuran	<403	ug/kg	403	1		09/23/16 10:46		
3,3'-Dichlorobenzidine	<2020	ug/kg	2020	1		09/23/16 10:46		
2,4-Dichlorophenol	<403	ug/kg	403	1		09/23/16 10:46		
Diethylphthalate	<403	ug/kg	403	1		09/23/16 10:46		
2,4-Dimethylphenol	<403	ug/kg	403	1		09/23/16 10:46		
Dimethylphthalate	<403	ug/kg	403	1		09/23/16 10:46		
Di-n-butylphthalate	<403	ug/kg	403	1		09/23/16 10:46		
4,6-Dinitro-2-methylphenol	<806	ug/kg	806	1		09/23/16 10:46		
2,4-Dinitrophenol	<2020	ug/kg	2020	1		09/23/16 10:46		
2,4-Dinitrotoluene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	121-14-2	
2,6-Dinitrotoluene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	606-20-2	
Di-n-octylphthalate	<403	ug/kg	403	1		09/23/16 10:46		
bis(2-Ethylhexyl)phthalate	<403	ug/kg	403	1		09/23/16 10:46		
Fluoranthene	<403	ug/kg	403	1		09/23/16 10:46		
Fluorene	<403	ug/kg	403	1		09/23/16 10:46		
Hexachloro-1,3-butadiene	<403	ug/kg	403	1		09/23/16 10:46		
Hexachlorobenzene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	118-74-1	
Hexachlorocyclopentadiene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	77-47-4	
Hexachloroethane	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	67-72-1	
Indeno(1,2,3-cd)pyrene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	193-39-5	
Isophorone	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	78-59-1	

ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

Sample: GC-3-1 Lab ID: 92311939004 Collected: 09/07/16 13:56 Received: 09/12/16 10:54 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Microwave	Analytical Meth	hod: EPA 8270	Preparation Meth	nod: EF	PA 3546			
2-Methylnaphthalene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	91-57-6	
2-Methylphenol(o-Cresol)	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	95-48-7	
3&4-Methylphenol(m&p Cresol)	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46		
Naphthalene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	91-20-3	
2-Nitroaniline	<2020	ug/kg	2020	1	09/14/16 14:30	09/23/16 10:46	88-74-4	
3-Nitroaniline	<2020	ug/kg	2020	1	09/14/16 14:30	09/23/16 10:46	99-09-2	
1-Nitroaniline	<806	ug/kg	806	1	09/14/16 14:30	09/23/16 10:46	100-01-6	
Nitrobenzene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	98-95-3	
2-Nitrophenol	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	88-75-5	
I-Nitrophenol	<2020	ug/kg	2020	1	09/14/16 14:30	09/23/16 10:46	100-02-7	
N-Nitroso-di-n-propylamine	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	621-64-7	
N-Nitrosodiphenylamine	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	86-30-6	
2,2'-Oxybis(1-chloropropane)	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	108-60-1	
Pentachlorophenol	<2020	ug/kg	2020	1	09/14/16 14:30	09/23/16 10:46	87-86-5	
Phenanthrene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	85-01-8	
Phenol	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46		
Pyrene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	129-00-0	
1,2,4,5-Tetrachlorobenzene	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	95-94-3	
2,3,4,6-Tetrachlorophenol	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	58-90-2	
2,4,5-Trichlorophenol	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	95-95-4	
2,4,6-Trichlorophenol	<403	ug/kg	403	1	09/14/16 14:30	09/23/16 10:46	88-06-2	
Surrogates								
2-Fluorobiphenyl (S)	58	%	30-110	1	09/14/16 14:30	09/23/16 10:46	321-60-8	
Геrphenyl-d14 (S)	56	%	28-110	1	09/14/16 14:30	09/23/16 10:46	1718-51-0	
Phenol-d6 (S)	43	%	22-110	1	09/14/16 14:30	09/23/16 10:46	13127-88-3	
2-Fluorophenol (S)	43	%	13-110	1	09/14/16 14:30	09/23/16 10:46	367-12-4	
2,4,6-Tribromophenol (S)	58	%	27-110	1	09/14/16 14:30	09/23/16 10:46	118-79-6	
Nitrobenzene-d5 (S)	57	%	23-110	1	09/14/16 14:30	09/23/16 10:46	4165-60-0	
Percent Moisture	Analytical Meth	hod: ASTM D29	74-87					
Percent Moisture	18.2	%	0.10	1		09/14/16 09:21		



ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-2-1 Collected: 09/09/16 14:13 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939005

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 8270	Preparation Meth	nod: EF	PA 3546			
Acenaphthene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	83-32-9	
Acenaphthylene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	208-96-8	
Acetophenone	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	98-86-2	
Anthracene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	120-12-7	
Atrazine	<738	ug/kg	738	1	09/14/16 14:30	09/23/16 11:14	1912-24-9	
Benzaldehyde	<738	ug/kg	738	1	09/14/16 14:30	09/23/16 11:14	100-52-7	L2
Benzo(a)anthracene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	56-55-3	
Benzo(a)pyrene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	50-32-8	
Benzo(b)fluoranthene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	205-99-2	
Benzo(g,h,i)perylene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	191-24-2	
Benzo(k)fluoranthene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	207-08-9	
Biphenyl (Diphenyl)	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	92-52-4	
I-Bromophenylphenyl ether	<369	ug/kg	369	1		09/23/16 11:14		
Butylbenzylphthalate	<369	ug/kg	369	1		09/23/16 11:14		
Caprolactam	<369	ug/kg	369	1		09/23/16 11:14		
Carbazole	<369	ug/kg	369	1		09/23/16 11:14		
I-Chloro-3-methylphenol	<738	ug/kg	738	1		09/23/16 11:14		
-Chloroaniline	<1840	ug/kg	1840	1		09/23/16 11:14		
is(2-Chloroethoxy)methane	<369	ug/kg	369	1		09/23/16 11:14		
is(2-Chloroethyl) ether	<369	ug/kg	369	1		09/23/16 11:14		
:-Chloronaphthalene	<369	ug/kg	369	1		09/23/16 11:14		
r-Chlorophenol	<369	ug/kg	369	1		09/23/16 11:14		
-Chlorophenylphenyl ether	<369	ug/kg	369	1		09/23/16 11:14		
Chrysene	<369	ug/kg	369	1		09/23/16 11:14		
Dibenz(a,h)anthracene	<369	ug/kg	369	1		09/23/16 11:14		
Dibenzofuran	<369	ug/kg	369	1		09/23/16 11:14		
3,3'-Dichlorobenzidine	<1840	ug/kg	1840	1		09/23/16 11:14		
,,4-Dichlorophenol	<369	ug/kg ug/kg	369	1		09/23/16 11:14		
Diethylphthalate	<369	ug/kg ug/kg	369	1		09/23/16 11:14		
,4-Dimethylphenol	<369	ug/kg ug/kg	369	1		09/23/16 11:14		
Dimethylphthalate	<369	ug/kg ug/kg	369	1		09/23/16 11:14		
Di-n-butylphthalate	<369	ug/kg ug/kg	369	1		09/23/16 11:14		
,6-Dinitro-2-methylphenol	<738	ug/kg ug/kg	738	1		09/23/16 11:14		
• •	<1840		1840	1		09/23/16 11:14		
2,4-Dinitrophenol 2,4-Dinitrotoluene	<369	ug/kg	369	1		09/23/16 11:14		
2.6-Dinitrotoluene	<369	ug/kg	369	1		09/23/16 11:14		
		ug/kg		_				
Di-n-octylphthalate	<369	ug/kg	369	1		09/23/16 11:14		
is(2-Ethylhexyl)phthalate	<369	ug/kg	369	1		09/23/16 11:14		
Fluoranthene	<369	ug/kg	369	1		09/23/16 11:14		
Fluorene	<369	ug/kg	369	1		09/23/16 11:14		
Hexachloro-1,3-butadiene	<369	ug/kg	369	1		09/23/16 11:14		
Hexachlorobenzene	<369	ug/kg	369	1		09/23/16 11:14		
Hexachlorocyclopentadiene	<369	ug/kg	369	1		09/23/16 11:14		
lexachloroethane	<369	ug/kg	369	1		09/23/16 11:14		
ndeno(1,2,3-cd)pyrene	<369	ug/kg	369	1		09/23/16 11:14		
sophorone	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	78-59-1	

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-2-1 Collected: 09/09/16 14:13 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939005

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV Microwave	Analytical Meth	nod: EPA 8270	Preparation Meth	nod: EF	A 3546			
2-Methylnaphthalene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	91-57-6	
2-Methylphenol(o-Cresol)	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	95-48-7	
3&4-Methylphenol(m&p Cresol)	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14		
Naphthalene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	91-20-3	
2-Nitroaniline	<1840	ug/kg	1840	1	09/14/16 14:30	09/23/16 11:14	88-74-4	
3-Nitroaniline	<1840	ug/kg	1840	1	09/14/16 14:30	09/23/16 11:14	99-09-2	
1-Nitroaniline	<738	ug/kg	738	1	09/14/16 14:30	09/23/16 11:14	100-01-6	
Nitrobenzene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	98-95-3	
2-Nitrophenol	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	88-75-5	
1-Nitrophenol	<1840	ug/kg	1840	1	09/14/16 14:30	09/23/16 11:14	100-02-7	
N-Nitroso-di-n-propylamine	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	621-64-7	
I-Nitrosodiphenylamine	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	86-30-6	
,2'-Oxybis(1-chloropropane)	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	108-60-1	
Pentachlorophenol	1980	ug/kg	1840	1	09/14/16 14:30	09/23/16 11:14	87-86-5	
Phenanthrene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	85-01-8	
Phenol	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14		
Pyrene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	129-00-0	
1,2,4,5-Tetrachlorobenzene	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	95-94-3	
2,3,4,6-Tetrachlorophenol	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	58-90-2	
2,4,5-Trichlorophenol	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	95-95-4	
2,4,6-Trichlorophenol	<369	ug/kg	369	1	09/14/16 14:30	09/23/16 11:14	88-06-2	
Surrogates								
2-Fluorobiphenyl (S)	49	%	30-110	1	09/14/16 14:30	09/23/16 11:14	321-60-8	
Геrphenyl-d14 (S)	58	%	28-110	1	09/14/16 14:30	09/23/16 11:14	1718-51-0	
Phenol-d6 (S)	42	%	22-110	1	09/14/16 14:30	09/23/16 11:14	13127-88-3	
?-Fluorophenol (S)	31	%	13-110	1	09/14/16 14:30	09/23/16 11:14	367-12-4	
2,4,6-Tribromophenol (S)	44	%	27-110	1	09/14/16 14:30	09/23/16 11:14	118-79-6	
Nitrobenzene-d5 (S)	45	%	23-110	1	09/14/16 14:30	09/23/16 11:14	4165-60-0	
Percent Moisture	Analytical Meth	nod: ASTM D29	74-87					
		%	0.10			09/14/16 09:21		

Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-2-6 Collected: 09/09/16 14:16 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939006

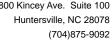
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 827	0 Preparation Meth	nod: EF	PA 3546			
Acenaphthene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	83-32-9	
Acenaphthylene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	208-96-8	
Acetophenone	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	98-86-2	
Anthracene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	120-12-7	
Atrazine	<802	ug/kg	802	1	09/14/16 14:30	09/19/16 19:46	1912-24-9	
Benzaldehyde	<802	ug/kg	802	1	09/14/16 14:30	09/19/16 19:46	100-52-7	L2
Benzo(a)anthracene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	56-55-3	
Benzo(a)pyrene	<401	ug/kg	401	1		09/19/16 19:46		
Benzo(b)fluoranthene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	205-99-2	
Benzo(g,h,i)perylene	<401	ug/kg	401	1		09/19/16 19:46		
Benzo(k)fluoranthene	<401	ug/kg	401	1		09/19/16 19:46		
Biphenyl (Diphenyl)	<401	ug/kg	401	1		09/19/16 19:46		
4-Bromophenylphenyl ether	<401	ug/kg ug/kg	401	1		09/19/16 19:46		
Butylbenzylphthalate	<401	ug/kg	401	1		09/19/16 19:46		
Caprolactam	<401	ug/kg ug/kg	401	1		09/19/16 19:46		
Carbazole	<401	ug/kg ug/kg	401	1		09/19/16 19:46		
4-Chloro-3-methylphenol	<802	ug/kg ug/kg	802	1		09/19/16 19:46		
4-Chloroaniline	<2000	ug/kg ug/kg	2000	1		09/19/16 19:46		
ois(2-Chloroethoxy)methane	<401	ug/kg ug/kg	401	1		09/19/16 19:46		
•	<401 <401		401	1		09/19/16 19:46		
ois(2-Chloroethyl) ether	<401 <401	ug/kg	401	1		09/19/16 19:46		
2-Chloronaphthalene		ug/kg				09/19/16 19:46		
2-Chlorophenol	<401	ug/kg	401	1				
4-Chlorophenylphenyl ether	<401	ug/kg	401	1		09/19/16 19:46		
Chrysene	<401	ug/kg	401	1		09/19/16 19:46		
Dibenz(a,h)anthracene	<401	ug/kg	401	1		09/19/16 19:46		
Dibenzofuran	<401	ug/kg	401	1		09/19/16 19:46		
3,3'-Dichlorobenzidine	<2000	ug/kg	2000	1		09/19/16 19:46		
2,4-Dichlorophenol	<401	ug/kg	401	1		09/19/16 19:46		
Diethylphthalate	<401	ug/kg	401	1		09/19/16 19:46		
2,4-Dimethylphenol	<401	ug/kg	401	1		09/19/16 19:46		
Dimethylphthalate	<401	ug/kg	401	1		09/19/16 19:46		
Di-n-butylphthalate	<401	ug/kg	401	1		09/19/16 19:46		
4,6-Dinitro-2-methylphenol	<802	ug/kg	802	1		09/19/16 19:46		
2,4-Dinitrophenol	<2000	ug/kg	2000	1		09/19/16 19:46		
2,4-Dinitrotoluene	<401	ug/kg	401	1		09/19/16 19:46		
2,6-Dinitrotoluene	<401	ug/kg	401	1		09/19/16 19:46		
Di-n-octylphthalate	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	117-84-0	
ois(2-Ethylhexyl)phthalate	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	117-81-7	
Fluoranthene	<401	ug/kg	401	1		09/19/16 19:46		
Fluorene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	86-73-7	
Hexachloro-1,3-butadiene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	87-68-3	
Hexachlorobenzene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	118-74-1	
Hexachlorocyclopentadiene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	77-47-4	
Hexachloroethane	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	67-72-1	
ndeno(1,2,3-cd)pyrene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	193-39-5	
sophorone	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	78-59-1	

ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

Sample: GC-2-6 Lab ID: 92311939006 Collected: 09/09/16 14:16 Received: 09/12/16 10:54 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 8270	Preparation Meth	nod: EF	PA 3546			
2-Methylnaphthalene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	91-57-6	
2-Methylphenol(o-Cresol)	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	95-48-7	
3&4-Methylphenol(m&p Cresol)	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46		
Naphthalene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	91-20-3	
2-Nitroaniline	<2000	ug/kg	2000	1	09/14/16 14:30	09/19/16 19:46	88-74-4	
3-Nitroaniline	<2000	ug/kg	2000	1	09/14/16 14:30	09/19/16 19:46	99-09-2	
1-Nitroaniline	<802	ug/kg	802	1	09/14/16 14:30	09/19/16 19:46	100-01-6	
Nitrobenzene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	98-95-3	
2-Nitrophenol	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	88-75-5	
1-Nitrophenol	<2000	ug/kg	2000	1	09/14/16 14:30	09/19/16 19:46	100-02-7	
N-Nitroso-di-n-propylamine	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	621-64-7	
N-Nitrosodiphenylamine	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	86-30-6	
2,2'-Oxybis(1-chloropropane)	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	108-60-1	
Pentachlorophenol	<2000	ug/kg	2000	1	09/14/16 14:30	09/19/16 19:46	87-86-5	
Phenanthrene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	85-01-8	
Phenol	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46		
Pyrene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	129-00-0	
1,2,4,5-Tetrachlorobenzene	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	95-94-3	
2,3,4,6-Tetrachlorophenol	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	58-90-2	
2,4,5-Trichlorophenol	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	95-95-4	
2,4,6-Trichlorophenol	<401	ug/kg	401	1	09/14/16 14:30	09/19/16 19:46	88-06-2	
Surrogates								
2-Fluorobiphenyl (S)	65	%	30-110	1	09/14/16 14:30	09/19/16 19:46	321-60-8	
Геrphenyl-d14 (S)	75	%	28-110	1	09/14/16 14:30	09/19/16 19:46	1718-51-0	
Phenol-d6 (S)	74	%	22-110	1		09/19/16 19:46		
2-Fluorophenol (S)	69	%	13-110	1		09/19/16 19:46		
2,4,6-Tribromophenol (S)	82	%	27-110	1		09/19/16 19:46		
Nitrobenzene-d5 (S)	69	%	23-110	1	09/14/16 14:30	09/19/16 19:46	4165-60-0	
Percent Moisture	Analytical Meth	nod: ASTM D29	74-87					
Percent Moisture	17.7	%	0.10	1		09/14/16 09:22		



ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-4-6 Collected: 09/09/16 14:23 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939007

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 8270	Preparation Meth	nod: EF	PA 3546			
Acenaphthene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	83-32-9	
Acenaphthylene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	208-96-8	
Acetophenone	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	98-86-2	
Anthracene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	120-12-7	
Atrazine	<827	ug/kg	827	1	09/14/16 14:30	09/19/16 20:15	1912-24-9	
Benzaldehyde	<827	ug/kg	827	1	09/14/16 14:30	09/19/16 20:15	100-52-7	L2
Benzo(a)anthracene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	56-55-3	
Benzo(a)pyrene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	50-32-8	
Benzo(b)fluoranthene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	205-99-2	
Benzo(g,h,i)perylene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	191-24-2	
Benzo(k)fluoranthene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	207-08-9	
Siphenyl (Diphenyl)	<414	ug/kg	414	1		09/19/16 20:15		
I-Bromophenylphenyl ether	<414	ug/kg	414	1		09/19/16 20:15		
Butylbenzylphthalate	<414	ug/kg	414	1		09/19/16 20:15		
Caprolactam	<414	ug/kg	414	1		09/19/16 20:15		
Carbazole	<414	ug/kg	414	1		09/19/16 20:15		
I-Chloro-3-methylphenol	<827	ug/kg	827	1		09/19/16 20:15		
-Chloroaniline	<2070	ug/kg	2070	1		09/19/16 20:15		
is(2-Chloroethoxy)methane	<414	ug/kg	414	1		09/19/16 20:15		
sis(2-Chloroethyl) ether	<414	ug/kg	414	1		09/19/16 20:15		
-Chloronaphthalene	<414	ug/kg	414	1		09/19/16 20:15		
-Chlorophenol	<414	ug/kg	414	1		09/19/16 20:15		
-Chlorophenylphenyl ether	<414	ug/kg ug/kg	414	1		09/19/16 20:15		
Chrysene	<414	ug/kg ug/kg	414	1		09/19/16 20:15		
Dibenz(a,h)anthracene	<414	ug/kg ug/kg	414	1		09/19/16 20:15		
Dibenzofuran	<414	ug/kg ug/kg	414	1		09/19/16 20:15		
3,3'-Dichlorobenzidine	<2070	ug/kg ug/kg	2070	1		09/19/16 20:15		
	<414		414	1		09/19/16 20:15		
4,4-Dichlorophenol		ug/kg	414	1				
Diethylphthalate	<414 <414	ug/kg	414	1		09/19/16 20:15 09/19/16 20:15		
4,4-Dimethylphenol		ug/kg		1				
Dimethylphthalate	<414	ug/kg	414			09/19/16 20:15		
Di-n-butylphthalate	<414	ug/kg	414	1 1		09/19/16 20:15 09/19/16 20:15		
,6-Dinitro-2-methylphenol	<827	ug/kg	827					
2,4-Dinitrophenol	<2070	ug/kg	2070	1		09/19/16 20:15		
2,4-Dinitrotoluene	<414	ug/kg	414	1		09/19/16 20:15		
,6-Dinitrotoluene	<414	ug/kg	414	1		09/19/16 20:15		
0i-n-octylphthalate	<414	ug/kg	414	1		09/19/16 20:15		
is(2-Ethylhexyl)phthalate	<414	ug/kg	414	1		09/19/16 20:15		
Fluoranthene	<414	ug/kg	414	1		09/19/16 20:15		
Fluorene	<414	ug/kg	414	1		09/19/16 20:15		
Hexachloro-1,3-butadiene	<414	ug/kg	414	1		09/19/16 20:15		
lexachlorobenzene	<414	ug/kg	414	1		09/19/16 20:15		
lexachlorocyclopentadiene	<414	ug/kg	414	1		09/19/16 20:15		
lexachloroethane	<414	ug/kg	414	1		09/19/16 20:15		
ndeno(1,2,3-cd)pyrene	<414	ug/kg	414	1		09/19/16 20:15		
sophorone	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	78-59-1	

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Date: 09/23/2016 03:59 PM

Sample: GC-4-6 Collected: 09/09/16 14:23 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939007

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Microwave	Analytical Meth	nod: EPA 8270 F	Preparation Meth	nod: EF	PA 3546			
2-Methylnaphthalene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	91-57-6	
2-Methylphenol(o-Cresol)	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	95-48-7	
3&4-Methylphenol(m&p Cresol)	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15		
Naphthalene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	91-20-3	
2-Nitroaniline	<2070	ug/kg	2070	1	09/14/16 14:30	09/19/16 20:15	88-74-4	
3-Nitroaniline	<2070	ug/kg	2070	1	09/14/16 14:30	09/19/16 20:15	99-09-2	
1-Nitroaniline	<827	ug/kg	827	1	09/14/16 14:30	09/19/16 20:15	100-01-6	
Nitrobenzene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	98-95-3	
2-Nitrophenol	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	88-75-5	
I-Nitrophenol	<2070	ug/kg	2070	1	09/14/16 14:30	09/19/16 20:15	100-02-7	
N-Nitroso-di-n-propylamine	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	621-64-7	
N-Nitrosodiphenylamine	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	86-30-6	
2,2'-Oxybis(1-chloropropane)	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	108-60-1	
Pentachlorophenol	<2070	ug/kg	2070	1	09/14/16 14:30	09/19/16 20:15	87-86-5	
Phenanthrene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	85-01-8	
Phenol	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15		
Pyrene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	129-00-0	
I,2,4,5-Tetrachlorobenzene	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	95-94-3	
2,3,4,6-Tetrachlorophenol	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	58-90-2	
2,4,5-Trichlorophenol	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	95-95-4	
2,4,6-Trichlorophenol	<414	ug/kg	414	1	09/14/16 14:30	09/19/16 20:15	88-06-2	
Surrogates								
2-Fluorobiphenyl (S)	72	%	30-110	1	09/14/16 14:30	09/19/16 20:15	321-60-8	
Геrphenyl-d14 (S)	79	%	28-110	1	09/14/16 14:30	09/19/16 20:15	1718-51-0	
Phenol-d6 (S)	78	%	22-110	1	09/14/16 14:30	09/19/16 20:15	13127-88-3	
2-Fluorophenol (S)	74	%	13-110	1	09/14/16 14:30	09/19/16 20:15	367-12-4	
2,4,6-Tribromophenol (S)	87	%	27-110	1	09/14/16 14:30	09/19/16 20:15	118-79-6	
Nitrobenzene-d5 (S)	67	%	23-110	1	09/14/16 14:30	09/19/16 20:15	4165-60-0	
Percent Moisture	Analytical Meth	nod: ASTM D297	' 4-87					
Percent Moisture	20.2	%	0.10	1		09/14/16 09:22		

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-3-6 Lab ID: 92311939008 Collected: 09/09/16 14:30 Received: 09/12/16 10:54 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	nod: EPA 827	0 Preparation Meth	nod: EF	PA 3546			
Acenaphthene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	83-32-9	
Acenaphthylene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	208-96-8	
Acetophenone	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	98-86-2	M1
Anthracene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	120-12-7	
Atrazine	<802	ug/kg	802	1	09/14/16 14:30	09/21/16 19:41	1912-24-9	M1
Benzaldehyde	<802	ug/kg	802	1	09/14/16 14:30	09/21/16 19:41	100-52-7	L2,M0
Benzo(a)anthracene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	56-55-3	
Benzo(a)pyrene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	50-32-8	
Benzo(b)fluoranthene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	205-99-2	
Benzo(g,h,i)perylene	<401	ug/kg	401	1		09/21/16 19:41		
Benzo(k)fluoranthene	<401	ug/kg	401	1		09/21/16 19:41		
Biphenyl (Diphenyl)	<401	ug/kg	401	1		09/21/16 19:41		M1
4-Bromophenylphenyl ether	<401	ug/kg ug/kg	401	1		09/21/16 19:41		····•
Butylbenzylphthalate	<401	ug/kg	401	1		09/21/16 19:41		
Caprolactam	<401	ug/kg ug/kg	401	1		09/21/16 19:41		M1
Carbazole	<401	ug/kg ug/kg	401	1		09/21/16 19:41		M1
4-Chloro-3-methylphenol	<802	ug/kg ug/kg	802	1		09/21/16 19:41		
4-Chloroaniline	<2000	ug/kg ug/kg	2000	1		09/21/16 19:41		
ois(2-Chloroethoxy)methane	<401	ug/kg ug/kg	401	1		09/21/16 19:41		
ois(2-Chloroethyl) ether	<401	ug/kg ug/kg	401	1		09/21/16 19:41		
2-Chloronaphthalene	<401	ug/kg ug/kg	401	1		09/21/16 19:41		
2-Chlorophenol	<401 <401	ug/kg ug/kg	401	1		09/21/16 19:41		
4-Chlorophenylphenyl ether	<401 <401	ug/kg ug/kg	401	1		09/21/16 19:41		
	<401 <401		401	1		09/21/16 19:41		
Chrysene	<401 <401	ug/kg	401	1		09/21/16 19:41		
Dibenz(a,h)anthracene		ug/kg						
Dibenzofuran	<401	ug/kg	401	1		09/21/16 19:41		
3,3'-Dichlorobenzidine	<2000	ug/kg	2000	1		09/21/16 19:41		
2,4-Dichlorophenol	<401	ug/kg	401	1		09/21/16 19:41		
Diethylphthalate	<401	ug/kg	401	1		09/21/16 19:41		
2,4-Dimethylphenol	<401	ug/kg	401	1		09/21/16 19:41		
Dimethylphthalate	<401	ug/kg	401	1		09/21/16 19:41		
Di-n-butylphthalate	<401	ug/kg	401	1		09/21/16 19:41		
4,6-Dinitro-2-methylphenol	<802	ug/kg	802	1		09/21/16 19:41		
2,4-Dinitrophenol	<2000	ug/kg	2000	1		09/21/16 19:41		
2,4-Dinitrotoluene	<401	ug/kg	401	1		09/21/16 19:41		
2,6-Dinitrotoluene	<401	ug/kg	401	1		09/21/16 19:41		
Di-n-octylphthalate	<401	ug/kg	401	1		09/21/16 19:41		
ois(2-Ethylhexyl)phthalate	<401	ug/kg	401	1		09/21/16 19:41		
Fluoranthene 	<401	ug/kg	401	1		09/21/16 19:41		
Fluorene	<401	ug/kg	401	1		09/21/16 19:41		
Hexachloro-1,3-butadiene	<401	ug/kg	401	1		09/21/16 19:41		
Hexachlorobenzene	<401	ug/kg	401	1		09/21/16 19:41		
Hexachlorocyclopentadiene	<401	ug/kg	401	1		09/21/16 19:41		
Hexachloroethane	<401	ug/kg	401	1		09/21/16 19:41		
Indeno(1,2,3-cd)pyrene	<401	ug/kg	401	1		09/21/16 19:41		
Isophorone	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	78-59-1	M1

Huntersville, NC 28078 (704)875-9092

Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

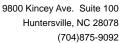
Sample: GC-3-6 Lab ID: 92311939008 Collected: 09/09/16 14:30 Received: 09/12/16 10:54 Matrix: Solid

2270 MSSV Microwave	Analytical Meth							
2-Methylnaphthalene		nod: EPA 8270	Preparation Meth	nod: EP	'A 3546			
	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	91-57-6	
2-Methylphenol(o-Cresol)	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	95-48-7	
8&4-Methylphenol(m&p Cresol)	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41		
Naphthalene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	91-20-3	M1
2-Nitroaniline	<2000	ug/kg	2000	1	09/14/16 14:30	09/21/16 19:41	88-74-4	
3-Nitroaniline	<2000	ug/kg	2000	1	09/14/16 14:30	09/21/16 19:41	99-09-2	
I-Nitroaniline	<802	ug/kg	802	1	09/14/16 14:30	09/21/16 19:41	100-01-6	
Nitrobenzene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	98-95-3	
2-Nitrophenol	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	88-75-5	M1
I-Nitrophenol	<2000	ug/kg	2000	1	09/14/16 14:30	09/21/16 19:41	100-02-7	
N-Nitroso-di-n-propylamine	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	621-64-7	M1
N-Nitrosodiphenylamine	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	86-30-6	
2,2'-Oxybis(1-chloropropane)	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	108-60-1	M1
Pentachlorophenol	<2000	ug/kg	2000	1	09/14/16 14:30	09/21/16 19:41	87-86-5	
Phenanthrene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	85-01-8	
Phenol	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41		
Pyrene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	129-00-0	
,2,4,5-Tetrachlorobenzene	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	95-94-3	M1
2,3,4,6-Tetrachlorophenol	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	58-90-2	
2,4,5-Trichlorophenol	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	95-95-4	
2,4,6-Trichlorophenol	<401	ug/kg	401	1	09/14/16 14:30	09/21/16 19:41	88-06-2	
Surrogates		0 0						
2-Fluorobiphenyl (S)	70	%	30-110	1	09/14/16 14:30	09/21/16 19:41	321-60-8	
erphenyl-d14 (S)	80	%	28-110	1	09/14/16 14:30	09/21/16 19:41	1718-51-0	
Phenol-d6 (S)	67	%	22-110	1	09/14/16 14:30	09/21/16 19:41	13127-88-3	
2-Fluorophenol (S)	66	%	13-110	1	09/14/16 14:30	09/21/16 19:41	367-12-4	
2,4,6-Tribromophenol (S)	73	%	27-110	1	09/14/16 14:30	09/21/16 19:41	118-79-6	
Nitrobenzene-d5 (S)	64	%	23-110	1	09/14/16 14:30	09/21/16 19:41	4165-60-0	
Percent Moisture	Analytical Meth	nod: ASTM D2	974-87					
Percent Moisture	17.7	%	0.10	1		09/14/16 09:22		

ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

Sample: D-1 Lab ID: 92311939009 Collected: 09/09/16 14:45 Received: 09/12/16 10:54 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 6010 Preparation Method: EPA 3050 **6010 MET ICP** Aluminum 3440 mg/kg 8.6 09/13/16 22:15 09/14/16 11:34 7429-90-5 **Antimony** < 0.43 mg/kg 0.43 09/13/16 22:15 09/14/16 11:34 7440-36-0 mg/kg 0.86 09/13/16 22:15 09/14/16 11:34 7440-38-2 Arsenic 1.4 1 **Barium** 12.5 mg/kg 0.43 09/13/16 22:15 09/14/16 11:34 7440-39-3 1 0.086 Beryllium 0.16 mg/kg 1 09/13/16 22:15 09/14/16 11:34 7440-41-7 Cadmium <0.086 0.086 09/13/16 22:15 09/14/16 11:34 7440-43-9 mg/kg 1 Calcium 832 8.6 09/13/16 22:15 09/14/16 11:34 7440-70-2 mg/kg 1 0.43 09/13/16 22:15 09/14/16 11:34 7440-47-3 Chromium 7.9 mg/kg 1 < 0.43 0.43 09/13/16 22:15 09/14/16 11:34 7440-48-4 Cobalt mg/kg 1 0.43 09/13/16 22:15 09/14/16 11:34 7440-50-8 2.8 Copper mg/kg 1 4850 09/13/16 22:15 09/14/16 11:34 7439-89-6 Iron mg/kg 8.6 1 Lead 4.9 mg/kg 0.43 1 09/13/16 22:15 09/14/16 11:34 7439-92-1 Magnesium 140 mg/kg 8.6 1 09/13/16 22:15 09/14/16 11:34 7439-95-4 42.3 0.43 09/13/16 22:15 09/14/16 11:34 7439-96-5 Manganese mg/kg 1 Nickel 0.43 09/13/16 22:15 09/14/16 11:34 7440-02-0 1.0 mg/kg 1 Potassium <428 mg/kg 428 1 09/13/16 22:15 09/14/16 11:34 7440-09-7 Selenium < 0.86 mg/kg 0.86 1 09/13/16 22:15 09/14/16 11:34 7782-49-2 Silver < 0.43 mg/kg 0.43 09/13/16 22:15 09/14/16 11:34 7440-22-4 1 Sodium <428 mg/kg 428 1 09/13/16 22:15 09/14/16 11:34 7440-23-5 Thallium < 0.86 0.86 09/13/16 22:15 09/14/16 11:34 7440-28-0 mg/kg 1 Vanadium 12.4 mg/kg 0.43 1 09/13/16 22:15 09/14/16 11:34 7440-62-2 7inc 17.4 mg/kg 0.86 1 09/13/16 22:15 09/14/16 11:34 7440-66-6 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 Mercury 0.0069 mg/kg 0.0027 09/13/16 23:40 09/14/16 11:08 7439-97-6 Analytical Method: EPA 8270 Preparation Method: EPA 3546 8270 MSSV Microwave Acenaphthene <407 ug/kg 407 1 09/14/16 14:30 09/21/16 20:09 83-32-9 Acenaphthylene <407 ug/kg 407 1 09/14/16 14:30 09/21/16 20:09 208-96-8 Acetophenone <407 ug/kg 407 1 09/14/16 14:30 09/21/16 20:09 98-86-2 Anthracene <407 407 09/14/16 14:30 09/21/16 20:09 120-12-7 ug/kg <813 813 09/14/16 14:30 09/21/16 20:09 Atrazine ug/kg 1912-24-9 Benzaldehyde <813 813 09/14/16 14:30 09/21/16 20:09 100-52-7 L2 ug/kg Benzo(a)anthracene <407 ug/kg 407 09/14/16 14:30 09/21/16 20:09 56-55-3 1 Benzo(a)pyrene <407 ug/kg 407 1 09/14/16 14:30 09/21/16 20:09 50-32-8 Benzo(b)fluoranthene <407 407 09/14/16 14:30 09/21/16 20:09 205-99-2 ug/kg 1 Benzo(g,h,i)perylene -407 ug/kg 407 09/14/16 14:30 09/21/16 20:09 191-24-2 1 Benzo(k)fluoranthene <407 ug/kg 407 1 09/14/16 14:30 09/21/16 20:09 207-08-9 Biphenyl (Diphenyl) <407 ug/kg 407 1 09/14/16 14:30 09/21/16 20:09 92-52-4 4-Bromophenylphenyl ether <407 ug/kg 407 1 09/14/16 14:30 09/21/16 20:09 101-55-3 Butylbenzylphthalate <407 ug/kg 407 1 09/14/16 14:30 09/21/16 20:09 85-68-7 Caprolactam <407 ug/kg 407 09/14/16 14:30 09/21/16 20:09 105-60-2 1 Carbazole <407 ug/kg 407 09/14/16 14:30 09/21/16 20:09 86-74-8 1 <813 813 09/14/16 14:30 09/21/16 20:09 59-50-7 4-Chloro-3-methylphenol ug/kg 1 4-Chloroaniline <2030 ug/kg 2030 09/14/16 14:30 09/21/16 20:09 106-47-8


Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: D-1 Collected: 09/09/16 14:45 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939009

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Microwave	Analytical Meth	nod: EPA 827	Preparation Meth	nod: EF	PA 3546	*		
bis(2-Chloroethoxy)methane	· <407	ug/kg	407	1		09/21/16 20:09	111-01-1	
bis(2-Chloroethyl) ether	<407	ug/kg ug/kg	407	1		09/21/16 20:09		
	<407 <407		407	1		09/21/16 20:09		
2-Chloronaphthalene 2-Chlorophenol	<407 <407	ug/kg	407	1		09/21/16 20:09		
•	<407 <407	ug/kg	407	1		09/21/16 20:09		
4-Chlorophenylphenyl ether		ug/kg				09/21/16 20:09		
Chrysene	<407	ug/kg	407	1				
Dibenz(a,h)anthracene	<407	ug/kg	407	1		09/21/16 20:09		
Dibenzofuran	<407	ug/kg	407	1		09/21/16 20:09		
3,3'-Dichlorobenzidine	<2030	ug/kg	2030	1		09/21/16 20:09		
2,4-Dichlorophenol	<407	ug/kg	407	1		09/21/16 20:09		
Diethylphthalate	<407	ug/kg	407	1		09/21/16 20:09		
2,4-Dimethylphenol	<407	ug/kg	407	1		09/21/16 20:09		
Dimethylphthalate	<407	ug/kg	407	1		09/21/16 20:09		
Di-n-butylphthalate	<407	ug/kg	407	1		09/21/16 20:09		
4,6-Dinitro-2-methylphenol	<813	ug/kg	813	1		09/21/16 20:09		
2,4-Dinitrophenol	<2030	ug/kg	2030	1	09/14/16 14:30	09/21/16 20:09	51-28-5	
2,4-Dinitrotoluene	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	121-14-2	
2,6-Dinitrotoluene	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	606-20-2	
Di-n-octylphthalate	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	117-84-0	
ois(2-Ethylhexyl)phthalate	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	117-81-7	
Fluoranthene	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	206-44-0	
Fluorene	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	86-73-7	
Hexachloro-1,3-butadiene	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	87-68-3	
Hexachlorobenzene	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	118-74-1	
Hexachlorocyclopentadiene	<407	ug/kg	407	1		09/21/16 20:09		
Hexachloroethane	<407	ug/kg	407	1		09/21/16 20:09		
Indeno(1,2,3-cd)pyrene	<407	ug/kg	407	1		09/21/16 20:09		
Isophorone	<407	ug/kg	407	1		09/21/16 20:09		
2-Methylnaphthalene	<407	ug/kg	407	1		09/21/16 20:09		
2-Methylphenol(o-Cresol)	<407	ug/kg ug/kg	407	1		09/21/16 20:09		
3&4-Methylphenol(m&p Cresol)	<407	ug/kg ug/kg	407	1		09/21/16 20:09	33 40 7	
Naphthalene	<407 <407	ug/kg ug/kg	407	1		09/21/16 20:09	01 20 3	
•				1				
2-Nitroaniline	<2030	ug/kg	2030			09/21/16 20:09		
3-Nitroaniline	<2030	ug/kg	2030	1		09/21/16 20:09		
4-Nitroaniline	<813	ug/kg	813	1		09/21/16 20:09		
Nitrobenzene	<407	ug/kg	407	1		09/21/16 20:09		
2-Nitrophenol	<407	ug/kg	407	1		09/21/16 20:09		
4-Nitrophenol	<2030	ug/kg	2030	1		09/21/16 20:09		
N-Nitroso-di-n-propylamine	<407	ug/kg	407	1		09/21/16 20:09		
N-Nitrosodiphenylamine	<407	ug/kg	407	1		09/21/16 20:09		
2,2'-Oxybis(1-chloropropane)	<407	ug/kg	407	1		09/21/16 20:09		
Pentachlorophenol	<2030	ug/kg	2030	1		09/21/16 20:09		
Phenanthrene	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	85-01-8	
Phenol	<407	ug/kg	407	1		09/21/16 20:09		
Pyrene	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	129-00-0	
1,2,4,5-Tetrachlorobenzene	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	95-94-3	

ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

Sample: D-1 Lab ID: 92311939009 Collected: 09/09/16 14:45 Received: 09/12/16 10:54 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3270 MSSV Microwave	Analytical Meth	nod: EPA 8270	O Preparation Meth	nod: EF	PA 3546			
2,3,4,6-Tetrachlorophenol	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	58-90-2	
2,4,5-Trichlorophenol	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	95-95-4	
2,4,6-Trichlorophenol	<407	ug/kg	407	1	09/14/16 14:30	09/21/16 20:09	88-06-2	
Surrogates								
2-Fluorobiphenyl (S)	40	%	30-110	1	09/14/16 14:30	09/21/16 20:09	321-60-8	
Terphenyl-d14 (S)	42	%	28-110	1	09/14/16 14:30	09/21/16 20:09	1718-51-0	
Phenol-d6 (S)	38	%	22-110	1	09/14/16 14:30	09/21/16 20:09	13127-88-3	
2-Fluorophenol (S)	36	%	13-110	1	09/14/16 14:30	09/21/16 20:09	367-12-4	
2,4,6-Tribromophenol (S)	39	%	27-110	1	09/14/16 14:30	09/21/16 20:09	118-79-6	
Nitrobenzene-d5 (S)	39	%	23-110	1	09/14/16 14:30	09/21/16 20:09	4165-60-0	
Percent Moisture	Analytical Meth	nod: ASTM D2	2974-87					
Percent Moisture	18.9	%	0.10	1		09/14/16 09:22		

Matrix: Solid

Huntersville, NC 28078 (704)875-9092

Sample: GC-2-1

Silver

Zinc

Sodium

Thallium

Vanadium

Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Collected: 09/07/16 12:08

Received: 09/12/16 10:54

09/13/16 22:15 09/14/16 11:37 7440-22-4

09/13/16 22:15 09/14/16 11:37 7440-23-5

09/13/16 22:15 09/14/16 11:37 7440-28-0

09/13/16 22:15 09/14/16 11:37 7440-62-2

09/13/16 22:15 09/14/16 11:37 7440-66-6

Project: Marsh Pamplico Pace Project No.: 92311939

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 6010 Preparation Method: EPA 3050 **6010 MET ICP** Aluminum 8230 mg/kg 36.8 5 09/13/16 22:15 09/14/16 17:25 7429-90-5 **Antimony** 0.69 mg/kg 0.37 09/13/16 22:15 09/14/16 11:37 7440-36-0 Arsenic 1.9 mg/kg 0.74 09/13/16 22:15 09/14/16 11:37 7440-38-2 1 **Barium** 33.7 mg/kg 0.37 09/13/16 22:15 09/14/16 11:37 7440-39-3 1 0.15 0.074 09/13/16 22:15 09/14/16 11:37 Beryllium mg/kg 1 7440-41-7 mg/kg 0.074 Cadmium 0.10 09/13/16 22:15 09/14/16 11:37 7440-43-9 1 Calcium 3060 7.4 09/13/16 22:15 09/14/16 11:37 7440-70-2 mg/kg 1 0.37 Chromium 18.2 09/13/16 22:15 09/14/16 11:37 7440-47-3 mg/kg 1 0.49 0.37 09/13/16 22:15 09/14/16 11:37 7440-48-4 Cobalt mg/kg 1 0.37 09/13/16 22:15 09/14/16 11:37 7440-50-8 Copper 5.3 mg/kg 1 18500 36.8 09/13/16 22:15 09/14/16 17:25 7439-89-6 Iron mg/kg 5 Lead 9.1 mg/kg 0.37 1 09/13/16 22:15 09/14/16 11:37 7439-92-1 Magnesium 298 mg/kg 7.4 09/13/16 22:15 09/14/16 11:37 7439-95-4 Manganese 81.1 mg/kg 0.37 09/13/16 22:15 09/14/16 11:37 7439-96-5 1 Nickel 2.1 mg/kg 0.37 09/13/16 22:15 09/14/16 11:37 7440-02-0 1 Potassium 500 mg/kg 368 1 09/13/16 22:15 09/14/16 11:37 7440-09-7 Selenium 1.6 mg/kg 0.74 1 09/13/16 22:15 09/14/16 11:37 7782-49-2

0.37

368

0.74

0.37

0.74

1

1

1

1

1

248 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471

< 0.37

<368

<0.74

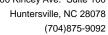
38.7

Lab ID: 92311939010

Mercury 0.038 mg/kg 0.0029 09/13/16 23:40 09/14/16 11:11 7439-97-6

Analytical Method: ASTM D2974-87 **Percent Moisture**

Percent Moisture 15.1 % 0.10 1 09/14/16 09:22

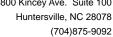

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg


ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

Sample: GC-2-6 Lab ID: 92311939011 Collected: 09/07/16 13:44 Received: 09/12/16 10:54 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Metl	nod: EPA 6010	O Preparation Meth	nod: EF	PA 3050			
luminum	5910	mg/kg	8.4	1	09/13/16 22:15	09/14/16 11:40	7429-90-5	
antimony	<0.42	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7440-36-0	
rsenic	1.5	mg/kg	0.84	1	09/13/16 22:15	09/14/16 11:40	7440-38-2	
Barium	17.9	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7440-39-3	
Beryllium	0.089	mg/kg	0.084	1	09/13/16 22:15	09/14/16 11:40	7440-41-7	
Cadmium	<0.084	mg/kg	0.084	1	09/13/16 22:15	09/14/16 11:40	7440-43-9	
Calcium	685	mg/kg	8.4	1	09/13/16 22:15	09/14/16 11:40	7440-70-2	
Chromium	10.4	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7440-47-3	
Cobalt	<0.42	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7440-48-4	
Copper	1.2	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7440-50-8	
ron	9170	mg/kg	41.8	5	09/13/16 22:15	09/14/16 17:28	7439-89-6	
.ead	4.6	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7439-92-1	
/lagnesium	189	mg/kg	8.4	1	09/13/16 22:15	09/14/16 11:40	7439-95-4	
/langanese	18.6	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7439-96-5	
lickel	0.86	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7440-02-0	
Potassium	<418	mg/kg	418	1	09/13/16 22:15	09/14/16 11:40	7440-09-7	
Selenium	<0.84	mg/kg	0.84	1	09/13/16 22:15	09/14/16 11:40	7782-49-2	
Silver	<0.42	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7440-22-4	
Sodium	<418	mg/kg	418	1	09/13/16 22:15	09/14/16 11:40	7440-23-5	
hallium	<0.84	mg/kg	0.84	1	09/13/16 22:15	09/14/16 11:40	7440-28-0	
/anadium	20.6	mg/kg	0.42	1	09/13/16 22:15	09/14/16 11:40	7440-62-2	
linc	1.9	mg/kg	0.84	1	09/13/16 22:15	09/14/16 11:40	7440-66-6	
471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	0.011	mg/kg	0.0030	1	09/13/16 23:40	09/14/16 11:13	7439-97-6	
Percent Moisture	Analytical Metl	nod: ASTM D2	2974-87					
Percent Moisture	12.1	%	0.10	1		09/14/16 09:22		

Matrix: Solid

Sample: GC-4-6

Silver

Zinc

Sodium

Thallium

Vanadium

Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Collected: 09/07/16 13:50

Received: 09/12/16 10:54

09/13/16 22:15 09/14/16 11:43 7440-22-4

09/13/16 22:15 09/14/16 11:43 7440-23-5

09/13/16 22:15 09/14/16 11:43 7440-28-0

09/13/16 22:15 09/14/16 11:43 7440-62-2

09/13/16 22:15 09/14/16 11:43 7440-66-6

Project: Marsh Pamplico Pace Project No.: 92311939

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6010 MET ICP** Analytical Method: EPA 6010 Preparation Method: EPA 3050 13500 Aluminum mg/kg 71.9 09/13/16 22:15 09/14/16 17:31 7429-90-5 **Antimony** < 0.36 mg/kg 0.36 09/13/16 22:15 09/14/16 11:43 7440-36-0 Arsenic 4.0 mg/kg 0.72 09/13/16 22:15 09/14/16 11:43 7440-38-2 1 **Barium** 10.6 mg/kg 0.36 09/13/16 22:15 09/14/16 11:43 7440-39-3 1 0.20 0.072 09/13/16 22:15 09/14/16 11:43 7440-41-7 Beryllium mg/kg 1 mg/kg 0.072 Cadmium <0.072 09/13/16 22:15 09/14/16 11:43 7440-43-9 1 Calcium 942 7.2 09/13/16 22:15 09/14/16 11:43 7440-70-2 mg/kg 1 30.4 0.36 Chromium 09/13/16 22:15 09/14/16 11:43 7440-47-3 mg/kg 1 0.36 09/13/16 22:15 09/14/16 11:43 7440-48-4 Cobalt < 0.36 mg/kg 1 0.36 09/13/16 22:15 09/14/16 11:43 7440-50-8 Copper 1.6 mg/kg 1 29900 71.9 09/13/16 22:15 09/14/16 17:31 7439-89-6 Iron mg/kg 10 Lead 7.8 mg/kg 0.36 1 09/13/16 22:15 09/14/16 11:43 7439-92-1 Magnesium 316 mg/kg 7.2 09/13/16 22:15 09/14/16 11:43 7439-95-4 Manganese 5.2 mg/kg 0.36 09/13/16 22:15 09/14/16 11:43 7439-96-5 1 Nickel mg/kg 0.36 09/13/16 22:15 09/14/16 11:43 7440-02-0 1.1 1 Potassium 766 mg/kg 360 1 09/13/16 22:15 09/14/16 11:43 7440-09-7 Selenium 2.3 mg/kg 0.72 1 09/13/16 22:15 09/14/16 11:43 7782-49-2

0.36

360

0.72

0.36

0.72

1

1

1

1

1

1.3 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471

< 0.36

<360

< 0.72

60.9

Lab ID: 92311939012

Mercury 0.020 mg/kg 0.0046 09/13/16 23:40 09/14/16 11:15 7439-97-6

Analytical Method: ASTM D2974-87 **Percent Moisture**

Percent Moisture 21.0 % 0.10 1 09/14/16 09:23

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

Date: 09/23/2016 03:59 PM

Sample: GC-3-6 Lab ID: 92311939013 Collected: 09/07/16 13:59 Received: 09/12/16 10:54 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	hod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
Aluminum	14500	mg/kg	45.9	5	09/13/16 22:15	09/14/16 17:35	7429-90-5	
Antimony	<0.46	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7440-36-0	
Arsenic	4.5	mg/kg	0.92	1	09/13/16 22:15	09/14/16 11:46	7440-38-2	
3arium	14.1	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7440-39-3	
Beryllium	0.24	mg/kg	0.092	1	09/13/16 22:15	09/14/16 11:46	7440-41-7	
Cadmium	<0.092	mg/kg	0.092	1	09/13/16 22:15	09/14/16 11:46	7440-43-9	
Calcium	466	mg/kg	9.2	1	09/13/16 22:15	09/14/16 11:46	7440-70-2	
Chromium	28.8	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7440-47-3	
Cobalt	<0.46	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7440-48-4	
Copper	1.6	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7440-50-8	
ron	30400	mg/kg	45.9	5	09/13/16 22:15	09/14/16 17:35	7439-89-6	
_ead	8.4	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7439-92-1	
//agnesium	603	mg/kg	9.2	1	09/13/16 22:15	09/14/16 11:46	7439-95-4	
Manganese	2.7	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7439-96-5	
Nickel	1.3	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7440-02-0	
Potassium	862	mg/kg	459	1	09/13/16 22:15	09/14/16 11:46	7440-09-7	
Selenium	2.7	mg/kg	0.92	1	09/13/16 22:15	09/14/16 11:46	7782-49-2	
Silver	<0.46	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7440-22-4	
Sodium	<459	mg/kg	459	1	09/13/16 22:15	09/14/16 11:46	7440-23-5	
Γhallium	<0.92	mg/kg	0.92	1	09/13/16 22:15	09/14/16 11:46	7440-28-0	
/anadium	60.8	mg/kg	0.46	1	09/13/16 22:15	09/14/16 11:46	7440-62-2	
Zinc	1.2	mg/kg	0.92	1	09/13/16 22:15	09/14/16 11:46	7440-66-6	
471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	0.027	mg/kg	0.0028	1	09/13/16 23:40	09/14/16 11:18	7439-97-6	
Percent Moisture	Analytical Meth	hod: ASTM D2	2974-87					
Percent Moisture	21.0	%	0.10	1		09/14/16 09:23		

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

Sample: GC-1-1 Lab ID: 92311939014 Collected: 09/09/16 14:04 Received: 09/12/16 10:54 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	hod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
Aluminum	2980	mg/kg	7.4	1	09/13/16 22:15	09/14/16 11:49	7429-90-5	
Antimony	0.70	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7440-36-0	
Arsenic	1.6	mg/kg	0.74	1	09/13/16 22:15	09/14/16 11:49	7440-38-2	
Barium	74.7	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7440-39-3	
Beryllium	0.077	mg/kg	0.074	1	09/13/16 22:15	09/14/16 11:49	7440-41-7	
Cadmium	< 0.074	mg/kg	0.074	1	09/13/16 22:15	09/14/16 11:49	7440-43-9	
Calcium	6030	mg/kg	7.4	1	09/13/16 22:15	09/14/16 11:49	7440-70-2	
Chromium	4.1	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7440-47-3	
Cobalt	0.64	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7440-48-4	
Copper	7.1	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7440-50-8	
ron	3930	mg/kg	7.4	1	09/13/16 22:15	09/14/16 11:49	7439-89-6	
_ead	16.7	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7439-92-1	
Magnesium	433	mg/kg	7.4	1	09/13/16 22:15	09/14/16 11:49	7439-95-4	
Manganese	128	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7439-96-5	
Nickel	1.6	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7440-02-0	
Potassium	393	mg/kg	370	1	09/13/16 22:15	09/14/16 11:49	7440-09-7	
Selenium	<0.74	mg/kg	0.74	1	09/13/16 22:15	09/14/16 11:49	7782-49-2	
Silver	<0.37	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7440-22-4	
Sodium	<370	mg/kg	370	1	09/13/16 22:15	09/14/16 11:49	7440-23-5	
Γhallium	<0.74	mg/kg	0.74	1	09/13/16 22:15	09/14/16 11:49	7440-28-0	
√anadium	9.4	mg/kg	0.37	1	09/13/16 22:15	09/14/16 11:49	7440-62-2	
Zinc	19.9	mg/kg	0.74	1	09/13/16 22:15	09/14/16 11:49	7440-66-6	
471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	0.038	mg/kg	0.0021	1	09/13/16 23:40	09/14/16 11:20	7439-97-6	
Percent Moisture	Analytical Meth	hod: ASTM D	2974-87					
Percent Moisture	15.5	%	0.10	1		09/14/16 09:23		

Huntersville, NC 28078 (704)875-9092

Percent Moisture

Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

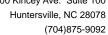
Sample: GC-1-6	Lab ID: 923	11939015	Collected: 09/09/1	6 14:08	Received: 09	/12/16 10:54 N	latrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	iusted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Metl	nod: EPA 60	10 Preparation Meth	nod: EP	A 3050			
Aluminum	6950	mg/kg	8.7	1	09/13/16 22:15	09/14/16 12:02	7429-90-5	
Antimony	< 0.43	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7440-36-0	
Arsenic	<0.87	mg/kg	0.87	1	09/13/16 22:15	09/14/16 12:02	7440-38-2	
Barium	10.9	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7440-39-3	
Beryllium	<0.087	mg/kg	0.087	1	09/13/16 22:15	09/14/16 12:02	7440-41-7	
Cadmium	<0.087	mg/kg	0.087	1	09/13/16 22:15	09/14/16 12:02	7440-43-9	
Calcium	1270	mg/kg	8.7	1	09/13/16 22:15	09/14/16 12:02	7440-70-2	
Chromium	6.0	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7440-47-3	
Cobalt	< 0.43	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7440-48-4	
Copper	0.63	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7440-50-8	
ron	5370	mg/kg	8.7	1	09/13/16 22:15	09/14/16 12:02	7439-89-6	
Lead	6.4	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7439-92-1	
Magnesium	190	mg/kg	8.7	1	09/13/16 22:15	09/14/16 12:02	7439-95-4	
Manganese	6.7	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7439-96-5	
Nickel	0.66	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7440-02-0	
Potassium	<433	mg/kg	433	1	09/13/16 22:15	09/14/16 12:02	7440-09-7	
Selenium	<0.87	mg/kg	0.87	1	09/13/16 22:15	09/14/16 12:02	7782-49-2	
Silver	< 0.43	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7440-22-4	
Sodium	<433	mg/kg	433	1	09/13/16 22:15	09/14/16 12:02	7440-23-5	
Thallium	<0.87	mg/kg	0.87	1	09/13/16 22:15	09/14/16 12:02	7440-28-0	
Vanadium	12.2	mg/kg	0.43	1	09/13/16 22:15	09/14/16 12:02	7440-62-2	
Zinc	<0.87	mg/kg	0.87	1	09/13/16 22:15	09/14/16 12:02	7440-66-6	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EP	A 7471			
Mercury	0.018	mg/kg	0.0056	1	09/13/16 23:40	09/14/16 11:23	7439-97-6	
Percent Moisture	Analytical Meth	nod: ASTM [02974-87					

0.10 1

09/14/16 09:28

18.7

Huntersville, NC 28078 (704)875-9092


Date: 09/23/2016 03:59 PM

ANALYTICAL RESULTS

Project: Marsh Pamplico Pace Project No.: 92311939

Sample: GC-4-1 Collected: 09/09/16 14:40 Received: 09/12/16 10:54 Matrix: Solid Lab ID: 92311939016

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metl	hod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
Aluminum	3420	mg/kg	6.4	1	09/13/16 22:15	09/14/16 12:05	7429-90-5	
Antimony	0.60	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7440-36-0	
Arsenic	2.7	mg/kg	0.64	1	09/13/16 22:15	09/14/16 12:05	7440-38-2	
Barium	53.9	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7440-39-3	
Beryllium	0.12	mg/kg	0.064	1	09/13/16 22:15	09/14/16 12:05	7440-41-7	
Cadmium	< 0.064	mg/kg	0.064	1	09/13/16 22:15	09/14/16 12:05	7440-43-9	
Calcium	56700	mg/kg	64.2	10	09/13/16 22:15	09/15/16 12:49	7440-70-2	
Chromium	15.0	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7440-47-3	
Cobalt	0.63	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7440-48-4	
Copper	12.0	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7440-50-8	
ron	8900	mg/kg	64.2	10	09/13/16 22:15	09/15/16 12:49	7439-89-6	
∟ead	12.2	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7439-92-1	
Magnesium	1370	mg/kg	6.4	1	09/13/16 22:15	09/14/16 12:05	7439-95-4	
Manganese	159	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7439-96-5	
Nickel	5.2	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7440-02-0	
Potassium	438	mg/kg	321	1	09/13/16 22:15	09/14/16 12:05	7440-09-7	
Selenium	<0.64	mg/kg	0.64	1	09/13/16 22:15	09/14/16 12:05	7782-49-2	
Silver	<0.32	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7440-22-4	
Sodium	<321	mg/kg	321	1	09/13/16 22:15	09/14/16 12:05	7440-23-5	
Γhallium	<0.64	mg/kg	0.64	1	09/13/16 22:15	09/14/16 12:05	7440-28-0	
√anadium	12.6	mg/kg	0.32	1	09/13/16 22:15	09/14/16 12:05	7440-62-2	
Zinc	107	mg/kg	0.64	1	09/13/16 22:15	09/14/16 12:05	7440-66-6	
471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	0.053	mg/kg	0.0026	1	09/13/16 23:40	09/14/16 11:25	7439-97-6	
Percent Moisture	Analytical Meth	hod: ASTM D2	2974-87					
Percent Moisture	9.4	%	0.10	1		09/14/16 09:28		

ANALYTICAL RESULTS

Project: Marsh Pamplico
Pace Project No.: 92311939

Sample: GC-3-1 Lab ID: 92311939017 Collected: 09/09/16 14:17 Received: 09/12/16 10:54 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	hod: EPA 601	O Preparation Meth	nod: EF	PA 3050			
Aluminum	3500	mg/kg	7.0	1	09/13/16 22:15	09/14/16 12:08	7429-90-5	
Antimony	<0.35	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7440-36-0	
Arsenic	1.1	mg/kg	0.70	1	09/13/16 22:15	09/14/16 12:08	7440-38-2	
Barium	45.0	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7440-39-3	
Beryllium	0.15	mg/kg	0.070	1	09/13/16 22:15	09/14/16 12:08	7440-41-7	
Cadmium	<0.070	mg/kg	0.070	1	09/13/16 22:15	09/14/16 12:08	7440-43-9	
Calcium	4260	mg/kg	7.0	1	09/13/16 22:15	09/14/16 12:08	7440-70-2	
Chromium	5.4	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7440-47-3	
Cobalt	0.42	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7440-48-4	
Copper	4.4	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7440-50-8	
ron	4830	mg/kg	7.0	1	09/13/16 22:15	09/14/16 12:08	7439-89-6	
ead	40.8	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7439-92-1	
/lagnesium	389	mg/kg	7.0	1	09/13/16 22:15	09/14/16 12:08	7439-95-4	
/langanese	85.9	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7439-96-5	
lickel	1.1	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7440-02-0	
Potassium	585	mg/kg	352	1	09/13/16 22:15	09/14/16 12:08	7440-09-7	
Selenium	<0.70	mg/kg	0.70	1	09/13/16 22:15	09/14/16 12:08	7782-49-2	
Silver	<0.35	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7440-22-4	
Sodium	<352	mg/kg	352	1	09/13/16 22:15	09/14/16 12:08	7440-23-5	
Гhallium	<0.70	mg/kg	0.70	1	09/13/16 22:15	09/14/16 12:08	7440-28-0	
/anadium	11.7	mg/kg	0.35	1	09/13/16 22:15	09/14/16 12:08	7440-62-2	
Zinc	10.1	mg/kg	0.70	1	09/13/16 22:15	09/14/16 12:08	7440-66-6	
471 Mercury	Analytical Meth	hod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	0.0082	mg/kg	0.0039	1	09/13/16 23:40	09/14/16 11:27	7439-97-6	
Percent Moisture	Analytical Meth	hod: ASTM D2	2974-87					
Percent Moisture	26.8	%	0.10	1		09/14/16 09:28		

QUALITY CONTROL DATA

Project: Marsh Pamplico
Pace Project No.: 92311939

QC Batch: 328300 Analysis Method: EPA 7471

QC Batch Method: EPA 7471 Analysis Description: 7471 Mercury

Associated Lab Samples: 92311939009, 92311939010, 92311939011, 92311939012, 92311939013, 92311939014, 92311939015,

92311939016, 92311939017

METHOD BLANK: 1819372 Matrix: Solid

Associated Lab Samples: 92311939009, 92311939010, 92311939011, 92311939012, 92311939013, 92311939014, 92311939015,

92311939016, 92311939017

 Parameter
 Units
 Blank Result
 Reporting Limit
 Analyzed
 Qualifiers

 Mercury
 mg/kg
 <0.0050</td>
 0.0050
 09/14/16 10:40

LABORATORY CONTROL SAMPLE: 1819373

Date: 09/23/2016 03:59 PM

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 93 80-120 Mercury .083 0.077 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1819374 1819375

MS MSD 92311651001 Spike MS MSD MS MSD Spike % Rec RPD % Rec Parameter Units Conc. % Rec Limits Qual Result Conc. Result Result Mercury ND .057 .068 0.056 0.067 99 75-125 17 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 09/23/2016 03:59 PM

QUALITY CONTROL DATA

Project: Marsh Pamplico
Pace Project No.: 92311939

QC Batch: 328346 Analysis Method: EPA 6010
QC Batch Method: EPA 3050 Analysis Description: 6010 MET

Associated Lab Samples: 92311939009, 92311939010, 92311939011, 92311939012, 92311939013, 92311939014, 92311939015,

92311939016, 92311939017

METHOD BLANK: 1819772 Matrix: Solid

Associated Lab Samples: 92311939009, 92311939010, 92311939011, 92311939012, 92311939013, 92311939014, 92311939015,

92311939016, 92311939017

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	mg/kg	<10.0	10.0	09/14/16 11:06	
Antimony	mg/kg	< 0.50	0.50	09/14/16 11:06	
Arsenic	mg/kg	<1.0	1.0	09/14/16 11:06	
Barium	mg/kg	< 0.50	0.50	09/14/16 11:06	
Beryllium	mg/kg	<0.10	0.10	09/14/16 11:06	
Cadmium	mg/kg	<0.10	0.10	09/14/16 11:06	
Calcium	mg/kg	<10.0	10.0	09/14/16 14:32	
Chromium	mg/kg	< 0.50	0.50	09/14/16 11:06	
Cobalt	mg/kg	< 0.50	0.50	09/14/16 11:06	
Copper	mg/kg	< 0.50	0.50	09/14/16 11:06	
Iron	mg/kg	<10.0	10.0	09/14/16 11:06	
Lead	mg/kg	< 0.50	0.50	09/14/16 11:06	
Magnesium	mg/kg	<10.0	10.0	09/14/16 11:06	
Manganese	mg/kg	< 0.50	0.50	09/14/16 11:06	
Nickel	mg/kg	< 0.50	0.50	09/14/16 11:06	
Potassium	mg/kg	<500	500	09/14/16 11:06	
Selenium	mg/kg	<1.0	1.0	09/14/16 11:06	
Silver	mg/kg	< 0.50	0.50	09/14/16 11:06	
Sodium	mg/kg	<500	500	09/14/16 11:06	
Thallium	mg/kg	<1.0	1.0	09/14/16 11:06	
Vanadium	mg/kg	< 0.50	0.50	09/14/16 11:06	
Zinc	mg/kg	<1.0	1.0	09/14/16 11:06	

LABORATORY CONTROL SAMPLE	E: 1819773					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	mg/kg	500	484	97	80-120	
Antimony	mg/kg	50	48.0	96	80-120	
Arsenic	mg/kg	50	47.2	94	80-120	
Barium	mg/kg	50	49.2	98	80-120	
Beryllium	mg/kg	50	48.8	98	80-120	
Cadmium	mg/kg	50	48.8	98	80-120	
Calcium	mg/kg	500	508	102	80-120	
Chromium	mg/kg	50	48.2	96	80-120	
Cobalt	mg/kg	50	48.8	98	80-120	
Copper	mg/kg	50	49.9	100	80-120	
Iron	mg/kg	500	480	96	80-120	
Lead	mg/kg	50	48.1	96	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Marsh Pamplico
Pace Project No.: 92311939

LABORATORY CONTROL SAMPLE:	1819773					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
agnesium	mg/kg	500	475	95	80-120	
anganese	mg/kg	50	48.9	98	80-120	
ckel	mg/kg	50	47.8	96	80-120	
tassium	mg/kg	500	<500	96	80-120	
lenium	mg/kg	50	49.5	99	80-120	
er	mg/kg	25	24.4	97	80-120	
dium	mg/kg	500	<500	96	80-120	
allium	mg/kg	50	48.3	97	80-120	
adium	mg/kg	50	47.9	96	80-120	
;	mg/kg	50	49.5	99	80-120	

MATRIX SPIKE & MATRIX SPIK	E: 18197	75		1819776							
			MS	MSD							
	923	311651001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Aluminum	mg/kg	315	369	334	566	501	68	56	75-125	12 M1	
Antimony	mg/kg	ND	36.9	33.4	35.5	32.4	96	97	75-125	9	
Arsenic	mg/kg	ND	36.9	33.4	35.2	32.4	95	96	75-125	8	
Barium	mg/kg	0.94	36.9	33.4	37.0	33.7	98	98	75-125	9	
Beryllium	mg/kg	ND	36.9	33.4	36.2	32.9	98	98	75-125	9	
Cadmium	mg/kg	ND	36.9	33.4	36.0	33.1	98	99	75-125	9	
Calcium	mg/kg	258	369	334	530	517	74	78	75-125	2 M1	
Chromium	mg/kg	ND	36.9	33.4	35.8	32.6	96	96	75-125	10	
Cobalt	mg/kg	ND	36.9	33.4	36.2	33.2	98	99	75-125	9	
Copper	mg/kg	0.45	36.9	33.4	37.0	33.7	99	100	75-125	9	
Iron	mg/kg	556	369	334	648	503	25	-16	75-125	25 M1,F	R1
Lead	mg/kg	1.5	36.9	33.4	36.8	33.6	96	96	75-125	9	
Magnesium	mg/kg	158	369	334	438	377	76	66	75-125	15 M1	
Manganese	mg/kg	26.2	36.9	33.4	50.8	42.4	67	49	75-125	18 M1	
Nickel	mg/kg	ND	36.9	33.4	35.4	32.5	95	96	75-125	9	
Potassium	mg/kg	ND	369	334	428	406	87	90	75-125	5	
Selenium	mg/kg	ND	36.9	33.4	36.7	33.4	100	100	75-125	10	
Silver	mg/kg	ND	18.4	16.7	17.9	16.4	97	98	75-125	9	
Sodium	mg/kg	ND	369	334	382	352	97	98	75-125	8	
Thallium	mg/kg	ND	36.9	33.4	35.8	32.9	97	98	75-125	9	
Vanadium	mg/kg	0.51	36.9	33.4	35.6	32.6	95	96	75-125	9	
Zinc	mg/kg	4.7	36.9	33.4	38.2	35.1	91	91	75-125	8	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Marsh Pamplico

Pace Project No.: 92311939

Date: 09/23/2016 03:59 PM

QC Batch: 328501 Analysis Method: EPA 8270

QC Batch Method: EPA 3546 Analysis Description: 8270 Solid MSSV Microwave

Associated Lab Samples: 92311939001, 92311939002, 92311939003, 92311939004, 92311939005, 92311939006, 92311939007,

92311939008, 92311939009

METHOD BLANK: 1820773 Matrix: Solid

Associated Lab Samples: 92311939001, 92311939002, 92311939003, 92311939004, 92311939005, 92311939006, 92311939007,

92311939008, 92311939009

92311938	9006, 92311939009				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/kg	<330	330	09/15/16 12:41	
2,2'-Oxybis(1-chloropropane)	ug/kg	<330	330	09/15/16 12:41	
2,3,4,6-Tetrachlorophenol	ug/kg	<330	330	09/15/16 12:41	
2,4,5-Trichlorophenol	ug/kg	<330	330	09/15/16 12:41	
2,4,6-Trichlorophenol	ug/kg	<330	330	09/15/16 12:41	
2,4-Dichlorophenol	ug/kg	<330	330	09/15/16 12:41	
2,4-Dimethylphenol	ug/kg	<330	330	09/15/16 12:41	
2,4-Dinitrophenol	ug/kg	<1650	1650	09/15/16 12:41	
2,4-Dinitrotoluene	ug/kg	<330	330	09/15/16 12:41	
2,6-Dinitrotoluene	ug/kg	<330	330	09/15/16 12:41	
2-Chloronaphthalene	ug/kg	<330	330	09/15/16 12:41	
2-Chlorophenol	ug/kg	<330	330	09/15/16 12:41	
2-Methylnaphthalene	ug/kg	<330	330	09/15/16 12:41	
2-Methylphenol(o-Cresol)	ug/kg	<330	330	09/15/16 12:41	
2-Nitroaniline	ug/kg	<1650	1650	09/15/16 12:41	
2-Nitrophenol	ug/kg	<330	330	09/15/16 12:41	
3&4-Methylphenol(m&p Cresol)	ug/kg	<330	330	09/15/16 12:41	
3,3'-Dichlorobenzidine	ug/kg	<1650	1650	09/15/16 12:41	
3-Nitroaniline	ug/kg	<1650	1650	09/15/16 12:41	
4,6-Dinitro-2-methylphenol	ug/kg	<660	660	09/15/16 12:41	
4-Bromophenylphenyl ether	ug/kg	<330	330	09/15/16 12:41	
4-Chloro-3-methylphenol	ug/kg	<660	660	09/15/16 12:41	
4-Chloroaniline	ug/kg	<1650	1650	09/15/16 12:41	
4-Chlorophenylphenyl ether	ug/kg	<330	330	09/15/16 12:41	
4-Nitroaniline	ug/kg	<660	660	09/15/16 12:41	
4-Nitrophenol	ug/kg	<1650	1650	09/15/16 12:41	
Acenaphthene	ug/kg	<330	330	09/15/16 12:41	
Acenaphthylene	ug/kg	<330	330	09/15/16 12:41	
Acetophenone	ug/kg	<330	330	09/15/16 12:41	
Anthracene	ug/kg	<330	330	09/15/16 12:41	
Atrazine	ug/kg	<660	660	09/15/16 12:41	
Benzaldehyde	ug/kg	<660	660	09/15/16 12:41	
Benzo(a)anthracene	ug/kg	<330	330	09/15/16 12:41	
Benzo(a)pyrene	ug/kg	<330	330	09/15/16 12:41	
Benzo(b)fluoranthene	ug/kg	<330	330	09/15/16 12:41	
Benzo(g,h,i)perylene	ug/kg	<330	330	09/15/16 12:41	
Benzo(k)fluoranthene	ug/kg	<330	330	09/15/16 12:41	
Biphenyl (Diphenyl)	ug/kg	<330	330	09/15/16 12:41	
bis(2-Chloroethoxy)methane	ug/kg	<330	330	09/15/16 12:41	
bis(2-Chloroethyl) ether	ug/kg	<330	330	09/15/16 12:41	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 09/23/2016 03:59 PM

QUALITY CONTROL DATA

Project: Marsh Pamplico
Pace Project No.: 92311939

METHOD BLANK: 1820773 Matrix: Solid

Associated Lab Samples: 92311939001, 92311939002, 92311939003, 92311939004, 92311939005, 92311939006, 92311939007,

92311939008, 92311939009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
bis(2-Ethylhexyl)phthalate	ug/kg	<330	330	09/15/16 12:41	
Butylbenzylphthalate	ug/kg	<330	330	09/15/16 12:41	
Caprolactam	ug/kg	<330	330	09/15/16 12:41	
Carbazole	ug/kg	<330	330	09/15/16 12:41	
Chrysene	ug/kg	<330	330	09/15/16 12:41	
Di-n-butylphthalate	ug/kg	<330	330	09/15/16 12:41	
Di-n-octylphthalate	ug/kg	<330	330	09/15/16 12:41	
Dibenz(a,h)anthracene	ug/kg	<330	330	09/15/16 12:41	
Dibenzofuran	ug/kg	<330	330	09/15/16 12:41	
Diethylphthalate	ug/kg	<330	330	09/15/16 12:41	
Dimethylphthalate	ug/kg	<330	330	09/15/16 12:41	
Fluoranthene	ug/kg	<330	330	09/15/16 12:41	
Fluorene	ug/kg	<330	330	09/15/16 12:41	
Hexachloro-1,3-butadiene	ug/kg	<330	330	09/15/16 12:41	
Hexachlorobenzene	ug/kg	<330	330	09/15/16 12:41	
Hexachlorocyclopentadiene	ug/kg	<330	330	09/15/16 12:41	
Hexachloroethane	ug/kg	<330	330	09/15/16 12:41	
Indeno(1,2,3-cd)pyrene	ug/kg	<330	330	09/15/16 12:41	
Isophorone	ug/kg	<330	330	09/15/16 12:41	
N-Nitroso-di-n-propylamine	ug/kg	<330	330	09/15/16 12:41	
N-Nitrosodiphenylamine	ug/kg	<330	330	09/15/16 12:41	
Naphthalene	ug/kg	<330	330	09/15/16 12:41	
Nitrobenzene	ug/kg	<330	330	09/15/16 12:41	
Pentachlorophenol	ug/kg	<1650	1650	09/15/16 12:41	
Phenanthrene	ug/kg	<330	330	09/15/16 12:41	
Phenol	ug/kg	<330	330	09/15/16 12:41	
Pyrene	ug/kg	<330	330	09/15/16 12:41	
2,4,6-Tribromophenol (S)	%	86	27-110	09/15/16 12:41	
2-Fluorobiphenyl (S)	%	78	30-110	09/15/16 12:41	
2-Fluorophenol (S)	%	78	13-110	09/15/16 12:41	
Nitrobenzene-d5 (S)	%	78	23-110	09/15/16 12:41	
Phenol-d6 (S)	%	85	22-110	09/15/16 12:41	
Terphenyl-d14 (S)	%	91	28-110	09/15/16 12:41	

LABORATORY CONTROL SAMPLE:	1820774					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/kg	1670	1060	63	36-124	
2,2'-Oxybis(1-chloropropane)	ug/kg	1670	1080	65	17-120	
2,3,4,6-Tetrachlorophenol	ug/kg	1670	1850	111	82-262	
2,4,5-Trichlorophenol	ug/kg	1670	1420	85	37-120	
2,4,6-Trichlorophenol	ug/kg	1670	1450	87	40-120	
2,4-Dichlorophenol	ug/kg	1670	1320	79	33-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Marsh Pamplico
Pace Project No.: 92311939

ABORATORY CONTROL SAMPLE:	1820774					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
2,4-Dimethylphenol	ug/kg	1670	1520	91	36-120	
2,4-Dinitrophenol	ug/kg	8330	5720	69	22-121	
2,4-Dinitrotoluene	ug/kg	1670	1610	97	60-120	
2,6-Dinitrotoluene	ug/kg	1670	1610	96	54-120	
2-Chloronaphthalene	ug/kg	1670	1360	82	41-120	
2-Chlorophenol	ug/kg	1670	1220	73	39-120	
-Methylnaphthalene	ug/kg	1670	1160	69	26-120	
-Methylphenol(o-Cresol)	ug/kg	1670	1430	86	41-120	
-Nitroaniline	ug/kg	3330	2450	74	45-120	
-Nitrophenol	ug/kg	1670	1280	77	35-120	
&4-Methylphenol(m&p Cresol)	ug/kg	1670	1410	84	35-120	
,3'-Dichlorobenzidine	ug/kg	8330	2870	34	16-125	
-Nitroaniline	ug/kg	3330	2700	81	45-120	
,6-Dinitro-2-methylphenol	ug/kg	3330	2960	89	46-120	
-Bromophenylphenyl ether	ug/kg	1670	1300	78	36-120	
-Chloro-3-methylphenol	ug/kg	3330	2770	83	37-120	
-Chloroaniline	ug/kg	3330	2280	68	35-120	
-Chlorophenylphenyl ether	ug/kg	1670	1320	79	30-120	
-Nitroaniline	ug/kg	3330	2890	87	48-120	
-Nitrophenol	ug/kg	8330	7670	92	43-120	
cenaphthene	ug/kg	1670	1240	74	46-120	
cenaphthylene	ug/kg	1670	1280	77	46-120	
cetophenone	ug/kg	1670	1200	72	39-120	
Anthracene	ug/kg	1670	1340	80	63-120	
Atrazine	ug/kg	1670	1460	88	70-156	
Benzaldehyde	ug/kg	1670	<660	8	10-120	L0
Benzo(a)anthracene	ug/kg	1670	1350	81	61-120	
Benzo(a)pyrene	ug/kg	1670	1340	80	59-120	
Benzo(b)fluoranthene	ug/kg	1670	1380	83	55-120	
Benzo(g,h,i)perylene	ug/kg	1670	1410	84	57-120	
Benzo(k)fluoranthene	ug/kg	1670	1300	78	56-120	
Biphenyl (Diphenyl)	ug/kg	1670	1090	65	40-120	
ois(2-Chloroethoxy)methane	ug/kg	1670	1190	71	21-120	
ois(2-Chloroethyl) ether	ug/kg	1670	1100	66	25-120	
pis(2-Ethylhexyl)phthalate	ug/kg	1670	1420	85	56-123	
Butylbenzylphthalate	ug/kg	1670	1490	90	57-120	
Caprolactam	ug/kg	1670	1370	82	23-163	
Carbazole	ug/kg	1670	1330	80	57-120	
Chrysene	ug/kg	1670	1300	78	64-120	
)i-n-butylphthalate	ug/kg	1670	1430	86	58-120	
Di-n-octylphthalate	ug/kg	1670	1440	87	47-121	
Dibenz(a,h)anthracene	ug/kg	1670	1420	85	56-120	
Dibenzofuran	ug/kg	1670	1190	71	43-120	
Diethylphthalate	ug/kg	1670	1340	80	55-120	
Dimethylphthalate	ug/kg	1670	1270	76	54-120	
luoranthene	ug/kg	1670	1510	90	61-120	
luorene	ug/kg	1670	1340	81	51-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Marsh Pamplico
Pace Project No.: 92311939

LABORATORY CONTROL SAMPLE:	1820774					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Hexachloro-1,3-butadiene	ug/kg	1670	1010	60	22-120	
Hexachlorobenzene	ug/kg	1670	1310	79	53-120	
Hexachlorocyclopentadiene	ug/kg	1670	1170	70	18-150	
Hexachloroethane	ug/kg	1670	1040	62	39-120	
Indeno(1,2,3-cd)pyrene	ug/kg	1670	1400	84	58-120	
Isophorone	ug/kg	1670	1300	78	38-120	
N-Nitroso-di-n-propylamine	ug/kg	1670	1210	73	30-120	
I-Nitrosodiphenylamine	ug/kg	1670	1170	70	50-120	
laphthalene	ug/kg	1670	1080	65	38-120	
itrobenzene	ug/kg	1670	1140	68	37-120	
entachlorophenol	ug/kg	8330	3310	40	10-120	
henanthrene	ug/kg	1670	1320	79	62-120	
henol	ug/kg	1670	1370	82	37-120	
yrene	ug/kg	1670	1290	77	63-120	
,4,6-Tribromophenol (S)	%			88	27-110	
-Fluorobiphenyl (S)	%			68	30-110	
-Fluorophenol (S)	%			67	13-110	
itrobenzene-d5 (S)	%			63	23-110	
henol-d6 (S)	%			77	22-110	
erphenyl-d14 (S)	%			80	28-110	

MATRIX SPIKE SAMPLE:	1820775						
		92311939008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/kg	<401	2030	420	21	50-150	M1
2,2'-Oxybis(1-chloropropane)	ug/kg	<401	2030	474	23	50-150	M1
2,3,4,6-Tetrachlorophenol	ug/kg	<401	2030	1410	69	50-150	
2,4,5-Trichlorophenol	ug/kg	<401	2030	866	43	28-110	
2,4,6-Trichlorophenol	ug/kg	<401	2030	775	38	17-117	
2,4-Dichlorophenol	ug/kg	<401	2030	440	22	21-128	
2,4-Dimethylphenol	ug/kg	<401	2030	530	26	10-120	
2,4-Dinitrophenol	ug/kg	<2000	10100	<2000	20	10-107	
2,4-Dinitrotoluene	ug/kg	<401	2030	1030	51	36-109	
2,6-Dinitrotoluene	ug/kg	<401	2030	1070	53	32-110	
2-Chloronaphthalene	ug/kg	<401	2030	610	30	30-107	
2-Chlorophenol	ug/kg	<401	2030	444	22	14-106	
2-Methylnaphthalene	ug/kg	<401	2030	495	24	10-135	
2-Methylphenol(o-Cresol)	ug/kg	<401	2030	489	24	10-124	
2-Nitroaniline	ug/kg	<2000	4040	<2000	41	26-116	
2-Nitrophenol	ug/kg	<401	2030	<401	19	28-103	M1
3&4-Methylphenol(m&p Cresol)	ug/kg	<401	2030	425	21	10-109	
3,3'-Dichlorobenzidine	ug/kg	<2000	10100	<2000	19	10-150	
3-Nitroaniline	ug/kg	<2000	4040	<2000	43	22-110	
4,6-Dinitro-2-methylphenol	ug/kg	<802	4040	1500	37	13-121	
4-Bromophenylphenyl ether	ug/kg	<401	2030	924	46	31-109	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 09/23/2016 03:59 PM

QUALITY CONTROL DATA

Project: Marsh Pamplico
Pace Project No.: 92311939

MATRIX SPIKE SAMPLE:	1820775						
_		92311939008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Chloro-3-methylphenol	ug/kg	<802	4040	1730	43	13-128	
1-Chloroaniline	ug/kg	<2000	4040	<2000	25	18-102	
1-Chlorophenylphenyl ether	ug/kg	<401	2030	899	44	29-112	
I-Nitroaniline	ug/kg	<802	4040	1940	48	16-111	
I-Nitrophenol	ug/kg	<2000	10100	4470	44	14-135	
Acenaphthene	ug/kg	<401	2030	722	36	26-114	
Acenaphthylene	ug/kg	<401	2030	734	36	32-108	
Acetophenone	ug/kg	<401	2030	459	23	50-150	M1
Anthracene	ug/kg	<401	2030	977	48	32-111	
Atrazine	ug/kg	<802	2030	946	47	50-150	M1
Benzaldehyde	ug/kg	<802	2030	<802	13	50-150	M0
Benzo(a)anthracene	ug/kg	<401	2030	971	48	25-117	
Benzo(a)pyrene	ug/kg	<401	2030	929	46	25-106	
Benzo(b)fluoranthene	ug/kg	<401	2030	959	47	24-110	
Benzo(g,h,i)perylene	ug/kg	<401	2030	933	46	19-112	
Benzo(k)fluoranthene	ug/kg	<401	2030	926	46	24-114	
Biphenyl (Diphenyl)	ug/kg	<401	2030	508	25	50-150	M1
ois(2-Chloroethoxy)methane	ug/kg	<401	2030	449	22	13-119	
ois(2-Chloroethyl) ether	ug/kg	<401	2030	492	24	10-134	
ois(2-Ethylhexyl)phthalate	ug/kg	<401	2030	1010	50	10-125	
Butylbenzylphthalate	ug/kg	<401	2030	1080	54	18-110	
Caprolactam	ug/kg	<401	2030	870	43	50-150	M1
Carbazole	ug/kg	<401	2030	927	46	50-150	M1
Chrysene	ug/kg	<401	2030	970	48	30-110	
Di-n-butylphthalate	ug/kg	<401	2030	980	48	19-112	
Di-n-octylphthalate	ug/kg	<401	2030	935	46	17-105	
Dibenz(a,h)anthracene	ug/kg	<401	2030	923	46	23-111	
Dibenzofuran	ug/kg	<401	2030	769	38	35-103	
Diethylphthalate	ug/kg	<401	2030	970	48	27-113	
Dimethylphthalate	ug/kg	<401	2030	907	45	26-111	
Fluoranthene	ug/kg	<401	2030	1020	51	33-109	
Fluorene	ug/kg	<401	2030	931	46	32-113	
Hexachloro-1,3-butadiene	ug/kg	<401	2030	405	20	16-116	
Hexachlorobenzene	ug/kg	<401	2030	956	47	27-120	
Hexachlorocyclopentadiene	ug/kg	<401	2030	<401	16	10-108	
Hexachloroethane	ug/kg	<401	2030	451	22	10-117	
ndeno(1,2,3-cd)pyrene	ug/kg	<401	2030	908	45	10-122	
sophorone	ug/kg	<401	2030	531	26	28-114	M1
I-Nitroso-di-n-propylamine	ug/kg	<401	2030	460	23	27-113	
I-Nitrosodiphenylamine	ug/kg	<401	2030	884	44	10-128	
laphthalene	ug/kg	<401	2030	461	23	25-110	M1
Vitrobenzene	ug/kg	<401	2030	464	23	18-114	-
Pentachlorophenol	ug/kg	<2000	10100	2050	20	10-122	
Phenanthrene	ug/kg	<401	2030	970	48	30-114	
Phenol	ug/kg	<401	2030	472	23	11-102	
Pyrene	ug/kg	<401	2030	1010	50	25-116	
2,4,6-Tribromophenol (S)	ug/kg %	101	2000	1010	48	27-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 09/23/2016 03:59 PM

QUALITY CONTROL DATA

Project: Marsh Pamplico
Pace Project No.: 92311939

MATRIX SPIKE SAMPLE:	1820775						
Parameter	Units	92311939008 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
2-Fluorobiphenyl (S)					24	30-110	S0
2-Fluorophenol (S)	%				20	13-110	ı
Nitrobenzene-d5 (S)	%				20	23-110	S0
Phenol-d6 (S)	%				21	22-110	S0
Terphenyl-d14 (S)	%				49	28-110	ı

Parameter	Units	92311939009 Result	Dup Result	RPD	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/kg		<407		_
2,2'-Oxybis(1-chloropropane)	ug/kg	<407	<407		
2,3,4,6-Tetrachlorophenol	ug/kg	<407	<407		
2,4,5-Trichlorophenol	ug/kg	<407	<407		
2,4,6-Trichlorophenol	ug/kg	<407	<407		
2,4-Dichlorophenol	ug/kg	<407	<407		
2,4-Dimethylphenol	ug/kg	<407	<407		
2,4-Dinitrophenol	ug/kg	<2030	<2030		
2,4-Dinitrotoluene	ug/kg	<407	<407		
2,6-Dinitrotoluene	ug/kg	<407	<407		
2-Chloronaphthalene	ug/kg	<407	<407		
2-Chlorophenol	ug/kg	<407	<407		
2-Methylnaphthalene	ug/kg	<407	<407		
2-Methylphenol(o-Cresol)	ug/kg	<407	<407		
2-Nitroaniline	ug/kg	<2030	<2030		
2-Nitrophenol	ug/kg	<407	<407		
3&4-Methylphenol(m&p Cresol)	ug/kg	<407	<407		
3,3'-Dichlorobenzidine	ug/kg	<2030	<2030		
3-Nitroaniline	ug/kg	<2030	<2030		
4,6-Dinitro-2-methylphenol	ug/kg	<813	<813		
4-Bromophenylphenyl ether	ug/kg	<407	<407		
4-Chloro-3-methylphenol	ug/kg	<813	<813		
4-Chloroaniline	ug/kg	<2030	<2030		
4-Chlorophenylphenyl ether	ug/kg	<407	<407		
4-Nitroaniline	ug/kg	<813	<813		
4-Nitrophenol	ug/kg	<2030	<2030		
Acenaphthene	ug/kg	<407	<407		
Acenaphthylene	ug/kg	<407	<407		
Acetophenone	ug/kg	<407	<407		
Anthracene	ug/kg	<407	<407		
Atrazine	ug/kg	<813	<813		
Benzaldehyde	ug/kg	<813	<813		
Benzo(a)anthracene	ug/kg	<407	<407		
Benzo(a)pyrene	ug/kg	<407	<407		
Benzo(b)fluoranthene	ug/kg	<407	<407		
Benzo(g,h,i)perylene	ug/kg	<407	<407		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 09/23/2016 03:59 PM

QUALITY CONTROL DATA

Project: Marsh Pamplico
Pace Project No.: 92311939

SAMPLE DUPLICATE: 1820776 92311939009 Dup Parameter Units Result Result **RPD** Qualifiers <407 Benzo(k)fluoranthene ug/kg <407 ug/kg <407 Biphenyl (Diphenyl) <407 bis(2-Chloroethoxy)methane ug/kg <407 <407 bis(2-Chloroethyl) ether <407 <407 ug/kg <407 <407 bis(2-Ethylhexyl)phthalate ug/kg ug/kg Butylbenzylphthalate <407 <407 <407 Caprolactam <407 ug/kg Carbazole <407 <407 ug/kg Chrysene <407 <407 ug/kg <407 Di-n-butylphthalate ug/kg <407 <407 Di-n-octylphthalate ug/kg <407 <407 Dibenz(a,h)anthracene ug/kg <407 ug/kg Dibenzofuran <407 <407 Diethylphthalate <407 <407 ug/kg Dimethylphthalate <407 <407 ug/kg Fluoranthene <407 <407 ug/kg Fluorene <407 <407 ug/kg Hexachloro-1,3-butadiene <407 <407 ug/kg <407 Hexachlorobenzene <407 ug/kg <407 Hexachlorocyclopentadiene ug/kg <407 <407 Hexachloroethane <407 ug/kg <407 Indeno(1,2,3-cd)pyrene ug/kg <407 <407 Isophorone ug/kg <407 N-Nitroso-di-n-propylamine <407 <407 ug/kg N-Nitrosodiphenylamine <407 <407 ug/kg Naphthalene ug/kg <407 <407 <407 Nitrobenzene ug/kg <407 <2030 Pentachlorophenol ug/kg <2030 <407 Phenanthrene <407 ug/kg <407 <407 Phenol ug/kg ug/kg <407 <407 Pyrene 39 2,4,6-Tribromophenol (S) % 16 46 2-Fluorobiphenyl (S) % 40 55 31 2-Fluorophenol (S) % 36 55 41 39 Nitrobenzene-d5 (S) % 54 32 38 Phenol-d6 (S) % 49 24 Terphenyl-d14 (S) % 42 47 13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Marsh Pamplico Project: Pace Project No.: 92311939

QC Batch: 328288

Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

92311939001, 92311939002, 92311939003, 92311939004, 92311939005, 92311939006, 92311939007, Associated Lab Samples:

Result

92311939008, 92311939009, 92311939010, 92311939011, 92311939012, 92311939013, 92311939014

SAMPLE DUPLICATE: 1819281

Parameter

Parameter

92311941001 Dup

Result

Qualifiers

Percent Moisture

%

Units

Units

%

6.6

6.9

RPD

4

8

SAMPLE DUPLICATE: 1819282

92311939014 Result

Dup Result

RPD

Qualifiers

Percent Moisture

Date: 09/23/2016 03:59 PM

15.5

16.8

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

ASTM D2974-87

Project: Marsh Pamplico

Pace Project No.: 92311939

QC Batch: 328293

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 92311939015, 92311939016, 92311939017

SAMPLE DUPLICATE: 1819348

92311915001 Dup

Analysis Method:

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 10.8 10.3 4

SAMPLE DUPLICATE: 1819349

Date: 09/23/2016 03:59 PM

 Parameter
 Units
 92311939017 Result
 Dup Result
 RPD
 Qualifiers

 Percent Moisture
 %
 26.8
 29.0
 8

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Marsh Pamplico
Pace Project No.: 92311939

DEFINITIONS

- DF Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.
- ND Not Detected at or above adjusted reporting limit.
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- MDL Adjusted Method Detection Limit.
- PQL Practical Quantitation Limit.
- RL Reporting Limit.
- S Surrogate
- 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

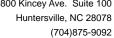
A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES


PASI-A	Pace Analytical Services - Asheville
PASI-C	Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 09/23/2016 03:59 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- LO Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.
- S0 Surrogate recovery outside laboratory control limits.
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Marsh Pamplico
Pace Project No.: 92311939

Date: 09/23/2016 03:59 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92311939009	D-1	EPA 3050	328346	EPA 6010	328402
92311939010	GC-2-1	EPA 3050	328346	EPA 6010	328402
2311939011	GC-2-6	EPA 3050	328346	EPA 6010	328402
92311939012	GC-4-6	EPA 3050	328346	EPA 6010	328402
2311939013	GC-3-6	EPA 3050	328346	EPA 6010	328402
2311939014	GC-1-1	EPA 3050	328346	EPA 6010	328402
2311939015	GC-1-6	EPA 3050	328346	EPA 6010	328402
2311939016	GC-4-1	EPA 3050	328346	EPA 6010	328402
2311939017	GC-3-1	EPA 3050	328346	EPA 6010	328402
2311939009	D-1	EPA 7471	328300	EPA 7471	328416
92311939010	GC-2-1	EPA 7471	328300	EPA 7471	328416
92311939011	GC-2-6	EPA 7471	328300	EPA 7471	328416
2311939012	GC-4-6	EPA 7471	328300	EPA 7471	328416
92311939013	GC-3-6	EPA 7471	328300	EPA 7471	328416
92311939014	GC-1-1	EPA 7471	328300	EPA 7471	328416
2311939015	GC-1-6	EPA 7471	328300	EPA 7471	328416
92311939016	GC-4-1	EPA 7471	328300	EPA 7471	328416
2311939017	GC-3-1	EPA 7471	328300	EPA 7471	328416
2311939001	GC-4-1	EPA 3546	328501	EPA 8270	328714
2311939002	GC-1-1	EPA 3546	328501	EPA 8270	328714
2311939003	GC-1-6	EPA 3546	328501	EPA 8270	328714
2311939004	GC-3-1	EPA 3546	328501	EPA 8270	328714
2311939005	GC-2-1	EPA 3546	328501	EPA 8270	328714
92311939006	GC-2-6	EPA 3546	328501	EPA 8270	328714
2311939007	GC-4-6	EPA 3546	328501	EPA 8270	328714
92311939008	GC-3-6	EPA 3546	328501	EPA 8270	328714
2311939009	D-1	EPA 3546	328501	EPA 8270	328714
2311939001	GC-4-1	ASTM D2974-87	328288		
92311939002	GC-1-1	ASTM D2974-87	328288		
92311939003	GC-1-6	ASTM D2974-87	328288		
92311939004	GC-3-1	ASTM D2974-87	328288		
2311939005	GC-2-1	ASTM D2974-87	328288		
92311939006	GC-2-6	ASTM D2974-87	328288		
2311939007	GC-4-6	ASTM D2974-87	328288		
2311939008	GC-3-6	ASTM D2974-87	328288		
2311939009	D-1	ASTM D2974-87	328288		
2311939010	GC-2-1	ASTM D2974-87	328288		
2311939011	GC-2-6	ASTM D2974-87	328288		
2311939012	GC-4-6	ASTM D2974-87	328288		
2311939013	GC-3-6	ASTM D2974-87	328288		
92311939014	GC-1-1	ASTM D2974-87	328288		
92311939015	GC-1-6	ASTM D2974-87	328293		
92311939016	GC-4-1	ASTM D2974-87	328293		
92311939017	GC-3-1	ASTM D2974-87	328293		

Pace Analytical®

Out of hold, incorrect preservative, out of temp, incorrect containers)

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.:

Document Revised: April 25, 2016 Page 1 of 2

Issuing Authority: Pace Huntersville Quality Office

F-CHR-CS-003-rev.19

2 ()	- 1	-101	Page 2 of 2 for Internal Use ONLY
Sample Condition Upon Receipt Client Name:	ME	2 (1700	Project # WO#: 92311939
Courier: ☐ Fed Ex ☐ UPS ☐ Commercial ☐ Pace	∐usi ∐oth	- 3	_	Client
Custody Seal Present? Yes No Seals	Intact?	□Y€	es [No Date/Initials Person Examination
Packing Material: Bubble Wrap Bubble Wrap Thermometer: T1505	bble Bags Type o	□N	one X Wet	Other: Samples on ice, cooling process has begun
Correction Factor: 0.0°C Cooler Temp Corrected (°C)		2 0	2	Biological Tissue Frozen? ☐ Yes ☐ N/A
Temp should be above freezing to 6°C				
USDA Regulated Soil (N/A, water sample)				
Did samples originate in a quarantine zone within the United Yes No	States: CA	NY, or S	SC (check	maps)? Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? ☐Yes ☐No
				Comments/Discrepancy:
Chain of Custody Present?	Yes	□No	□N/A	1.
Samples Arrived within Hold Time?	XYes	□No	□N/A	2.
Short Hold Time Analysis (<72 hr.)?	Yes	₩No	□N/A	3.
Rush Turn Around Time Requested?	□Yes	ŊNo	□N/A	4.
Sufficient Volume?	Yes	□No	□N/A	5.
Correct Containers Used?	Yes	□No	□N/A	6.
-Pace Containers Used?	Yes	No	□N/A	
Containers Intact?	Yes	□No	□N/A	7.
Samples Field Filtered?	□Yes	MNo		8. Note if sediment is visible in the dissolved container
Sample Labels Match COC?		<u>I</u> XINo		9. All Sort Tars Time is not
()	Yes	TXINO	□n/a	match with COZ. TIME.
-Includes Date/Time/ID/Analysis Matrix: 30110				10. HNC3 pHc2 only Sine 250ml Bottle
checked?	Yes	ΣΝο	□N/A	HCI pHe2 match (14-45.)
All containers needing preservation are found to be in compliance with EPA recommendation?		1		, , , ,
(HNO₃, H₂SO₄, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	□Yes	[¥]No	□N/A	H2504 pH<2 NaOH pH>12
Exceptions: VOA, Coliform, TOC, Oil and Grease,	_			NaOH/ZnOAc ph>9
DRO/8015 (water) DOC,LLHg	Yes	ĮΧINο	□N/A	30000000000000000000000000000000000000
Samples checked for dechlorination?	Yes	No	□N/A	11.
Headspace in VOA Vials (>5-6mm)?	Yes	No	□N/A	12.
Trip Blank Present? Trip Blank Custody Seals Present?	□Yes	No WNo	□N/A	13.
Pace Trip Blank Lot # (if purchased):	☐Yes	No	□n/a	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Tyes TNo
				ricia sata nequirea.
Person Contacted:				Date/Time:
Comments/Sample				
Discrepancy:				
-				
Project Manager SCURF Review:				Date: <u>9//3//6</u>
Project Manager SRF Review: Note: Whenever there is a discrepancy affecting North Carolin	a complian	ce sample	es, a conv	Date: 9/13/16 of this form will be sent to the North Carolina DEHNR Certification Office (i.e.

Page 51 of 53

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

					12	±	10	9	&	7	6	O1	4	ω	2	_	ITEM#		Requested Due Date	Phone:	Greensbord	Address	Company	Section A
				ADDITIONAL COMMENTS	662-6	EC-2-	9-1-25	60-1-	60-3-6	66-3-1	66-4-6	66-2-6	6C-1-6	6(-2-1	66-1-1	1-4-39	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique		27.41	Phone: NONE Fax	Greensboro, NC 27409	8646 West Market Street	Company: S&ME - Greensboro	light Information:
																i.	MATRIX COURT Dinking Water DW Water DW Water WT Waste Water WW Product SulSalid SL Oil OL Wipe WP Air AR Other TS		Project #:	Project Name:	Purchase Order#	Сору То:	Report To:	Section B Required Project Information:
		1	10	REL	Źν.		M	2	35	\$ C	2	35	5	5	3	7	MATRIX CODE (see valid codes	to left)	-37	ne:	rder#		Ed H	roject
		1	1	INQUI	0	20	0	5	5	0	5	(2)	5	0	S	5	SAMPLE TYPE (G=GRAB C=C	ОМР)	75				Ed Henriques	Infor
	(0)	A	KIL	RELINQUISHED BY I AFFILIATION													START DATE T		63,	ampli	1487		lues	mation:
PRINT	SAMPLER NAME AND SIGNATURE	lan	1 36 Ki	FILIATION	4-13-1	13	155	100	E.	13	10	4-4	4-416	97.53	金	K.	TIME DATE	COLLECTED	1465	1 1	09-14			
PRINT Name of SAMPLER:	AME AND	1/2	120		1-16 14	11		104	576 B3	35.8 mg	1	· · · · · · · · · · · · · · · · · · ·	76 3:36		1/11/3	J. 11:16	END	O		1 1	1			
MPLE	SIGNA	1/2	1	DATE	B	12	Serie .	de	-8	4	100	4	a	500	65	5	SAMPLE TEMP AT COLLECTION	١						
P.	T R	+	3		_			-	_	/		_	_	_	_	_	# OF CONTAINERS		Pace	Pace	Pace Qu	Com	Atter	Invoice Information:
	m	3/0	0	TIME	L	et annual services		-	-		-	_	_		-	/	Unpreserved		Prof	Proj	Pace Quote	pany	Attention.	Invoice Int
0	_	0	MS:010	"													H2SO4		Pace Profile #.	Pace Project Manager	ē	Company Name		form
1			0	1													HNO3	Pres		ana		æ		ation
3		1	Jh6	1								-	_	+		-	HCI	Preservatives	2237-22	er:			a	ļ
		1	2/	1		_		1			_	+	-	-	-		NaOH Na2S2O3	ative	12	-			AME	
34	5	12	2/	ACCEPTED BY AFFILIATION		_	_	+	-		-	-	+-	+-	-	-	Methanol	S	П	rey.carter@pacelabs.com,			1	
Tt		1 6	1	A PE		_	_	+	+	+	-	-	+	+		-	Other			ter@				İ
20		6	4	V BY	-			1									Analyses Test	Y/N	100	pacel				
		7	. 1		H	Т		-3	1	1	De region de la constitución de	15	4.	>			6010/7471 TAL metals			abs.c				
			200	A A	5	>			-	25	55		>	<	1	5	8270 TCL		_Z	om,				
			16										la .				6010/7471 metals - IDW Co		ques					
		1							-					+	_	+	8270 - IDW Composite		Requested Analysis Filtered (Y/N)					١
		- 2	3 -0		8	_	-	-	+	-	-		+	+	+	-			nalys		$\ \ $			
			1) SAIR	;	-	+	+	+	+	+	+	+	+	+				is Fil			\perp		_
?		11/2	1/2) 7	-				+										tered		П			
			- 0	,															3		П			
		3.6	0/0/30											\perp		-			FI		П			г
		~	<u> </u>	,					\perp	+		_	_	+	_	+		-			П	,		Page:
MP in	С		0		_												Residual Chlorine (Y/N)			State / Location		Regulatory Agency		e :
	-		> .	-	<u>,</u>	$\overline{}$			-			- 1		5	0					ار ا		tory		1
eceived	1011	1	6		SAMPLE CONDITIONS	20	\supseteq	X)_	-	$\geq \mid \subseteq \mid$	2	1	1	3	3/2	3 5		10	Cattor		Agen		-
/N) ustody	-	-	+	-		20	RO	77	5	N	25	<u> </u>	-(10	36	3 -	2311939			1		cy		
aled ooler			2		to le	7				-	_		0		7									01/2
CUIDI			\	_	SNC)
/N) amples	- 1	-																						

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section C

			12	1	10	9	∞	7	6	on.	4	ω	2	_		ITEM#			Requested Due Date:	Phone:	Greensbor	Address:	Company	Required C	Caption A
		ADDITIONAL COMMENTS)	ないしつか		> (() () () ()	One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique	SAMPLE ID		Due Date	NONE Fax	Email: ehenrigues@smeinc.com	8646 West Market Street	S&ME - Greensboro	Required Client Information:	
	Collins	RELIA									~ \	_	51.15	35	JL 6			to left)	rioject #:	ame:	#		Copy To	١ă	Section B
SAMPLER NAME PRINT Name		105	DELINOLIISHED BY / AFFILIATION							J	7421 154	71.50	25	1 11/3	2000	DATE TIME DATE	STAR	COLLECTED		Marsh Pamplico			daca	rmation:	10
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:		DEN CINE	DATE TI								50 With	1 1 2841	11/11/11	422	11 7:11		AT COLLECTION	DN .		Pace Profile #:	Pace Proje	Address:	Company Name:	Attention:	Invoice Inf
Lynce Buth	3/3 KM Jace	20 11/2 120	TIME ACCEPTED													H2SO4 HNO3 HCI NaOH Na2S2O3 Methanol Other		Preservatives		7-22	Manager: trey	te:	Name:	Attention:	formation:
DATE Signed:	CHUL	fan	ACCEPTED BY I AFFILIATION								× ×	>	A	< A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6010/7471 8270 TCL	metals - IDW C	Y/N	7	Processed Analysis Filtered (Y/N)	.carter@pacelabs.com,				
d-C-1	Wiell 13.18	9/12 Ords4	DATE TIME																		0	Sta	Regu		1 990
Received on Ice (Y/N) Custody Sealed Cooler (Y/N) Samples Intact (Y/N)	60 4		SAMPLE CONDITIONS													Residual	Chlorine (Y/N)				NC	te / Location	Regulatory Agency		

SIGNATURE of SAMPLER:

오

September 23, 2016

Mr. Lyndal Butler S&ME, Inc. 8646 West Market Street Greensboro, NC 27409

RE: Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Dear Mr. Butler:

Enclosed are the analytical results for sample(s) received by the laboratory on September 16, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Trey Carter

trey.carter@pacelabs.com

Thy Cot

Project Manager

Enclosures

Pace Analytical www.pacelabs.com

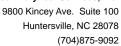
9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Charlotte Certification IDs

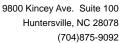

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222



SAMPLE SUMMARY

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92312680001	MW-10	Water	09/14/16 18:45	09/16/16 11:25
92312680002	MW-14	Water	09/14/16 16:50	09/16/16 11:25
92312680003	MW-15	Water	09/14/16 14:45	09/16/16 11:25
92312680004	MW-21	Water	09/15/16 15:20	09/16/16 11:25
92312680005	MW-22	Water	09/15/16 17:10	09/16/16 11:25
92312680006	MW-23	Water	09/15/16 13:40	09/16/16 11:25
92312680007	DUPLICATE	Water	09/15/16 07:00	09/16/16 11:25
92312680008	MW-17A	Water	09/15/16 12:10	09/16/16 11:25
92312680009	MW-19	Water	09/15/16 08:55	09/16/16 11:25
92312680010	MW-20	Water	09/15/16 10:15	09/16/16 11:25

SAMPLE ANALYTE COUNT

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92312680001	MW-10	EPA 8270	BPJ	74	PASI-C
		SM 2320B	KDF	1	PASI-A
		SM 4500-CI-E	WRC	1	PASI-A
		SM 5310B	MDW	1	PASI-A
92312680002	MW-14	EPA 8270	BPJ	74	PASI-C
		SM 2320B	KDF	1	PASI-A
		SM 4500-CI-E	WRC	1	PASI-A
		SM 5310B	MDW	1	PASI-A
92312680003	MW-15	EPA 8270	BPJ	74	PASI-C
		SM 2320B	KDF	1	PASI-A
		SM 4500-CI-E	WRC	1	PASI-A
		SM 5310B	MDW	1	PASI-A
2312680004	MW-21	EPA 8270	BPJ	74	PASI-C
		SM 2320B	KDF	1	PASI-A
		SM 4500-CI-E	WRC	1	PASI-A
		SM 5310B	MDW	1	PASI-A
92312680005	MW-22	EPA 8270	BPJ	74	PASI-C
		SM 2320B	KDF	1	PASI-A
		SM 4500-CI-E	WRC	1	PASI-A
		SM 5310B	MDW	1	PASI-A
92312680006	MW-23	EPA 8270	BPJ	74	PASI-C
		SM 2320B	KDF	1	PASI-A
		SM 4500-CI-E	WRC	1	PASI-A
		SM 5310B	MDW	1	PASI-A
92312680007	DUPLICATE	EPA 8270	BPJ	74	PASI-C
92312680008	MW-17A	EPA 8270	BPJ	73	PASI-C
92312680009	MW-19	EPA 8270	BPJ	73	PASI-C
92312680010	MW-20	EPA 8270	BPJ	73	PASI-C

SUMMARY OF DETECTION

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92312680001	MW-10					
SM 2320B	Alkalinity, Total as CaCO3	302	mg/L	5.0	09/19/16 22:54	
SM 4500-CI-E	Chloride	12.0	mg/L	1.0	09/20/16 18:56	
SM 5310B	Total Organic Carbon	1.9	mg/L	1.0	09/19/16 20:13	
92312680002	MW-14					
EPA 8270	Pentachlorophenol	214	ug/L	50.0	09/21/16 17:48	
SM 2320B	Alkalinity, Total as CaCO3	35.7	mg/L	5.0	09/19/16 23:28	
SM 4500-CI-E	Chloride	8.4	mg/L	1.0	09/20/16 18:57	
SM 5310B	Total Organic Carbon	4.7	mg/L	1.0	09/19/16 20:46	
92312680003	MW-15					
SM 2320B	Alkalinity, Total as CaCO3	346	mg/L	5.0	09/19/16 23:39	
SM 4500-CI-E	Chloride	25.2	mg/L	1.0	09/20/16 18:58	
SM 5310B	Total Organic Carbon	9.1	mg/L	1.0	09/19/16 20:57	
92312680004	MW-21					
EPA 8270	Pentachlorophenol	16.5J	ug/L	50.0	09/21/16 18:45	
SM 2320B	Alkalinity, Total as CaCO3	26.7	mg/L	5.0	09/19/16 23:56	
SM 4500-CI-E	Chloride	8.9	mg/L	1.0	09/20/16 18:59	
SM 5310B	Total Organic Carbon	2.1	mg/L	1.0	09/19/16 21:09	
2312680005	MW-22					
SM 2320B	Alkalinity, Total as CaCO3	178	mg/L	5.0	09/20/16 00:05	
SM 4500-CI-E	Chloride	5.7	mg/L	1.0	09/20/16 19:00	
92312680006	MW-23					
EPA 8270	Benzoic Acid	30.9J	ug/L	50.0	09/22/16 15:21	
SM 2320B	Alkalinity, Total as CaCO3	297	mg/L	5.0	09/20/16 00:17	
SM 4500-CI-E	Chloride	7.1	mg/L	1.0	09/20/16 19:01	
SM 5310B	Total Organic Carbon	11.8	mg/L	1.0	09/19/16 21:30	
2312680007	DUPLICATE					
EPA 8270	Pentachlorophenol	21.5J	ug/L	50.0	09/22/16 16:54	

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Method: EPA 8270

Description: 8270 MSSV Semivolatile Organic

Client: S&ME - Greensboro

Date: September 23, 2016

General Information:

3 samples were analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

QC Batch: 329806

IS: The internal standard response is below criteria. Results may be biased high.

- DUP (Lab ID: 1827421)
 - 1,2,4,5-Tetrachlorobenzene
- MW-20 (Lab ID: 92312680010)
 - 1.2.4.5-Tetrachlorobenzene

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 329806

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92312680009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1827420)
 - 2,6-Dinitrotoluene
 - 2-Chloronaphthalene

Huntersville, NC 28078 (704)875-9092

Pace Analytical www.pacelabs.com

PROJECT NARRATIVE

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Method: EPA 8270

Description: 8270 MSSV Semivolatile Organic

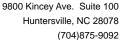
Client: S&ME - Greensboro

Date: September 23, 2016

QC Batch: 329806

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92312680009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.


BenzaldehydeCaprolactam

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Method: EPA 8270

Description: 8270 MSSV Semivolatile Org SC

Client: S&ME - Greensboro

Date: September 23, 2016

General Information:

7 samples were analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 329204

S0: Surrogate recovery outside laboratory control limits.

- BLANK (Lab ID: 1824500)
 - 2,4,6-Tribromophenol (S)
 - 2-Fluorobiphenyl (S)
 - 2-Fluorophenol (S)
 - Phenol-d6 (S)
- DUPLICATE (Lab ID: 92312680007)
 - Terphenyl-d14 (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Method: EPA 8270

Description: 8270 MSSV Semivolatile Org SC

Client: S&ME - Greensboro

Date: September 23, 2016

Analyte Comments:

QC Batch: 329083

1g: Recovery did not meet 70-130% South Carolina required limits. Recovery meets method required in-house generated control

- LCS (Lab ID: 1823810)
 - 2,4-Dinitrophenol
 - 4-Nitrophenol
 - Aniline
 - Benzoic Acid
 - N-Nitrosodimethylamine
 - Phenol
- MS (Lab ID: 1823811)
 - Benzoic Acid
 - N-Nitrosodimethylamine
 - Phenol
- MSD (Lab ID: 1823812)
 - Aniline
 - Benzoic Acid
 - N-Nitrosodimethylamine
 - Phenol

QC Batch: 329204

1g: Recovery did not meet 70-130% South Carolina required limits. Recovery meets method required in-house generated control limits.

- LCS (Lab ID: 1824501)
 - 2,4-Dinitrophenol
 - 4-Nitrophenol
 - Benzoic Acid
 - N-Nitrosodimethylamine
 - Phenol

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Method:SM 2320BDescription:2320B AlkalinityClient:S&ME - GreensboroDate:September 23, 2016

General Information:

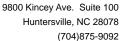
6 samples were analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Method: SM 4500-CI-E
Description: 4500 Chloride
Client: S&ME - Greensboro
Date: September 23, 2016

General Information:

6 samples were analyzed for SM 4500-CI-E. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

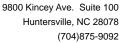
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 329332

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92312295005,92312680006

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.


• MS (Lab ID: 1824945)

• Chloride

• MSD (Lab ID: 1824946)

• Chloride

Additional Comments:

PROJECT NARRATIVE

MARSH/PAMPLICO 1584-98-1462 Project:

Pace Project No.: 92312680

Method: SM 5310B Description: 5310B TOC

Client: S&ME - Greensboro Date: September 23, 2016

General Information:

6 samples were analyzed for SM 5310B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 329244

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92312596035,92312715002

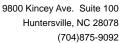
M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

• MS (Lab ID: 1824624) • Total Organic Carbon • MSD (Lab ID: 1824625)

• Total Organic Carbon

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.


ANALYTICAL RESULTS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

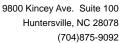
Sample: MW-10	Lab ID:	92312680001	Collecte	d: 09/14/16	8 18:45	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Org SC	Analytical	Method: EPA 8	270 Prepa	ration Meth	od: EPA	3510			
Acenaphthene	ND	ug/L	10.0	0.25	1	09/18/16 14:26	09/21/16 17:20	83-32-9	
Acenaphthylene	ND	ug/L	10.0	0.21	1	09/18/16 14:26	09/21/16 17:20	208-96-8	
Aniline	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 17:20	62-53-3	
Anthracene	ND	ug/L	10.0	0.14	1	09/18/16 14:26	09/21/16 17:20	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/18/16 14:26	09/21/16 17:20	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/18/16 14:26	09/21/16 17:20	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 17:20	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/18/16 14:26	09/21/16 17:20	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	0.43	1	09/18/16 14:26	09/21/16 17:20	207-08-9	
Benzoic Acid	ND	ug/L	50.0	11.5	1	09/18/16 14:26	09/21/16 17:20	65-85-0	
Benzyl alcohol	ND	ug/L	20.0	2.4	1	09/18/16 14:26	09/21/16 17:20	100-51-6	
4-Bromophenylphenyl ether	ND	ug/L	10.0	0.82	1	09/18/16 14:26	09/21/16 17:20		
Butylbenzylphthalate	ND	ug/L	10.0	0.79	1	09/18/16 14:26	09/21/16 17:20		
4-Chloro-3-methylphenol	ND	ug/L	20.0	3.7	1	09/18/16 14:26	09/21/16 17:20	59-50-7	
4-Chloroaniline	ND	ug/L	50.0	2.8	1	09/18/16 14:26	09/21/16 17:20	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/L	10.0	0.92	1		09/21/16 17:20		
ois(2-Chloroethyl) ether	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 17:20		
2-Chloronaphthalene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 17:20		
2-Chlorophenol	ND	ug/L	10.0	1.3	1		09/21/16 17:20		
4-Chlorophenylphenyl ether	ND	ug/L	10.0	0.87	1	09/18/16 14:26	09/21/16 17:20		
Chrysene	ND	ug/L	10.0	0.21	1	09/18/16 14:26			
Dibenz(a,h)anthracene	ND	ug/L	10.0	0.55	1	09/18/16 14:26	09/21/16 17:20		
Dibenzofuran	ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 17:20		
1,2-Dichlorobenzene	ND	ug/L	10.0	0.88	1		09/21/16 17:20		
1,3-Dichlorobenzene	ND	ug/L	10.0	0.81	1	09/18/16 14:26	09/21/16 17:20		
1,4-Dichlorobenzene	ND	ug/L	10.0	0.95	1	09/18/16 14:26	09/21/16 17:20		
3,3'-Dichlorobenzidine	ND	ug/L	50.0	2.1	1	09/18/16 14:26	09/21/16 17:20		
2,4-Dichlorophenol	ND	ug/L	10.0	1.7	1	09/18/16 14:26	09/21/16 17:20		
Diethylphthalate	ND	ug/L	10.0	0.58	1		09/21/16 17:20		
2,4-Dimethylphenol	ND	ug/L	10.0	1.2	1	09/18/16 14:26			
Dimethylphthalate	ND ND	ug/L ug/L	10.0	0.76	1		09/21/16 17:20		
* '	ND ND	-	10.0	0.76	1	09/18/16 14:26	09/21/16 17:20		
Di-n-butylphthalate 4,6-Dinitro-2-methylphenol	ND ND	ug/L ug/L	20.0	2.6	1	09/18/16 14:26	09/21/16 17:20		
	ND ND	-			1				
2,4-Dinitrophenol		ug/L	50.0	9.0	1		09/21/16 17:20 09/21/16 17:20		
2,4-Dinitrotoluene	ND	ug/L	10.0	0.90					
2,6-Dinitrotoluene	ND	ug/L	10.0	0.98	1		09/21/16 17:20		
Di-n-octylphthalate	ND	ug/L	10.0	0.66	1		09/21/16 17:20		
bis(2-Ethylhexyl)phthalate	ND	ug/L	6.0	0.79	1		09/21/16 17:20		
Fluoranthene	ND	ug/L	10.0	0.21	1		09/21/16 17:20		
Fluorene	ND	ug/L	10.0	0.21	1		09/21/16 17:20		
Hexachloro-1,3-butadiene	ND	ug/L	10.0	0.94	1		09/21/16 17:20		
Hexachlorobenzene	ND	ug/L	10.0	0.72	1		09/21/16 17:20		
Hexachlorocyclopentadiene	ND	ug/L	10.0	0.88	1		09/21/16 17:20		
Hexachloroethane	ND	ug/L	10.0	1.1	1		09/21/16 17:20		
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	0.29	1		09/21/16 17:20		
Isophorone	ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 17:20	78-59-1	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-10	Lab ID:	92312680001	Collecte	d: 09/14/16	18:45	Received: 09/	16/16 11:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV Semivolatile Org SC	Analytical	Method: EPA 8	270 Prepa	ration Metho	d: EPA	3510			
1-Methylnaphthalene	ND	ug/L	10.0	0.32	1	09/18/16 14:26	09/21/16 17:20	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 17:20	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.6	1	09/18/16 14:26	09/21/16 17:20	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 17:20		
Naphthalene	ND	ug/L	10.0	0.34	1	09/18/16 14:26	09/21/16 17:20	91-20-3	
2-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 17:20	88-74-4	
3-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 17:20	99-09-2	
4-Nitroaniline	ND	ug/L	50.0	2.1	1	09/18/16 14:26	09/21/16 17:20	100-01-6	
Nitrobenzene	ND	ug/L	10.0	1.1	1	09/18/16 14:26	09/21/16 17:20	98-95-3	
2-Nitrophenol	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 17:20	88-75-5	
4-Nitrophenol	ND	ug/L	50.0	4.1	1	09/18/16 14:26	09/21/16 17:20	100-02-7	
N-Nitrosodimethylamine	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 17:20	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	0.99	1	09/18/16 14:26	09/21/16 17:20	621-64-7	
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 17:20	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	0.95	1	09/18/16 14:26	09/21/16 17:20	108-60-1	
Pentachlorophenol	ND	ug/L	50.0	4.6	1	09/18/16 14:26	09/21/16 17:20	87-86-5	
Phenanthrene	ND	ug/L	10.0	0.22	1	09/18/16 14:26	09/21/16 17:20	85-01-8	
Phenol	ND	ug/L	10.0	1.9	1	09/18/16 14:26	09/21/16 17:20		
Pyrene	ND	ug/L	10.0	0.19	1	09/18/16 14:26	09/21/16 17:20	129-00-0	
1,2,4-Trichlorobenzene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 17:20		
2,4,5-Trichlorophenol	ND	ug/L	10.0	0.92	1	09/18/16 14:26	09/21/16 17:20		
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.3	1	09/18/16 14:26	09/21/16 17:20		
Surrogates		~g/ =			•	00, 10, 10 11120	00/2 // 10 11 120	00 00 2	
Nitrobenzene-d5 (S)	78	%	21-110		1	09/18/16 14:26	09/21/16 17:20	4165-60-0	
2-Fluorobiphenyl (S)	76	%	27-110		1	09/18/16 14:26	09/21/16 17:20	321-60-8	
Terphenyl-d14 (S)	78	%	31-107		1	09/18/16 14:26	09/21/16 17:20		
Phenol-d6 (S)	34	%	10-110		1	09/18/16 14:26	09/21/16 17:20		
2-Fluorophenol (S)	46	%	12-110		1	09/18/16 14:26	09/21/16 17:20		
2,4,6-Tribromophenol (S)	84	%	27-110		1	09/18/16 14:26	09/21/16 17:20		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	302	mg/L	5.0	1.0	1		09/19/16 22:54		
4500 Chloride	Analytical	Method: SM 45	500-CI-E						
Chloride	12.0	mg/L	1.0	0.50	1		09/20/16 18:56	16887-00-6	
5310B TOC	Analytical	Method: SM 53	310B						
Total Organic Carbon	1.9	mg/L	1.0	0.50	1		09/19/16 20:13	7440-44-0	


ANALYTICAL RESULTS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

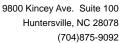
Sample: MW-14	Lab ID:	92312680002	Collecte	d: 09/14/16	16:50	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV Semivolatile Org SC	Analytical	Method: EPA 82	270 Prepa	ration Metho	d: EPA	3510			
Acenaphthene	ND	ug/L	10.0	0.25	1	09/18/16 14:26	09/21/16 17:48	83-32-9	
Acenaphthylene	ND	ug/L	10.0	0.21	1	09/18/16 14:26	09/21/16 17:48	208-96-8	
Aniline	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 17:48	62-53-3	
Anthracene	ND	ug/L	10.0	0.14	1	09/18/16 14:26	09/21/16 17:48	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/18/16 14:26	09/21/16 17:48	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/18/16 14:26	09/21/16 17:48	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 17:48	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/18/16 14:26	09/21/16 17:48	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	0.43	1	09/18/16 14:26	09/21/16 17:48	207-08-9	
Benzoic Acid	ND	ug/L	50.0	11.5	1	09/18/16 14:26	09/21/16 17:48	65-85-0	
Benzyl alcohol	ND	ug/L	20.0	2.4	1	09/18/16 14:26	09/21/16 17:48	100-51-6	
4-Bromophenylphenyl ether	ND	ug/L	10.0	0.82	1	09/18/16 14:26	09/21/16 17:48		
Butylbenzylphthalate	ND	ug/L	10.0	0.79	1	09/18/16 14:26	09/21/16 17:48	85-68-7	
4-Chloro-3-methylphenol	ND	ug/L	20.0	3.7	1	09/18/16 14:26	09/21/16 17:48	59-50-7	
4-Chloroaniline	ND	ug/L	50.0	2.8	1	09/18/16 14:26	09/21/16 17:48		
ois(2-Chloroethoxy)methane	ND	ug/L	10.0	0.92	1	09/18/16 14:26	09/21/16 17:48		
pis(2-Chloroethyl) ether	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 17:48		
2-Chloronaphthalene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 17:48		
2-Chlorophenol	ND	ug/L	10.0	1.3	1		09/21/16 17:48		
4-Chlorophenylphenyl ether	ND	ug/L	10.0	0.87	1	09/18/16 14:26			
Chrysene	ND	ug/L	10.0	0.21	1	09/18/16 14:26			
Dibenz(a,h)anthracene	ND	ug/L	10.0	0.55	1	09/18/16 14:26	09/21/16 17:48		
Dibenzofuran	ND ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 17:48		
1,2-Dichlorobenzene	ND ND	ug/L ug/L	10.0	0.88	1	09/18/16 14:26	09/21/16 17:48		
	ND ND	-	10.0	0.81	1	09/18/16 14:26	09/21/16 17:48		
1,3-Dichlorobenzene	ND ND	ug/L		0.81	1		09/21/16 17:48		
1,4-Dichlorobenzene		ug/L	10.0			09/18/16 14:26			
3,3'-Dichlorobenzidine	ND	ug/L	50.0	2.1	1	09/18/16 14:26	09/21/16 17:48		
2,4-Dichlorophenol	ND	ug/L	10.0	1.7	1	09/18/16 14:26	09/21/16 17:48		
Diethylphthalate	ND	ug/L	10.0	0.58	1		09/21/16 17:48		
2,4-Dimethylphenol	ND	ug/L	10.0	1.2	1		09/21/16 17:48		
Dimethylphthalate	ND	ug/L	10.0	0.76	1	09/18/16 14:26			
Di-n-butylphthalate	ND	ug/L	10.0	0.75	1	09/18/16 14:26	09/21/16 17:48	-	
4,6-Dinitro-2-methylphenol	ND	ug/L	20.0	2.6	1	09/18/16 14:26	09/21/16 17:48		
2,4-Dinitrophenol	ND	ug/L	50.0	9.0	1	09/18/16 14:26			
2,4-Dinitrotoluene	ND	ug/L	10.0	0.90	1	09/18/16 14:26			
2,6-Dinitrotoluene	ND	ug/L	10.0	0.98	1		09/21/16 17:48		
Di-n-octylphthalate	ND	ug/L	10.0	0.66	1	09/18/16 14:26			
ois(2-Ethylhexyl)phthalate	ND	ug/L	6.0	0.79	1		09/21/16 17:48		
Fluoranthene	ND	ug/L	10.0	0.21	1	09/18/16 14:26			
Fluorene	ND	ug/L	10.0	0.21	1	09/18/16 14:26			
Hexachloro-1,3-butadiene	ND	ug/L	10.0	0.94	1	09/18/16 14:26			
Hexachlorobenzene	ND	ug/L	10.0	0.72	1	09/18/16 14:26			
Hexachlorocyclopentadiene	ND	ug/L	10.0	0.88	1	09/18/16 14:26	09/21/16 17:48	77-47-4	
Hexachloroethane	ND	ug/L	10.0	1.1	1	09/18/16 14:26	09/21/16 17:48	67-72-1	
ndeno(1,2,3-cd)pyrene	ND	ug/L	10.0	0.29	1	09/18/16 14:26	09/21/16 17:48	193-39-5	
Isophorone	ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 17:48	78-59-1	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-14	Lab ID:	92312680002	Collecte	d: 09/14/16	16:50	Received: 09/	16/16 11:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV Semivolatile Org SC	Analytica	Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
1-Methylnaphthalene	ND	ug/L	10.0	0.32	1	09/18/16 14:26	09/21/16 17:48	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 17:48	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.6	1	09/18/16 14:26	09/21/16 17:48	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 17:48		
Naphthalene	ND	ug/L	10.0	0.34	1	09/18/16 14:26	09/21/16 17:48	91-20-3	
2-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 17:48	88-74-4	
3-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 17:48	99-09-2	
4-Nitroaniline	ND	ug/L	50.0	2.1	1	09/18/16 14:26	09/21/16 17:48	100-01-6	
Nitrobenzene	ND	ug/L	10.0	1.1	1	09/18/16 14:26	09/21/16 17:48	98-95-3	
2-Nitrophenol	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 17:48	88-75-5	
4-Nitrophenol	ND	ug/L	50.0	4.1	1	09/18/16 14:26	09/21/16 17:48	100-02-7	
N-Nitrosodimethylamine	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 17:48	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	0.99	1	09/18/16 14:26	09/21/16 17:48		
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 17:48	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	0.95	1	09/18/16 14:26	09/21/16 17:48	108-60-1	
Pentachlorophenol	214	ug/L	50.0	4.6	1	09/18/16 14:26	09/21/16 17:48		
Phenanthrene	ND	ug/L	10.0	0.22	1	09/18/16 14:26	09/21/16 17:48		
Phenol	ND	ug/L	10.0	1.9	1	09/18/16 14:26	09/21/16 17:48	00 0.0	
Pyrene	ND	ug/L	10.0	0.19	1	09/18/16 14:26	09/21/16 17:48	129-00-0	
1,2,4-Trichlorobenzene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 17:48		
2,4,5-Trichlorophenol	ND	ug/L	10.0	0.92	1	09/18/16 14:26	09/21/16 17:48		
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.3	1	09/18/16 14:26	09/21/16 17:48		
Surrogates	ND	ug/L	10.0	1.0	'	03/10/10 14.20	03/21/10 17.40	00 00 2	
Nitrobenzene-d5 (S)	63	%	21-110		1	09/18/16 14:26	09/21/16 17:48	4165-60-0	
2-Fluorobiphenyl (S)	64	%	27-110		1	09/18/16 14:26	09/21/16 17:48		
Terphenyl-d14 (S)	62	%	31-107		1	09/18/16 14:26	09/21/16 17:48		
Phenol-d6 (S)	28	%	10-110		1	09/18/16 14:26	09/21/16 17:48		
2-Fluorophenol (S)	39	%	12-110		1	09/18/16 14:26	09/21/16 17:48		
2,4,6-Tribromophenol (S)	74	%	27-110		1	09/18/16 14:26	09/21/16 17:48		
2320B Alkalinity	Analytica	I Method: SM 23	-		-				
Alkalinity, Total as CaCO3	35.7	mg/L	5.0	1.0	1		09/19/16 23:28		
4500 Chloride	Analytica	l Method: SM 45	500-CI-E						
Chloride	8.4	mg/L	1.0	0.50	1		09/20/16 18:57	16887-00-6	
5310B TOC	Analytica	Method: SM 53	310B						
Total Organic Carbon	4.7	mg/L	1.0	0.50	1		09/19/16 20:46	7440-44-0	


ANALYTICAL RESULTS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

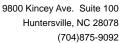
Sample: MW-15	Lab ID:	92312680003	Collecte	d: 09/14/16	3 14:45	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Org SC	Analytical	Method: EPA 8	270 Prepa	ration Meth	od: EPA	3510			
Acenaphthene	ND	ug/L	10.0	0.25	1	09/18/16 14:26	09/21/16 18:16	83-32-9	
Acenaphthylene	ND	ug/L	10.0	0.21	1	09/18/16 14:26	09/21/16 18:16	208-96-8	
Aniline	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 18:16	62-53-3	
Anthracene	ND	ug/L	10.0	0.14	1	09/18/16 14:26	09/21/16 18:16	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/18/16 14:26	09/21/16 18:16	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/18/16 14:26	09/21/16 18:16	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 18:16	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/18/16 14:26	09/21/16 18:16	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	0.43	1	09/18/16 14:26	09/21/16 18:16	207-08-9	
Benzoic Acid	ND	ug/L	50.0	11.5	1	09/18/16 14:26	09/21/16 18:16	65-85-0	
Benzyl alcohol	ND	ug/L	20.0	2.4	1	09/18/16 14:26			
4-Bromophenylphenyl ether	ND	ug/L	10.0	0.82	1	09/18/16 14:26	09/21/16 18:16		
Butylbenzylphthalate	ND	ug/L	10.0	0.79	1	09/18/16 14:26	09/21/16 18:16		
4-Chloro-3-methylphenol	ND	ug/L	20.0	3.7	1	09/18/16 14:26	09/21/16 18:16	59-50-7	
4-Chloroaniline	ND	ug/L	50.0	2.8	1	09/18/16 14:26			
bis(2-Chloroethoxy)methane	ND	ug/L	10.0	0.92	1		09/21/16 18:16		
bis(2-Chloroethyl) ether	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 18:16		
2-Chloronaphthalene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 18:16		
2-Chlorophenol	ND	ug/L	10.0	1.3	1		09/21/16 18:16		
4-Chlorophenylphenyl ether	ND	ug/L	10.0	0.87	1	09/18/16 14:26			
Chrysene	ND	ug/L	10.0	0.21	1	09/18/16 14:26			
Dibenz(a,h)anthracene	ND	ug/L	10.0	0.55	1	09/18/16 14:26	09/21/16 18:16		
Dibenzofuran	ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 18:16		
1,2-Dichlorobenzene	ND	ug/L	10.0	0.88	1		09/21/16 18:16		
1,3-Dichlorobenzene	ND	ug/L	10.0	0.81	1	09/18/16 14:26	09/21/16 18:16		
1,4-Dichlorobenzene	ND	ug/L	10.0	0.95	1	09/18/16 14:26	09/21/16 18:16		
3,3'-Dichlorobenzidine	ND	ug/L	50.0	2.1	1	09/18/16 14:26	09/21/16 18:16		
2,4-Dichlorophenol	ND	ug/L	10.0	1.7	1	09/18/16 14:26	09/21/16 18:16		
Diethylphthalate	ND	ug/L	10.0	0.58	1		09/21/16 18:16		
2,4-Dimethylphenol	ND	ug/L	10.0	1.2	1	09/18/16 14:26			
Dimethylphthalate	ND ND	ug/L ug/L	10.0	0.76	1		09/21/16 18:16		
* *	ND ND	-	10.0	0.76	1	09/18/16 14:26	09/21/16 18:16		
Di-n-butylphthalate 4,6-Dinitro-2-methylphenol	ND ND	ug/L ug/L	20.0	2.6	1	09/18/16 14:26	09/21/16 18:16		
4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol	ND ND	-			1				
•		ug/L	50.0	9.0	1		09/21/16 18:16 09/21/16 18:16		
2,4-Dinitrotoluene	ND	ug/L	10.0	0.90					
2,6-Dinitrotoluene	ND	ug/L	10.0	0.98	1		09/21/16 18:16		
Di-n-octylphthalate	ND	ug/L	10.0	0.66	1		09/21/16 18:16		
bis(2-Ethylhexyl)phthalate	ND	ug/L	6.0	0.79	1		09/21/16 18:16		
Fluoranthene	ND	ug/L	10.0	0.21	1		09/21/16 18:16		
Fluorene	ND	ug/L	10.0	0.21	1		09/21/16 18:16		
Hexachloro-1,3-butadiene	ND	ug/L	10.0	0.94	1		09/21/16 18:16		
Hexachlorobenzene	ND	ug/L	10.0	0.72	1		09/21/16 18:16		
Hexachlorocyclopentadiene	ND	ug/L	10.0	0.88	1		09/21/16 18:16		
Hexachloroethane	ND	ug/L	10.0	1.1	1		09/21/16 18:16		
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	0.29	1		09/21/16 18:16		
Isophorone	ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 18:16	78-59-1	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-15	Lab ID:	92312680003	Collecte	d: 09/14/16	14:45	Received: 09/	16/16 11:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV Semivolatile Org SC	Analytica	l Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
1-Methylnaphthalene	ND	ug/L	10.0	0.32	1	09/18/16 14:26	09/21/16 18:16	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 18:16	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.6	1	09/18/16 14:26	09/21/16 18:16	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 18:16		
Naphthalene	ND	ug/L	10.0	0.34	1	09/18/16 14:26	09/21/16 18:16	91-20-3	
2-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 18:16	88-74-4	
3-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 18:16	99-09-2	
4-Nitroaniline	ND	ug/L	50.0	2.1	1	09/18/16 14:26	09/21/16 18:16	100-01-6	
Nitrobenzene	ND	ug/L	10.0	1.1	1	09/18/16 14:26	09/21/16 18:16	98-95-3	
2-Nitrophenol	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 18:16	88-75-5	
4-Nitrophenol	ND	ug/L	50.0	4.1	1	09/18/16 14:26	09/21/16 18:16	100-02-7	
N-Nitrosodimethylamine	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 18:16	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	0.99	1	09/18/16 14:26	09/21/16 18:16	621-64-7	
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 18:16	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	0.95	1	09/18/16 14:26	09/21/16 18:16	108-60-1	
Pentachlorophenol	ND	ug/L	50.0	4.6	1	09/18/16 14:26	09/21/16 18:16	87-86-5	
Phenanthrene	ND	ug/L	10.0	0.22	1	09/18/16 14:26	09/21/16 18:16	85-01-8	
Phenol	ND	ug/L	10.0	1.9	1	09/18/16 14:26	09/21/16 18:16		
Pyrene	ND	ug/L	10.0	0.19	1	09/18/16 14:26	09/21/16 18:16		
1,2,4-Trichlorobenzene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 18:16		
2,4,5-Trichlorophenol	ND	ug/L	10.0	0.92	1	09/18/16 14:26	09/21/16 18:16		
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.3	1	09/18/16 14:26	09/21/16 18:16		
Surrogates		~9/ –			•	00, 10, 10 1 1120	00/21/10 10110	00 00 =	
Nitrobenzene-d5 (S)	50	%	21-110		1	09/18/16 14:26	09/21/16 18:16	4165-60-0	
2-Fluorobiphenyl (S)	50	%	27-110		1	09/18/16 14:26	09/21/16 18:16	321-60-8	
Terphenyl-d14 (S)	43	%	31-107		1	09/18/16 14:26	09/21/16 18:16		
Phenol-d6 (S)	24	%	10-110		1	09/18/16 14:26	09/21/16 18:16		
2-Fluorophenol (S)	33	%	12-110		1	09/18/16 14:26	09/21/16 18:16		
2,4,6-Tribromophenol (S)	60	%	27-110		1	09/18/16 14:26	09/21/16 18:16		
2320B Alkalinity	Analytica	l Method: SM 23	320B						
Alkalinity, Total as CaCO3	346	mg/L	5.0	1.0	1		09/19/16 23:39		
4500 Chloride	Analytica	l Method: SM 45	500-CI-E						
Chloride	25.2	mg/L	1.0	0.50	1		09/20/16 18:58	16887-00-6	
5310B TOC	Analytica	l Method: SM 53	310B						
Total Organic Carbon	9.1	mg/L	1.0	0.50	1		09/19/16 20:57	7440-44-0	


ANALYTICAL RESULTS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

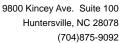
Sample: MW-21	Lab ID:	92312680004	Collecte	d: 09/15/16	15:20	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Org SC	Analytical	Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
Acenaphthene	ND	ug/L	10.0	0.25	1	09/18/16 14:26	09/21/16 18:45	83-32-9	
Acenaphthylene	ND	ug/L	10.0	0.21	1	09/18/16 14:26	09/21/16 18:45	208-96-8	
Aniline	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 18:45	62-53-3	
Anthracene	ND	ug/L	10.0	0.14	1	09/18/16 14:26	09/21/16 18:45	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/18/16 14:26	09/21/16 18:45	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/18/16 14:26	09/21/16 18:45	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 18:45	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/18/16 14:26	09/21/16 18:45	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	0.43	1	09/18/16 14:26	09/21/16 18:45	207-08-9	
Benzoic Acid	ND	ug/L	50.0	11.5	1	09/18/16 14:26	09/21/16 18:45	65-85-0	
Benzyl alcohol	ND	ug/L	20.0	2.4	1	09/18/16 14:26	09/21/16 18:45	100-51-6	
4-Bromophenylphenyl ether	ND	ug/L	10.0	0.82	1	09/18/16 14:26	09/21/16 18:45		
Butylbenzylphthalate	ND	ug/L	10.0	0.79	1	09/18/16 14:26	09/21/16 18:45		
4-Chloro-3-methylphenol	ND	ug/L	20.0	3.7	1	09/18/16 14:26	09/21/16 18:45	59-50-7	
4-Chloroaniline	ND	ug/L	50.0	2.8	1	09/18/16 14:26	09/21/16 18:45	106-47-8	
bis(2-Chloroethoxy)methane	ND	ug/L	10.0	0.92	1		09/21/16 18:45		
ois(2-Chloroethyl) ether	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 18:45		
2-Chloronaphthalene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 18:45		
2-Chlorophenol	ND	ug/L	10.0	1.3	1		09/21/16 18:45		
4-Chlorophenylphenyl ether	ND	ug/L	10.0	0.87	1	09/18/16 14:26			
Chrysene	ND	ug/L	10.0	0.21	1	09/18/16 14:26			
Dibenz(a,h)anthracene	ND	ug/L	10.0	0.55	1	09/18/16 14:26	09/21/16 18:45		
Dibenzofuran	ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 18:45		
1,2-Dichlorobenzene	ND	ug/L	10.0	0.88	1		09/21/16 18:45		
1,3-Dichlorobenzene	ND	ug/L	10.0	0.81	1	09/18/16 14:26	09/21/16 18:45		
1,4-Dichlorobenzene	ND	ug/L	10.0	0.95	1	09/18/16 14:26	09/21/16 18:45		
3,3'-Dichlorobenzidine	ND	ug/L	50.0	2.1	1	09/18/16 14:26	09/21/16 18:45		
2,4-Dichlorophenol	ND	ug/L	10.0	1.7	1	09/18/16 14:26	09/21/16 18:45		
Diethylphthalate	ND	ug/L	10.0	0.58	1		09/21/16 18:45		
2,4-Dimethylphenol	ND	ug/L ug/L	10.0	1.2	1	09/18/16 14:26			
Dimethylphthalate	ND	ug/L ug/L	10.0	0.76	1		09/21/16 18:45		
	ND	-	10.0	0.76	1	09/18/16 14:26	09/21/16 18:45		
Di-n-butylphthalate 4,6-Dinitro-2-methylphenol	ND ND	ug/L ug/L	20.0	2.6	1	09/18/16 14:26	09/21/16 18:45		
	ND ND	-			1				
2,4-Dinitrophenol		ug/L	50.0	9.0	1		09/21/16 18:45		
2,4-Dinitrotoluene	ND	ug/L	10.0	0.90	:		09/21/16 18:45		
2,6-Dinitrotoluene	ND	ug/L	10.0	0.98	1		09/21/16 18:45		
Di-n-octylphthalate	ND	ug/L	10.0	0.66	1		09/21/16 18:45		
bis(2-Ethylhexyl)phthalate	ND	ug/L	6.0	0.79	1		09/21/16 18:45		
Fluoranthene	ND	ug/L	10.0	0.21	1		09/21/16 18:45		
Fluorene	ND	ug/L	10.0	0.21	1		09/21/16 18:45		
Hexachloro-1,3-butadiene	ND	ug/L	10.0	0.94	1		09/21/16 18:45		
Hexachlorobenzene	ND	ug/L	10.0	0.72	1		09/21/16 18:45		
Hexachlorocyclopentadiene	ND	ug/L	10.0	0.88	1		09/21/16 18:45		
Hexachloroethane	ND	ug/L	10.0	1.1	1		09/21/16 18:45		
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	0.29	1		09/21/16 18:45		
Isophorone	ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 18:45	78-59-1	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-21	Lab ID:	92312680004	Collecte	d: 09/15/16	15:20	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV Semivolatile Org SC	Analytica	l Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
1-Methylnaphthalene	ND	ug/L	10.0	0.32	1	09/18/16 14:26	09/21/16 18:45	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 18:45	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.6	1	09/18/16 14:26	09/21/16 18:45	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 18:45		
Naphthalene	ND	ug/L	10.0	0.34	1	09/18/16 14:26	09/21/16 18:45	91-20-3	
2-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 18:45	88-74-4	
3-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 18:45	99-09-2	
4-Nitroaniline	ND	ug/L	50.0	2.1	1	09/18/16 14:26	09/21/16 18:45	100-01-6	
Nitrobenzene	ND	ug/L	10.0	1.1	1	09/18/16 14:26	09/21/16 18:45	98-95-3	
2-Nitrophenol	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 18:45	88-75-5	
4-Nitrophenol	ND	ug/L	50.0	4.1	1	09/18/16 14:26	09/21/16 18:45	100-02-7	
N-Nitrosodimethylamine	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 18:45	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	0.99	1	09/18/16 14:26	09/21/16 18:45		
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 18:45	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	0.95	1	09/18/16 14:26	09/21/16 18:45	108-60-1	
Pentachlorophenol	16.5J	ug/L	50.0	4.6	1	09/18/16 14:26	09/21/16 18:45		
Phenanthrene	ND	ug/L	10.0	0.22	1	09/18/16 14:26	09/21/16 18:45		
Phenol	ND	ug/L	10.0	1.9	1	09/18/16 14:26	09/21/16 18:45		
Pyrene	ND	ug/L	10.0	0.19	1	09/18/16 14:26	09/21/16 18:45		
1,2,4-Trichlorobenzene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 18:45		
2,4,5-Trichlorophenol	ND	ug/L	10.0	0.92	1	09/18/16 14:26	09/21/16 18:45		
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.3	1	09/18/16 14:26	09/21/16 18:45		
Surrogates	NB	ug/L	10.0	1.0	•	00/10/10 14.20	00/21/10 10.40	00 00 2	
Nitrobenzene-d5 (S)	64	%	21-110		1	09/18/16 14:26	09/21/16 18:45	4165-60-0	
2-Fluorobiphenyl (S)	63	%	27-110		1	09/18/16 14:26	09/21/16 18:45		
Terphenyl-d14 (S)	66	%	31-107		1	09/18/16 14:26	09/21/16 18:45		
Phenol-d6 (S)	28	%	10-110		1	09/18/16 14:26	09/21/16 18:45		
2-Fluorophenol (S)	39	%	12-110		1	09/18/16 14:26	09/21/16 18:45		
2,4,6-Tribromophenol (S)	67	%	27-110		1	09/18/16 14:26	09/21/16 18:45		
2320B Alkalinity	Analytica	l Method: SM 23	320B						
Alkalinity, Total as CaCO3	26.7	mg/L	5.0	1.0	1		09/19/16 23:56		
4500 Chloride	Analytica	l Method: SM 45	500-CI-E						
Chloride	8.9	mg/L	1.0	0.50	1		09/20/16 18:59	16887-00-6	
5310B TOC	Analytica	l Method: SM 53	310B						
Total Organic Carbon	2.1	mg/L	1.0	0.50	1		09/19/16 21:09	7440-44-0	



ANALYTICAL RESULTS

Project: MARSH/PAMPLICO 1584-98-1462

Date: 09/23/2016 10:15 AM

Sample: MW-22	Lab ID:	92312680005	Collected:	09/15/16	17:10	Received: 09/	16/16 11:25 M	fatrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Org SC	Analytica	Method: EPA 8	270 Prepara	ation Metho	od: EPA	3510			
Acenaphthene	ND	ug/L	10.0	0.25	1	09/18/16 14:26	09/21/16 19:13	83-32-9	
Acenaphthylene	ND	ug/L	10.0	0.21	1	09/18/16 14:26	09/21/16 19:13	3 208-96-8	
Aniline	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 19:13	3 62-53-3	
Anthracene	ND	ug/L	10.0	0.14	1	09/18/16 14:26	09/21/16 19:13	3 120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/18/16 14:26	09/21/16 19:13	3 56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/18/16 14:26	09/21/16 19:13	3 50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 19:13	3 205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/18/16 14:26	09/21/16 19:13	3 191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	0.43	1	09/18/16 14:26	09/21/16 19:13	3 207-08-9	
Benzoic Acid	ND	ug/L	50.0	11.5	1	09/18/16 14:26	09/21/16 19:13	3 65-85-0	
Benzyl alcohol	ND	ug/L	20.0	2.4	1	09/18/16 14:26	09/21/16 19:13		
4-Bromophenylphenyl ether	ND	ug/L	10.0	0.82	1	09/18/16 14:26	09/21/16 19:13		
Butylbenzylphthalate	ND	ug/L	10.0	0.79	1	09/18/16 14:26			
4-Chloro-3-methylphenol	ND	ug/L	20.0	3.7	1	09/18/16 14:26	09/21/16 19:13	3 59-50-7	
4-Chloroaniline	ND	ug/L	50.0	2.8	1	09/18/16 14:26	09/21/16 19:13		
ois(2-Chloroethoxy)methane	ND	ug/L	10.0	0.92	1	09/18/16 14:26	09/21/16 19:13		
pis(2-Chloroethyl) ether	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 19:13		
2-Chloronaphthalene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 19:13		
2-Chlorophenol	ND	ug/L	10.0	1.3	1	09/18/16 14:26	09/21/16 19:13		
4-Chlorophenylphenyl ether	ND	ug/L	10.0	0.87	1	09/18/16 14:26	09/21/16 19:13		
Chrysene	ND	ug/L	10.0	0.21	1	09/18/16 14:26	09/21/16 19:13		
Dibenz(a,h)anthracene	ND	ug/L	10.0	0.55	1	09/18/16 14:26	09/21/16 19:13		
Dibenzofuran	ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 19:13		
1,2-Dichlorobenzene	ND	ug/L	10.0	0.88	1	09/18/16 14:26	09/21/16 19:13		
1,3-Dichlorobenzene	ND	ug/L	10.0	0.81	1	09/18/16 14:26	09/21/16 19:13		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	10.0	0.81	1	09/18/16 14:26	09/21/16 19:13		
3,3'-Dichlorobenzidine	ND ND	-	50.0	2.1	1	09/18/16 14:26	09/21/16 19:13		
<i>'</i>	ND ND	ug/L	10.0	1.7	1	09/18/16 14:26	09/21/16 19:13		
2,4-Dichlorophenol Diethylphthalate	ND ND	ug/L	10.0	0.58	1	09/18/16 14:26	09/21/16 19:13		
	ND ND	ug/L		1.2					
2,4-Dimethylphenol		ug/L	10.0		1	09/18/16 14:26	09/21/16 19:13		
Dimethylphthalate	ND	ug/L	10.0	0.76	1	09/18/16 14:26	09/21/16 19:13		
Di-n-butylphthalate	ND	ug/L	10.0	0.75	1	09/18/16 14:26	09/21/16 19:13	-	
4,6-Dinitro-2-methylphenol	ND	ug/L	20.0	2.6	1	09/18/16 14:26	09/21/16 19:13		
2,4-Dinitrophenol	ND	ug/L	50.0	9.0	1	09/18/16 14:26			
2,4-Dinitrotoluene	ND	ug/L	10.0	0.90	1	09/18/16 14:26	09/21/16 19:13		
2,6-Dinitrotoluene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 19:13		
Di-n-octylphthalate	ND	ug/L	10.0	0.66	1	09/18/16 14:26			
ois(2-Ethylhexyl)phthalate	ND	ug/L	6.0	0.79	1	09/18/16 14:26			
Fluoranthene	ND	ug/L	10.0	0.21	1	09/18/16 14:26			
Fluorene	ND	ug/L	10.0	0.21	1	09/18/16 14:26			
Hexachloro-1,3-butadiene	ND	ug/L	10.0	0.94	1	09/18/16 14:26			
Hexachlorobenzene	ND	ug/L	10.0	0.72	1	09/18/16 14:26			
Hexachlorocyclopentadiene	ND	ug/L	10.0	0.88	1	09/18/16 14:26			
Hexachloroethane	ND	ug/L	10.0	1.1	1	09/18/16 14:26			
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	0.29	1	09/18/16 14:26			
Isophorone	ND	ug/L	10.0	0.89	1	09/18/16 14:26	09/21/16 19:13	3 78-59-1	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-22	Lab ID:	92312680005	Collecte	d: 09/15/16	17:10	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV Semivolatile Org SC	Analytica	l Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
1-Methylnaphthalene	ND	ug/L	10.0	0.32	1	09/18/16 14:26	09/21/16 19:13	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/18/16 14:26	09/21/16 19:13	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.6	1	09/18/16 14:26	09/21/16 19:13	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	2.0	1	09/18/16 14:26	09/21/16 19:13		
Naphthalene	ND	ug/L	10.0	0.34	1	09/18/16 14:26	09/21/16 19:13	91-20-3	
2-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 19:13	88-74-4	
3-Nitroaniline	ND	ug/L	50.0	2.0	1	09/18/16 14:26	09/21/16 19:13	99-09-2	
4-Nitroaniline	ND	ug/L	50.0	2.1	1	09/18/16 14:26	09/21/16 19:13	100-01-6	
Nitrobenzene	ND	ug/L	10.0	1.1	1	09/18/16 14:26	09/21/16 19:13	98-95-3	
2-Nitrophenol	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 19:13	88-75-5	
4-Nitrophenol	ND	ug/L	50.0	4.1	1	09/18/16 14:26	09/21/16 19:13	100-02-7	
N-Nitrosodimethylamine	ND	ug/L	10.0	0.91	1	09/18/16 14:26	09/21/16 19:13	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	0.99	1	09/18/16 14:26	09/21/16 19:13	621-64-7	
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.0	1	09/18/16 14:26	09/21/16 19:13	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	0.95	1	09/18/16 14:26	09/21/16 19:13	108-60-1	
Pentachlorophenol	ND	ug/L	50.0	4.6	1	09/18/16 14:26	09/21/16 19:13	87-86-5	
Phenanthrene	ND	ug/L	10.0	0.22	1	09/18/16 14:26	09/21/16 19:13	85-01-8	
Phenol	ND	ug/L	10.0	1.9	1	09/18/16 14:26	09/21/16 19:13		
Pyrene	ND	ug/L	10.0	0.19	1	09/18/16 14:26	09/21/16 19:13		
1,2,4-Trichlorobenzene	ND	ug/L	10.0	0.98	1	09/18/16 14:26	09/21/16 19:13		
2,4,5-Trichlorophenol	ND	ug/L	10.0	0.92	1	09/18/16 14:26	09/21/16 19:13		
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.3	1	09/18/16 14:26	09/21/16 19:13		
Surrogates		~g/ =			•	00, 10, 10 1 1120	00/21/10 10110	00 00 =	
Nitrobenzene-d5 (S)	71	%	21-110		1	09/18/16 14:26	09/21/16 19:13	4165-60-0	
2-Fluorobiphenyl (S)	68	%	27-110		1	09/18/16 14:26	09/21/16 19:13	321-60-8	
Terphenyl-d14 (S)	74	%	31-107		1	09/18/16 14:26	09/21/16 19:13		
Phenol-d6 (S)	30	%	10-110		1	09/18/16 14:26	09/21/16 19:13		
2-Fluorophenol (S)	45	%	12-110		1	09/18/16 14:26	09/21/16 19:13		
2,4,6-Tribromophenol (S)	69	%	27-110		1	09/18/16 14:26	09/21/16 19:13		
2320B Alkalinity	Analytica	l Method: SM 23	320B						
Alkalinity, Total as CaCO3	178	mg/L	5.0	1.0	1		09/20/16 00:05		
4500 Chloride	Analytica	l Method: SM 45	500-CI-E						
Chloride	5.7	mg/L	1.0	0.50	1		09/20/16 19:00	16887-00-6	
5310B TOC	Analytica	l Method: SM 53	310B						
Total Organic Carbon	ND	mg/L	1.0	0.50	1		09/19/16 21:19	7440-44-0	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

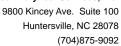
Sample: MW-23	Lab ID:	92312680006	Collecte	d: 09/15/16	3 13:40	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Org SC	Analytical	Method: EPA 8	270 Prepa	ration Meth	od: EPA	3510			
Acenaphthene	ND	ug/L	10.0	0.25	1	09/19/16 00:00	09/22/16 15:21	83-32-9	
Acenaphthylene	ND	ug/L	10.0	0.21	1	09/19/16 00:00	09/22/16 15:21	208-96-8	
Aniline	ND	ug/L	10.0	2.0	1	09/19/16 00:00	09/22/16 15:21	62-53-3	
Anthracene	ND	ug/L	10.0	0.14	1	09/19/16 00:00	09/22/16 15:21	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/19/16 00:00	09/22/16 15:21	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/19/16 00:00	09/22/16 15:21	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/19/16 00:00	09/22/16 15:21	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/19/16 00:00	09/22/16 15:21	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	0.43	1	09/19/16 00:00	09/22/16 15:21	207-08-9	
Benzoic Acid	30.9J	ug/L	50.0	11.5	1	09/19/16 00:00	09/22/16 15:21	65-85-0	
Benzyl alcohol	ND	ug/L	20.0	2.4	1	09/19/16 00:00	09/22/16 15:21		
4-Bromophenylphenyl ether	ND	ug/L	10.0	0.82	1	09/19/16 00:00	09/22/16 15:21		
Butylbenzylphthalate	ND	ug/L	10.0	0.79	1	09/19/16 00:00	09/22/16 15:21		
4-Chloro-3-methylphenol	ND	ug/L	20.0	3.7	1	09/19/16 00:00	09/22/16 15:21	59-50-7	
4-Chloroaniline	ND	ug/L	50.0	2.8	1	09/19/16 00:00	09/22/16 15:21		
bis(2-Chloroethoxy)methane	ND	ug/L	10.0	0.92	1	09/19/16 00:00	09/22/16 15:21		
ois(2-Chloroethyl) ether	ND	ug/L	10.0	1.0	1	09/19/16 00:00	09/22/16 15:21		
2-Chloronaphthalene	ND	ug/L	10.0	0.98	1	09/19/16 00:00	09/22/16 15:21		
2-Chlorophenol	ND	ug/L	10.0	1.3	1	09/19/16 00:00			
4-Chlorophenylphenyl ether	ND	ug/L	10.0	0.87	1	09/19/16 00:00	09/22/16 15:21		
Chrysene	ND	ug/L	10.0	0.21	1	09/19/16 00:00	09/22/16 15:21		
Dibenz(a,h)anthracene	ND	ug/L	10.0	0.55	1	09/19/16 00:00	09/22/16 15:21		
Dibenzofuran	ND	ug/L	10.0	0.89	1	09/19/16 00:00	09/22/16 15:21		
1,2-Dichlorobenzene	ND	ug/L	10.0	0.88	1	09/19/16 00:00			
1,3-Dichlorobenzene	ND	ug/L	10.0	0.81	1	09/19/16 00:00	09/22/16 15:21		
·	ND ND	-	10.0	0.81		09/19/16 00:00	09/22/16 15:21		
1,4-Dichlorobenzene	ND ND	ug/L		2.1	1 1		09/22/16 15:21		
3,3'-Dichlorobenzidine	ND ND	ug/L	50.0	1.7		09/19/16 00:00			
2,4-Dichlorophenol		ug/L	10.0		1	09/19/16 00:00	09/22/16 15:21		
Diethylphthalate	ND	ug/L	10.0	0.58	1	09/19/16 00:00			
2,4-Dimethylphenol	ND	ug/L	10.0	1.2	1	09/19/16 00:00	09/22/16 15:21		
Dimethylphthalate	ND	ug/L	10.0	0.76	1	09/19/16 00:00	09/22/16 15:21		
Di-n-butylphthalate	ND	ug/L	10.0	0.75	1	09/19/16 00:00	09/22/16 15:21		
4,6-Dinitro-2-methylphenol	ND	ug/L	20.0	2.6	1	09/19/16 00:00	09/22/16 15:21		
2,4-Dinitrophenol	ND	ug/L	50.0	9.0	1	09/19/16 00:00			
2,4-Dinitrotoluene	ND	ug/L	10.0	0.90	1	09/19/16 00:00			
2,6-Dinitrotoluene	ND	ug/L	10.0	0.98	1		09/22/16 15:21		
Di-n-octylphthalate	ND	ug/L	10.0	0.66	1		09/22/16 15:21		
bis(2-Ethylhexyl)phthalate	ND	ug/L	6.0	0.79	1		09/22/16 15:21		
Fluoranthene	ND	ug/L	10.0	0.21	1		09/22/16 15:21		
Fluorene	ND	ug/L	10.0	0.21	1	09/19/16 00:00			
Hexachloro-1,3-butadiene	ND	ug/L	10.0	0.94	1		09/22/16 15:21		
Hexachlorobenzene	ND	ug/L	10.0	0.72	1		09/22/16 15:21		
Hexachlorocyclopentadiene	ND	ug/L	10.0	0.88	1	09/19/16 00:00	09/22/16 15:21	77-47-4	
Hexachloroethane	ND	ug/L	10.0	1.1	1	09/19/16 00:00	09/22/16 15:21	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	0.29	1	09/19/16 00:00	09/22/16 15:21	193-39-5	
Isophorone	ND	ug/L	10.0	0.89	1	09/19/16 00:00	09/22/16 15:21	78-59-1	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-23	Lab ID:	92312680006	Collected:	09/15/16	13:40	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL _	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV Semivolatile Org SC	Analytica	l Method: EPA 8	270 Prepara	ation Method	d: EPA	3510			
1-Methylnaphthalene	ND	ug/L	10.0	0.32	1	09/19/16 00:00	09/22/16 15:21	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/19/16 00:00	09/22/16 15:21	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.6	1	09/19/16 00:00	09/22/16 15:21	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	2.0	1	09/19/16 00:00	09/22/16 15:21		
Naphthalene	ND	ug/L	10.0	0.34	1	09/19/16 00:00	09/22/16 15:21	91-20-3	
2-Nitroaniline	ND	ug/L	50.0	2.0	1	09/19/16 00:00	09/22/16 15:21	88-74-4	
3-Nitroaniline	ND	ug/L	50.0	2.0	1	09/19/16 00:00	09/22/16 15:21	99-09-2	
4-Nitroaniline	ND	ug/L	50.0	2.1	1	09/19/16 00:00	09/22/16 15:21	100-01-6	
Nitrobenzene	ND	ug/L	10.0	1.1	1	09/19/16 00:00	09/22/16 15:21		
2-Nitrophenol	ND	ug/L	10.0	0.91	1	09/19/16 00:00	09/22/16 15:21	88-75-5	
4-Nitrophenol	ND	ug/L	50.0	4.1	1	09/19/16 00:00	09/22/16 15:21	100-02-7	
N-Nitrosodimethylamine	ND	ug/L	10.0	0.91	1	09/19/16 00:00	09/22/16 15:21	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	0.99	1	09/19/16 00:00	09/22/16 15:21		
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.0	1	09/19/16 00:00	09/22/16 15:21		
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	0.95	1	09/19/16 00:00	09/22/16 15:21		
Pentachlorophenol	ND	ug/L	50.0	4.6	1	09/19/16 00:00	09/22/16 15:21		
Phenanthrene	ND	ug/L	10.0	0.22	1	09/19/16 00:00	09/22/16 15:21		
Phenol	ND	ug/L	10.0	1.9	1	09/19/16 00:00	09/22/16 15:21	00 0.0	
Pyrene	ND	ug/L	10.0	0.19	1	09/19/16 00:00	09/22/16 15:21	129-00-0	
1,2,4-Trichlorobenzene	ND	ug/L	10.0	0.98	1	09/19/16 00:00	09/22/16 15:21		
2,4,5-Trichlorophenol	ND	ug/L	10.0	0.92	1	09/19/16 00:00	09/22/16 15:21		
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.3	1	09/19/16 00:00	09/22/16 15:21		
Surrogates	110	ug/ L	10.0	1.0	•	00/10/10 00:00	00/22/10 10:21	00 00 2	
Nitrobenzene-d5 (S)	72	%	21-110		1	09/19/16 00:00	09/22/16 15:21	4165-60-0	
2-Fluorobiphenyl (S)	69	%	27-110		1	09/19/16 00:00	09/22/16 15:21	321-60-8	
Terphenyl-d14 (S)	79	%	31-107		1	09/19/16 00:00	09/22/16 15:21		
Phenol-d6 (S)	31	%	10-110		1	09/19/16 00:00	09/22/16 15:21		
2-Fluorophenol (S)	40	%	12-110		1	09/19/16 00:00	09/22/16 15:21		
2,4,6-Tribromophenol (S)	80	%	27-110		1	09/19/16 00:00	09/22/16 15:21		
2320B Alkalinity	Analytica	l Method: SM 23	320B						
Alkalinity, Total as CaCO3	297	mg/L	5.0	1.0	1		09/20/16 00:17		
4500 Chloride	Analytica	l Method: SM 45	500-CI-E						
Chloride	7.1	mg/L	1.0	0.50	1		09/20/16 19:01	16887-00-6	
5310B TOC	Analytica	l Method: SM 53	310B						
Total Organic Carbon	11.8	mg/L	1.0	0.50	1		09/19/16 21:30	7440-44-0	

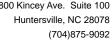

ANALYTICAL RESULTS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: DUPLICATE	Lab ID:	92312680007	Collecte	d: 09/15/16	07:00	Received: 09/	16/16 11:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Org SC	Analytical	Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
Acenaphthene	ND	ug/L	10.0	0.25	1	09/19/16 00:00	09/22/16 16:54	83-32-9	
Acenaphthylene	ND	ug/L	10.0	0.21	1	09/19/16 00:00	09/22/16 16:54	208-96-8	
Aniline	ND	ug/L	10.0	2.0	1	09/19/16 00:00	09/22/16 16:54	62-53-3	
Anthracene	ND	ug/L	10.0	0.14	1	09/19/16 00:00	09/22/16 16:54	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/19/16 00:00	09/22/16 16:54	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/19/16 00:00	09/22/16 16:54	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/19/16 00:00	09/22/16 16:54	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/19/16 00:00	09/22/16 16:54	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	0.43	1	09/19/16 00:00	09/22/16 16:54	207-08-9	
Benzoic Acid	ND	ug/L	50.0	11.5	1	09/19/16 00:00	09/22/16 16:54	65-85-0	
Benzyl alcohol	ND	ug/L	20.0	2.4	1	09/19/16 00:00	09/22/16 16:54	100-51-6	
4-Bromophenylphenyl ether	ND	ug/L	10.0	0.82	1	09/19/16 00:00	09/22/16 16:54	101-55-3	
Butylbenzylphthalate	ND	ug/L	10.0	0.79	1	09/19/16 00:00	09/22/16 16:54	85-68-7	
4-Chloro-3-methylphenol	ND	ug/L	20.0	3.7	1	09/19/16 00:00	09/22/16 16:54	59-50-7	
4-Chloroaniline	ND	ug/L	50.0	2.8	1	09/19/16 00:00	09/22/16 16:54	106-47-8	
ois(2-Chloroethoxy)methane	ND	ug/L	10.0	0.92	1	09/19/16 00:00	09/22/16 16:54	111-91-1	
ois(2-Chloroethyl) ether	ND	ug/L	10.0	1.0	1	09/19/16 00:00	09/22/16 16:54	111-44-4	
2-Chloronaphthalene	ND	ug/L	10.0	0.98	1	09/19/16 00:00	09/22/16 16:54	91-58-7	
2-Chlorophenol	ND	ug/L	10.0	1.3	1	09/19/16 00:00	09/22/16 16:54	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/L	10.0	0.87	1	09/19/16 00:00	09/22/16 16:54	7005-72-3	
Chrysene	ND	ug/L	10.0	0.21	1	09/19/16 00:00	09/22/16 16:54	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	10.0	0.55	1	09/19/16 00:00	09/22/16 16:54	53-70-3	
Dibenzofuran	ND	ug/L	10.0	0.89	1	09/19/16 00:00	09/22/16 16:54	132-64-9	
1,2-Dichlorobenzene	ND	ug/L	10.0	0.88	1	09/19/16 00:00	09/22/16 16:54	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	10.0	0.81	1	09/19/16 00:00	09/22/16 16:54	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	10.0	0.95	1	09/19/16 00:00	09/22/16 16:54	106-46-7	
3,3'-Dichlorobenzidine	ND	ug/L	50.0	2.1	1	09/19/16 00:00	09/22/16 16:54	91-94-1	
2,4-Dichlorophenol	ND	ug/L	10.0	1.7	1	09/19/16 00:00	09/22/16 16:54	120-83-2	
Diethylphthalate	ND	ug/L	10.0	0.58	1	09/19/16 00:00	09/22/16 16:54	84-66-2	
2,4-Dimethylphenol	ND	ug/L	10.0	1.2	1	09/19/16 00:00	09/22/16 16:54	105-67-9	
Dimethylphthalate	ND	ug/L	10.0	0.76	1	09/19/16 00:00	09/22/16 16:54	131-11-3	
Di-n-butylphthalate	ND	ug/L	10.0	0.75	1	09/19/16 00:00	09/22/16 16:54		
4,6-Dinitro-2-methylphenol	ND	ug/L	20.0	2.6	1	09/19/16 00:00	09/22/16 16:54	534-52-1	
2,4-Dinitrophenol	ND	ug/L	50.0	9.0	1	09/19/16 00:00	09/22/16 16:54	51-28-5	
2,4-Dinitrotoluene	ND	ug/L	10.0	0.90	1	09/19/16 00:00	09/22/16 16:54		
2,6-Dinitrotoluene	ND	ug/L	10.0	0.98	1	09/19/16 00:00	09/22/16 16:54		
Di-n-octylphthalate	ND	ug/L	10.0	0.66	1	09/19/16 00:00	09/22/16 16:54		
ois(2-Ethylhexyl)phthalate	ND	ug/L	6.0	0.79	1	09/19/16 00:00	09/22/16 16:54		
Fluoranthene	ND	ug/L	10.0	0.21	1	09/19/16 00:00	09/22/16 16:54		
Fluorene	ND	ug/L	10.0	0.21	1	09/19/16 00:00	09/22/16 16:54		
Hexachloro-1,3-butadiene	ND	ug/L	10.0	0.94	1	09/19/16 00:00	09/22/16 16:54		
Hexachlorobenzene	ND	ug/L	10.0	0.72	1	09/19/16 00:00	09/22/16 16:54		
Hexachlorocyclopentadiene	ND	ug/L ug/L	10.0	0.72	1	09/19/16 00:00	09/22/16 16:54		
Hexachloroethane	ND	ug/L	10.0	1.1	1	09/19/16 00:00	09/22/16 16:54		
Indeno(1,2,3-cd)pyrene	ND	ug/L ug/L	10.0	0.29	1	09/19/16 00:00	09/22/16 16:54		
Isophorone	ND	ug/L ug/L	10.0	0.29	1	09/19/16 00:00	09/22/16 16:54		



Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: DUPLICATE	Lab ID:	92312680007	Collected	l: 09/15/16	07:00	Received: 09/	16/16 11:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Org SC	Analytical	Method: EPA 8	270 Prepar	ation Metho	od: EPA	A 3510			
1-Methylnaphthalene	ND	ug/L	10.0	0.32	1	09/19/16 00:00	09/22/16 16:54	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/19/16 00:00	09/22/16 16:54	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.6	1	09/19/16 00:00	09/22/16 16:54	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	2.0	1	09/19/16 00:00	09/22/16 16:54		
Naphthalene	ND	ug/L	10.0	0.34	1	09/19/16 00:00	09/22/16 16:54	91-20-3	
2-Nitroaniline	ND	ug/L	50.0	2.0	1	09/19/16 00:00	09/22/16 16:54	88-74-4	
3-Nitroaniline	ND	ug/L	50.0	2.0	1	09/19/16 00:00	09/22/16 16:54	99-09-2	
4-Nitroaniline	ND	ug/L	50.0	2.1	1	09/19/16 00:00	09/22/16 16:54	100-01-6	
Nitrobenzene	ND	ug/L	10.0	1.1	1	09/19/16 00:00	09/22/16 16:54	98-95-3	
2-Nitrophenol	ND	ug/L	10.0	0.91	1	09/19/16 00:00	09/22/16 16:54	88-75-5	
4-Nitrophenol	ND	ug/L	50.0	4.1	1	09/19/16 00:00	09/22/16 16:54	100-02-7	
N-Nitrosodimethylamine	ND	ug/L	10.0	0.91	1	09/19/16 00:00	09/22/16 16:54	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	0.99	1	09/19/16 00:00	09/22/16 16:54	621-64-7	
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.0	1	09/19/16 00:00	09/22/16 16:54	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	0.95	1	09/19/16 00:00	09/22/16 16:54	108-60-1	
Pentachlorophenol	21.5J	ug/L	50.0	4.6	1	09/19/16 00:00	09/22/16 16:54	87-86-5	
Phenanthrene	ND	ug/L	10.0	0.22	1	09/19/16 00:00	09/22/16 16:54	85-01-8	
Phenol	ND	ug/L	10.0	1.9	1	09/19/16 00:00	09/22/16 16:54		
Pyrene	ND	ug/L	10.0	0.19	1	09/19/16 00:00	09/22/16 16:54	129-00-0	
1,2,4-Trichlorobenzene	ND	ug/L	10.0	0.98	1	09/19/16 00:00	09/22/16 16:54	120-82-1	
2,4,5-Trichlorophenol	ND	ug/L	10.0	0.92	1	09/19/16 00:00	09/22/16 16:54	95-95-4	
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.3	1	09/19/16 00:00	09/22/16 16:54	88-06-2	
Surrogates		•							
Nitrobenzene-d5 (S)	88	%	21-110		1	09/19/16 00:00	09/22/16 16:54	4165-60-0	
2-Fluorobiphenyl (S)	84	%	27-110		1	09/19/16 00:00	09/22/16 16:54	321-60-8	
Terphenyl-d14 (S)	112	%	31-107		1	09/19/16 00:00	09/22/16 16:54	1718-51-0	S0
Phenol-d6 (S)	31	%	10-110		1	09/19/16 00:00	09/22/16 16:54	13127-88-3	
2-Fluorophenol (S)	48	%	12-110		1	09/19/16 00:00	09/22/16 16:54	367-12-4	
2,4,6-Tribromophenol (S)	90	%	27-110		1	09/19/16 00:00	09/22/16 16:54	118-79-6	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-17A	Lab ID:	92312680008	Collecte	d: 09/15/16	12:10	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Organic	Analytica	l Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
Acenaphthene	ND	ug/L	10.0	0.25	1	09/22/16 09:39	09/22/16 18:18	83-32-9	
Acenaphthylene	ND	ug/L	10.0	0.21	1	09/22/16 09:39	09/22/16 18:18	208-96-8	
Acetophenone	ND	ug/L	10.0	2.0	1	09/22/16 09:39	09/22/16 18:18	98-86-2	
Anthracene	ND	ug/L	10.0	0.14	1	09/22/16 09:39	09/22/16 18:18	120-12-7	
Atrazine	ND	ug/L	20.0	1.7	1	09/22/16 09:39	09/22/16 18:18	1912-24-9	
Benzaldehyde	ND	ug/L	20.0	4.7	1	09/22/16 09:39	09/22/16 18:18	100-52-7	
Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/22/16 09:39	09/22/16 18:18	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/22/16 09:39	09/22/16 18:18	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/22/16 09:39	09/22/16 18:18	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/22/16 09:39	09/22/16 18:18	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	0.43	1	09/22/16 09:39	09/22/16 18:18	207-08-9	
Biphenyl (Diphenyl)	ND	ug/L	10.0	1.9	1	09/22/16 09:39	09/22/16 18:18	92-52-4	
4-Bromophenylphenyl ether	ND	ug/L	10.0	1.3	1	09/22/16 09:39	09/22/16 18:18	101-55-3	
Butylbenzylphthalate	ND	ug/L	10.0	0.75	1	09/22/16 09:39	09/22/16 18:18	85-68-7	
Caprolactam	ND	ug/L	10.0	1.8	1	09/22/16 09:39	09/22/16 18:18	105-60-2	
Carbazole	ND	ug/L	10.0	0.73	1	09/22/16 09:39	09/22/16 18:18	86-74-8	
4-Chloro-3-methylphenol	ND	ug/L	20.0	4.2	1	09/22/16 09:39	09/22/16 18:18	59-50-7	
4-Chloroaniline	ND	ug/L	20.0	3.4	1	09/22/16 09:39	09/22/16 18:18	106-47-8	
ois(2-Chloroethoxy)methane	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:18		
ois(2-Chloroethyl) ether	ND	ug/L	10.0	1.5	1	09/22/16 09:39	09/22/16 18:18	111-44-4	
2-Chloronaphthalene	ND	ug/L	10.0	2.2	1	09/22/16 09:39	09/22/16 18:18	91-58-7	
2-Chlorophenol	ND	ug/L	10.0	1.5	1	09/22/16 09:39	09/22/16 18:18		
4-Chlorophenylphenyl ether	ND	ug/L	10.0	2.1	1	09/22/16 09:39	09/22/16 18:18		
Chrysene	ND	ug/L	10.0	0.21	1	09/22/16 09:39	09/22/16 18:18	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	10.0	0.55	1	09/22/16 09:39	09/22/16 18:18		
Dibenzofuran	ND	ug/L	10.0	1.8	1	09/22/16 09:39	09/22/16 18:18		
3,3'-Dichlorobenzidine	ND	ug/L	20.0	1.4	1	09/22/16 09:39	09/22/16 18:18		
2,4-Dichlorophenol	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:18		
Diethylphthalate	ND	ug/L	10.0	1.3	1	09/22/16 09:39	09/22/16 18:18		
2,4-Dimethylphenol	ND	ug/L	10.0	2.2	1	09/22/16 09:39			
Dimethylphthalate	ND	ug/L	10.0	1.5	1	09/22/16 09:39			
Di-n-butylphthalate	ND	ug/L	10.0	1.1	1	09/22/16 09:39	09/22/16 18:18		
4,6-Dinitro-2-methylphenol	ND	ug/L	20.0	1.7	1	09/22/16 09:39	09/22/16 18:18		
2,4-Dinitrophenol	ND	ug/L	50.0	6.5	1	09/22/16 09:39	09/22/16 18:18		
2,4-Dinitrotoluene	ND	ug/L	10.0	1.2	1		09/22/16 18:18		
2,6-Dinitrotoluene	ND	ug/L	10.0	1.7	1		09/22/16 18:18		
Di-n-octylphthalate	ND	ug/L	10.0	0.86	1	09/22/16 09:39			
ois(2-Ethylhexyl)phthalate	ND	ug/L	6.0	0.85	1		09/22/16 18:18		
Fluoranthene	ND	ug/L	10.0	0.21	1		09/22/16 18:18		
Fluorene	ND	ug/L	10.0	0.21	1		09/22/16 18:18		
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1.8	1		09/22/16 18:18		
Hexachlorobenzene	ND ND	ug/L ug/L	10.0	1.0	1	09/22/16 09:39			
Hexachlorocyclopentadiene	ND ND	ug/L ug/L	10.0	1.1	1	09/22/16 09:39			
Hexachloroethane	ND ND	ug/L ug/L	10.0	1.5	1		09/22/16 18:18		
	ND ND	-		0.29			09/22/16 18:18		
Indeno(1,2,3-cd)pyrene		ug/L	10.0		1				
Isophorone	ND	ug/L	10.0	1.8	1	09/22/16 09:39	09/22/16 18:18	78-59-1	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-17A	Lab ID:	92312680008	Collecte	d: 09/15/16	12:10	Received: 09/	16/16 11:25 Ma	atrix: Water		
Report										
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua	
8270 MSSV Semivolatile Organic	Analytical	Method: EPA 8	270 Prepa	ration Metho	od: EPA	A 3510				
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/22/16 09:39	09/22/16 18:18	91-57-6		
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:18	95-48-7		
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:18			
Naphthalene	ND	ug/L	10.0	0.34	1	09/22/16 09:39	09/22/16 18:18	91-20-3		
2-Nitroaniline	ND	ug/L	50.0	2.8	1	09/22/16 09:39	09/22/16 18:18	88-74-4		
3-Nitroaniline	ND	ug/L	50.0	2.4	1	09/22/16 09:39	09/22/16 18:18	99-09-2		
4-Nitroaniline	ND	ug/L	20.0	2.5	1	09/22/16 09:39	09/22/16 18:18	100-01-6		
Nitrobenzene	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:18	98-95-3		
2-Nitrophenol	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:18	88-75-5		
4-Nitrophenol	ND	ug/L	50.0	5.8	1	09/22/16 09:39	09/22/16 18:18	100-02-7		
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	2.1	1	09/22/16 09:39	09/22/16 18:18	621-64-7		
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.3	1	09/22/16 09:39	09/22/16 18:18	86-30-6		
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	1.6	1	09/22/16 09:39	09/22/16 18:18	108-60-1		
Pentachlorophenol	ND	ug/L	25.0	2.3	1	09/22/16 09:39	09/22/16 18:18	87-86-5		
Phenanthrene	ND	ug/L	10.0	0.22	1	09/22/16 09:39	09/22/16 18:18	85-01-8		
Phenol	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:18			
Pyrene	ND	ug/L	10.0	0.19	1	09/22/16 09:39	09/22/16 18:18	129-00-0		
1,2,4,5-Tetrachlorobenzene	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:18	95-94-3		
2,3,4,6-Tetrachlorophenol	ND	ug/L	10.0	2.3	1	09/22/16 09:39	09/22/16 18:18	58-90-2		
2,4,5-Trichlorophenol	ND	ug/L	10.0	2.2	1	09/22/16 09:39	09/22/16 18:18	95-95-4		
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.9	1	09/22/16 09:39	09/22/16 18:18	88-06-2		
Surrogates		· ·								
Nitrobenzene-d5 (S)	81	%	21-110		1	09/22/16 09:39	09/22/16 18:18	4165-60-0		
2-Fluorobiphenyl (S)	77	%	27-110		1	09/22/16 09:39	09/22/16 18:18	321-60-8		
Terphenyl-d14 (S)	79	%	31-107		1	09/22/16 09:39	09/22/16 18:18	1718-51-0		
Phenol-d6 (S)	31	%	10-110		1	09/22/16 09:39	09/22/16 18:18	13127-88-3		
2-Fluorophenol (S)	43	%	12-110		1	09/22/16 09:39	09/22/16 18:18	367-12-4		
2,4,6-Tribromophenol (S)	86	%	27-110		1	09/22/16 09:39	09/22/16 18:18	118-79-6		

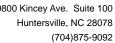
ANALYTICAL RESULTS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Parameters	Sample: MW-19	Lab ID:	92312680009	Collecte	d: 09/15/16	8 08:55	Received: 09/	/16/16 11:25 Ma	atrix: Water	
### Rate Recomplete Recompl				Report						
Acenaphthene ND ug/L 10.0 0.25 1 09/22/16 09:39 09/22/16 18:46 208-96 Acenaphthylene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 208-96 Anthracene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 98-86 Anthracene ND ug/L 10.0 0.14 1 09/22/16 09:39 09/22/16 18:46 98-86 Anthracene ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 100-52 Benza(de)hyde ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 100-52 Benza(de)hyde ND ug/L 20.0 4.7 1 09/22/16 09:39 09/22/16 18:46 100-52 Benza(de)anthracene ND ug/L 10.0 0.33 1 09/22/16 09:39 09/22/16 18:46 50-32 Benzo(a)phrene ND ug/L 10.0 0.33 1 09/22/16 09:39 09/22/16 18:46 50-32 Benzo(a)phrene ND ug/L 10.0 0.30 1 09/22/16 09:39 09/22/16 18:46 50-32 Benzo(a)phrene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50-32 Benzo(a)phrene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50-32 Benzo(a)phrenyhenyhene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50-32 Benzo(a)phrenyhenyhenyhenyhenyhenyhenyhenyhenyhenyh	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Acenaphthylene ADD ug/L Acetophenone ND ug/L 10.0 2.0 1 09/22/16 09:39 09/22/16 18:46 28:66- Anthracene ND ug/L 10.0 0.14 1 09/22/16 09:39 09/22/16 18:46 18:04- Artazine ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 120:12 Artazine ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 120:12 Benzaclajanthracene ND ug/L 10.0 0.33 1 09/22/16 09:39 09/22/16 18:46 100:52 Benzaclajanthracene ND ug/L 10.0 0.33 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50:32- Benzaclajanthracene ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/	8270 MSSV Semivolatile Organic	Analytica	l Method: EPA 8	270 Prepa	ration Meth	od: EPA	3510			
Acetophenone ND ug/L 10.0 2.0 1 09/22/16 09:39 09/22/16 18:46 98-86- Anthracene ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 120-12 Benzaldehyde ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 120-12 Benzaldehyde ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 100-52 Benzo(a)pyrene ND ug/L 10.0 0.33 1 09/22/16 09:39 09/22/16 18:46 100-52 Benzo(a)pyrene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50-32- Benzo(a)pyrene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50-32- Benzo(a)hiperylene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50-32- Benzo(g)hiperylene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 50-32- Benzo(g)hiperylene ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 207-08 Bipheryl (Dipheryl) ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 50-70-8 Burylbenzylphthalate ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50-82- Burylbenzylphthalate ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50-82- Burylbenzylphthalate ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 50-82- Burylbenzylphthalate ND ug/L 10.0 0.73 1 09/22/16 09:39 09/22/16 18:46 50-42- Carbazole ND ug/L 10.0 0.73 1 09/22/16 09:39 09/22/16 18:46 50-42- A-Chloro-amethylphenol ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 50-42- A-Chloro-amethylphenol ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 50-42- Burylbenzylphthalate ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 50-42- Burylbenzylphthalate ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 50-42- Burylbenzylphthalate ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 50-42- Burylbenzylphthalate ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 50-42- Chlorophenylphenyl ether ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 50-42- Chlorophenylphenyl ether ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 50-42- Chlorophenylphenylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 50-42- Chlorophenylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 50-42- Chlo	Acenaphthene	ND	ug/L	10.0	0.25	1	09/22/16 09:39	09/22/16 18:46	83-32-9	
Anthracene ND ug/L 20.0 1.7 1 09/22/16 09.39 09/22/16 18.46 120-12 Atrazine ND ug/L 20.0 4.7 1 09/22/16 09.39 09/22/16 18.46 120-12 Benza(alphyde ND ug/L 20.0 4.7 1 09/22/16 09.39 09/22/16 18.46 1912-2 Benza(alphyde ND ug/L 10.0 0.33 1 09/22/16 09.39 09/22/16 18.46 56-55 Benza(alphyde ND ug/L 10.0 0.33 1 09/22/16 09.39 09/22/16 18.46 50-55 Benza(alphyde ND ug/L 10.0 0.38 1 09/22/16 09.39 09/22/16 18.46 20-59 Benza(bl)fluoranthene ND ug/L 10.0 0.38 1 09/22/16 09.39 09/22/16 18.46 20-59 Benza(bl,hi)perylene ND ug/L 10.0 0.38 1 09/22/16 09.39 09/22/16 18.46 20-59 Benza(bl,hi)perylene ND ug/L 10.0 0.38 1 09/22/16 09.39 09/22/16 18.46 20-59 Benza(bl,hi)perylene ND ug/L 10.0 0.38 1 09/22/16 09.39 09/22/16 18.46 20-59 Benza(bl,hi)perylene ND ug/L 10.0 0.38 1 09/22/16 09.39 09/22/16 18.46 20-59 Benza(bl,hi)perylene ND ug/L 10.0 1.3 1 09/22/16 09.39 09/22/16 18.46 20-59 Biphenyl (Diphenyl) ND ug/L 10.0 1.3 1 09/22/16 09.39 09/22/16 18.46 20-59 Biphenyl (Diphenyl) ND ug/L 10.0 0.75 1 09/22/16 09.39 09/22/16 18.46 20-59 Carbazole ND ug/L 10.0 0.75 1 09/22/16 09.39 09/22/16 18.46 10-56 Caprolactam ND ug/L 10.0 0.75 1 09/22/16 09.39 09/22/16 18.46 10-56 Caprolactam ND ug/L 10.0 0.75 1 09/22/16 09.39 09/22/16 18.46 10-56 Caprolactam ND ug/L 10.0 0.75 1 09/22/16 09.39 09/22/16 18.46 10-56 Caprolactam ND ug/L 10.0 0.75 1 09/22/16 09.39 09/22/16 18.46 10-56 Caprolactam ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 10-64 bis(2-Chloroethoxy)methane ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 10-64 bis(2-Chloroethoxy)methane ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 10-64 bis(2-Chlorophenyl) ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 10-64 bis(2-Chlorophenyl) ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 10-64 bis(2-Chlorophenyl) ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 10-64 bis(2-Chlorophenyl) ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 10-64 bis(2-Chlorophenyl) ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 10-64 bis(2-Chlorophenyl) ether ND ug/L 10.0 1.5 1 09	Acenaphthylene	ND	ug/L	10.0	0.21	1	09/22/16 09:39	09/22/16 18:46	208-96-8	
Alrazine ND ug/L 20.0 1.7 1 09/22/16 09.39 09/22/16 18.46 1912-2 Benza(a)anthracene ND ug/L 10.0 0.33 1 09/22/16 09.39 09/22/16 18.46 100-52 Benza(a)anthracene ND ug/L 10.0 0.30 1 09/22/16 09.39 09/22/16 18.46 50-55-5 Benza(a)pytrene ND ug/L 10.0 0.30 1 09/22/16 09.39 09/22/16 18.46 50-52-5 Benza(a)pytrene ND ug/L 10.0 0.38 1 09/22/16 09.39 09/22/16 18.46 50-52-5 Benza(a)pytrene ND ug/L 10.0 0.38 1 09/22/16 09.39 09/22/16 18.46 50-52-5 Benza(a)pytrene ND ug/L 10.0 0.38 1 09/22/16 09.39 09/22/16 18.46 20-50-5 Benza(a)pytrene ND ug/L 10.0 0.43 1 09/22/16 09.39 09/22/16 18.46 20-70-6 Biphenyl (Diphenyl) ND ug/L 10.0 0.43 1 09/22/16 09.39 09/22/16 18.46 20-70-6 Biphenyl (Diphenyl) ND ug/L 10.0 0.73 1 09/22/16 09.39 09/22/16 18.46 101-55 Benza(a)pytrene ND ug/L 10.0 0.73 1 09/22/16 09.39 09/22/16 18.46 101-55 Benza(a)pytrene ND ug/L 10.0 0.73 1 09/22/16 09.39 09/22/16 18.46 101-55 Benza(a)pytrene ND ug/L 10.0 0.73 1 09/22/16 09.39 09/22/16 18.46 105-66 Carbazole ND ug/L 10.0 0.73 1 09/22/16 09.39 09/22/16 18.46 105-66 Carbazole ND ug/L 10.0 0.73 1 09/22/16 09.39 09/22/16 18.46 105-66 Carbazole ND ug/L 20.0 4.2 1 09/22/16 09.39 09/22/16 18.46 106-47 Carbazole ND ug/L 20.0 4.2 1 09/22/16 09.39 09/22/16 18.46 106-47 bis(2-Chloro-methyl)phenol ND ug/L 20.0 4.2 1 09/22/16 09.39 09/22/16 18.46 106-47 bis(2-Chloro-methyl)phenol ND ug/L 20.0 1.7 1 09/22/16 09.39 09/22/16 18.46 106-47 bis(2-Chloro-phenyl)phenyl ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 106-47 bis(2-Chloro-phenyl)phenyl ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 106-47 bis(2-Chloro-phenyl)phenyl ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 106-47 bis(2-Chloro-phenyl)phenyl ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 106-47 bis(2-Chloro-phenyl)phenyl ether ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 108-47 Carbazolo ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16 18.46 108-47 Dibenz(a,h)pathracene ND ug/L 10.0 1.5 1 09/22/16 09.39 09/22/16	Acetophenone	ND	ug/L	10.0	2.0	1	09/22/16 09:39	09/22/16 18:46	98-86-2	
Benzaldehyde	Anthracene	ND	ug/L	10.0	0.14	1	09/22/16 09:39	09/22/16 18:46	120-12-7	
Benzo(a)anthracene	Atrazine	ND	ug/L	20.0	1.7	1	09/22/16 09:39	09/22/16 18:46	1912-24-9	
Benzo(a)pyrene ND ug/L 10.0 0.30 1 09/22/16 09:39 09/22/16 18:46 50-32- Benzo(g), i)perylene ND ug/L 10.0 0.28 1 09/22/16 09:39 09/22/16 18:46 205-98 Benzo(g), i)perylene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 191-24 Benzo(k)fluoranthene ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 207-08 Benzo(k)fluoranthene ND ug/L 10.0 1.9 1 09/22/16 09:39 09/22/16 18:46 207-08 Benzo(k)fluoranthene ND ug/L 10.0 1.9 1 09/22/16 09:39 09/22/16 18:46 207-08 Benzo(k)fluoranthene ND ug/L 10.0 1.9 1 09/22/16 09:39 09/22/16 18:46 010-58 Butylbenzylphthalate ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 101-58 Butylbenzylphthalate ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 86-74 4-Chloro-3-methylphenol ND ug/L 20.0 1.8 1 09/22/16 09:39 09/22/16 18:46 86-74 4-Chloro-3-methylphenol ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 50-50-4-Chloroenthyl) ether ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chloroethoxy)methane ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chloroethyl) ether ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-47 bis(2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09	Benzaldehyde	ND	ug/L	20.0	4.7	1	09/22/16 09:39	09/22/16 18:46	100-52-7	M1
Benzo(b) fluoranthene ND	Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/22/16 09:39	09/22/16 18:46	56-55-3	
Benza(g,h,i)perylene ND ug/L 10.0 0.38 1 09/22/16 09:39 09/22/16 18:46 16 10 Benzo(k)fluoranthene ND ug/L 10.0 0.43 1 09/22/16 09:39 09/22/16 18:46 207-08 Biphenyl (biphenyl) ND ug/L 10.0 1.9 1 09/22/16 09:39 09/22/16 18:46 29-52 4-Bromophenylphenyl ether ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 101-55 Butylbenzylphthalate ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 105-6 Carbazole ND ug/L 20.0 4.2 1 09/22/16 09:39 09/22/16 18:46 105-6 4-Chloro-3-methylphenol ND ug/L 20.0 4.2 1 09/22/16 09:39 09/22/16 18:46 106-7 bis(2-Chloroethoxy)methane ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 106-19 2-Chloroethyly	Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/22/16 09:39	09/22/16 18:46	50-32-8	
Benzo(k)fluoranthene ND	Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/22/16 09:39	09/22/16 18:46	205-99-2	
Biphenyl (Diphenyl)	Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/22/16 09:39	09/22/16 18:46	191-24-2	
Bipheny (Dipheny)	· · · · · · · · · · · · · · · · · · ·	ND	-	10.0	0.43	1	09/22/16 09:39	09/22/16 18:46	207-08-9	
4-Bromophenylphenyl ether ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 101-55 Butylbenzylphthalate ND ug/L 10.0 0.75 1 09/22/16 09:39 09/22/16 18:46 85-68-Caprolactam ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 105-67 Carbazole ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 105-67 Carbazole ND ug/L 20.0 4.2 1 09/22/16 09:39 09/22/16 18:46 85-68-44-Chloro-3-methylphenol ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 106-47 bis(2-Chloroethixy)methane ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chloroethixy)methane ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chloroethixy)methane ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chloroethyl) ether ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chloroethyl) ether ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 91-58-2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 95-57-4-Chlorophenylphenyl ether ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 95-57-4-Chlorophenylphenyl ether ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 59-57-4-Chlorophenylphenyl ether ND ug/L 10.0 0.25 1 09/22/16 09:39 09/22/16 18:46 53-70-Dibenz(a,h)anthracene ND ug/L 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 53-70-Dibenz(a,h)anthracene ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 53-70-Dibenzofuran ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 18:46 120-83 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 09:39 09/		ND	ug/L	10.0	1.9	1	09/22/16 09:39	09/22/16 18:46	92-52-4	
Caprolactam ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 10-60 Carbazole ND ug/L 10.0 0.73 1 09/22/16 09:39 09/22/16 18:46 86-74 4-Chloro-3-methylphenol ND ug/L 20.0 4.2 1 09/22/16 09:39 09/22/16 18:46 59-50 4-Chloro-armiline ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 111-94 bis(2-Chloroethoxy)methane ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 111-94 bis(2-Chloroethoxy)methane ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-4 2-Chlorophenyl ether ND ug/L 10.0 2.2 1 09/22/16 09:39 09/22/16 18:46 91-58-67-74-14-14 Chrysene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 705-57-74-14-14-14 Dibenz(a,h)anthracene	4-Bromophenylphenyl ether	ND	ug/L	10.0	1.3	1	09/22/16 09:39	09/22/16 18:46	101-55-3	
Carbazole ND ug/L 10.0 0.73 1 09/22/16 09:39 09/22/16 18:46 86-74-8-Chloro-3-methylphenol 4-Chloro-3-methylphenol ND ug/L 20.0 4.2 1 09/22/16 09:39 09/22/16 18:46 59-50-16-16-16-16-16-16-16-16-16-16-16-16-16-	Butylbenzylphthalate	ND	ug/L	10.0	0.75	1	09/22/16 09:39	09/22/16 18:46	85-68-7	
4-Chloro-3-methylphenol ND ug/L 20.0 4.2 1 09/22/16 09:39 09/22/16 18:46 59-50-4-Chloroaniline ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 106-47 bis(2-Chloroethoxy)methane ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 111-41 bis(2-Chloroethyl) ether ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-42 2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-42 2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-44 2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 95-57-4-Chlorophenyl ether ND ug/L 10.0 2.1 1 09/22/16 09:39 09/22/16 18:46 705-57-4-Chlorophenyl ether ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 705-57-4-Chlorophenyl ether ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 705-57-4-Chlorophenyl ether ND ug/L 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 53-70-Dibenz(a,h)anthracene ND ug/L 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 132-63 3-70-Dibenzofuran ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 132-63 3-70-Dibenzofuran ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 132-63 3-70-Dibenzofuran ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 132-63 3-70-Dibenzofuran ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 132-63 3-70-Dibenzofuran ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 120-83 Diethylphthalate ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 120-83 Diethylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 13-63 46-64 46-Dimethylphenol ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 13-63 46-64 46-Dimitro-2-methylphenol ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 13-64 46-Dimitrobluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 17-84 46-Dimitrobluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 17-84 46-Dimitrobluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 17-84 46-Dimitrobluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 17-84 46-Dimitrobluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 17-84 46-Dimitrobluene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 17-84 46-Dimitrobluene	Caprolactam	ND	ug/L	10.0	1.8	1	09/22/16 09:39	09/22/16 18:46	105-60-2	M1
4-Chloroaniline ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 106-47 bis(2-Chloroethoxy)methane ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chloropethyl) ether ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-42 chloroaphthalene ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-42 chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 91-58 chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 91-58 chlorophenylphenyl ether ND ug/L 10.0 2.1 1 09/22/16 09:39 09/22/16 18:46 7005-7 chrysene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 218-01 Dibenz(a,h)anthracene ND ug/L 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 53-70 Dibenzofuran ND ug/L 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 53-70 Dibenzofuran ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 128-63 (3)-3-10-bihorobenzidine ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 128-63 (3)-3-10-bihorobenol ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 128-63 (2)-4-Dinethylphthalate ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 128-63 (2)-4-Dimethylphthalate ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 13-11 Di-n-butylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 13-11 Di-n-butylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 13-11 Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 13-11 Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 13-12 (2)-4-Dinitro-2-methylphenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 13-12 (2)-4-Dinitro-2-methylphenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 13-12 (2)-Din-octylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 13-14 (2)-Din-octylphthalate ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 13-14 (2)-Din-octylphthalate ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 13-14 (2)-Din-octylphthalate ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 13-14 (2)-Din-octylphthalate ND ug/L 10.0 0.86 1 09/22/16 09:39 09/22/16 18:46 13-6 (2)-Din-octylphthalate ND ug/L 10.0 0.21 1 09/22/16 09:39 09/2	Carbazole	ND	-	10.0	0.73	1	09/22/16 09:39	09/22/16 18:46	86-74-8	
4-Chloroaniline ND ug/L 20.0 3.4 1 09/22/16 09:39 09/22/16 18:46 106-47 bis(2-Chloroethoxy)methane ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chloroethyl) ether ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-91 bis(2-Chloroaphthalene ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 111-42 chloroaphthalene ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 91-58 2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 91-58 2-Chlorophenylphenyl ether ND ug/L 10.0 2.1 1 09/22/16 09:39 09/22/16 18:46 7005-7 chrysene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 218-07 Dibenz(a,h)anthracene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 53-70 Dibenzofuran ND ug/L 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 53-70 Dibenzofuran ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 53-70 Dibenzofuran ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 120-83 09/22/16 18:	4-Chloro-3-methylphenol	ND	ug/L	20.0	4.2	1	09/22/16 09:39	09/22/16 18:46	59-50-7	
bis(2-Chloroethyl) ether	4-Chloroaniline	ND	-	20.0		1	09/22/16 09:39	09/22/16 18:46	106-47-8	
bis(2-Chloroethyl) ether	bis(2-Chloroethoxy)methane	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:46	111-91-1	
2-Chloronaphthalene ND ug/L 10.0 2.2 1 09/22/16 09:39 09/22/16 18:46 91-58-2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 95-57-4-Chlorophenylphenyl ether ND ug/L 10.0 2.1 1 09/22/16 09:39 09/22/16 18:46 218-01 00 0.21 1 09/22/16 09:39 09/22/16 18:46 218-01 00 0.21 1 09/22/16 09:39 09/22/16 18:46 218-01 00 0.25 1 09/22/16 09:39 09/22/1	•	ND	-	10.0	1.5	1	09/22/16 09:39	09/22/16 18:46	111-44-4	
2-Chlorophenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 95-57-4-Chlorophenylphenyl ether ND ug/L 10.0 2.1 1 09/22/16 09:39 09/22/16 18:46 7005-76-15 1 09/22/16 09:39 09/22/16 18:46 7005-76-15 1 09/22/16 09:39 09/22/16 18:46 218-01 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 218-01 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 218-01 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 238-01 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 238-01 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 238-02 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 238-02 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 218-01 10.0 0.25 1 09/22/16 09:39 09/22/16 18:46 218-01 10.0 0.25 1 09/22/16 09:39 09/22/16 18:46 218-01 10.0 0.25 1 09/22/16 09:39 09/22/16 18:46 218-01 10.0 0.25 1 09/22/16 09:39 09/22/16 18:46 218-01 10.0 0.25 1 09/22/16 09:39 09/22/16 18:46 2			-							M1
4-Chlorophenylphenyl ether ND ug/L 10.0 2.1 1 09/22/16 09:39 09/22/16 18:46 7005-7 Chrysene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 218-01 Dibenz(a,h)anthracene ND ug/L 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 53-70-Dibenzofuran ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 132-64 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 132-64 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 132-64 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 132-64 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 120-83 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 120-83 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 120-83 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-11 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-11 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-11 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-11 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-11 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-11 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-11 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-11 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-11 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 131-14 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/22/16 09:39 09/22/16 18:46 121-12 0.0 0.21 1 09/2			•							
Chrysene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 218-01 Dibenz(a,h)anthracene ND ug/L 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 53-70-Dibenzofuran 3,3'-Dichlorobenzidine ND ug/L 20.0 1.4 1 09/22/16 09:39 09/22/16 18:46 91-94-2,4-Dichlorobenzidine 2,4-Dichlorobenzidine ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 91-94-2,4-Dichlorobenzidine 2,4-Dichlorobenzidine ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 91-94-2,4-Dichlorobenzidine 2,4-Dichlorobenzidine ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 91-94-24-24-10 2,4-Dichlorobenzidine ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 81-66-24-66-20 2,4-Dimitrobluene ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46	•	ND	•	10.0	2.1	1			7005-72-3	
Dibenz(a,h)anthracene ND ug/L 10.0 0.55 1 09/22/16 09:39 09/22/16 18:46 53-70-Dibenzofuran Dibenzofuran ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 132-64 3,3'-Dichlorobenzidine ND ug/L 20.0 1.4 1 09/22/16 09:39 09/22/16 18:46 91-94-2,4-Dichlorobenzidine 2,4-Dichlorobenzidine ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 91-94-2,4-Dichlorobenzidine 2,4-Dichlorobenzidine ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 91-94-2,4-Dichlorobenzidine 2,4-Dimethylphthalate ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 10-6-67 Dimethylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 131-11 Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 51-		ND	•	10.0	0.21	1			218-01-9	
Dibenzofuran ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 132-64 3,3'-Dichlorobenzidine ND ug/L 20.0 1.4 1 09/22/16 09:39 09/22/16 18:46 91-94-2,4-Dichlorophenol 2,4-Dichlorophenol ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 120-83 Diethylphthalate ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 84-66-2,4-Dimethylphthalate 2,4-Dimethylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 105-67 Dimethylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 131-11 Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 84-74-4,6-Dinitro-2-methylphenol ND ug/L 50.0 6.5 1 09/22/16 09:39 09/22/16 18:46 51-28-24-Dinitro-2-methylphenol ND ug/L	•	ND	-	10.0		1	09/22/16 09:39	09/22/16 18:46	53-70-3	
3,3'-Dichlorobenzidine ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 91-94-2,4-Dichlorophenol ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 120-83 Diethylphthalate ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 84-66-2,4-Dimethylphenol ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 84-66-2,4-Dimethylphenol ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 131-11 Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 84-74-4,6-Dinitro-2-methylphenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 84-74-4,6-Dinitro-2-methylphenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 534-52-2,4-Dinitrophenol ND ug/L 2,6-Dinitrotolluene ND ug/L 10.0 1.2 1 09/22/16 09:39 09/22/16 18:46 51-28-2,1-Dinitrotolluene ND ug/L 2,6-Dinitrotolluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20-2,1-Dinitrotolluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20-2,1-Dinitrotolluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20-2,1-Dinitrotolluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 617-84-2-2-2,1-Dinitrotolluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20-2,1-Dinitrotolluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20-2,1-Dinitrotolluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20-2,1-Dinitrotolluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20-2,1-Dinitrotolluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20-2,1-Dinitrotolluene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 87-68-1-Dinitrotolluene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 87-68-1-Dinitrotolluene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 87-68-1-Dinitrotolluene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 87-68-1-Dinitrotolluene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 87-68-1-Dinitrotolluene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 87-68-1-Dinitrotolluene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 87-68-1-Dinitrotolluene ND	· · /		-							
2,4-Dichlorophenol ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 120-83 Diethylphthalate ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 84-66-2,4-Dimethylphenol 2,4-Dimethylphthalate ND ug/L 10.0 2.2 1 09/22/16 09:39 09/22/16 18:46 131-11 Dimethylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 131-11 Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 84-74-4,6-Dinitro-2-methylphenol 4,6-Dinitro-2-methylphenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 534-52 2,4-Dinitroblenol ND ug/L 50.0 6.5 1 09/22/16 09:39 09/22/16 18:46 51-28-24-Dinitroblenol 2,4-Dinitrobluene ND ug/L 10.0 1.2 1 09/22/16 09:39 09/22/16 18:46 51-28-24-Dinitroblenol 2,6-Dinitrobluene ND ug/L 10.0 1.7			•							
Diethylphthalate ND ug/L 10.0 1.3 1 09/22/16 09:39 09/22/16 18:46 84-66-62,4-Dimethylphenol 2,4-Dimethylphenol ND ug/L 10.0 2.2 1 09/22/16 09:39 09/22/16 18:46 105-67 Dimethylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 131-11 Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 84-74-4,6-Dinitro-2-methylphenol 4,6-Dinitro-2-methylphenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 534-52 2,4-Dinitrophenol ND ug/L 50.0 6.5 1 09/22/16 09:39 09/22/16 18:46 51-28-24-2 2,4-Dinitrotoluene ND ug/L 10.0 1.2 1 09/22/16 09:39 09/22/16 18:46 51-28-24-2 2,4-Dinitrotoluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 60-20	-		-							
2,4-Dimethylphenol ND ug/L 10.0 2.2 1 09/22/16 09:39 09/22/16 18:46 105-67 Dimethylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 131-11 Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 84-74-4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 534-52 2,4-Dinitrophenol ND ug/L 50.0 6.5 1 09/22/16 09:39 09/22/16 18:46 51-28-24-Dinitrophenol 2,4-Dinitrotoluene ND ug/L 10.0 1.2 1 09/22/16 09:39 09/22/16 18:46 51-28-24-Dinitrotoluene 2,6-Dinitrotoluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20 Di-n-octylphthalate ND ug/L 10.0 0.86 1 09/22/16 09:39 09/22/16 18:46 117-81 Fluorene ND ug/L 10.0 0.21 1 09/22	•		•							
Dimethylphthalate ND ug/L 10.0 1.5 1 09/22/16 09:39 09/22/16 18:46 131-11 Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 84-74-4,6-Dinitro-2-methylphenol 4,6-Dinitro-2-methylphenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 534-52 2,4-Dinitrophenol ND ug/L 50.0 6.5 1 09/22/16 09:39 09/22/16 18:46 51-28-2 2,4-Dinitrotoluene ND ug/L 10.0 1.2 1 09/22/16 09:39 09/22/16 18:46 51-28-24-12-12-12-12-12-12-12-12-12-12-12-12-12-			-							
Di-n-butylphthalate ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 84-74-4,6-Dinitro-2-methylphenol 4,6-Dinitro-2-methylphenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 534-52 2,4-Dinitrophenol ND ug/L 50.0 6.5 1 09/22/16 09:39 09/22/16 18:46 51-28-24-Dinitrotoluene 2,4-Dinitrotoluene ND ug/L 10.0 1.2 1 09/22/16 09:39 09/22/16 18:46 121-14-2-14-2-14-2-14-2-14-2-14-2-14-2-			-							
4,6-Dinitro-2-methylphenol ND ug/L 20.0 1.7 1 09/22/16 09:39 09/22/16 18:46 534-52 2,4-Dinitrophenol ND ug/L 50.0 6.5 1 09/22/16 09:39 09/22/16 18:46 51-28-24-10 2,4-Dinitrotoluene ND ug/L 10.0 1.2 1 09/22/16 09:39 09/22/16 18:46 121-14-26-26-20 2,6-Dinitrotoluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20 Di-n-octylphthalate ND ug/L 10.0 0.86 1 09/22/16 09:39 09/22/16 18:46 117-84 bis(2-Ethylhexyl)phthalate ND ug/L 6.0 0.85 1 09/22/16 09:39 09/22/16 18:46 117-81 Fluoranthene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 206-44 Fluorene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 86-73- Hexachloro-1,3-butadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09	• •		•							
2,4-Dinitrophenol ND ug/L 50.0 6.5 1 09/22/16 09:39 09/22/16 18:46 51-28-24-24-Dinitrotoluene 2,4-Dinitrotoluene ND ug/L 10.0 1.2 1 09/22/16 09:39 09/22/16 18:46 121-14-24-26-Dinitrotoluene 2,6-Dinitrotoluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20-20-20-20-20-20-20-20-20-20-20-20-20-			•						_	
2,4-Dinitrotoluene ND ug/L 10.0 1.2 1 09/22/16 09:39 09/22/16 18:46 121-14 2,6-Dinitrotoluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20 Di-n-octylphthalate ND ug/L 10.0 0.86 1 09/22/16 09:39 09/22/16 18:46 117-84 bis(2-Ethylhexyl)phthalate ND ug/L 6.0 0.85 1 09/22/16 09:39 09/22/16 18:46 117-81 Fluoranthene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 206-44 Fluorene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 86-73- Hexachloro-1,3-butadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 87-68- Hexachlorobenzene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 18:46 77-47-			•							
2,6-Dinitrotoluene ND ug/L 10.0 1.7 1 09/22/16 09:39 09/22/16 18:46 606-20 Di-n-octylphthalate ND ug/L 10.0 0.86 1 09/22/16 09:39 09/22/16 18:46 117-84 bis(2-Ethylhexyl)phthalate ND ug/L 6.0 0.85 1 09/22/16 09:39 09/22/16 18:46 117-81 Fluoranthene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 206-44 Fluorene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 86-73- Hexachloro-1,3-butadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 87-68- Hexachlorocyclopentadiene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 18-74	, I		-							
Di-n-octylphthalate ND ug/L 10.0 0.86 1 09/22/16 09:39 09/22/16 18:46 117-84 bis(2-Ethylhexyl)phthalate ND ug/L 6.0 0.85 1 09/22/16 09:39 09/22/16 18:46 117-81 Fluoranthene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 206-44 Fluorene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 86-73- Hexachloro-1,3-butadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 87-68- Hexachlorobenzene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 118-74 Hexachlorocyclopentadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 77-47-										M1
bis(2-Ethylhexyl)phthalate ND ug/L 6.0 0.85 1 09/22/16 09:39 09/22/16 18:46 117-81 Fluoranthene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 206-44 Fluorene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 86-73- Hexachloro-1,3-butadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 87-68- Hexachlorobenzene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 18-74 Hexachlorocyclopentadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 77-47-	·		•							1411
Fluoranthene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 206-44 Fluorene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 86-73- Hexachloro-1,3-butadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 87-68- Hexachlorobenzene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 18-74 Hexachlorocyclopentadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 77-47-			-							
Fluorene ND ug/L 10.0 0.21 1 09/22/16 09:39 09/22/16 18:46 86-73- Hexachloro-1,3-butadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 87-68- Hexachlorobenzene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 118-74 Hexachlorocyclopentadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 77-47-			•							
Hexachloro-1,3-butadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 87-68-8-68-16-69-16-16-16-16-16-16-16-16-16-16-16-16-16-			-							
Hexachlorobenzene ND ug/L 10.0 1.1 1 09/22/16 09:39 09/22/16 18:46 118-74 Hexachlorocyclopentadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 77-47-			-							
Hexachlorocyclopentadiene ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 77-47-	·		-							
			-							
בווא שלא שלא בני שלא ביי שלי ביי שלי ביי שלי ביי שלי ביי שלי			•							
S .			-							
Indeno(1,2,3-cd)pyrene ND ug/L 10.0 0.29 1 09/22/16 09:39 09/22/16 18:46 193-39 lsophorone ND ug/L 10.0 1.8 1 09/22/16 09:39 09/22/16 18:46 78-59-			-							

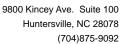


Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-19	Lab ID:	92312680009	Collected	d: 09/15/16	08:55	Received: 09/	16/16 11:25 Ma	atrix: Water		
Report										
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua	
8270 MSSV Semivolatile Organic	Analytical	Method: EPA 8	270 Prepar	ation Metho	od: EPA	3510				
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/22/16 09:39	09/22/16 18:46	91-57-6		
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:46	95-48-7		
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:46			
Naphthalene	ND	ug/L	10.0	0.34	1	09/22/16 09:39	09/22/16 18:46	91-20-3		
2-Nitroaniline	ND	ug/L	50.0	2.8	1	09/22/16 09:39	09/22/16 18:46	88-74-4		
3-Nitroaniline	ND	ug/L	50.0	2.4	1	09/22/16 09:39	09/22/16 18:46	99-09-2		
4-Nitroaniline	ND	ug/L	20.0	2.5	1	09/22/16 09:39	09/22/16 18:46	100-01-6		
Nitrobenzene	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:46	98-95-3		
2-Nitrophenol	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:46	88-75-5		
4-Nitrophenol	ND	ug/L	50.0	5.8	1	09/22/16 09:39	09/22/16 18:46	100-02-7		
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	2.1	1	09/22/16 09:39	09/22/16 18:46	621-64-7		
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.3	1	09/22/16 09:39	09/22/16 18:46	86-30-6		
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	1.6	1	09/22/16 09:39	09/22/16 18:46	108-60-1		
Pentachlorophenol	ND	ug/L	25.0	2.3	1	09/22/16 09:39	09/22/16 18:46	87-86-5		
Phenanthrene	ND	ug/L	10.0	0.22	1	09/22/16 09:39	09/22/16 18:46	85-01-8		
Phenol	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:46			
Pyrene	ND	ug/L	10.0	0.19	1	09/22/16 09:39	09/22/16 18:46	129-00-0		
1,2,4,5-Tetrachlorobenzene	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 18:46	95-94-3		
2,3,4,6-Tetrachlorophenol	ND	ug/L	10.0	2.3	1	09/22/16 09:39	09/22/16 18:46	58-90-2		
2,4,5-Trichlorophenol	ND	ug/L	10.0	2.2	1	09/22/16 09:39	09/22/16 18:46	95-95-4		
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.9	1	09/22/16 09:39	09/22/16 18:46	88-06-2		
Surrogates		J								
Nitrobenzene-d5 (S)	78	%	21-110		1	09/22/16 09:39	09/22/16 18:46	4165-60-0		
2-Fluorobiphenyl (S)	76	%	27-110		1	09/22/16 09:39	09/22/16 18:46	321-60-8		
Terphenyl-d14 (S)	83	%	31-107		1	09/22/16 09:39	09/22/16 18:46	1718-51-0		
Phenol-d6 (S)	33	%	10-110		1	09/22/16 09:39	09/22/16 18:46	13127-88-3		
2-Fluorophenol (S)	46	%	12-110		1	09/22/16 09:39	09/22/16 18:46	367-12-4		
2,4,6-Tribromophenol (S)	84	%	27-110		1	09/22/16 09:39	09/22/16 18:46	118-79-6		


ANALYTICAL RESULTS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-20	Lab ID:	92312680010	Collecte	d: 09/15/16	3 10:15	Received: 09/	16/16 11:25 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Organic	Analytical	Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
Acenaphthene	ND	ug/L	10.0	0.25	1	09/22/16 09:39	09/22/16 19:14	83-32-9	
Acenaphthylene	ND	ug/L	10.0	0.21	1	09/22/16 09:39	09/22/16 19:14	208-96-8	
Acetophenone	ND	ug/L	10.0	2.0	1	09/22/16 09:39	09/22/16 19:14	98-86-2	
Anthracene	ND	ug/L	10.0	0.14	1	09/22/16 09:39	09/22/16 19:14	120-12-7	
Atrazine	ND	ug/L	20.0	1.7	1	09/22/16 09:39	09/22/16 19:14	1912-24-9	
Benzaldehyde	ND	ug/L	20.0	4.7	1	09/22/16 09:39	09/22/16 19:14	100-52-7	
Benzo(a)anthracene	ND	ug/L	10.0	0.33	1	09/22/16 09:39	09/22/16 19:14	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	0.30	1	09/22/16 09:39	09/22/16 19:14	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	0.28	1	09/22/16 09:39	09/22/16 19:14	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	0.38	1	09/22/16 09:39	09/22/16 19:14	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	0.43	1	09/22/16 09:39	09/22/16 19:14	207-08-9	
Biphenyl (Diphenyl)	ND	ug/L	10.0	1.9	1	09/22/16 09:39	09/22/16 19:14	92-52-4	
4-Bromophenylphenyl ether	ND	ug/L	10.0	1.3	1	09/22/16 09:39	09/22/16 19:14	101-55-3	
Butylbenzylphthalate	ND	ug/L	10.0	0.75	1	09/22/16 09:39	09/22/16 19:14	85-68-7	
Caprolactam	ND	ug/L	10.0	1.8	1	09/22/16 09:39	09/22/16 19:14	105-60-2	
Carbazole	ND	ug/L	10.0	0.73	1	09/22/16 09:39	09/22/16 19:14	86-74-8	
4-Chloro-3-methylphenol	ND	ug/L	20.0	4.2	1	09/22/16 09:39	09/22/16 19:14	59-50-7	
4-Chloroaniline	ND	ug/L	20.0	3.4	1	09/22/16 09:39	09/22/16 19:14		
bis(2-Chloroethoxy)methane	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 19:14	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/L	10.0	1.5	1	09/22/16 09:39	09/22/16 19:14	111-44-4	
2-Chloronaphthalene	ND	ug/L	10.0	2.2	1	09/22/16 09:39	09/22/16 19:14	91-58-7	
2-Chlorophenol	ND	ug/L	10.0	1.5	1	09/22/16 09:39	09/22/16 19:14	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/L	10.0	2.1	1	09/22/16 09:39	09/22/16 19:14	7005-72-3	
Chrysene	ND	ug/L	10.0	0.21	1	09/22/16 09:39	09/22/16 19:14	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	10.0	0.55	1	09/22/16 09:39	09/22/16 19:14	53-70-3	
Dibenzofuran	ND	ug/L	10.0	1.8	1	09/22/16 09:39	09/22/16 19:14	132-64-9	
3,3'-Dichlorobenzidine	ND	ug/L	20.0	1.4	1	09/22/16 09:39	09/22/16 19:14	91-94-1	
2,4-Dichlorophenol	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 19:14	120-83-2	
Diethylphthalate	ND	ug/L	10.0	1.3	1	09/22/16 09:39	09/22/16 19:14	84-66-2	
2,4-Dimethylphenol	ND	ug/L	10.0	2.2	1	09/22/16 09:39	09/22/16 19:14	105-67-9	
Dimethylphthalate	ND	ug/L	10.0	1.5	1	09/22/16 09:39	09/22/16 19:14	131-11-3	
Di-n-butylphthalate	ND	ug/L	10.0	1.1	1	09/22/16 09:39	09/22/16 19:14	84-74-2	
4,6-Dinitro-2-methylphenol	ND	ug/L	20.0	1.7	1	09/22/16 09:39	09/22/16 19:14	534-52-1	
2,4-Dinitrophenol	ND	ug/L	50.0	6.5	1	09/22/16 09:39	09/22/16 19:14	51-28-5	
2,4-Dinitrotoluene	ND	ug/L	10.0	1.2	1	09/22/16 09:39	09/22/16 19:14	121-14-2	
2,6-Dinitrotoluene	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 19:14	606-20-2	
Di-n-octylphthalate	ND	ug/L	10.0	0.86	1	09/22/16 09:39	09/22/16 19:14	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	ug/L	6.0	0.85	1	09/22/16 09:39			
Fluoranthene	ND	ug/L	10.0	0.21	1	09/22/16 09:39			
Fluorene	ND	ug/L	10.0	0.21	1	09/22/16 09:39	09/22/16 19:14	86-73-7	
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1.8	1	09/22/16 09:39			
Hexachlorobenzene	ND	ug/L	10.0	1.1	1	09/22/16 09:39			
Hexachlorocyclopentadiene	ND	ug/L	10.0	1.8	1	09/22/16 09:39			
Hexachloroethane	ND	ug/L	10.0	1.5	1	09/22/16 09:39			
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	0.29	1	09/22/16 09:39			

ANALYTICAL RESULTS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Sample: MW-20	Lab ID:	92312680010	Collecte	d: 09/15/16	3 10:15	Received: 09/	16/16 11:25 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Semivolatile Organic	Analytical	Method: EPA 8	270 Prepa	ration Metho	od: EPA	3510			
2-Methylnaphthalene	ND	ug/L	10.0	0.28	1	09/22/16 09:39	09/22/16 19:14	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 19:14	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 19:14		
Naphthalene	ND	ug/L	10.0	0.34	1	09/22/16 09:39	09/22/16 19:14	91-20-3	
2-Nitroaniline	ND	ug/L	50.0	2.8	1	09/22/16 09:39	09/22/16 19:14	88-74-4	
3-Nitroaniline	ND	ug/L	50.0	2.4	1	09/22/16 09:39	09/22/16 19:14	99-09-2	
4-Nitroaniline	ND	ug/L	20.0	2.5	1	09/22/16 09:39	09/22/16 19:14	100-01-6	
Nitrobenzene	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 19:14	98-95-3	
2-Nitrophenol	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 19:14	88-75-5	
4-Nitrophenol	ND	ug/L	50.0	5.8	1	09/22/16 09:39	09/22/16 19:14	100-02-7	
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	2.1	1	09/22/16 09:39	09/22/16 19:14	621-64-7	
N-Nitrosodiphenylamine	ND	ug/L	10.0	1.3	1	09/22/16 09:39	09/22/16 19:14	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	1.6	1	09/22/16 09:39	09/22/16 19:14	108-60-1	
Pentachlorophenol	ND	ug/L	25.0	2.3	1	09/22/16 09:39	09/22/16 19:14	87-86-5	
Phenanthrene	ND	ug/L	10.0	0.22	1	09/22/16 09:39	09/22/16 19:14	85-01-8	
Phenol	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 19:14		
Pyrene	ND	ug/L	10.0	0.19	1	09/22/16 09:39	09/22/16 19:14	129-00-0	
1,2,4,5-Tetrachlorobenzene	ND	ug/L	10.0	1.7	1	09/22/16 09:39	09/22/16 19:14	95-94-3	IS
2,3,4,6-Tetrachlorophenol	ND	ug/L	10.0	2.3	1	09/22/16 09:39	09/22/16 19:14	58-90-2	
2,4,5-Trichlorophenol	ND	ug/L	10.0	2.2	1	09/22/16 09:39	09/22/16 19:14	95-95-4	
2,4,6-Trichlorophenol	ND	ug/L	10.0	1.9	1	09/22/16 09:39	09/22/16 19:14	88-06-2	
Surrogates									
Nitrobenzene-d5 (S)	76	%	21-110		1	09/22/16 09:39	09/22/16 19:14	4165-60-0	
2-Fluorobiphenyl (S)	77	%	27-110		1	09/22/16 09:39	09/22/16 19:14	321-60-8	
Terphenyl-d14 (S)	93	%	31-107		1	09/22/16 09:39	09/22/16 19:14	1718-51-0	
Phenol-d6 (S)	31	%	10-110		1	09/22/16 09:39	09/22/16 19:14	13127-88-3	
2-Fluorophenol (S)	43	%	12-110		1	09/22/16 09:39	09/22/16 19:14	367-12-4	
2,4,6-Tribromophenol (S)	83	%	27-110		1	09/22/16 09:39	09/22/16 19:14	118-79-6	

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

QC Batch: 329806 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 Water MSSV

Associated Lab Samples: 92312680008, 92312680009, 92312680010

METHOD BLANK: 1827418 Matrix: Water

Associated Lab Samples: 92312680008, 92312680009, 92312680010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/L	ND .	10.0	1.7	09/22/16 17:49	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	10.0	1.6	09/22/16 17:49	
2,3,4,6-Tetrachlorophenol	ug/L	ND	10.0	2.3	09/22/16 17:49	
2,4,5-Trichlorophenol	ug/L	ND	10.0	2.2	09/22/16 17:49	
2,4,6-Trichlorophenol	ug/L	ND	10.0	1.9	09/22/16 17:49	
2,4-Dichlorophenol	ug/L	ND	10.0	1.7	09/22/16 17:49	
2,4-Dimethylphenol	ug/L	ND	10.0	2.2	09/22/16 17:49	
2,4-Dinitrophenol	ug/L	ND	50.0	6.5	09/22/16 17:49	
2,4-Dinitrotoluene	ug/L	ND	10.0	1.2	09/22/16 17:49	
2,6-Dinitrotoluene	ug/L	ND	10.0	1.7	09/22/16 17:49	
2-Chloronaphthalene	ug/L	ND	10.0	2.2	09/22/16 17:49	
2-Chlorophenol	ug/L	ND	10.0	1.5	09/22/16 17:49	
2-Methylnaphthalene	ug/L	ND	10.0	0.28	09/22/16 17:49	
2-Methylphenol(o-Cresol)	ug/L	ND	10.0	1.7	09/22/16 17:49	
2-Nitroaniline	ug/L	ND	50.0	2.8	09/22/16 17:49	
2-Nitrophenol	ug/L	ND	10.0	1.7	09/22/16 17:49	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	10.0	1.7	09/22/16 17:49	
3,3'-Dichlorobenzidine	ug/L	ND	20.0	1.4	09/22/16 17:49	
3-Nitroaniline	ug/L	ND	50.0	2.4	09/22/16 17:49	
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	1.7	09/22/16 17:49	
4-Bromophenylphenyl ether	ug/L	ND	10.0	1.3	09/22/16 17:49	
4-Chloro-3-methylphenol	ug/L	ND	20.0	4.2	09/22/16 17:49	
4-Chloroaniline	ug/L	ND	20.0	3.4	09/22/16 17:49	
4-Chlorophenylphenyl ether	ug/L	ND	10.0	2.1	09/22/16 17:49	
4-Nitroaniline	ug/L	ND	20.0	2.5	09/22/16 17:49	
4-Nitrophenol	ug/L	ND	50.0	5.8	09/22/16 17:49	
Acenaphthene	ug/L	ND	10.0	0.25	09/22/16 17:49	
Acenaphthylene	ug/L	ND	10.0	0.21	09/22/16 17:49	
Acetophenone	ug/L	ND	10.0	2.0	09/22/16 17:49	
Anthracene	ug/L	ND	10.0	0.14	09/22/16 17:49	
Atrazine	ug/L	ND	20.0	1.7	09/22/16 17:49	
Benzaldehyde	ug/L	ND	20.0	4.7	09/22/16 17:49	
Benzo(a)anthracene	ug/L	ND	10.0	0.33	09/22/16 17:49	
Benzo(a)pyrene	ug/L	ND	10.0	0.30	09/22/16 17:49	
Benzo(b)fluoranthene	ug/L	ND	10.0	0.28	09/22/16 17:49	
Benzo(g,h,i)perylene	ug/L	ND	10.0	0.38	09/22/16 17:49	
Benzo(k)fluoranthene	ug/L	ND	10.0	0.43	09/22/16 17:49	
Biphenyl (Diphenyl)	ug/L	ND	10.0	1.9	09/22/16 17:49	
bis(2-Chloroethoxy)methane	ug/L	ND	10.0	1.7	09/22/16 17:49	
bis(2-Chloroethyl) ether	ug/L	ND	10.0	1.5	09/22/16 17:49	
bis(2-Ethylhexyl)phthalate	ug/L	ND	6.0	0.85	09/22/16 17:49	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

METHOD BLANK: 1827418 Matrix: Water

Associated Lab Samples: 92312680008, 92312680009, 92312680010

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Butylbenzylphthalate	ug/L	ND	10.0	0.75	09/22/16 17:49	
Caprolactam	ug/L	ND	10.0	1.8	09/22/16 17:49	
Carbazole	ug/L	ND	10.0	0.73	09/22/16 17:49	
Chrysene	ug/L	ND	10.0	0.21	09/22/16 17:49	
Di-n-butylphthalate	ug/L	ND	10.0	1.1	09/22/16 17:49	
Di-n-octylphthalate	ug/L	ND	10.0	0.86	09/22/16 17:49	
Dibenz(a,h)anthracene	ug/L	ND	10.0	0.55	09/22/16 17:49	
Dibenzofuran	ug/L	ND	10.0	1.8	09/22/16 17:49	
Diethylphthalate	ug/L	ND	10.0	1.3	09/22/16 17:49	
Dimethylphthalate	ug/L	ND	10.0	1.5	09/22/16 17:49	
Fluoranthene	ug/L	ND	10.0	0.21	09/22/16 17:49	
Fluorene	ug/L	ND	10.0	0.21	09/22/16 17:49	
Hexachloro-1,3-butadiene	ug/L	ND	10.0	1.8	09/22/16 17:49	
Hexachlorobenzene	ug/L	ND	10.0	1.1	09/22/16 17:49	
Hexachlorocyclopentadiene	ug/L	ND	10.0	1.8	09/22/16 17:49	
Hexachloroethane	ug/L	ND	10.0	1.5	09/22/16 17:49	
Indeno(1,2,3-cd)pyrene	ug/L	ND	10.0	0.29	09/22/16 17:49	
Isophorone	ug/L	ND	10.0	1.8	09/22/16 17:49	
N-Nitroso-di-n-propylamine	ug/L	ND	10.0	2.1	09/22/16 17:49	
N-Nitrosodiphenylamine	ug/L	ND	10.0	1.3	09/22/16 17:49	
Naphthalene	ug/L	ND	10.0	0.34	09/22/16 17:49	
Nitrobenzene	ug/L	ND	10.0	1.7	09/22/16 17:49	
Pentachlorophenol	ug/L	ND	25.0	2.3	09/22/16 17:49	
Phenanthrene	ug/L	ND	10.0	0.22	09/22/16 17:49	
Phenol	ug/L	ND	10.0	1.7	09/22/16 17:49	
Pyrene	ug/L	ND	10.0	0.19	09/22/16 17:49	
2,4,6-Tribromophenol (S)	%	67	27-110		09/22/16 17:49	
2-Fluorobiphenyl (S)	%	85	27-110		09/22/16 17:49	
2-Fluorophenol (S)	%	40	12-110		09/22/16 17:49	
Nitrobenzene-d5 (S)	%	84	21-110		09/22/16 17:49	
Phenol-d6 (S)	%	31	10-110		09/22/16 17:49	
Terphenyl-d14 (S)	%	103	31-107		09/22/16 17:49	

LABORATORY CONTROL SAMPLE:	1827419					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/L	25	19.8	79	16-129	
2,2'-Oxybis(1-chloropropane)	ug/L	25	25.1	100	18-120	
2,3,4,6-Tetrachlorophenol	ug/L	25	28.4	114	54-276	
2,4,5-Trichlorophenol	ug/L	25	25.2	101	43-113	
2,4,6-Trichlorophenol	ug/L	25	25.0	100	42-120	
2,4-Dichlorophenol	ug/L	25	23.7	95	30-120	
2,4-Dimethylphenol	ug/L	25	25.5	102	29-111	
2,4-Dinitrophenol	ug/L	125	103	82	19-132	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

LABORATORY CONTROL SAMPLE	: 1827419	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
2,4-Dinitrotoluene	ug/L		26.7	107	58-128	
2,6-Dinitrotoluene	ug/L	25	28.3	113	54-129	
2-Chloronaphthalene	ug/L	25	27.1	108	43-117	
2-Chlorophenol	ug/L	25	21.7	87	37-120	
2-Methylnaphthalene	ug/L	25	22.3	89	33-120	
2-Methylphenol(o-Cresol)	ug/L	25	20.9	84	31-120	
2-Nitroaniline	ug/L	50	45.8J	92	48-121	
2-Nitrophenol	ug/L	25	25.5	102	25-116	
3&4-Methylphenol(m&p Cresol)	ug/L	25	17.4	69	23-120	
3,3'-Dichlorobenzidine	ug/L	125	47.3	38	10-154	
3-Nitroaniline	ug/L	50	43.2J	86	43-115	
1,6-Dinitro-2-methylphenol	ug/L	50	52.9	106	44-124	
4-Bromophenylphenyl ether	ug/L	25	23.9	96	34-124	
4-Chloro-3-methylphenol	_	50	46.5	93	31-110	
4-Chloroaniline	ug/L ug/L	50 50	46.5 42.0	93 84	20-120	
1-Chlorophenylphenyl ether	_	25	23.6	94	34-116	
	ug/L	50				
4-Nitroaniline	ug/L		43.1	86	46-128	
1-Nitrophenol	ug/L	125	43.2J	35	11-120	
Acenaphthene	ug/L	25	23.2	93	48-114	
Acenaphthylene	ug/L	25	23.9	96	48-112	
Acetophenone	ug/L	25	23.3	93	24-120	
Anthracene	ug/L	25	23.4	94	57-118	
Atrazine	ug/L	25	26.7	107	33-160	
Benzaldehyde	ug/L	25	7.7J	31	10-120	
Benzo(a)anthracene	ug/L	25	22.8	91	56-121	
Benzo(a)pyrene	ug/L	25	22.4	89	55-127	
Benzo(b)fluoranthene	ug/L	25	24.2	97	53-128	
Benzo(g,h,i)perylene	ug/L	25	22.6	90	54-125	
Benzo(k)fluoranthene	ug/L	25	23.0	92	51-123	
Biphenyl (Diphenyl)	ug/L	25	21.1	84	38-120	
ois(2-Chloroethoxy)methane	ug/L	25	24.0	96	32-120	
ois(2-Chloroethyl) ether	ug/L	25	24.9	100	33-111	
ois(2-Ethylhexyl)phthalate	ug/L	25	25.4	102	50-145	
Butylbenzylphthalate	ug/L	25	27.0	108	54-138	
Caprolactam	ug/L	25	7.0J	28	10-115	
Carbazole	ug/L	25	21.5	86	59-119	
Chrysene	ug/L	25	22.9	92	58-127	
Di-n-butylphthalate	ug/L	25	24.2	97	56-125	
Di-n-octylphthalate	ug/L	25	22.8	91	50-134	
Dibenz(a,h)anthracene	ug/L	25	22.7	91	53-129	
Dibenzofuran	ug/L	25	22.2	89	45-120	
Diethylphthalate	ug/L	25	23.9	96	53-120	
Dimethylphthalate	ug/L	25	22.8	91	55-116	
Fluoranthene	ug/L	25	23.6	94	57-125	
Fluorene	ug/L	25	24.3	97	53-118	
Hexachloro-1,3-butadiene	ug/L	25	19.7	79	23-120	
Hexachlorobenzene	ug/L	25	23.6	94	49-116	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

ABORATORY CONTROL SAMPLE:	1827419					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
lexachlorocyclopentadiene	ug/L	25	22.0	88	26-158	
lexachloroethane	ug/L	25	20.7	83	30-114	
deno(1,2,3-cd)pyrene	ug/L	25	22.4	90	55-128	
ophorone	ug/L	25	25.0	100	31-118	
Nitroso-di-n-propylamine	ug/L	25	23.3	93	32-119	
Nitrosodiphenylamine	ug/L	25	21.4	86	43-120	
phthalene	ug/L	25	21.5	86	32-120	
obenzene	ug/L	25	24.2	97	33-110	
ntachlorophenol	ug/L	125	49.7	40	10-137	
enanthrene	ug/L	25	23.4	93	57-117	
enol	ug/L	25	11.7	47	10-120	
ene	ug/L	25	24.0	96	55-122	
,6-Tribromophenol (S)	%			94	27-110	
Fluorobiphenyl (S)	%			86	27-110	
luorophenol (S)	%			54	12-110	
obenzene-d5 (S)	%			87	21-110	
nol-d6 (S)	%			38	10-110	
phenyl-d14 (S)	%			99	31-107	

MATRIX SPIKE SAMPLE:	1827420						
		92312680009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/L	ND	25	20.8	83	50-150	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	25	24.8	99	50-150	
2,3,4,6-Tetrachlorophenol	ug/L	ND	25	19.4	78	50-150	
2,4,5-Trichlorophenol	ug/L	ND	25	23.8	95	19-105	
2,4,6-Trichlorophenol	ug/L	ND	25	24.7	99	13-108	
2,4-Dichlorophenol	ug/L	ND	25	23.4	94	29-111	
2,4-Dimethylphenol	ug/L	ND	25	25.5	102	21-103	
2,4-Dinitrophenol	ug/L	ND	125	104	83	10-109	
2,4-Dinitrotoluene	ug/L	ND	25	25.5	102	27-104	
2,6-Dinitrotoluene	ug/L	ND	25	26.8	107	28-101 N	И1
2-Chloronaphthalene	ug/L	ND	25	27.6	111	14-102 N	И1
2-Chlorophenol	ug/L	ND	25	21.4	86	16-110	
2-Methylnaphthalene	ug/L	ND	25	23.4	94	13-110	
2-Methylphenol(o-Cresol)	ug/L	ND	25	21.2	85	19-110	
2-Nitroaniline	ug/L	ND	50	43.1J	86	26-103	
2-Nitrophenol	ug/L	ND	25	26.3	105	20-110	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	25	17.9	72	20-110	
3,3'-Dichlorobenzidine	ug/L	ND	125	43.0	34	25-112	
3-Nitroaniline	ug/L	ND	50	41.9J	84	29-110	
4,6-Dinitro-2-methylphenol	ug/L	ND	50	53.8	108	10-117	
4-Bromophenylphenyl ether	ug/L	ND	25	23.6	94	20-105	
4-Chloro-3-methylphenol	ug/L	ND	50	45.9	92	22-110	
4-Chloroaniline	ug/L	ND	50	41.3	83	20-100	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

MATRIX SPIKE SAMPLE:	1827420	92312680009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
4-Chlorophenylphenyl ether	ug/L	ND	25	22.9	92	19-102	
4-Nitroaniline	ug/L	ND	50	43.5	87	29-110	
4-Nitrophenol	ug/L	ND	125	44.2J	35	10-110	
Acenaphthene	ug/L	ND	25	22.8	91	17-100	
Acenaphthylene	ug/L	ND	25	23.6	94	21-100	
Acetophenone	ug/L	ND	25	23.7	95	50-150	
Anthracene	ug/L	ND	25	23.2	93	24-109	
Atrazine	ug/L	ND	25	26.3	105	50-150	
Benzaldehyde	ug/L	ND	25	ND	19	50-150 M	1
Benzo(a)anthracene	ug/L	ND	25	22.3	89	22-117	
Benzo(a)pyrene	ug/L	ND	25	22.3	89	23-104	
Benzo(b)fluoranthene	ug/L	ND	25	24.0	96	23-103	
Benzo(g,h,i)perylene	ug/L	ND	25	21.7	87	18-111	
Benzo(k)fluoranthene	ug/L	ND	25	22.3	89	22-113	
Biphenyl (Diphenyl)	ug/L	ND	25	20.9	84	50-150	
bis(2-Chloroethoxy)methane	ug/L	ND	25	24.1	96	22-110	
bis(2-Chloroethyl) ether	ug/L	ND	25	23.3	93	16-110	
bis(2-Ethylhexyl)phthalate	ug/L	ND	25 25	25.4	101	23-102	
Butylbenzylphthalate	ug/L	ND	25 25	26.5	106	25-110	
Caprolactam	ug/L ug/L	ND ND	25 25	5.9J	23	50-150 M	1
Carbazole		ND	25 25	22.0	88	50-150 M	1
	ug/L	ND ND	25 25	22.0			
Chrysene Dia hytylahthalata	ug/L	ND ND			88	23-115	
Di-n-butylphthalate	ug/L	ND ND	25	24.5	98	26-110	
Di-n-octylphthalate	ug/L	ND ND	25	22.7	91	22-110	
Dibenz(a,h)anthracene	ug/L		25	21.6	86	21-112	
Dibenzofuran	ug/L	ND	25	21.8	87	19-102	
Diethylphthalate	ug/L	ND	25	22.6	90	29-110	
Dimethylphthalate	ug/L	ND	25	21.6	87	27-110	
Fluoranthene	ug/L	ND	25	24.4	98	23-112	
Fluorene	ug/L	ND	25	23.1	93	22-104	
Hexachloro-1,3-butadiene	ug/L	ND	25	20.3	81	10-110	
Hexachlorobenzene	ug/L	ND	25	23.4	94	21-116	
Hexachlorocyclopentadiene	ug/L	ND	25	24.1	96	10-110	
Hexachloroethane	ug/L	ND	25	21.1	85	10-110	
Indeno(1,2,3-cd)pyrene	ug/L	ND	25	21.4	86	20-113	
Isophorone	ug/L	ND	25	25.3	101	50-150	
N-Nitroso-di-n-propylamine	ug/L	ND	25	23.7	95	21-105	
N-Nitrosodiphenylamine	ug/L	ND	25	21.3	85	23-107	
Naphthalene	ug/L	ND	25	22.4	90	10-110	
Nitrobenzene	ug/L	ND	25	24.9	100	20-110	
Pentachlorophenol	ug/L	ND	125	53.4	43	10-118	
Phenanthrene	ug/L	ND	25	23.2	93	24-106	
Phenol	ug/L	ND	25	11.5	46	12-110	
Pyrene	ug/L	ND	25	23.5	94	24-114	
2,4,6-Tribromophenol (S)	%				95	27-110	
2-Fluorobiphenyl (S)	%				82	27-110	
2-Fluorophenol (S)	%				50	12-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

MATRIX SPIKE SAMPLE:	1827420	92312680009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrobenzene-d5 (S)	<u></u>				86	21-110	
Phenol-d6 (S)	%				36	10-110	
Terphenyl-d14 (S)	%				91	31-107	

SAMPLE DUPLICATE: 1827421						
		92312680010	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/L	ND	ND		30) IS
2,2'-Oxybis(1-chloropropane)	ug/L	ND	ND		30)
2,3,4,6-Tetrachlorophenol	ug/L	ND	ND		30)
2,4,5-Trichlorophenol	ug/L	ND	ND		30)
2,4,6-Trichlorophenol	ug/L	ND	ND		30)
2,4-Dichlorophenol	ug/L	ND	ND		30)
2,4-Dimethylphenol	ug/L	ND	ND		30)
2,4-Dinitrophenol	ug/L	ND	ND		30)
2,4-Dinitrotoluene	ug/L	ND	ND		30)
2,6-Dinitrotoluene	ug/L	ND	ND		30)
2-Chloronaphthalene	ug/L	ND	ND		30)
2-Chlorophenol	ug/L	ND	ND		30)
2-Methylnaphthalene	ug/L	ND	ND		30)
2-Methylphenol(o-Cresol)	ug/L	ND	ND		30)
2-Nitroaniline	ug/L	ND	ND		30)
2-Nitrophenol	ug/L	ND	ND		30)
3&4-Methylphenol(m&p Cresol)	ug/L	ND	ND		30)
3,3'-Dichlorobenzidine	ug/L	ND	ND		30)
3-Nitroaniline	ug/L	ND	ND		30)
4,6-Dinitro-2-methylphenol	ug/L	ND	ND		30)
4-Bromophenylphenyl ether	ug/L	ND	ND		30)
4-Chloro-3-methylphenol	ug/L	ND	ND		30)
4-Chloroaniline	ug/L	ND	ND		30)
4-Chlorophenylphenyl ether	ug/L	ND	ND		30)
4-Nitroaniline	ug/L	ND	ND		30)
4-Nitrophenol	ug/L	ND	ND		30)
Acenaphthene	ug/L	ND	ND		30)
Acenaphthylene	ug/L	ND	ND		30)
Acetophenone	ug/L	ND	ND		30)
Anthracene	ug/L	ND	ND		30)
Atrazine	ug/L	ND	ND		30)
Benzaldehyde	ug/L	ND	ND		30)
Benzo(a)anthracene	ug/L	ND	ND		30)
Benzo(a)pyrene	ug/L	ND	ND		30)
Benzo(b)fluoranthene	ug/L	ND	ND		30)
Benzo(g,h,i)perylene	ug/L	ND	ND		30)
Benzo(k)fluoranthene	ug/L	ND	ND		30)
Biphenyl (Diphenyl)	ug/L	ND	ND		30)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

SAMPLE DUPLICATE: 1827421 92312680010 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers ND bis(2-Chloroethoxy)methane ug/L ND 30 ND bis(2-Chloroethyl) ether ug/L ND 30 ND bis(2-Ethylhexyl)phthalate ug/L ND 30 Butylbenzylphthalate ND ND 30 ug/L Caprolactam ND ND 30 ug/L Carbazole ug/L ND ND 30 ND Chrysene ug/L ND 30 Di-n-butylphthalate ND ND 30 ug/L Di-n-octylphthalate ND ND 30 ug/L ND Dibenz(a,h)anthracene ug/L ND 30 ND Dibenzofuran ug/L ND 30 ND Diethylphthalate ug/L ND 30 ND Dimethylphthalate ug/L ND 30 Fluoranthene ND ND 30 ug/L Fluorene ND ND 30 ug/L Hexachloro-1.3-butadiene ND ND 30 ug/L Hexachlorobenzene ND ND 30 ug/L ND Hexachlorocyclopentadiene ug/L ND 30 ND Hexachloroethane ug/L ND 30 ND Indeno(1,2,3-cd)pyrene ND 30 ug/L ND ug/L ND Isophorone 30 ND N-Nitroso-di-n-propylamine ug/L ND 30 ND N-Nitrosodiphenylamine ug/L ND 30 ND Naphthalene ug/L ND 30 Nitrobenzene ug/L ND ND 30 Pentachlorophenol ug/L ND ND 30 ND ND 30 Phenanthrene ug/L ND Phenol ug/L ND 30 ND ND 30 Pyrene ug/L 2,4,6-Tribromophenol (S) 83 % 83 1 % 77 5 2-Fluorobiphenyl (S) 74 % 43 6 2-Fluorophenol (S) 41 Nitrobenzene-d5 (S) % 76 75 1 Phenol-d6 (S) % 31 32 3 93 Terphenyl-d14 (S) % 102 9

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

QC Batch: 329083 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 Water MSSV SC

Associated Lab Samples: 92312680001, 92312680002, 92312680003, 92312680004, 92312680005

METHOD BLANK: 1823809 Matrix: Water

Associated Lab Samples: 92312680001, 92312680002, 92312680003, 92312680004, 92312680005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND	10.0	0.98	09/20/16 19:29	
1,2-Dichlorobenzene	ug/L	ND	10.0	0.88	09/20/16 19:29	
1,3-Dichlorobenzene	ug/L	ND	10.0	0.81	09/20/16 19:29	
1,4-Dichlorobenzene	ug/L	ND	10.0	0.95	09/20/16 19:29	
1-Methylnaphthalene	ug/L	ND	10.0	0.32	09/20/16 19:29	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	10.0	0.95	09/20/16 19:29	
2,4,5-Trichlorophenol	ug/L	ND	10.0	0.92	09/20/16 19:29	
2,4,6-Trichlorophenol	ug/L	ND	10.0	1.3	09/20/16 19:29	
2,4-Dichlorophenol	ug/L	ND	10.0	1.7	09/20/16 19:29	
2,4-Dimethylphenol	ug/L	ND	10.0	1.2	09/20/16 19:29	
2,4-Dinitrophenol	ug/L	ND	50.0	9.0	09/20/16 19:29	
2,4-Dinitrotoluene	ug/L	ND	10.0	0.90	09/20/16 19:29	
2,6-Dinitrotoluene	ug/L	ND	10.0	0.98	09/20/16 19:29	
2-Chloronaphthalene	ug/L	ND	10.0	0.98	09/20/16 19:29	
2-Chlorophenol	ug/L	ND	10.0	1.3	09/20/16 19:29	
2-Methylnaphthalene	ug/L	ND	10.0	0.28	09/20/16 19:29	
2-Methylphenol(o-Cresol)	ug/L	ND	10.0	1.6	09/20/16 19:29	
2-Nitroaniline	ug/L	ND	50.0	2.0	09/20/16 19:29	
2-Nitrophenol	ug/L	ND	10.0	0.91	09/20/16 19:29	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	10.0	2.0	09/20/16 19:29	
3,3'-Dichlorobenzidine	ug/L	ND	50.0	2.1	09/20/16 19:29	
3-Nitroaniline	ug/L	ND	50.0	2.0	09/20/16 19:29	
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	2.6	09/20/16 19:29	
4-Bromophenylphenyl ether	ug/L	ND	10.0	0.82	09/20/16 19:29	
4-Chloro-3-methylphenol	ug/L	ND	20.0	3.7	09/20/16 19:29	
4-Chloroaniline	ug/L	ND	50.0	2.8	09/20/16 19:29	
4-Chlorophenylphenyl ether	ug/L	ND	10.0	0.87	09/20/16 19:29	
4-Nitroaniline	ug/L	ND	50.0	2.1	09/20/16 19:29	
4-Nitrophenol	ug/L	ND	50.0	4.1	09/20/16 19:29	
Acenaphthene	ug/L	ND	10.0	0.25	09/20/16 19:29	
Acenaphthylene	ug/L	ND	10.0	0.21	09/20/16 19:29	
Aniline	ug/L	ND	10.0	2.0	09/20/16 19:29	
Anthracene	ug/L	ND	10.0	0.14	09/20/16 19:29	
Benzo(a)anthracene	ug/L	ND	10.0	0.33	09/20/16 19:29	
Benzo(a)pyrene	ug/L	ND	10.0	0.30	09/20/16 19:29	
Benzo(b)fluoranthene	ug/L	ND	10.0	0.28	09/20/16 19:29	
Benzo(g,h,i)perylene	ug/L	ND	10.0	0.38	09/20/16 19:29	
Benzo(k)fluoranthene	ug/L	ND	10.0	0.43	09/20/16 19:29	
Benzoic Acid	ug/L	ND	50.0	11.5	09/20/16 19:29	
Benzyl alcohol	ug/L	ND	20.0	2.4	09/20/16 19:29	
bis(2-Chloroethoxy)methane	ug/L	ND	10.0	0.92	09/20/16 19:29	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

METHOD BLANK: 1823809 Matrix: Water

Associated Lab Samples: 92312680001, 92312680002, 92312680003, 92312680004, 92312680005

	•	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
bis(2-Chloroethyl) ether	ug/L	ND ND	10.0	1.0	09/20/16 19:29	
bis(2-Ethylhexyl)phthalate	ug/L	ND	6.0	0.79	09/20/16 19:29	
Butylbenzylphthalate	ug/L	ND	10.0	0.79	09/20/16 19:29	
Chrysene	ug/L	ND	10.0	0.21	09/20/16 19:29	
Di-n-butylphthalate	ug/L	ND	10.0	0.75	09/20/16 19:29	
Di-n-octylphthalate	ug/L	ND	10.0	0.66	09/20/16 19:29	
Dibenz(a,h)anthracene	ug/L	ND	10.0	0.55	09/20/16 19:29	
Dibenzofuran	ug/L	ND	10.0	0.89	09/20/16 19:29	
Diethylphthalate	ug/L	ND	10.0	0.58	09/20/16 19:29	
Dimethylphthalate	ug/L	ND	10.0	0.76	09/20/16 19:29	
Fluoranthene	ug/L	ND	10.0	0.21	09/20/16 19:29	
Fluorene	ug/L	ND	10.0	0.21	09/20/16 19:29	
Hexachloro-1,3-butadiene	ug/L	ND	10.0	0.94	09/20/16 19:29	
Hexachlorobenzene	ug/L	ND	10.0	0.72	09/20/16 19:29	
Hexachlorocyclopentadiene	ug/L	ND	10.0	0.88	09/20/16 19:29	
Hexachloroethane	ug/L	ND	10.0	1.1	09/20/16 19:29	
Indeno(1,2,3-cd)pyrene	ug/L	ND	10.0	0.29	09/20/16 19:29	
Isophorone	ug/L	ND	10.0	0.89	09/20/16 19:29	
N-Nitroso-di-n-propylamine	ug/L	ND	10.0	0.99	09/20/16 19:29	
N-Nitrosodimethylamine	ug/L	ND	10.0	0.91	09/20/16 19:29	
N-Nitrosodiphenylamine	ug/L	ND	10.0	1.0	09/20/16 19:29	
Naphthalene	ug/L	ND	10.0	0.34	09/20/16 19:29	
Nitrobenzene	ug/L	ND	10.0	1.1	09/20/16 19:29	
Pentachlorophenol	ug/L	ND	50.0	4.6	09/20/16 19:29	
Phenanthrene	ug/L	ND	10.0	0.22	09/20/16 19:29	
Phenol	ug/L	ND	10.0	1.9	09/20/16 19:29	
Pyrene	ug/L	ND	10.0	0.19	09/20/16 19:29	
2,4,6-Tribromophenol (S)	%	87	27-110		09/20/16 19:29	
2-Fluorobiphenyl (S)	%	74	27-110		09/20/16 19:29	
2-Fluorophenol (S)	%	50	12-110		09/20/16 19:29	
Nitrobenzene-d5 (S)	%	74	21-110		09/20/16 19:29	
Phenol-d6 (S)	%	35	10-110		09/20/16 19:29	
Terphenyl-d14 (S)	%	93	31-107		09/20/16 19:29	

LABORATORY CONTROL SAMPLE:	1823810					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L	50	44.6	89	70-130	
1,2-Dichlorobenzene	ug/L	50	42.2	84	70-130	
1,3-Dichlorobenzene	ug/L	50	42.1	84	70-130	
1,4-Dichlorobenzene	ug/L	50	41.4	83	70-130	
1-Methylnaphthalene	ug/L	50	46.3	93	70-130	
2,2'-Oxybis(1-chloropropane)	ug/L	50	42.6	85	70-130	
2,4,5-Trichlorophenol	ug/L	50	49.0	98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

LABORATORY CONTROL SAMPLE:	1823810					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
2,4,6-Trichlorophenol	ug/L		48.5	97	70-130	
2,4-Dichlorophenol	ug/L	50	48.1	96	70-130	
2,4-Dimethylphenol	ug/L	50	54.4	109	70-130	
2,4-Dinitrophenol	ug/L	250	160	64	70-130	1g
2,4-Dinitrotoluene	ug/L	50	53.0	106	70-130	•
2,6-Dinitrotoluene	ug/L	50	53.1	106	70-130	
2-Chloronaphthalene	ug/L	50	44.5	89	70-130	
2-Chlorophenol	ug/L	50	45.9	92	70-130	
2-Methylnaphthalene	ug/L	50	46.9	94	70-130	
2-Methylphenol(o-Cresol)	ug/L	50	48.4	97	70-130	
2-Nitroaniline	ug/L	100	84.8	85	70-130	
2-Nitrophenol	ug/L	50	47.7	95	70-130	
3&4-Methylphenol(m&p Cresol)	ug/L	50	42.7	85	70-130	
3,3'-Dichlorobenzidine	ug/L	100	78.0	78	70-130	
3-Nitroaniline	ug/L	100	80.6	81	70-130	
4,6-Dinitro-2-methylphenol	ug/L	100	94.9	95	70-130	
4-Bromophenylphenyl ether	ug/L	50	47.2	94	70-130	
4-Chloro-3-methylphenol	ug/L	100	97.3	97	70-130	
4-Chloroaniline	ug/L	100	78.9	79	70-130	
4-Chlorophenylphenyl ether	ug/L	50	49.5	99	70-130	
4-Nitroaniline	ug/L	100	85.4	85	70-130	
4-Nitrophenol	ug/L	250	117	47	70-130	1g
Acenaphthene	ug/L	50	46.1	92	70-130	•
Acenaphthylene	ug/L	50	45.7	91	70-130	
Aniline	ug/L	50	33.7	67	70-130	1g
Anthracene	ug/L	50	44.7	89	70-130	•
Benzo(a)anthracene	ug/L	50	45.1	90	70-130	
Benzo(a)pyrene	ug/L	50	47.2	94	70-130	
Benzo(b)fluoranthene	ug/L	50	46.1	92	70-130	
Benzo(g,h,i)perylene	ug/L	50	47.6	95	70-130	
Benzo(k)fluoranthene	ug/L	50	45.6	91	70-130	
Benzoic Acid	ug/L	250	101	40	70-130	1g
Benzyl alcohol	ug/L	100	84.3	84	70-130	
bis(2-Chloroethoxy)methane	ug/L	50	46.6	93	70-130	
bis(2-Chloroethyl) ether	ug/L	50	46.3	93	70-130	
bis(2-Ethylhexyl)phthalate	ug/L	50	46.4	93	70-130	
Butylbenzylphthalate	ug/L	50	46.2	92	70-130	
Chrysene	ug/L	50	45.9	92	70-130	
Di-n-butylphthalate	ug/L	50	47.5	95	70-130	
Di-n-octylphthalate	ug/L	50	43.8	88	70-130	
Dibenz(a,h)anthracene	ug/L	50	48.1	96	70-130	
Dibenzofuran	ug/L	50	44.8	90	70-130	
Diethylphthalate	ug/L	50	49.0	98	70-130	
Dimethylphthalate	ug/L	50	46.8	94	70-130	
Fluoranthene	ug/L	50	48.1	96	70-130	
Fluorene	ug/L	50	49.4	99	70-130	
Hexachloro-1,3-butadiene	ug/L	50	42.1	84	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

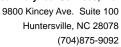
Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

LABORATORY CONTROL SAMPLE:	1823810					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Hexachlorobenzene	ug/L	50	48.3	97	70-130	
Hexachlorocyclopentadiene	ug/L	50	37.3	75	70-130	
lexachloroethane	ug/L	50	42.2	84	70-130	
deno(1,2,3-cd)pyrene	ug/L	50	47.5	95	70-130	
sophorone	ug/L	50	50.3	101	70-130	
I-Nitroso-di-n-propylamine	ug/L	50	46.9	94	70-130	
I-Nitrosodimethylamine	ug/L	50	22.9	46	70-130	1g
-Nitrosodiphenylamine	ug/L	50	41.8	84	70-130	
aphthalene	ug/L	50	42.1	84	70-130	
trobenzene	ug/L	50	45.9	92	70-130	
entachlorophenol	ug/L	100	95.7	96	70-130	
nenanthrene	ug/L	50	46.2	92	70-130	
nenol	ug/L	50	22.1	44	70-130	1g
yrene	ug/L	50	44.3	89	70-130	
,4,6-Tribromophenol (S)	%			96	27-110	
-Fluorobiphenyl (S)	%			84	27-110	
-Fluorophenol (S)	%			58	12-110	
itrobenzene-d5 (S)	%			86	21-110	
nenol-d6 (S)	%			43	10-110	
erphenyl-d14 (S)	%			94	31-107	

MATRIX SPIKE & MATRIX SPIK	KE DUPLICA	ATE: 18238	11		1823812							
			MS	MSD								
	9	2312371004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2,4-Trichlorobenzene	ug/L	ND	100	100	81.3	82.6	81	83	70-130	2	30	
1,2-Dichlorobenzene	ug/L	ND	100	100	76.5	74.6	76	75	70-130	3	30	
1,3-Dichlorobenzene	ug/L	ND	100	100	75.8	74.1	76	74	70-130	2	30	
1,4-Dichlorobenzene	ug/L	ND	100	100	73.8	72.4	74	72	70-130	2	30	
1-Methylnaphthalene	ug/L	ND	100	100	84.8	87.7	85	88	70-130	3	30	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	100	100	75.7	78.4	76	78	70-130	3	30	
2,4,5-Trichlorophenol	ug/L	ND	100	100	97.4	96.4	97	96	70-130	1	30	
2,4,6-Trichlorophenol	ug/L	ND	100	100	95.3	93.6	95	94	70-130	2	30	
2,4-Dichlorophenol	ug/L	ND	100	100	90.7	90.0	91	90	70-130	1	30	
2,4-Dimethylphenol	ug/L	ND	100	100	105	103	105	103	70-130	2	3	
2,4-Dinitrophenol	ug/L	ND	500	500	364	355	73	71	70-130	3	30	
2,4-Dinitrotoluene	ug/L	ND	100	100	105	105	105	105	70-130	1	30	
2,6-Dinitrotoluene	ug/L	ND	100	100	101	102	101	102	70-130	1	30	
2-Chloronaphthalene	ug/L	ND	100	100	86.6	86.7	87	87	70-130	0	30	
2-Chlorophenol	ug/L	ND	100	100	85.8	83.4	86	83	70-130	3	30	
2-Methylnaphthalene	ug/L	ND	100	100	85.9	88.0	86	88	70-130	2	30	
2-Methylphenol(o-Cresol)	ug/L	ND	100	100	91.0	89.6	91	90	70-130	2	30	
2-Nitroaniline	ug/L	ND	200	200	167	163	84	81	70-130	2	30	
2-Nitrophenol	ug/L	ND	100	100	89.8	88.2	90	88	70-130	2	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

MATRIX SPIKE & MATRIX SPIR	VE DOI FIG	CATE: 18238	MS	MSD	1823812							
		92312371004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qu
8&4-Methylphenol(m&p Cresol)	ug/L	ND	100	100	87.7	84.9	88	85	70-130	3	30	
3,3'-Dichlorobenzidine	ug/L	ND	200	200	153	152	77	76	70-130	1	30	
3-Nitroaniline	ug/L	ND	200	200	160	162	80	81	70-130	1	30	
1,6-Dinitro-2-methylphenol	ug/L	ND	200	200	205	196	102	98	70-130	4	30	
4-Bromophenylphenyl ether	ug/L	ND	100	100	90.8	90.3	91	90	70-130	1	30	
1-Chloro-3-methylphenol	ug/L	ND	200	200	180	191	90	95	70-130	5	30	
I-Chloroaniline	ug/L	ND	200	200	156	158	78	79	70-130	1	30	
1-Chlorophenylphenyl ether	ug/L	ND	100	100	93.8	94.4	94	94	70-130	1	30	
1-Nitroaniline	ug/L	ND	200	200	181	177	91	89	70-130	2	30	
1-Nitrophenol	ug/L	ND	500	500	365	348	73	70	70-130	5	30	
Acenaphthene	ug/L	ND	100	100	87.4	86.9	87	87	70-130	1	30	
Acenaphthylene	ug/L	ND	100	100	87.9	88.5	88	88	70-130	1	30	
Aniline	ug/L	ND	100	100	69.6	63.6	70	64	70-130	9	30	1a
Anthracene	ug/L	ND	100	100	88.3	87.0	88	87	70-130	2	30	. 9
Benzo(a)anthracene	ug/L	ND	100	100	89.4	87.6	89	88	70-130	2	30	
Benzo(a)pyrene	ug/L	ND	100	100	90.9	89.8	91	90	70-130	1	30	
Benzo(b)fluoranthene	ug/L	ND	100	100	89.6	90.0	90	90	70-130	0	30	
Benzo(g,h,i)perylene	ug/L	ND	100	100	88.8	87.9	89	88	70-130	1	30	
Benzo(k)fluoranthene	ug/L	ND	100	100	88.9	90.1	89	90	70-130	1	30	
Benzoic Acid	ug/L ug/L	ND	500	500	302	289	60	58	70-130	4		1g
	ug/L ug/L	ND ND	200	200	170	170	85	85	70-130	0	30	ıg
Benzyl alcohol	-	ND ND				87.2					30	
is(2-Chloroethoxy)methane	ug/L		100	100	87.0		87	87	70-130	0		
ois(2-Chloroethyl) ether	ug/L	ND	100	100	82.5	84.9	82	85	70-130	3	30	
pis(2-Ethylhexyl)phthalate	ug/L	ND	100	100	88.2	88.2	88	88	70-130	0	30	
Butylbenzylphthalate	ug/L	ND	100	100	87.1	87.0	87	87	70-130	0	30	
Chrysene	ug/L	ND	100	100	87.6	87.4	88	87	70-130	0	30	
Di-n-butylphthalate	ug/L	ND	100	100	92.2	92.4	92	92	70-130	0	30	
Di-n-octylphthalate	ug/L	ND	100	100	85.5	83.9	85	84	70-130	2	30	
Dibenz(a,h)anthracene	ug/L	ND	100	100	91.4	91.7	91	92	70-130	0	30	
Dibenzofuran	ug/L	ND	100	100	83.2	85.8	83	86	70-130	3	30	
Diethylphthalate	ug/L	ND	100	100	93.9	94.4	94	94	70-130	1	30	
Dimethylphthalate	ug/L	ND	100	100	88.0	89.2	88	89	70-130	1	30	
Fluoranthene	ug/L	ND	100	100	96.9	95.4	97	95	70-130	2	30	
Fluorene	ug/L	ND	100	100	92.9	95.4	93	95	70-130	3	30	
Hexachloro-1,3-butadiene	ug/L	ND	100	100	79.5	79.0	79	79	70-130	1	30	
Hexachlorobenzene	ug/L	ND	100	100	89.9	89.9	90	90	70-130	0	30	
Hexachlorocyclopentadiene	ug/L	ND	100	100	86.7	82.6	87	83	70-130	5	30	
Hexachloroethane	ug/L	ND	100	100	72.1	72.4	72	72	70-130	0	30	
ndeno(1,2,3-cd)pyrene	ug/L	ND	100	100	89.0	88.5	89	88	70-130	1	30	
sophorone	ug/L	ND	100	100	90.8	94.6	91	95	70-130	4	30	
N-Nitroso-di-n-propylamine	ug/L	ND	100	100	83.4	91.3	83	91	70-130	9	30	
N-Nitrosodimethylamine	ug/L	ND	100	100	57.0	51.0	57	51	70-130	11	30	1g
N-Nitrosodiphenylamine	ug/L	ND	100	100	80.5	81.3	80	81	70-130	1	30	-
laphthalene	ug/L	ND	100	100	78.3	79.4	78	79	70-130	1	30	
Vitrobenzene	ug/L	ND	100	100	86.5	85.9	86	86	70-130	1	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

MATRIX SPIKE & MATRIX SP	PIKE DUPLICA	TE: 18238	11		1823812							
	9	2312371004	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Pentachlorophenol	ug/L	ND	200	200	204	206	102	103	70-130	1	30	
Phenanthrene	ug/L	ND	100	100	89.7	89.1	90	89	70-130	1	30	
Phenol	ug/L	ND	100	100	56.7	51.8	57	52	70-130	9	30	1g
Pyrene	ug/L	ND	100	100	85.2	85.2	85	85	70-130	0	30	
2,4,6-Tribromophenol (S)	%						91	93	27-110			
2-Fluorobiphenyl (S)	%						80	83	27-110			
2-Fluorophenol (S)	%						64	61	12-110			
Nitrobenzene-d5 (S)	%						82	82	21-110			
Phenol-d6 (S)	%						53	52	10-110			
Terphenyl-d14 (S)	%						84	79	31-107			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

QC Batch: 329204 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 Water MSSV SC

Associated Lab Samples: 92312680006, 92312680007

METHOD BLANK: 1824500 Matrix: Water

Associated Lab Samples: 92312680006, 92312680007

Associated Lab Gampies. 923	12000000, 92312000001	Blank	Donorting			
Parameter	Units	Result	Reporting Limit	MDL	Analyzed	Qualifiers
						— Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND	10.0	0.98	09/20/16 12:27	
1,2-Dichlorobenzene	ug/L	ND	10.0	0.88	09/20/16 12:27	
1,3-Dichlorobenzene	ug/L	ND	10.0	0.81	09/20/16 12:27	
1,4-Dichlorobenzene	ug/L	ND	10.0	0.95	09/20/16 12:27	
1-Methylnaphthalene	ug/L	ND	10.0	0.32	09/20/16 12:27	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	10.0	0.95	09/20/16 12:27	
2,4,5-Trichlorophenol	ug/L	ND	10.0	0.92	09/20/16 12:27	
2,4,6-Trichlorophenol	ug/L	ND	10.0	1.3	09/20/16 12:27	
2,4-Dichlorophenol	ug/L	ND	10.0	1.7	09/20/16 12:27	
2,4-Dimethylphenol	ug/L	ND	10.0	1.2	09/20/16 12:27	
2,4-Dinitrophenol	ug/L	ND	50.0	9.0	09/20/16 12:27	
2,4-Dinitrotoluene	ug/L	ND	10.0	0.90	09/20/16 12:27	
2,6-Dinitrotoluene	ug/L	ND	10.0	0.98	09/20/16 12:27	
2-Chloronaphthalene	ug/L	ND	10.0	0.98	09/20/16 12:27	
2-Chlorophenol	ug/L	ND	10.0	1.3	09/20/16 12:27	
2-Methylnaphthalene	ug/L	ND	10.0	0.28	09/20/16 12:27	
2-Methylphenol(o-Cresol)	ug/L	ND	10.0	1.6	09/20/16 12:27	
2-Nitroaniline	ug/L	ND	50.0	2.0	09/20/16 12:27	
2-Nitrophenol	ug/L	ND	10.0	0.91	09/20/16 12:27	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	10.0	2.0	09/20/16 12:27	
3,3'-Dichlorobenzidine	ug/L	ND	50.0	2.1	09/20/16 12:27	
3-Nitroaniline	ug/L	ND	50.0	2.0	09/20/16 12:27	
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	2.6	09/20/16 12:27	
4-Bromophenylphenyl ether	ug/L	ND	10.0	0.82	09/20/16 12:27	
4-Chloro-3-methylphenol	ug/L	ND	20.0	3.7	09/20/16 12:27	
4-Chloroaniline	ug/L	ND	50.0	2.8	09/20/16 12:27	
4-Chlorophenylphenyl ether	ug/L	ND	10.0	0.87	09/20/16 12:27	
4-Nitroaniline	ug/L	ND	50.0	2.1	09/20/16 12:27	
4-Nitrophenol	ug/L	ND	50.0	4.1	09/20/16 12:27	
Acenaphthene	ug/L	ND	10.0	0.25	09/20/16 12:27	
Acenaphthylene	ug/L	ND	10.0	0.21	09/20/16 12:27	
Aniline	ug/L	ND	10.0	2.0	09/20/16 12:27	
Anthracene	ug/L	ND	10.0	0.14	09/20/16 12:27	
Benzo(a)anthracene	ug/L	ND	10.0	0.33	09/20/16 12:27	
Benzo(a)pyrene	ug/L	ND	10.0	0.30	09/20/16 12:27	
Benzo(b)fluoranthene	ug/L	ND	10.0	0.28	09/20/16 12:27	
Benzo(g,h,i)perylene	ug/L	ND	10.0	0.38	09/20/16 12:27	
Benzo(k)fluoranthene	ug/L	ND	10.0	0.43	09/20/16 12:27	
Benzoic Acid	ug/L	ND	50.0	11.5	09/20/16 12:27	
Benzyl alcohol	ug/L	ND	20.0	2.4	09/20/16 12:27	
bis(2-Chloroethoxy)methane	ug/L	ND	10.0	0.92	09/20/16 12:27	
Sist Sillorocation, interface	49, L	140	10.0	0.02	00,20,10 12.21	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

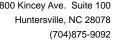
METHOD BLANK: 1824500 Matrix: Water

Associated Lab Samples: 92312680006, 92312680007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
ois(2-Chloroethyl) ether	ug/L	ND	10.0	1.0	09/20/16 12:27	
ois(2-Ethylhexyl)phthalate	ug/L	ND	6.0	0.79	09/20/16 12:27	
Butylbenzylphthalate	ug/L	ND	10.0	0.79	09/20/16 12:27	
Chrysene	ug/L	ND	10.0	0.21	09/20/16 12:27	
Di-n-butylphthalate	ug/L	ND	10.0	0.75	09/20/16 12:27	
Di-n-octylphthalate	ug/L	ND	10.0	0.66	09/20/16 12:27	
Dibenz(a,h)anthracene	ug/L	ND	10.0	0.55	09/20/16 12:27	
Dibenzofuran	ug/L	ND	10.0	0.89	09/20/16 12:27	
Diethylphthalate	ug/L	ND	10.0	0.58	09/20/16 12:27	
Dimethylphthalate	ug/L	ND	10.0	0.76	09/20/16 12:27	
luoranthene	ug/L	ND	10.0	0.21	09/20/16 12:27	
luorene	ug/L	ND	10.0	0.21	09/20/16 12:27	
lexachloro-1,3-butadiene	ug/L	ND	10.0	0.94	09/20/16 12:27	
exachlorobenzene	ug/L	ND	10.0	0.72	09/20/16 12:27	
lexachlorocyclopentadiene	ug/L	ND	10.0	0.88	09/20/16 12:27	
lexachloroethane	ug/L	ND	10.0	1.1	09/20/16 12:27	
deno(1,2,3-cd)pyrene	ug/L	ND	10.0	0.29	09/20/16 12:27	
ophorone	ug/L	ND	10.0	0.89	09/20/16 12:27	
-Nitroso-di-n-propylamine	ug/L	ND	10.0	0.99	09/20/16 12:27	
l-Nitrosodimethylamine	ug/L	ND	10.0	0.91	09/20/16 12:27	
-Nitrosodiphenylamine	ug/L	ND	10.0	1.0	09/20/16 12:27	
aphthalene	ug/L	ND	10.0	0.34	09/20/16 12:27	
litrobenzene	ug/L	ND	10.0	1.1	09/20/16 12:27	
entachlorophenol	ug/L	ND	50.0	4.6	09/20/16 12:27	
henanthrene	ug/L	ND	10.0	0.22	09/20/16 12:27	
henol	ug/L	ND	10.0	1.9	09/20/16 12:27	
yrene	ug/L	ND	10.0	0.19	09/20/16 12:27	
,4,6-Tribromophenol (S)	%	22	27-110		09/20/16 12:27	S0
-Fluorobiphenyl (S)	%	22	27-110		09/20/16 12:27	S0
-Fluorophenol (S)	%	8	12-110		09/20/16 12:27	S0
litrobenzene-d5 (S)	%	21	21-110		09/20/16 12:27	
Phenol-d6 (S)	%	5	10-110		09/20/16 12:27	S0
erphenyl-d14 (S)	%	59	31-107		09/20/16 12:27	

LABORATORY CONTROL SAMPLE:	1824501					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L	50	42.2	84	70-130	
1,2-Dichlorobenzene	ug/L	50	39.6	79	70-130	
1,3-Dichlorobenzene	ug/L	50	40.2	80	70-130	
1,4-Dichlorobenzene	ug/L	50	38.8	78	70-130	
1-Methylnaphthalene	ug/L	50	47.8	96	70-130	
2,2'-Oxybis(1-chloropropane)	ug/L	50	47.5	95	70-130	
2,4,5-Trichlorophenol	ug/L	50	51.0	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

LABORATORY CONTROL SAMPLE:	1824501	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2,4,6-Trichlorophenol	ug/L		52.3	105	70-130	
2,4-Dichlorophenol	ug/L	50	50.5	101	70-130	
2,4-Dimethylphenol	ug/L	50	55.6	111	70-130	
2,4-Dinitrophenol	ug/L	250	142	57	70-130	1a
2,4-Dinitrotoluene	ug/L	50	49.6	99	70-130	'9
2,6-Dinitrotoluene	ug/L	50	53.3	107	70-130	
2-Chloronaphthalene	ug/L	50	50.2	100	70-130	
2-Chlorophenol	ug/L	50	40.6	81	70-130	
2-Methylnaphthalene	ug/L	50	47.7	95	70-130	
2-Methylphenol(o-Cresol)	ug/L	50	39.3	79	70-130	
2-Nitroaniline	ug/L	100	94.9	95	70-130	
2-Nitrophenol	ug/L	50	49.0	98	70-130	
3&4-Methylphenol(m&p Cresol)	ug/L ug/L	50	36.8	74	70-130	
3,3'-Dichlorobenzidine	_	100	90.2	90	70-130 70-130	
3,3-Dicniorobenzidine 3-Nitroaniline	ug/L ug/L	100	90.2 83.1	90 83	70-130 70-130	
	_			94		
4,6-Dinitro-2-methylphenol	ug/L	100	93.6		70-130	
1-Bromophenylphenyl ether	ug/L	50	55.5	111	70-130	
I-Chloro-3-methylphenol	ug/L	100	99.5	99	70-130	
4-Chloroaniline	ug/L	100	88.9	89	70-130	
l-Chlorophenylphenyl ether	ug/L	50	50.4	101	70-130	
4-Nitroaniline	ug/L	100	78.1	78	70-130	
I-Nitrophenol	ug/L	250	93.5	37	70-130	1g
Acenaphthene	ug/L	50	50.2	100	70-130	
Acenaphthylene	ug/L	50	50.3	101	70-130	
Aniline	ug/L	50	35.4	71	70-130	
Anthracene	ug/L	50	50.5	101	70-130	
Benzo(a)anthracene	ug/L	50	51.8	104	70-130	
Benzo(a)pyrene	ug/L	50	52.3	105	70-130	
Benzo(b)fluoranthene	ug/L	50	50.3	101	70-130	
Benzo(g,h,i)perylene	ug/L	50	54.1	108	70-130	
Benzo(k)fluoranthene	ug/L	50	52.8	106	70-130	
Benzoic Acid	ug/L	250	88.8	36	70-130	1g
Benzyl alcohol	ug/L	100	76.8	77	70-130	
ois(2-Chloroethoxy)methane	ug/L	50	50.7	101	70-130	
ois(2-Chloroethyl) ether	ug/L	50	44.5	89	70-130	
ois(2-Ethylhexyl)phthalate	ug/L	50	51.6	103	70-130	
Butylbenzylphthalate	ug/L	50	50.1	100	70-130	
Chrysene	ug/L	50	52.8	106	70-130	
Di-n-butylphthalate	ug/L	50	48.7	97	70-130	
Di-n-octylphthalate	ug/L	50	44.8	90	70-130	
Dibenz(a,h)anthracene	ug/L	50	51.5	103	70-130	
Dibenzofuran	ug/L	50	47.7	95	70-130	
Diethylphthalate	ug/L	50	47.6	95	70-130	
Dimethylphthalate	ug/L	50	46.5	93	70-130	
Fluoranthene	ug/L	50	51.9	104	70-130	
Fluorene	ug/L	50	50.4	101	70-130	
Hexachloro-1,3-butadiene	ug/L	50	40.2	80	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

LABORATORY CONTROL SAMPLE:	1824501					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Hexachlorobenzene	ug/L	50	53.7	107	70-130	
Hexachlorocyclopentadiene	ug/L	50	44.6	89	70-130	
Hexachloroethane	ug/L	50	38.7	77	70-130	
Indeno(1,2,3-cd)pyrene	ug/L	50	52.3	105	70-130	
Isophorone	ug/L	50	56.1	112	70-130	
N-Nitroso-di-n-propylamine	ug/L	50	43.5	87	70-130	
N-Nitrosodimethylamine	ug/L	50	23.3	47	70-130	1g
N-Nitrosodiphenylamine	ug/L	50	50.1	100	70-130	
Naphthalene	ug/L	50	43.4	87	70-130	
Nitrobenzene	ug/L	50	52.6	105	70-130	
Pentachlorophenol	ug/L	100	93.9	94	70-130	
Phenanthrene	ug/L	50	51.9	104	70-130	
Phenol	ug/L	50	20.5	41	70-130	1g
Pyrene	ug/L	50	46.1	92	70-130	
2,4,6-Tribromophenol (S)	%			98	27-110	
2-Fluorobiphenyl (S)	%			94	27-110	
2-Fluorophenol (S)	%			56	12-110	
Nitrobenzene-d5 (S)	%			91	21-110	
Phenol-d6 (S)	%			37	10-110	
Terphenyl-d14 (S)	%			93	31-107	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

QC Batch: 329049 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 92312680001, 92312680002, 92312680003, 92312680004, 92312680005, 92312680006

METHOD BLANK: 1823669 Matrix: Water

Associated Lab Samples: 92312680001, 92312680002, 92312680003, 92312680004, 92312680005, 92312680006

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L ND 5.0 1.0 09/19/16 21:22

LABORATORY CONTROL SAMPLE: 1823670

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 50 48.5 97 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1823671 1823672

MS MSD 92312596052 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 77.7 80-120 2 25 Alkalinity, Total as CaCO3 mg/L 29.7 50 50 76.4 96 93

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1823673 1823674

MS MSD 92312680006 MS MSD MS Spike Spike MSD % Rec Max Parameter % Rec RPD Qual Units Result Conc. Conc. Result Result % Rec Limits RPD Alkalinity, Total as CaCO3 297 50 50 345 338 95 83 80-120 2 25 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

QC Batch: 329332 Analysis Method: SM 4500-CI-E
QC Batch Method: SM 4500-CI-E Analysis Description: 4500 Chloride

Associated Lab Samples: 92312680001, 92312680002, 92312680003, 92312680004, 92312680005, 92312680006

METHOD BLANK: 1824943 Matrix: Water

Associated Lab Samples: 92312680001, 92312680002, 92312680003, 92312680004, 92312680005, 92312680006

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Chloride mg/L ND 1.0 0.50 09/20/16 18:44

LABORATORY CONTROL SAMPLE: 1824944

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 20 20.5 103 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1824945 1824946

MS MSD 92312295005 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Chloride mg/L 10 M1 36.5 10 10 66.6 66.6 301 300 90-110 0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1824947 1824948

MS MSD 92312680006 MS MSD MS Spike Spike MSD % Rec Max RPD Qual Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Chloride 7.1 10 10 18.0 17.8 108 107 90-110 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

QC Batch: 329244 Analysis Method: SM 5310B
QC Batch Method: SM 5310B Analysis Description: 5310B TOC

Associated Lab Samples: 92312680001, 92312680002, 92312680003, 92312680004, 92312680005, 92312680006

METHOD BLANK: 1824620 Matrix: Water

Associated Lab Samples: 92312680001, 92312680002, 92312680003, 92312680004, 92312680005, 92312680006

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Organic Carbonmg/LND1.00.5009/19/16 18:32

LABORATORY CONTROL SAMPLE: 1824621

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Total Organic Carbon mg/L 25 25.1 100 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1824622 1824623

MS MSD 92312596035 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual **Total Organic Carbon** 25 90-110 mg/L 0.85J 25 26.2 26.0 101 101 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1824624 1824625

MS MSD MS MSD MS 92312715002 Spike Spike MSD % Rec Max Parameter Conc. % Rec RPD Qual Units Result Conc. Result Result % Rec Limits RPD Total Organic Carbon 152 25 25 158 154 23 11 90-110 2 10 M6 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-A	Pace Analytical Services - Asheville
PASI-C	Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 09/23/2016 10:15 AM

1g	Recovery did not meet 70-130% South Carolina required limits. Recovery meets method required in-house generated
J	control limits.

IS The internal standard response is below criteria. Results may be biased high.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

S0 Surrogate recovery outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: MARSH/PAMPLICO 1584-98-1462

Pace Project No.: 92312680

Date: 09/23/2016 10:15 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92312680008	MW-17A	EPA 3510	329806	EPA 8270	329885
92312680009	MW-19	EPA 3510	329806	EPA 8270	329885
92312680010	MW-20	EPA 3510	329806	EPA 8270	329885
92312680001	MW-10	EPA 3510	329083	EPA 8270	329426
92312680002	MW-14	EPA 3510	329083	EPA 8270	329426
92312680003	MW-15	EPA 3510	329083	EPA 8270	329426
92312680004	MW-21	EPA 3510	329083	EPA 8270	329426
92312680005	MW-22	EPA 3510	329083	EPA 8270	329426
92312680006	MW-23	EPA 3510	329204	EPA 8270	329407
92312680007	DUPLICATE	EPA 3510	329204	EPA 8270	329407
92312680001	MW-10	SM 2320B	329049		
92312680002	MW-14	SM 2320B	329049		
92312680003	MW-15	SM 2320B	329049		
92312680004	MW-21	SM 2320B	329049		
92312680005	MW-22	SM 2320B	329049		
92312680006	MW-23	SM 2320B	329049		
92312680001	MW-10	SM 4500-CI-E	329332		
92312680002	MW-14	SM 4500-CI-E	329332		
92312680003	MW-15	SM 4500-CI-E	329332		
92312680004	MW-21	SM 4500-CI-E	329332		
92312680005	MW-22	SM 4500-CI-E	329332		
92312680006	MW-23	SM 4500-CI-E	329332		
92312680001	MW-10	SM 5310B	329244		
92312680002	MW-14	SM 5310B	329244		
92312680003	MW-15	SM 5310B	329244		
92312680004	MW-21	SM 5310B	329244		
92312680005	MW-22	SM 5310B	329244		
92312680006	MW-23	SM 5310B	329244		

Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.:

F-CHR-CS-003-rev.19

Document Revised:April 25, 2016 Page 1 of 2

Issuing Authority: Pace Huntersville Quality Office

WO#:92312680

Receipt Client Name:	Λ			Project The second seco
Courier: Fed Ex Description Page	JPS □US □Oti		0-0-	□Client 92312680
	Seals Intact?	Y	•	No Date/Initials Person Examining Contents:
Thermometer: T1505 Correction Factor: 0.0°C Cooler Temp Corrected Temp should be above freezing to 6°C		of Ice:	lone Wet	☐ Other:
USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the U Yes No	United States: CA	NY, or	SC (check	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Comments/Discrepancy:
Chain of Custody Present?	Yes	□No	□N/A	1.
Samples Arrived within Hold Time?	//	THE STATE OF	0	
Short Hold Time Analysis (<72 hr.)?	Yes	□No	□N/A	2.
Rush Turn Around Time Requested?	□Yes	ZNo.	□N/A	3.
Sufficient Volume?	□Yes	□No	□N/A	4.
Correct Containers Used?	Yes	□No	□N/A	5.
-Pace Containers Used?	Yes	□No	□N/A	6.
Containers Intact?		No_	N/A_	-
Samples Field Filtered?	☐Yes	□No	□N/A	7.
The second secon	Yes	□No	□N/A	8. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	Yes	□No	□N/A	9.
Includes Date/Time/ID/Analysis Matrix:				10
:hecked?	Yes	No	N/A_	10. HNC3 pH<2
All containers needing preservation are found to be in compliance with EPA recommendation?				HCI pH<2
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanid	e) 🗆 Yes	□No	□N/A	H2SO4 pH<2
Exceptions: VOA, Coliform, TOC, Oil and Grease,			-	NaOH pH>12
DRO/8015 (water) DOC,LLHg		□No	□N/A	NaOH/ZnOAc pH-9
samples checked for dechlorination?	Yes	No	□N/A	11.
leadspace in VOA Vials (>5-6mm)? rip Blank Present?	□Yes	□w ₀	□N/A	12.
rip Blank Custody Seals Present?	□Yes	□No	DAY/A	13.
'ace Trip Blank Lot # (if purchased):	☐Yes	□No	□N/A	'
CLIENT NOTIFICATION/RESOLUTION				Edday of the Dr. Dr.
				Field Data Required? ☐Yes ☐No
Person Contacted:				Date/Time:
Comments/Sample				
Discrepancy:				
Project Manager SCURF Review:				Date: 9/19/16
Project Manager SRF Review: ((rolina compliano	e sample	s a convic	Date: 9/19/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers)

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

						12	11	10	9	œ	7	6	O.	4	ω	2	-	ITEM#	Requested Due Date:	Email:	Suite 105, G	Address:	Required C	Section A
					ADDITIONAL COMMENTS			DUPLICATE	MW- 23	MW - 22	Mw- 21	MW- 70	51 - MM	MW- 174	NIM! IS	\$1-101M	MW-10	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique	Due Date:		Suite 105, Greensboro, NC 27409	8646 West Market Street	Required Client Information:	
											1000							MATRIX Dinking Water Water Water Waste Water Product Soul/Soild Oil Wilpe Air Other	Pro	Pro		Co	Re	Sec
			1															TS SE WM WM WIND CODE	Project #:	Project Name:		Copy To:	Report To: Lyndal Butler	Section B
			M	7	RELI	H	+		-									MATRIX CODE (see valid codes to left)	35	der #:		19110	oject	1
				1	SINDN													SAMPLE TYPE (G=GRAB C=COMP)	7	Mars		2	I vndal Rutler	1627
			1		RELINQUISHED BY I AFFILIATION													ST	1584-38-146C	Marsh/Pamplico		1	iler	1
	(0)		3	1	AI YE	_	-						-		-	-	+	START	- 14	3			1	:
٦	SAMPLER NAME AND SIGNATURE		100	1	FILIA													COLL	22				1	
PRINT Name of SAMPLER:	Ë			1	NOIT	-	+	ھ	۰	9	. 0	م	2	ما	-0	-0	0						1	
Nam	MAN							115	24/6	21/8	3/15	3/18	Sis	100	9/14	3/8	4		П				1	
e of	AN	1	m(3	-0		1	+	0	_	+		16	8	7	+-	_	_	END END	П				1	
SAME	D SIG		4	1	DATE			070	1340	1710	1520	5101	558	1210	34	8	1845	TIME					1	
Ĕ	NAT		1	16	-													SAMPLE TEMP AT COLLECTION	_	77 -	7	0	Þ :	= 0
"	URE		1	0				7	,	1 -1	7	2	7	1	-		-		Pace Profile #:	Pace Project Manager.	Address:	Company Name:	Attention:	Invoice Information:
0			0	0000	TIME								_	-	-	-	-	Unpreserved	Profil	Proje	SS:	any N	on:	eInfo
Gura			,	,		4	_	_	+		-	-	_	+	+	-	-	H2SO4	e #:	ct Ma	2	lame		orma
C			,	1				-	-	-		1	+	+	+	+	-	HCI Preservativ	22	nage				tion:
3				199	1	_	-	+	+	+	+		+	+	+	-	╁	NaOH 2	2269-11	ä				
XOX	Sall's		3	P	P	-	+	-	+	+	+	+	+	+	+	+	+	Na2S2O3		trey				
×	200		5	H	ACCEPTED BY / AFFILIATION		+	+		+	+			+	+	+	+	Methanol	П	trey.carter@pacelabs.com,				
			2	10	1 6		+	+	+	+	+		1	+	+		+	Other		er@p			1	
			1	A	SYIA					_								Analyses Test Y/N	11	acela				
1			1	M	Į		\top					-		1			No.	8270 TCL (WAPP)		abs.c				
			,	N.				•	,	, \	-				\	,	,	8270 SVOC (WEPSC)		om,			П	
DATE Signal.			(3						*	, \	. \				>		'	Chloride						
			4						~	, \	,	•	\perp	_			`	TOC 5310B	- 100 State				Н	
			(tail)					*	2	,	1		+	+	+	+	-	Chloride TOC 5310B Alkalinity					П	
1				. 10	,	<u>.</u>	+	+	+	+	-	+	+	+	-	-	+		1					
			(70	1	CAIE	-	+	+	+	-	+	_	+	+	+	+	+		r	П	e e	T	_	ļ
		Н					+	+	+	+		-	+	+	_	+	+		3					
			()-		1	TIME		+	+	+	+	+	1		\top	1								
			3	-1	Ī	ī -			+	\top	+	1	\top				\top							P
				,	183			+	+	\top	\top									S	<u> </u>	,		Page:
EMP in	С																	Residual Chlorine (Y/N)		tate /	gular			
eceive	d on		4		9	SAL		(- 0		0) (. 0	, (>	C	, 0	923 12600	SC	State / Location	Regulatory Agency			
/N)			5			SAMPLE CONDITIONS		(10	1		3 3	5 8		2	1 6	- (ation	gen			1
ustody						CONIC	Î	4	76	5 C	1		1	r.c	7	1 6	1				ľ			6
aled ooler			, an			OITIO			1									E.						阜
/N)		-		-	-	SS												çc		100				-
ample: act	3																	C)		877	П	8		1
/N)		1	1 1	- 1	183		- 1	ı	- 1	- 1	- 1	- 1			- 1	- 1			-5		_			\mathbf{L}

Project Name:		Marsh Pamplico, SC	•	Purge Date:	September 14, 2016
Project Location:		Pamplico, SC	Purge Time:	60 Minutes	
Project Number:		1584-98-146C	Sample Date:	September 14, 2016	
Source Well:		MW-10	Sample Time:	18:45	
Locked?:		No	Weather:	Cloudy/Rain	
Sampled By:		Gary Simcox	Air Temp:	84 ° F	
Flow Through Cell Serial No.:	21234	Pump Serial No.:	103145	Calibration Date:	

Water Level & Well Data

	Meas	Top of Casing				
	Depth to Water:					
	Total	Well Depth:	16.40	ft-TOC		
	Height of Wa	ter Column:	9.63	feet		
Screen Length:	feet	Stickup:		ft-GRD		

Well Volume								
Well Diameter	2	inch						
Water Volume	1.6	Gal						
3 * Well Volume	4.71	Gal						
5 * Well Volume	7.86	Gal						

Well Purging Information

	Purge Method:	Perista	Iltic Pump	Start Time:	17:40	End Time:	18:40	
(If Used)	Bladder Pump Control Settings:	On (sec):		Off (sec):		Pressure:		psi
Pump	Intake Depth from Top of Casing:		15	ft-TOC				
V	Water Column Above Pump Intake:			feet	Flow Throu	ugh Cell Vol:	1000	mL
DTW-TOC at 25	% Drawdown of WC Above Pump:		8.83	ft-TOC	Comments:			
	Final Volume Purged:		2.4	Gallons Used Horiba U-5000 / DR 890Colorime			390Colorimete	er
	Final Volume Purge Rate:		150	mL/min	Ferrous Iron (0.18 mg/L		
	Well Purged Dry?:		No	(Yes/No)				

Field Parameters (Taken at time intervals with purge volumes ≥ 2 Flow Through Cell Volumes)

Ī		Volume		Depth to				Dissolved			
		Purged	Flow Rate	Water	Temp	pН	Spec. Cond.	Oxygen	ORP*	Turbidity	
	Time	(gal)	(mL/min)	(ft)	(°C)	(s.u.)	(µS/cm)	(mg/L)	(mV)	(NTU)	Comment
-	17:40	0.0									Start Purging
Ī	17:50	0.4	150		25.5	6.6	1	0.0	-16	15.4	
Ī	18:00	0.8	150		25.4	6.7	1	0.0	11	12.5	
Ī	18:10	1.2	150		25.3	6.7	1	0.0	12	10.8	
Ī	18:20	1.6	150		25.3	6.7	1	0.0	7	10.1	
Ī	18:30	2.0	150		25.2	6.6	1	0.0	0	9.40	
	18:40	2.4	150		25.2	6.7	1	0.0	-8	8.80	
Ī											
Ī											
Ī											
Ī											
Ī											
Ī											
-											
Einal:	18:40	2.4	150		25.2	6.7	1	0.0	-8	8.8	End of Purging
Final:	10.40	2.4	130		25.2	0.7	1	0.0	-8	0.8	End of Purging
	San	nple Method:	Peristal	tic Pump		Samp	le Start Time:	18:45	Samp	le End Time:	19:20

Analytical Data

Method	Qty	Container	Preservative	Method	Qty	Container	Preservative
SVOCs 8270	2	1L A	Unpreserved				
Chloride 4500	1	250mL P	Unreserved				
Alkalinity 5310	1	250mL P	Unpreserved				

	Name	Signature	Date
(1)	Gary Simcox		9/14/2016
		·	
(2)			
	<u>-</u>	·	
Notes:	To convert ORP to Eh, add 205 mv to ORP.		

Project Name:		Marsh Pamplico, SC	Purge Date:	September 14, 2016	
Project Location:		Pamplico, SC	Purge Time:	60 Minutes	
Project Number:		1584-98-146C	Sample Date:	September 14, 2016	
Source Well:		MW-14	Sample Time:	16:50	
Locked?:		No	Weather:	Cloudy/Rain	
Sampled By:		Gary Simcox	Air Temp:	84 ° F	
Flow Through Cell Serial No.:	21234	Pump Serial No.:	103145	Calibration Date:	

Water Level & Well Data

	Mose	Top of Casing					
	ivieast	ıring Point:	Top of Casing				
	Depth to Water:						
	Total \	Well Depth:	13.00	ft-TOC			
	Height of Wat	er Column:	7.49	feet			
Screen Length:	feet		ft-GRD				

Well Volume								
Well Diameter 2 inc								
Water Volume	1.2	Gal						
3 * Well Volume	3.67	Gal						
5 * Well Volume	6.11	Gal						

Well Purging Information

	Purge Method:	Peristaltic Pump		Start Time:	15:45	End Time:	16:45	
(If Used)	Bladder Pump Control Settings:	On (sec):		Off (sec):		Pressure:		psi
Pump	Intake Depth from Top of Casing:		13	ft-TOC				
W	ater Column Above Pump Intake:		6.99	feet	Flow Through Cell Vol: 1000			mL
DTW-TOC at 25	% Drawdown of WC Above Pump:		7.26	ft-TOC	Comments:			
	Final Volume Purged:		2.4	Gallons	Used Horiba U-5000 / DR 890Colorimeter			
	Final Volume Purge Rate:			mL/min	Ferrous Iron 2.26 mg/L			
	Well Purged Dry?:		No	(Yes/No)				

Field Parameters (Taken at time intervals with purge volumes ≥ 2 Flow Through Cell Volumes)

Peristaltic Pump

	Volume		Depth to				Dissolved			
	Purged	Flow Rate	Water	Temp	pН	Spec. Cond.	Oxygen	ORP*	Turbidity	
Tim	e (gal)	(mL/min)	(ft)	(°C)	(s.u.)	(µS/cm)	(mg/L)	(mV)	(NTU)	Comment
15:4	5 0.0									Start Purging
15:5	5 0.4	150		27.4	4.9	0	0.0	106	6.10	
16:0	5 0.8	150		27.1	5.3	0	0.0	93	8.70	
16:1	5 1.2	150		27.1	5.2	0	0.0	93	6.90	
16:2	5 1.6	150		27.0	5.2	0	0.0	91	5.30	
16:3	5 2.0	150		26.9	5.2	0	0.0	84	4.70	
16:4	5 2.4	150		26.5	5.1	0	0.0	77	4.90	
16:4	5 2.4	150		26.5	5.1	0	0.0	77	4.9	End of Purgin

Analytical Data

Sample Method:

Method	Qty	Container	Preservative	Method	Qty	Container	Preservative
SVOCs 8270	2	1L A	Unpreserved				
Chloride 4500	1	250mL P	Unreserved				
Alkalinity 5310	1	250mL P	Unpreserved				

Sample Start Time: 16:50

	Name	Signature	Date
(1)	Gary Simcox		9/14/2016
		<u> </u>	
(2)			
. ,	-	-	
Notes:	To convert ORP to Eh, add 205 mv to ORP.		

Sample End Time:

17:20

Project Name:		Marsh Pamplico, SC	Purge Date:	September 14, 2016	
Project Location:		Pamplico, SC	Purge Time:	70 Minutes	
Project Number:		1584-98-146C	Sample Date:	September 14, 2016	
Source Well:		MW-15	Sample Time:	14:45	
Locked?:		No	Weather:	Cloudy/Rain	
Sampled By:		Gary Simcox	Air Temp:	84 ° F	
Flow Through Cell Serial No.:	21234	Pump Serial No.:	103145	Calibration Date:	

Water Level & Well Data

			T (C				
		Measu	ring Point:	Top of Casing			
	Depth to Water:						
		Total V	Vell Depth:	18.10	ft-TOC		
	Не	eight of Wat	er Column:	9.76	feet		
Screen Length:		feet		ft-GRD			

Well Volume									
Well Diameter 2 inc									
Water Volume	1.6	Gal							
3 * Well Volume	4.78	Gal							
5 * Well Volume	7.96	Gal							

Well Purging Information

	Purge Method:			Start Time:	13:30	End Time:	14:40	
(If Used)	Bladder Pump Control Settings:	On (sec):		Off (sec):		Pressure:		psi
Pump	Intake Depth from Top of Casing:		17	ft-TOC				
V	Water Column Above Pump Intake:			feet	Flow Through Cell Vol: 10		1000	mL
DTW-TOC at 25	% Drawdown of WC Above Pump:	1	.0.38	ft-TOC	Comments:			
	Final Volume Purged:		2.8	Gallons	Used Horiba U-5000 / DR 890Colorimeter			r
	Final Volume Purge Rate:			mL/min	Ferrous Iron 3.30 mg/L			
	Well Purged Dry?:		No	(Yes/No)				

Field Parameters (Taken at time intervals with purge volumes ≥ 2 Flow Through Cell Volumes)

Ī		Volume		Depth to				Dissolved			
		Purged	Flow Rate	Water	Temp	pН	Spec. Cond.	Oxygen	ORP*	Turbidity	
	Time	(gal)	(mL/min)	(ft)	(°C)	(s.u.)	(µS/cm)	(mg/L)	(mV)	(NTU)	Comment
-	13:30	0.0									Start Purging
Ī	13:40	0.4	150	8.61	27.1	6.1	1	1.7	-54	44.7	
Ī	13:50	0.8	150	8.65	26.5	6.1	1	0.5	-63	32.8	
	14:00	1.2	150	8.62	26.1	6.1	1	0.8	-65	16.3	
Ī	14:10	1.6	150	8.66	26.1	6.1	1	0.4	-66	11.5	
	14:20	2.0	150	8.64	26.0	6.1	1	0.3	-64	13.9	
	14:30	2.4	150	8.63	26.0	6.1	1	0.3	-63	14.5	
	14:40	2.8	150	8.61	26.0	6.1	1	0.3	-64	14.9	
_											
Final:	14:40	2.8	150	8.61	26.0	6.1	1	0.3	-64	14.9	End of Purging
_	San	nple Method:	Peristal	tic Pump		Samp	le Start Time:	14:45	Samp	le End Time:	15:10

Analytical Data

Method	Qty	Container	Preservative	Method	Qty	Container	Preservative
SVOCs 8270	2	1L A	Unpreserved				
Chloride 4500	1	250mL P	Unreserved				
Alkalinity 5310	1	250mL P	Unpreserved				

	Name	Signature	Date
(1)	Gary Simcox		9/14/2016
		<u> </u>	
(2)			
		, 	
Notes:	To convert ORP to Eh, add 205 mv to ORP.		

Project Name:		Marsh Pamplico, SC	Purge Date:	September 15, 2016	
Project Location:		Pamplico, SC	Purge Time:	80 Minutes	
Project Number:		1584-98-146C	Sample Date:	September 15, 2016	
Source Well:		MW-17A		Sample Time:	12:10
Locked?:		No		Weather:	P/Sunny
Sampled By:		Gary Simcox			85 ° F
Flow Through Cell Serial No.:	21234	21234 Pump Serial No.: 103145			

Water Level & Well Data

			-	
	Measuring Point:			of Casing
	Depth to Water:			ft-TOC
	Total	Well Depth:	18.90	ft-TOC
	Height of Water Column:			feet
Screen Length:	feet	Stickup:		ft-GRD

Well Volume							
Well Diameter 2 inch							
Water Volume	1.6	Gal					
3 * Well Volume	4.89	Gal					
5 * Well Volume	8.15	Gal					

Well Purging Information

	Purge Method:	Perista	Iltic Pump	Start Time:	10:45	End Time:	12:05	
(If Used)	Bladder Pump Control Settings:	On (sec):		Off (sec):		Pressure:		psi
Pump Intake Depth from Top of Casing:			18	ft-TOC				
W	Water Column Above Pump Intake:			feet	Flow Throu	ıgh Cell Vol:	1000	mL
DTW-TOC at 25	% Drawdown of WC Above Pump:	1	.1.06	ft-TOC		Commen	ts:	
	Final Volume Purged:		2.1	Gallons	Used Horiba	U-5000		
Final Volume Purge Rate:			100	mL/min				
	Well Purged Dry?:		No	(Yes/No)				

Field Parameters (Taken at time intervals with purge volumes ≥ 2 Flow Through Cell Volumes)

Ī		Volume		Depth to				Dissolved			
		Purged	Flow Rate	Water	Temp	pН	Spec. Cond.	Oxygen	ORP*	Turbidity	
	Time	(gal)	(mL/min)	(ft)	(°C)	(s.u.)	(µS/cm)	(mg/L)	(mV)	(NTU)	Comment
	10:45	0.0									Start Purging
	10:55	0.3	100		25.3	7.0	0	0.0	40	208	
	11:05	0.5	100		25.9	7.1	0	0.0	-6	102	
	11:15	0.8	100		25.9	7.2	0	0.0	-11	96.0	
	11:25	1.1	100		26.0	7.1	0	0.0	22	41.6	
	11:35	1.3	100		26.2	7.1	0	0.0	-2	36.2	
	11:45	1.6	100		26.4	7.1	0	0.0	-5	26.1	
	11:55	1.8	100		26.5	7.0	0	0.0	2	21.3	
	12:05	2.1	100		26.6	7.1	0	0.0	-2	19.2	
	•				•			·			
Final:	12:05	2.1	100		26.6	7.1	0	0.0	-2	19.2	End of Purging
	San	nple Method:	Peristal	tic Pump		Samp	le Start Time:	12:10	Samp	le End Time:	12:30

Analytical Data

Method	Qty	Container	Preservative	Method	Qty	Container	Preservative
SVOCs 8270	2	1L A	Unpreserved				

	Name	Signature	Date
(1)	Gary Simcox		9/15/2016
		<u> </u>	
(2)			
	-		
Notes:	To convert ORP to Eh, add 205 mv to ORP.		

Project Name:		Marsh Pamplico, SC	Purge Date:	September 15, 2016	
Project Location:		Pamplico, SC	Purge Time:	70 Minutes	
Project Number:		1584-98-146C	Sample Date:	September 15, 2016	
Source Well:		MW-19		Sample Time:	8:55
Locked?:		No		Weather:	P/Cloudy
Sampled By:		Gary Simcox			75 ° F
Flow Through Cell Serial No.:	21234	Pump Serial No.:	103145	Calibration Date:	

Water Level & Well Data

	Measuring Point:			Тор	of Casing
	Depth to Water:			5.76	ft-TOC
		Total V	Vell Depth:	20.40	ft-TOC
	Height of Water Column:			14.64	feet
Screen Length:		feet	Stickup:		ft-GRD

Well Volume							
Well Diameter 2 inc							
Water Volume	2.4	Gal					
3 * Well Volume	7.17	Gal					
5 * Well Volume	11.95	Gal					

Well Purging Information

	Purge Method:	Perista	Iltic Pump	Start Time:	7:40	End Time:	8:50	
(If Used)	Bladder Pump Control Settings:	On (sec):		Off (sec):		Pressure:		psi
Pump		19	ft-TOC					
W	Water Column Above Pump Intake:			feet	Flow Throu	ıgh Cell Vol:	1000	mL
DTW-TOC at 25	% Drawdown of WC Above Pump:	9	9.07	ft-TOC	Comments:			
	Final Volume Purged:		1.8	Gallons	Used Horiba	U-5000		
	Final Volume Purge Rate:		100	mL/min				
	Well Purged Dry?:		No	(Yes/No)				

Field Parameters (Taken at time intervals with purge volumes ≥ 2 Flow Through Cell Volumes)

		Volume		Depth to				Dissolved			
		Purged	Flow Rate	Water	Temp	pН	Spec. Cond.	Oxygen	ORP*	Turbidity	
	Time	(gal)	(mL/min)	(ft)	(°C)	(s.u.)	(µS/cm)	(mg/L)	(mV)	(NTU)	Comment
Ī	07:40	0.0									Start Purging
Ī	07:50	0.3	100		23.9	6.2	0	3.5	11	21.2	
	08:00	0.5	100		24.0	6.1	0	0.0	14	18.6	
Ī	08:10	0.8	100		24.1	6.0	0	0.0	16	14.7	
Ī	08:20	1.1	100		24.2	5.9	0	0.0	8	13.4	
Ī	08:30	1.3	100		24.4	5.9	0	0.0	-5	11.1	
Ī	08:40	1.6	100		24.5	5.9	0	0.0	-13	10.9	
Ī	08:50	1.8	100		24.6	5.9	1	0.0	-17	10.0	
Ī											
Ī											
Ī											
-											
-											
Ī											
ri	00.50	1.0	100		24.0	Ε0	1	0.0	17	10.0	End of Duraina
Final:	08:50	1.8	100		24.6	5.9	1	0.0	-17	10.0	End of Purging
	San	nple Method:	Peristal	tic Pump		Samp	le Start Time:	08:55	Samp	le End Time:	09:15

Analytical Data

Method	Qty	Container	Preservative	Method	Qty	Container	Preservative
SVOCs 8270	2	1L A	Unpreserved				

	Name	Signature	Date
(1)	Gary Simcox		9/15/2016
			
(2)			
Notes:	To convert ORP to Eh, add 205 mv to ORP.		

Project Name:		Marsh Pamplico, SC	Purge Date:	September 15, 2016	
Project Location:		Pamplico, SC	Purge Time:	40 Minutes	
Project Number:		1584-98-146C	Sample Date:	September 15, 2016	
Source Well:		MW-20	Sample Time:	10:15	
Locked?:		No	Weather:	P/Cloudy	
Sampled By:		Gary Simcox			75 ° F
Flow Through Cell Serial No.:	21234	Pump Serial No.:	103145	Calibration Date:	

Water Level & Well Data

	Measu	Top of Casing				
	Depti	h to Water:	7.37	ft-TOC		
	Total Well Depth:					
	Height of Wat	er Column:	9.53	feet		
Screen Length:	feet	Stickup:		ft-GRD		

Well Volume								
Well Diameter 2 inch								
Water Volume	1.6	Gal						
3 * Well Volume	4.67	Gal						
5 * Well Volume	7.78	Gal						

Well Purging Information

	Purge Method:	Perista	ıltic Pump	Start Time:	9:30	End Time:	10:10	
(If Used)	Bladder Pump Control Settings:	On (sec):		Off (sec):		Pressure:		psi
Pump	Intake Depth from Top of Casing:		16	ft-TOC				
W	Water Column Above Pump Intake:			feet	Flow Throu	ıgh Cell Vol:	1000	mL
DTW-TOC at 25	% Drawdown of WC Above Pump:		9.40	ft-TOC		Commen	ts:	
	Final Volume Purged:		1.1	Gallons	Used Horiba	U-5000		
	Final Volume Purge Rate:		100	mL/min				
	Well Purged Dry?:		No	(Yes/No)				

Field Parameters (Taken at time intervals with purge volumes ≥ 2 Flow Through Cell Volumes)

Ī		Volume		Depth to				Dissolved			
		Purged	Flow Rate	Water	Temp	pН	Spec. Cond.	Oxygen	ORP*	Turbidity	
	Time	(gal)	(mL/min)	(ft)	(°C)	(s.u.)	(µS/cm)	(mg/L)	(mV)	(NTU)	Comment
	09:30	0.0									Start Purging
	09:40	0.3	100		24.5	6.9	0	0.0	-95	6.40	
	09:50	0.5	100		24.7	6.7	0	0.0	-89	5.30	
	10:00	0.8	100		24.9	6.8	0	0.0	-89	3.70	
	10:10	1.1	100		24.9	6.8	0	0.0	-97	2.50	
Final:	10:10	1.1	100		24.9	6.8	0	0.0	-97	2.5	End of Purging
_	San	nple Method:	Peristal	tic Pump		Samp	le Start Time:	10:15	Samp	le End Time:	10:35

Analytical Data

Method	Qty	Container	Preservative	Method	Qty	Container	Preservative
SVOCs 8270	2	1L A	Unpreserved				

	Name	Signature	Date
(1)	Gary Simcox		9/15/2016
	_		
(2)			
		<u> </u>	
Notes:	To convert ORP to Eh, add 205 mv to ORP.		

Project Name:		Marsh Pamplico, SC	Purge Date:	September 15, 2016	
Project Location:		Pamplico, SC	Purge Time:	50 Minutes	
Project Number:		1584-98-146C	Sample Date:	September 15, 2016	
Source Well:		MW-21	Sample Time:	15:20	
Locked?:		No		Weather:	P/Sunny
Sampled By:		Gary Simcox			85 ° F
Flow Through Cell Serial No.:	21234	Pump Serial No.:	Calibration Date:		

Water Level & Well Data

		Measu	Top of Casing		
		Deptl	7.94	ft-TOC	
	Total Well Depth:				ft-TOC
	Не	eight of Wat	er Column:	11.16	feet
Screen Length:		feet	Stickup:		ft-GRD

Well Volume									
Well Diameter	2	inch							
Water Volume	1.8	Gal							
3 * Well Volume	5.46	Gal							
5 * Well Volume	9.11	Gal							

Well Purging Information

	Purge Method:	Perista	Iltic Pump	Start Time:	14:25	End Time:	15:15	
(If Used)	Bladder Pump Control Settings:	On (sec):		Off (sec):		Pressure:		psi
Pump	Intake Depth from Top of Casing:		18	ft-TOC				
W	Water Column Above Pump Intake:			feet	Flow Throu	ugh Cell Vol:	1000	mL
DTW-TOC at 25	% Drawdown of WC Above Pump:	1	.0.33	ft-TOC	Comments:			
	Final Volume Purged:		1.3	Gallons	Used Horiba	U-5000 / DR 8	90Colorimete	r
	Final Volume Purge Rate:			mL/min	Ferrous Iron 0.11 mg/L.			
	Well Purged Dry?:				Note: Duplicate collected at this location			

Field Parameters (Taken at time intervals with purge volumes ≥ 2 Flow Through Cell Volumes)

Peristaltic Pump

Sample Method:

		Volume		Depth to				Dissolved			
		Purged	Flow Rate	Water	Temp	рН	Spec. Cond.	Oxygen	ORP*	Turbidity	
Tim	ne .	(gal)	(mL/min)	(ft)	(°C)	(s.u.)	(µS/cm)	(mg/L)	(mV)	(NTU)	Comment
14:2	25	0.0									Start Purging
14:3	35	0.3	100		29.0	6.1	0	0.0	127	13.1	
14:4	15	0.5	100		28.9	5.9	0	0.0	150	14.0	
14:4	15	0.5	100		28.9	5.7	0	0.0	170	15.7	
14:5	55	0.8	100		28.8	5.6	0	0.0	180	17.1	
15:0)5	1.1	100		28.8	5.5	0	0.0	188	19.2	
15:1	L5	1.3	100		28.8	5.5	0	0.0	189	19.0	
15:1	15	1.3	100		28.8	5.5	0	0.0	189	19.0	End of Purgin

Analytical Data

Method	Qty	Container	Preservative	Method	Qty	Container	Preservative
SVOCs 8270	2	1L A	Unpreserved				
Chloride 4500	1	250mL P	Unreserved				
Alkalinity 5310	1	250mL P	Unpreserved				

Sample Start Time: 15:20

	Name	Signature	Date
(1)	Gary Simcox		9/15/2016
(2)			
Notes:	To convert ORP to Eh, add 205 mv to ORP.		

Sample End Time:

16:10

Project Name:		Marsh Pamplico, SC		Purge Date:	September 15, 2016
Project Location:		Pamplico, SC	Purge Time:	50 Minutes	
Project Number:		1584-98-146C	Sample Date:	September 15, 2016	
Source Well:		MW-22	Sample Time:	17:15	
Locked?:		No		Weather:	P/Sunny
Sampled By:		Gary Simcox	Air Temp:	85 ° F	
Flow Through Cell Serial No.:	21234	21234 Pump Serial No.: 103145			

Water Level & Well Data

	Measu	Top of Casing			
	Dept	h to Water:	5.79	ft-TOC	
	Total Well Depth:				
	Height of Wat	er Column:	14.71	feet	
Screen Length:	feet	Stickup:		ft-GRD	

Well Volume									
Well Diameter	2	inch							
Water Volume	2.4	Gal							
3 * Well Volume	7.20	Gal							
5 * Well Volume	12.00	Gal							

Well Purging Information

	Purge Method:	Perista	altic Pump	Start Time:	16:20	End Time:	17:10	
(If Used)	Bladder Pump Control Settings:	On (sec):		Off (sec):		Pressure:		psi
Pump	Intake Depth from Top of Casing:		19	ft-TOC				
W	Water Column Above Pump Intake:			feet	Flow Throu	ugh Cell Vol:	1000	mL
DTW-TOC at 259	% Drawdown of WC Above Pump:		9.09	ft-TOC		Commen	ts:	
	Final Volume Purged:		1.3	Gallons	Used Horiba	U-5000 / DR 8	90Colorimete	r
	Final Volume Purge Rate:			mL/min	Ferrous Iron 0.52 mg/L			
		No	(Yes/No)					

Field Parameters (Taken at time intervals with purge volumes ≥ 2 Flow Through Cell Volumes)

Ī		Volume		Depth to				Dissolved			
		Purged	Flow Rate	Water	Temp	pН	Spec. Cond.	Oxygen	ORP*	Turbidity	
	Time	(gal)	(mL/min)	(ft)	(°C)	(s.u.)	(µS/cm)	(mg/L)	(mV)	(NTU)	Comment
	16:20	0.0									Start Purging
	16:30	0.3	100		31.1	6.8	0	0.0	5	15.5	
	16:40	0.5	100		29.7	7.0	0	0.0	-47	16.6	
	16:50	0.8	100		29.3	7.0	0	0.0	-71	15.3	
	17:00	1.1	100		29.1	6.7	0	0.0	-63	13.8	
	17:10	1.3	100		29.0	6.5	0	0.0	-56	13.0	
	•				•			·	•		
	•				•			·	•		
Final:	17:10	1.3	100		29.0	6.5	0	0.0	-56	13.0	End of Purging
-	San	nple Method:	Peristal	tic Pump		Samp	le Start Time:	17:15	Samp	le End Time:	17:45

Analytical Data

Method	Qty	Container	Preservative	Method	Qty	Container	Preservative
SVOCs 8270	2	1L A	Unpreserved				
Chloride 4500	1	250mL P	Unreserved				
Alkalinity 5310	1	250mL P	Unpreserved				

	Name	Signature	Date
(1)	Gary Simcox		9/15/2016
			
(2)			
Notes:	To convert ORP to Eh, add 205 mv to ORP.		

Project Name:		Marsh Pamplico, SC	Purge Date:	September 15, 2016	
Project Location:		Pamplico, SC	Purge Time:	50 Minutes	
Project Number:		1584-98-146C	Sample Date:	September 15, 2016	
Source Well:		MW-23	Sample Time:	13:40	
Locked?:		No	Weather:	P/Sunny	
Sampled By:		Gary Simcox	Air Temp:	85 ° F	
Flow Through Cell Serial No.:	21234	Pump Serial No.:	103145	Calibration Date:	

Water Level & Well Data

	Measuring Point:			of Casing		
	Dept	7.57	ft-TOC			
	Total Well Depth:					
	Height of Water Column:					
Screen Length:	feet	Stickup:		ft-GRD		

Well Volume							
Well Diameter	2	inch					
Water Volume	1.3	Gal					
3 * Well Volume	3.88	Gal					
5 * Well Volume	6.47	Gal					

Well Purging Information

	Purge Method:			Start Time:	12:45	End Time:	13:35	
(If Used)	Bladder Pump Control Settings:	On (sec):		Off (sec):		Pressure:		psi
Pump	Pump Intake Depth from Top of Casing:			ft-TOC				
V	Water Column Above Pump Intake:			feet	Flow Throu	ıgh Cell Vol:	1000	mL
DTW-TOC at 25	DTW-TOC at 25% Drawdown of WC Above Pump:			ft-TOC		Commen	ts:	
	Final Volume Purged:			Gallons	Used Horiba	U-5000 / DR 8	90Colorimete	r
		100	mL/min	Ferrous Iron 3	3.30 mg/L			
	Well Purged Dry?:		No	(Yes/No)				

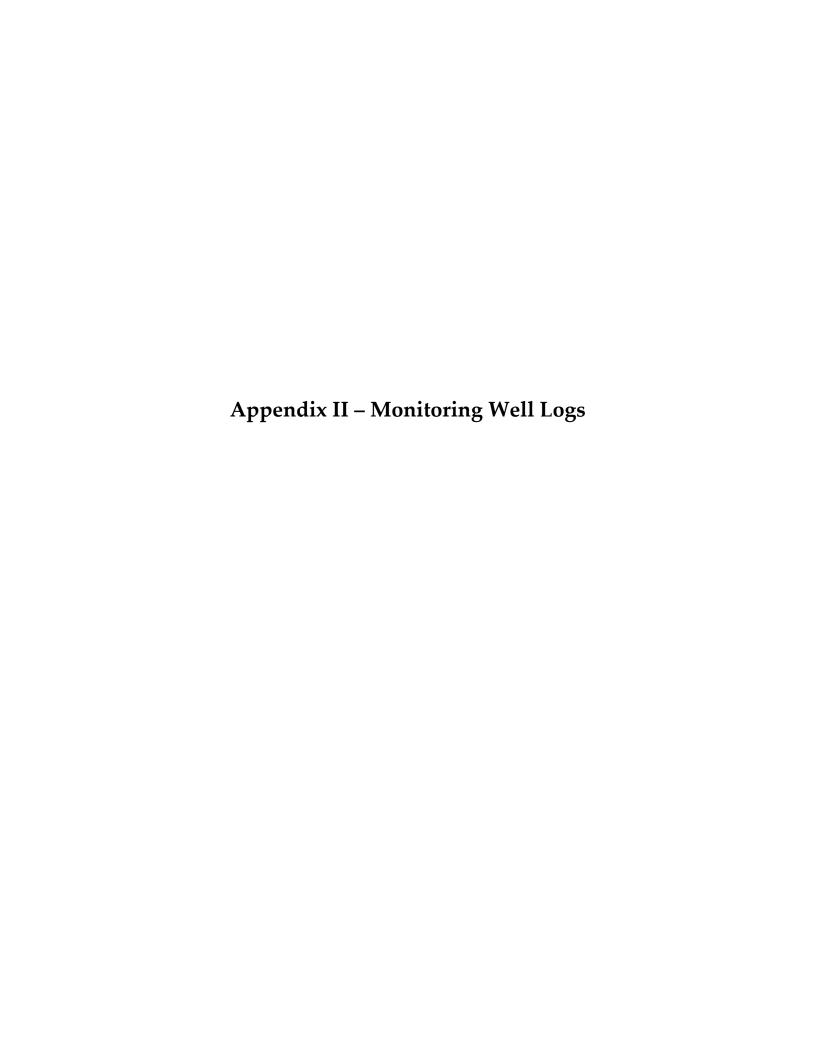
Field Parameters (Taken at time intervals with purge volumes ≥ 2 Flow Through Cell Volumes)

Peristaltic Pump

Sample Method:

	V	olume		Depth to				Dissolved			
	P	urged	Flow Rate	Water	Temp	рН	Spec. Cond.	Oxygen	ORP*	Turbidity	
Tim	e	(gal)	(mL/min)	(ft)	(°C)	(s.u.)	(µS/cm)	(mg/L)	(mV)	(NTU)	Comment
12:4	5	0.0									Start Purging
12:5	5	0.3	100		27.3	6.4	1	0.0	-35	56.4	
13:0	5	0.5	100		27.4	6.4	1	0.0	-42	26.0	
13:1	5	0.8	100		27.0	6.3	1	0.0	-37	18.2	
13:2	5	1.1	100		27.0	6.3	1	0.0	-38	11.8	
13:3	5	1.3	100		27.0	6.2	1	0.0	-36	11.9	
l: 13:3	5	1.3	100	•	27.0	6.2	1	0.0	-36	11.9	End of Purgin

Analytical Data


Method	Qty	Container	Preservative	Method	Qty	Container	Preservative
SVOCs 8270	2	1L A	Unpreserved				
Chloride 4500	1	250mL P	Unreserved				
Alkalinity 5310	1	250mL P	Unpreserved				

Sample Start Time: 13:40

	Name	Signature	Date
(1)	Gary Simcox		9/15/2016
(2)			
Notes:	To convert ORP to Eh, add 205 mv to ORP.		

Sample End Time:

14:10

1. WELLOWNER INFORMATION:			7. PERMIT NUMBER: 142.42		
			14343		
Name: Marsh Furniture Co. (last) (first)					
Address: P.O. Box 870	(1112	· · ·	8. USE:		
F.O. BOX 8/0			☐ Residential ☐ Public Supply ☐ Process		
City: High Point State: NC	Zip:		☐ Irrigation ☐ Air Conditioning ☐ Emergency		
ony. High Point olde. NC 24.			☐ Test Well ☐ Replacement		
Telephone: Work: (336) 884-7363	Home:		9. WELL DEPTH (completed) Date Started: 9/9/16		
2. LOCATION OF WELL: CO	OUNTY:		17 ft. Date Completed: 9/9/16		
Name: Marsh Lumber			10. CASING: ☑ Threaded ☐ Welded		
Street Address: 119 6th Ave.			Diam.; 2" Height: Above/Below		
	Zip:		Type: PVC Galvanized Surface 1.5' ft.		
Pampheo, Sc.			Steel Other Weight		
Latitude: Longitude			2 in. to 15 ft, depth Drive Shoe? Yes No		
moligitates			in. toft, depth		
3. PUBLIC SYSTEM NAME: PU	BLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2"		
			Type: PVC Diam.: 2' Slot/Gauge: 0.01"/ Sch 40 Length: 2'		
4. ABANDONMENT: ☐ Yes ☑	No		Set Between: 15 ft. and 17 ft. NOTE: MULTIPLE SCREENS		
Give Details Below			ft. andft. USE SECOND SHEET		
Grouted Depth: from f	t. to	ft.	Sieve Analysis ☐ Yes (please enclose) ☑ No		
	*Thickness		12. STATIC WATER LEVEL ft. below land surface after 24 hours		
Formation Description	of	Bottom of			
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.		
Fill - clayey to silty Sand	3.5	3.5'	ft, after hrs. Pumping GP.M.		
			Pumping Test: ☐ Yes (please enclose) ☑ No		
Lt. gray Clay	4'	7.5'	Yîeld:		
,			14. WATER QUALITY		
Lt. gray sandy Silt	2'	9.5'	Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☐ No		
			Please enclose lab results.		
Red-yellow fine sandy Silt	51	14.5'	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No		
7	0.51	1.77	Installed from 13.5 ft. to 17 ft. Effective size #2 med sand Uniformity Coefficient		
Brn-yellow fine sandy Clay	2.5'	17'			
			16. WELL GROUTED? ☑ Yes ☐ No		
			□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other		
			Depth: From <u>0</u> ft, to <u>13.5</u> ft,		
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction		
			Туре		
			Well Disinfected ☑ Yes ☐ No Type: Amount:		
			18. PUMP: Date installed: Not installed ☑		
			Mfr. Name: Model No.:		
			H.P. Volts Length of drop pipe ft. Capacity gpm		
			TYPE: ☐ Submersible ☐ Jet (shallow) ☐ Turbine ☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal		
			19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200		
			Address: (Print) Level: A B C D (circle one) 2205 Lancaster Ave., Monroe, NC		
			2207 Landagor Avo., Iviolitoc, 140		
*Indicate Water Bearing Zones			Telephone No.: 704-254-2885 Fax No.: 803-548-2233		
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under		
			my direction and this report is true to the best of my knowledge and belief.		
5. REMARKS:					
BSW-3			1 1 - 1 N. 1		
			Signed:		
			Mail Driller		
6. TYPE: ☐ Mud Rotary ☐ Jetted	₽ 1	Bored	If D Level Driller, provide supervising driller's name:		
□ Dug □ Air Rotary □ Driven			ii D Level Driller, provide supervising uniter's name.		
☐ Cable tool ☐ Other					

PROJECT: Marsh Lumber

PROJECT NO: 1584-98-146C

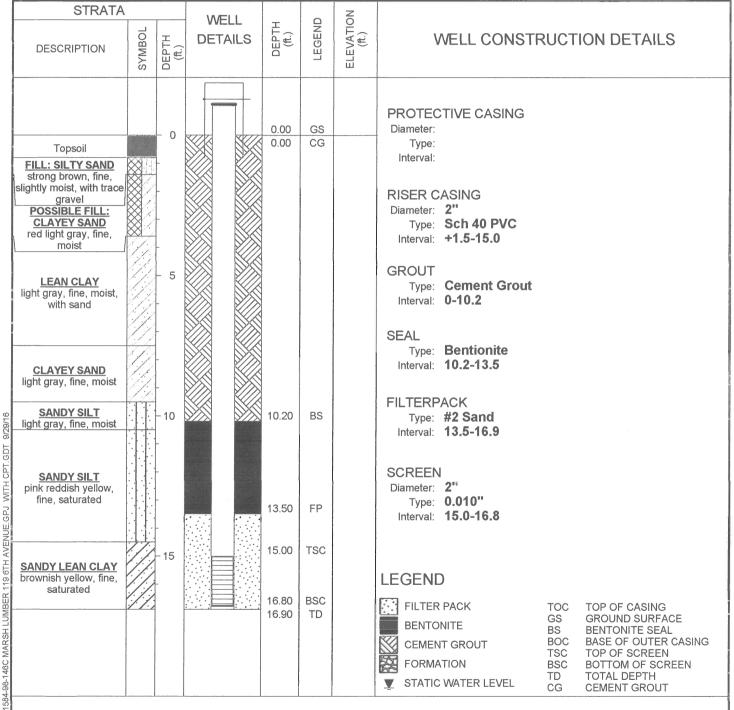
WATER LEVEL:

PROJECT LOCATION: 119 6th Avenue Pamplico, SC

LATITUDE:

DRILLING CONTRACTOR: Environmental Drilling & Probing Services

LONGITUDE:


DRILLING METHOD: 41/4" H.S.A.

TOP OF CASING ELEVATION:

DATE COMPLETED: 9/9/16

DATUM:

LOGGED BY: Lyndal Butler

1. WELLOWNER INFORMATION:			7. PERMIT NUMBER: 14343
Name: Marsh Furniture Co.			14343
(last) (first)			8, USE:
Address: P.O. Box 870			☐ Residential ☐ Public Supply ☐ Process
City VV 1 P 1 . State NV	Y Zie.		☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: High Point State: NC Zip:			☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: (336) 884-7363	Horne:		9. WELL DEPTH (completed) Date Started: 9/9/16
2. LOCATION OF WELL: C	DUNTY:		16 pate Completed: 9/9/16
Name: Marsh Lumber			10. CASING: ☑ Threaded ☐ Welded
Street Address: 119 6th Ave.			Diam.: 2" Height: Above/Below
City: Pamplico, SC	Zip:		Type: ☑ PVC ☐ Galvanized Surface 2.9' ft.
amphies, oc			Steel Other Weight
Latitude: Longitude:			2in. to 6ft. depth
			in. toft. depth
3. PUBLIC SYSTEM NAME: PL	BLIC SYSTE	M NUMBER:	11. SCREEN:
		j	Type: PVC Diam.: 2" Length: 10'
4. ABANDONMENT: ☐ Yes ☑	No		1/
Give Details Below			Set Between: 0 ft. and 10 ft. NOTE: MULTIPLE SCREENS ft. USE SECOND SHEET
Grouted Depth: from	ft. to	ft.	Sieve Analysis ☐ Yes (please enclose) ☑ No
	*Thickness	Depth to	12. STATIC WATER LEVEL 8.91 ft. below land-our face after 24 hours
Formation Description	of	Bottom of	
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface,
Fill - clayey to silty Sand	3.5'	3.5'	ft. afterhrs. PumpingG.P.M. Pumping Test: ☐ Yes (please enclose) ☑ No
	-		
Lt. gray sandy Silt	1.5'	5'	Yield:
			14. WATER QUALITY
Lt. gray-brn silty Sand	9'	14'	Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☐ No Please enclose lab results.
T		1.61	
Lt. gray Sand	2'	16'	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
			Installed from 4.5 ft. to 16 ft. Effective size #2 med sand Uniformity Coefficient
			16. WELL GROUTED? Yes No
			□ Neat Cement □ Bentonite □ Bentonite/Cement □ Other □
			Depth: From <u>0</u> ft. to <u>4.5</u> ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected ☐ Yes ☑ No Type: Amount:
			18. PUMP: Date installed: Not installed 🗹
			Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200
			Address: (Print) Level: A B C D (circle one)
			2205 Lancaster Ave., Monroe, NC
*Indicate Water Bearing Zones			Telephone No.: 7()4-254-2885 Fax No.: 803-548-2233
			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			
MW-17A			
			Signed: Jacob J Ripa Date: 10/3/16
			Signed: Well Differ Date: 10/3/16
e Type. Charles	<u> </u>	Daniel Control	
6. TYPE: Mud Rotary Jetted Bored			If D Level Divier, provide supervising driller's name:
☐ Dug ☐ Alr Rotary ☐ Driven ☐ Cable tool ☐ Other			
D Capie (co) D Office			

PROJECT: Marsh Lumber

PROJECT NO: 1584-98-146C

PROJECT LOCATION: 119 6th Avenue Pamplico, SC

WATER LEVEL: Depth to water 8.91 feet

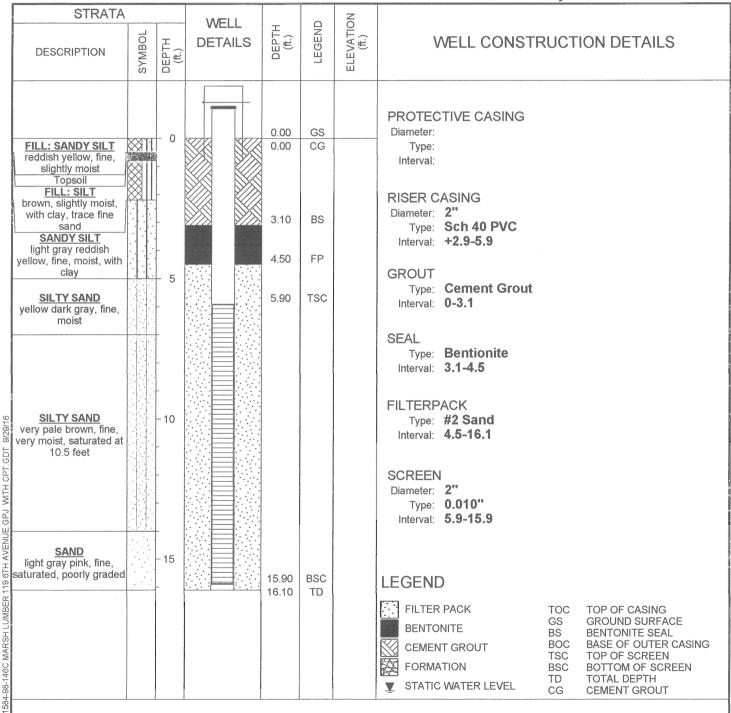
below top of casing

9/15/2016

LATITUDE:

DRILLING CONTRACTOR: Environmental Drilling & Probing Services

LONGITUDE:


DRILLING METHOD: 41/4" H.S.A.

TOP OF CASING ELEVATION:

DATE COMPLETED: 9/9/16

DATUM

LOGGED BY: Lyndal Butler

1. WELLOWNER INFORMATION:			7. PERMIT NUMBER: 14242
Name: Marsh Furniture Co.			14343
(last)	(fire	st)	8. USE:
Address: P.O. Box 870			Residential Public Supply Process
			☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: High Point State: NC	Zip:		☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: (336) 884-7363	Home:		9. WELL DEPTH (completed) Date Started: 9/8/16
	DUNTY:		16 pate Completed: 9/8/16
Name: Marsh Lumber			10. CASING: ☑ Threaded ☐ Welded
Street Address: 119 6th Ave.			Diam.; 2" Height Above/Below
	Zip:		Type: ☑ PVC ☐ Galvanized Surface 2.6' tt.
Pampheo, SC			☐ Steel ☐ Other Weight — lb./ft.
Latitude: Longitude:			2 in to 7.4 ft. depth Drive Shoe? ☐ Yes ☑ No
			in. to ft. depth
3. PUBLIC SYSTEM NAME: PU	BLIC SYSTE	M NUMBER:	11. SCREEN:
			Type: PVC Diam.: 2" Slot/Gauge: 0.01"/ Sch 40 Length: 10'
4. ABANDONMENT: Yes	No		Set Between: 7.4 ft. and 17.4 ft. NOTE: MULTIPLE SCREENS
Give Details Below			ft. andft. USE SECOND SHEET
Grouted Depth: fromf	ft. to	ft.	Sieve Analysis ☐ Yes (please enclose) ☑ No
	*Thickness		12. STATIC WATER LEVEL 5.76 ft. below land surface after 24 hours
Formation Description	of	Bottom of	
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.
Fill - clayey Silt	31	31	ft. afterhrs. PumpingG.P.M. Pumping Test: ☐ Yes (please enclose) ☑ No
		0.1	Yield:
Gray silty Sand	5'	8'	
		gı .	14. WATER QUALITY Chamier Anglysis IT Van IT No. Restoriet Anglysis IT Van IT No.
Green Clay	1'	9.	Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☐ No Please enclose lab results.
Y 4 G 1	0.51	9.5'	
Lt. gray Sand	0.5'	9.5	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
Brn sandy Silt	2'	11.5'	Installed from <u>5.2</u> ft, to <u>17.6</u> ft. Effective size <u>#2 med sand</u> Uniformity Coefficient
Din Sandy Bit	2	11.5	
Ly gray-brn silty Sand 6.1' 17.6'		17.6'	16. WELL GROUTED? ☑ Yes ☐ No ☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other
Dy gray our birty band	0.1		Depth: From 0 ft. to .5.2 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: fl direction Type
			Well DisInfected ☐ Yes ☑ No Type; Amount:
			18. PUMP: Date installed: Not installed ☑ Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200
			Address: (Print) Level: A B C D (circle one)
			2205 Lancaster Ave., Monroc, NC
*Indicate Water Bearing Zones			Telephone No.: 7()4-254-2885 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
			my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			
MW-19			1 + V. 1
			Signed: Date: 10/3/16
			Well Driller
6. TYPE: ☐ Mud Rotary ☐ Jetted ☑ Bored			If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotary ☐ Driven			
☐ Cable tool ☐ Other			

PROJECT: Marsh Lumber

PROJECT NO: 1584-98-146C

PROJECT LOCATION: 119 6th Avenue Pamplico, SC

WATER LEVEL: Depth to water 5.76 feet

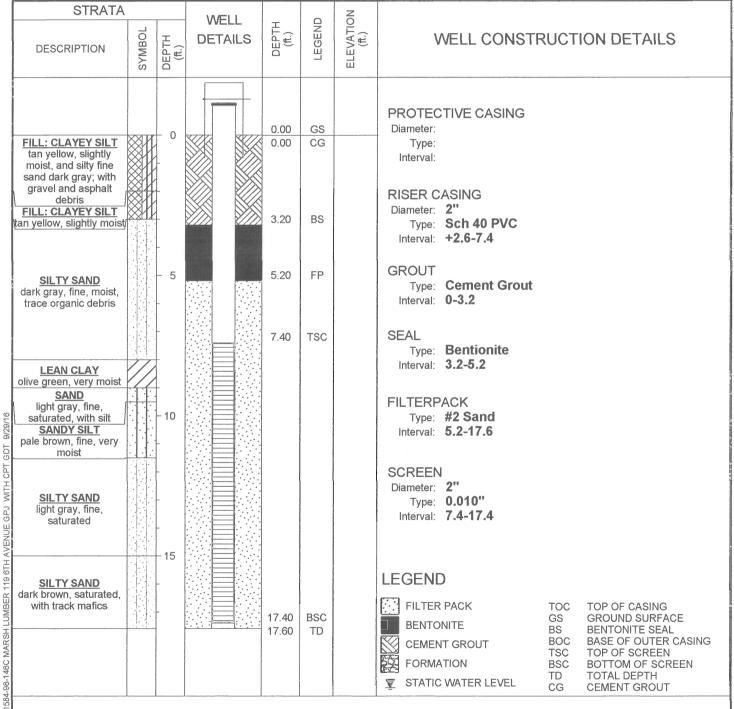
below top of casing on

9-15-2016

LATITUDE:

DRILLING CONTRACTOR: Environmental Drilling & Probing Services

LONGITUDE:


DRILLING METHOD: 41/4" H.S.A.

TOP OF CASING ELEVATION:

DATE COMPLETED: 9/8/16

DATUM:

LOGGED BY: Lyndal Butler

1. WELLOWNER INFORMATION:		***************************************	7. PERMIT NUMBER:
Name: Marsh Furniture Co.			14343
(last) (first)			8. USE:
Address: P.O. Box 870			Residential Public Supply Process
City IV I D State NO	Tie.		☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: High Point State: NC	Zip;		☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: (336) 884-7363	Home:		9. WELL DEPTH (completed) Date Started: 9/9/16
2. LOCATION OF WELL: C	OUNTY:		13.9 ft. Date Completed: 9/9/16
Name: Marsh Lumber			10. CASING: ☑ Threaded ☐ Welded
Street Address: 119 6th Avc.			Diam.: 2" Height: Above/Below
City: Pamplico, SC	Zip:		Type: ☑ PVC ☐ Galvanized Surface 2.9' ft.
- rumphed, 60			
Latitude: Longitude:			2 in, to 3.9 ft. depth Drive Shoe? Yes No
			in. toft. depth
3. PUBLIC SYSTEM NAME: PL	IBLIC SYSTE	M NUMBER:	11. SCREEN:
			Type: PVC Diam.: 2" Slot/Gauge: 0.01"/ Sch 40 Length: 10'
4. ABANDONMENT: Yes	No		2.0 12.0
Give Details Below			Set Between: 3.9 ft. and 13.9 ft. NOTE: MULTIPLE SCREENS ft. and ft. USE SECOND SMEET
Grouted Depth: from	ft. to	ft.	Sieve Analysis ☐ Yes (please enclose) ☑ No
	*Thickness	Depth to	12. STATIC WATER LEVEL 7.37 ft. below land spiece after 24 hours
Formation Description	of	Bottom of	
T111 C1 / 11 1 C 1	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface. ft, after hrs, Pumping G.P.M.
Fill - Clay/silty-clayey Sand	3'	3'	Pumping Test: Yes (please enclose) No
Dd alarser Can d	2'	5'	Yield:
Rd clayey Sand	2	3	14. WATER QUALITY
Crox Sno Sand	2.5'	7.5'	Chemical Analysis ☐ Yes ☑ No Bacterial Analysis ☐ Yes ☐ No
Gray fine Sand	2.3	1.5	Please enclose lab results.
Blk fine silty Sand	0.5'	8'	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
Dik into sirry band	0.5	0	Installed from 2.9 # to 14.1 #
Drk gray Sand	1.5'	9.51	Installed from 2.9 ft. to 14.1 ft. Effective size #2 med sand Uniformity Coefficient
			16. WELL GROUTED? ☑ Yes ☐ No
Lt gray-brn silty Sand	3.5'	13'	□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other
			Depth: From 0 ft. to 2.9 ft.
Lt gray Sand	1.1'	14.1'	17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft. direction
			Type
			Well Disinfected ☐ Yes ☑ No Type: Amount:
			18. PUMP: Date Installed: Not installed
			Mfr. Name: Model No.:
			H.P. Volts Length of drop pipe ft. Capacity gpm
			TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200
	7840		Address: (Print) Level: A B C D (circle one)
			2205 Lancaster Ave., Monroe, NC
*Indicate Water Bearing Zones			T
mulcate water bearing zones			Telephone No.: 7()4-254-2885 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)			 WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			my and sold and and report to add to the best of my anomicuge and pener.
MW-20			
			1 1 4 1/1
			Signed:
			Well Driller
6. TYPE: Mud Rotary		Bored	If D Lever Driller, provide supervising driller's name:
☐ Dug ☐ Air Rot☐ Cable tool ☐ Other	ary ⊔ l	Driven	*
☐ Cable tool ☐ Other			

PROJECT: Marsh Lumber

PROJECT NO: 1584-98-146C

PROJECT LOCATION: 119 6th Avenue Pamplico, SC

WATER LEVEL: Depth to water 7.37 feet

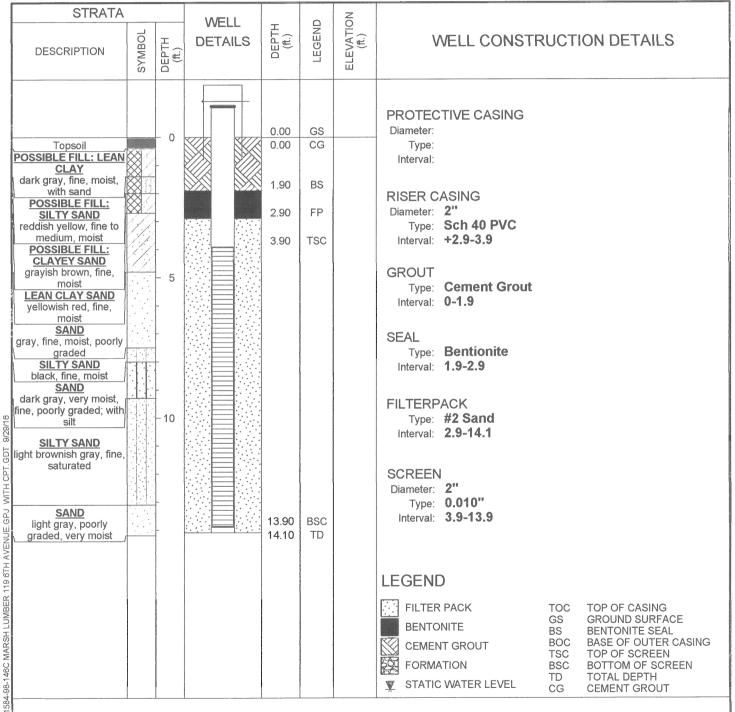
below Top of casing on

9-15-2016

LATITUDE:

DRILLING CONTRACTOR: Environmental Drilling & Probing Services

LONGITUDE:


DRILLING METHOD: 41/4" H.S.A.

TOP OF CASING ELEVATION:

DATE COMPLETED: 9/9/16

DATUM:

LOGGED BY: Lyndal Butler

4 WELLOWNED INCOMATION			7 DEDMIT NUMBER.		
1, WELLOWNER INFORMATION:			7. PERMIT NUMBER: 14343		
Name: Marsh Furniture Co.	(firs	ef\			
Address: P.O. Box 870	(1112	31,	8. USE:		
P.O. Box 8/0			☐ Residential ☐ Public Supply ☐ Process		
City: High Point State: NC	Zip:		☐ Irrigation ☐ Air Conditioning ☐ Emergency		
Tight Omt	•		☐ Test Well ☑ Monitor Well ☐ Replacement		
Telephone: Work: (336) 884-7363	Home:		9. WELL DEPTH (completed) Date Started: 9/9/16		
2. LOCATION OF WELL: CO	DUNTY:		15.8 Date Completed: 9/9/16		
Name: Marsh Lumber			10. CASING: ☐ Threaded ☐ Welded		
Street Address: 119 6th Avc.			Diam.: 2 ^{rr} Height: Above/Betow		
City: Pamplico, SC	Zip:		Type: ☑ PVC ☐ Galvanized Surface 31 ft.		
i winpined, be			Steel Other Weighttb./ft.		
Latitude: Longitude:			2in. to 5.8ft_depth Drive Shoe? ☐ Yes ☑ No		
			in. toft. depth		
3. PUBLIC SYSTEM NAME: PU	BLIC SYSTE	M NUMBER:	11. SCREEN: Type: PVC Diam.: 2"		
			Type: 1/0 Diam.: 2 Slot/Gauge: 0.01"/ Sch 40 Length: 10'		
4. ABANDONMENT: ☐ Yes ☑	No		Set Between: 5.8 ft. and 15.8 ft. NOTE: MULTIPLE SCREENS		
Give Details Below			ft. andft. USE SECOND SHEET		
Grouted Depth: from1	t. to	ft.	Sieve Analysis ☐ Yes (please enclose) ☑ No		
	*Thickness		12. STATIC WATER LEVEL 7.94 ft. below tendede after 24 hours		
Formation Description	of	Bottom of			
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.		
Fill - sandy Silt	7'	7'	ft, afterhrs, PumpingG.P.M.		
			Pumping Test: ☐ Yes (please enclose) ☑ No		
Lt gray-red silty Sand	6'	13'	Yield:		
			14. WATER QUALITY		
Rd-yelow fine-med Sand	3'	16'	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No		
			Please enclose lab results.		
Drk gray Clay	1'	17'	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No		
			Installed from 4 tt. to 16 ft.		
			Effective size #2 med sand Uniformity Coefficient		
			16. WELL GROUTED? ☑ Yes ☐ No		
			☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other		
			Depth: From 0 ft. to 4 ft.		
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction		
			Туре		
			Well Disinfected ☐ Yes ☑ No Type: Amount:		
			18. PUMP: Date installed: Not installed 🗹		
			Mfr. Name; Model No.:		
			H.P Volts Length of drop pipe ft. Capacity gpm		
			TYPE: Submersible Jet (shallow) Turbine		
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal		
			19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200		
			Address: (Print) Level: A B C D (circle one)		
			2205 Lancaster Ave., Monroe, NC		
*Indicate Water Bearing Zones			Telephone No.: 7()4-254-2885 Fax No.: 803-548-2233		
and determined and a second			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under		
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.		
5. REMARKS:					
MW-21			1 1 2 2		
414.11 464			(lac. 1 1/2)		
			Signed: Moll Delay Date: 10/3/16		
			Well Diffler		
6. TYPE: ☐ Mud Rotary ☐ Jetted ☐ Bored			If D Level Driller, provide supervising driller's name:		
☐ Dug ☐ Air Rotary ☐ Driven			*		
☐ Cable tool ☐ Other					

PROJECT: Marsh Lumber

PROJECT NO: 1584-98-146C

PROJECT LOCATION: 119 6th Avenue Pamplico, SC

WATER LEVEL: Depth to water 7.94 feet

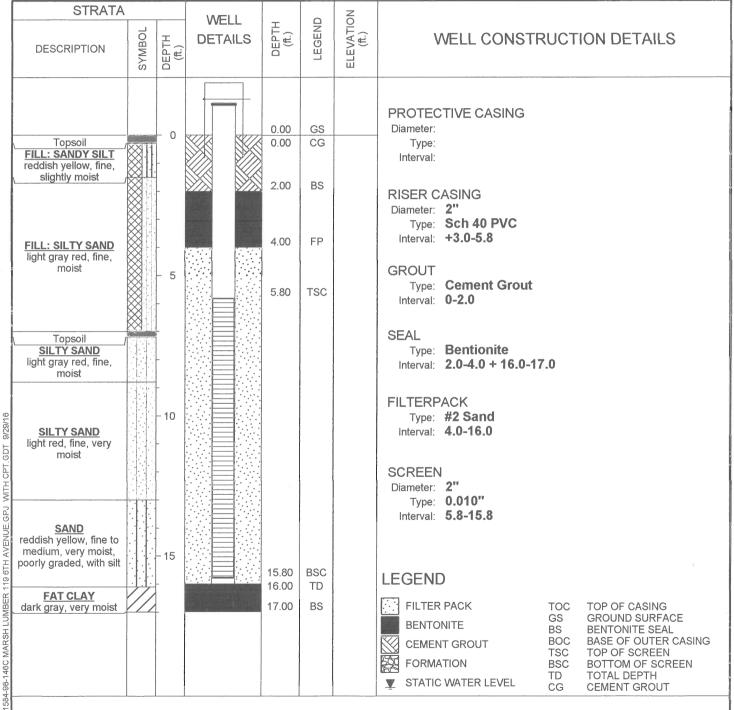
below Top of Casing on

9-15-2016

LATITUDE:

DRILLING CONTRACTOR: Environmental Drilling & Probing Services

LONGITUDE:


DRILLING METHOD: 41/4" H.S.A.

TOP OF CASING ELEVATION:

DATE COMPLETED: 9/9/16

DATUM

LOGGED BY: Lyndal Butler

1. WELLOWNER INFORMATION:			7. PERMITNUMBER: 14242
Name: Marsh Furniture Co.			14343
(last) (first)			8. USE:
Address: P.O. Box 870			☐ Residential ☐ Public Supply ☐ Process
City: IV. L. D State: N/	1 7in:		☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: High Point State: NO	Zip:		☐ Test Well
Telephone: Work: (336) 884-7363	Home:		9. WELL DEPTH (completed) Date Started: 9/9/16
	OUNTY:		17.1 ft. Date Completed: 9/9/16
Name: Marsh Lumber			17.1 ft. Date Completed: 9/9/16 10. CASING: ☑ Threaded ☐ Welded
Street Address: 119 6th Ave.			Diam.; 2" Height: Above/Below
City: Pamplico, SC	Zip:		Type: PVC Galvanized Surface 2.5' ft.
Pamplico, SC:			☐ Steel ☐ Other Weight
Latitude: Longitude:			2 in. to 7.1ft. depth Drive Shoe? ☐ Yes ☑ No
Landae. Longitude.			in. toft. depth
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER:			11. SCREEN:
			Type: PVC Diam.: 2"
4. ABANDONMENT: ☐ Yes ☑	No		Slot/Gauge: 0.01"/ Sch 40 Length: 10'
Give Details Below	NO		Set Between: 7.1 ft. and 17.1 ft. NOTE: MULTIPLE SCREENS
Grouted Depth: from	ft to	4	ft. andft. USE SECOND SHEET
Olphada Deput. 110111	*Thickness		Sieve Analysis ☐ Yes (please enclose) ☑ No
Formation Description	of	Bottom of	12. STATIC WATER LEVEL 5.79 ft. below-land purious after 24 hours
	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.
Fill - silty Sand	1'	1'	ft. after hrs. Pumping G.P.M.
			Pumping Test: ☐ Yes (please enclose) ☑ No
Rd-yellow Silt	2'	3'	Yield:
			14. WATER QUALITY
Rd-yelow fine Sand	3.5'	6.5'	Chemical Analysis 🗌 Yes 🗹 No 🗎 Bacterial Analysis 🗍 Yes 🔲 No
			Please enclose lab results.
Rd-It gray Silt	1'	7.5'	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
			Installed from 5 ft. to 17.5 ft. Effective size #2 med sand Uniformity Coefficient
Lt gray silty Sand	7'	14.5'	Effective size #2 med sand Uniformity Coefficient
			16. WELL GROUTED? ☑ Yes ☐ No
Brn-yellow fine Sand	3	17.5'	☐ Neat Cement ☐ Bentonite ☑ Bentonite/Cement ☐ Other
			Depth: From 0 ft. to 5 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Туре
			Well Disinfected ☐ Yes ☑ No Type: Amount:
			18. PUMP: Date installed: Not installed @
			Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
1			19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200
			Address: (Print) Level: A B C D (circle one)
			2205 Lancaster Ave., Monroe, NC
*Indicate Motor Province 7			
*Indicate Water Bearing Zones			Telephone No.: 7()4-254-2885 Fax No.: 803-548-2233
(Use a 2nd sheet if needed)			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
5. REMARKS:			my direction and this report is true to the best of my knowledge and belief.
MW-22			
TAT \$4 -7-7			$\Lambda \Lambda $
			Signed: Mall Driller Date: 10/3/16
			Well Driver
6. TYPE: ☐ Mud Rotary ☐ Jetted		3ored	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rotary ☐ Driven			=
☐ Cable tool ☐ Other			

PROJECT: Marsh Lumber

PROJECT NO: 1584-98-146C

PROJECT LOCATION: 119 6th Avenue Pamplico, SC

WATER LEVEL: Depth to water 5.79 feet

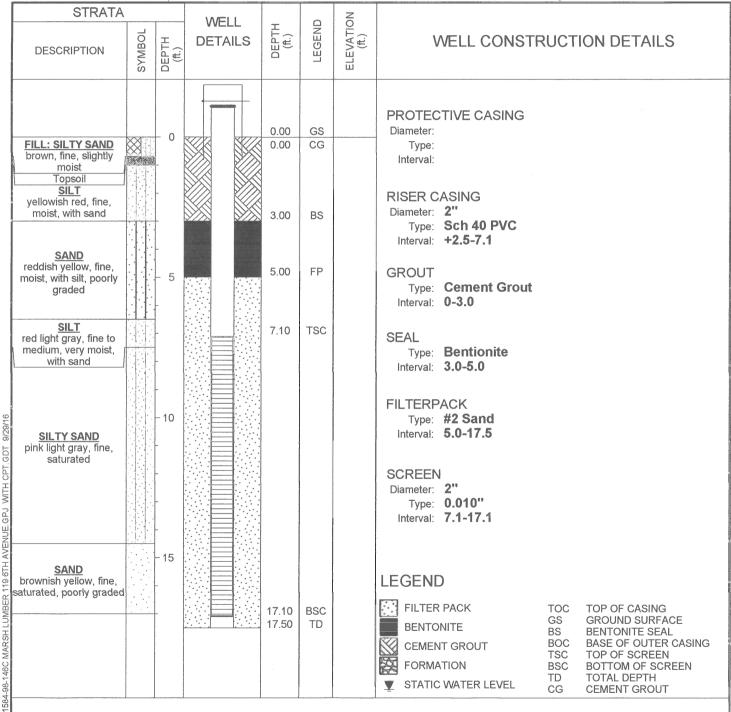
below top of casing on

9-15-2016.

LATITUDE:

DRILLING CONTRACTOR: Environmental Drilling & Probing Services

LONGITUDE:


DRILLING METHOD: 41/4" H.S.A.

TOP OF CASING ELEVATION:

DATE COMPLETED: 9/9/16

DATUM:

LOGGED BY: Lyndal Butler

1. WELLOWNER INFORMATION:			7. PERMIT NUMBER: 14242
Name: Marsh Furniture Co.			14343
(last) (first)			8. USE:
Address: P.O. Box 870			☐ Residential ☐ Public Supply ☐ Process
City: High Point State: NC	Zip:		☐ Irrigation ☐ Air Conditioning ☐ Emergency
City: High Point State: NC	, zip.		☐ Test Well ☐ Monitor Well ☐ Replacement
Telephone: Work: (336) 884-7363	Home:		9. WELL DEPTH (completed) Date Started: 9/9/16
2. LOCATION OF WELL: CO	OUNTY:		11.8 pate Completed: 9/9/16
Name: Marsh Lumber			10. CASING: ☑ Threaded ☐ Welded
Street Address: 119 6th Ave.			Diam.: 2 th Height Above/Below
City: Pamplico, SC	Zip:		Type: ☑ PVC ☐ Galvanized Surface 2.8' ft,
			□ Steel □ Other Weight ────────────────────────────────────
Latitude: Longitude) :		in, toft. depth Drive Shoe? ☐ Yes ☑ Noin, toft, depth
2 DUDI IC OVETEN MANE. DI	IBLIC CVCTE	MANUADED.	11. SCREEN:
3. PUBLIC SYSTEM NAME: PL	BUCSISIE	M NOMBEK:	Type: PVC Diam.: 2"
4 ADAMPANTA II V			Slot/Gauge: 0.01"/ Sch 40 Length: 5'
4. ABANDONMENT: Yes	NO		Set Between: 6.8 ft. and 11.8 ft. NOTE: MULTIPLE SCREENS
Give Details Below	ft to	e.	ft. andft. USE SECOND SHEET
Grouted Depth: from	*Thickness		Sieve Analysis ☐ Yes (please enclose) ☑ No
Formation Description	of	Bottom of	12, STATIC WATER LEVEL 7.57. ft. below land outline after 24 hours
i omation boompton	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.
Fill - sandy Silt	4.5'	4.5'	ft. after hrs. Pumping G.P.M.
			Pumping Test: ☐ Yes (please enclose) ☑ No
Olive grn fine Sand	4'	8.5'	Yield:
			14. WATER QUALITY
Lt gray fine clayey Sand	3'	11.5'	Chemical Analysis ☐ Yes ☐ No Bacterial Analysis ☐ Yes ☐ No Please enclose lab results.
Lt gray silty Sand	0.7'	12.2'	15. ARTIFICIAL FILTER (filter pack) ☑ Yes ☐ No
Lt gray siity Saild	0.7	12,2	
			Installed from 5 ft. to 12.2 ft.
			16. WELL GROUTED? ☑ Yes ☐ No
			□ Neat Cement □ Bentonite □ Bentonite/Cement □ Other
			Depth: From 0 ft. to 5 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: \$\frac{\pi}{2}\$. direction
			Туре
			Well Disinfected ☐ Yes ☑ No Type: Amount:
			18. PUMP: Date Installed: Not installed 🔽
			Mfr. Name: Model No.;
			H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Jacob Kiker CERT. NO.: 2200
			Address: (Print) Level: A B C D (circle one)
			2205 Lancaster Ave., Monroe, NC
*Indicate Water Bearing Zones			Telephone No.: 7()4-254-2885 Fax No.: 803-548-2233
(the expedience if and the			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)			my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			
MW-23			$0 \cdot l \cdot l \cdot N \cdot l$
			Signed: Jacob & Rihm Date: 10/3/16
			Well griller
6. TYPE: ☐ Mud Rotary ☐ Jetted ☑ Bored			If D Level Oriller, provide supervising driller's name:
☐ Dug ☐ Air Rotary ☐ Driven			4
☐ Cable tool ☐ Other			

PROJECT: Marsh Lumber

PROJECT NO: 1584-98-146C

PROJECT LOCATION: 119 6th Avenue Pamplico, SC

WATER LEVEL: Depth to water 7.57 feet

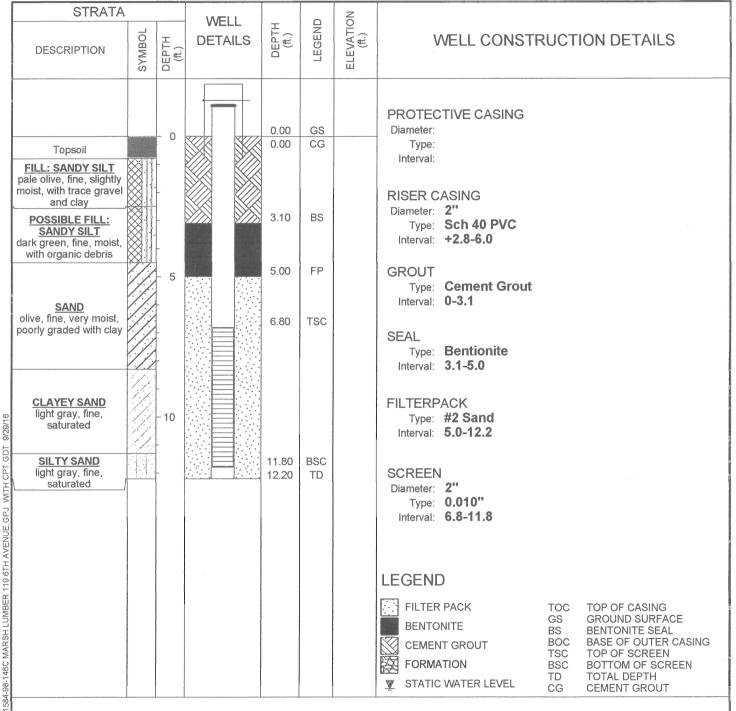
below top of casing on

9-15-2016

LATITUDE:

DRILLING CONTRACTOR: Environmental Drilling & Probing Services

LONGITUDE:


DRILLING METHOD: 41/4" H.S.A.

TOP OF CASING ELEVATION:

DATE COMPLETED: 9/9/16

DATUM:

LOGGED BY: Lyndal Butler

