de maximis. inc.

450 Montbrook Lane Knoxville, TN 37919 865-691-5052 phone 865-691-6485 fax

May 27, 2022

Mr. Tim Hornosky SC Department of Health and Environmental Control Bureau of Land and Waste Management 2600 Bull Street Columbia, South Carolina 29201

Subject: 2021 2nd Semi-Annual Monitoring and Annual Report Summary Former Federal Pacific Electric Company Facility (Site ID 00346) Edgefield, South Carolina

Dear Mr. Hornosky:

On behalf of Federal Pacific Electric Company (FPE), we are submitting the 2021 2nd Semi-Annual Monitoring and Annual Report Summary, one hardcopy and an electronic copy. The submitted document generally follows the outline discussed and provided with our 80CT21 submittal and provides a summary and interpretation of the groundwater monitoring, surface water monitoring and recovery/treatment system data collected at the facility during 2021. In addition, this report provides an evaluation of the effectiveness of ongoing groundwater recovery/treatment, the results of ongoing remedial investigations, system and facility maintenance activities, and recommendations.

If you have questions or comments, please feel welcome to contact me at 865-691-5052 or Jeff Beckner at 706-828-4421.

Best regards,

de maximis. inc.

Bennie L. Underwood

cc: J. Beckner, Arcadis

RECEIVET

JUN 01 2022

SITE ASSESSMENT, REMEDIATION, & REVITALIZATION

Allentown, PA • Clinton, NJ • Greensboro, GA • Knoxville, TN • San Diego, CA • Irvine, CA • Sarasota, FL • Houston, TX • Windsor, CT • Waltham, MA • Guilderland, NY

CD Scanned PM Copy 51133

ARCADIS

JUN 01 2022

SITE ASSESSMENT, REMEDIATION, & REVITALIZATION

FORMER FEDERAL PACIFIC ELECTRIC CO. SITE

2021 2nd SEMIANNUAL MONITORING AND ANNUAL SUMMARY REPORT

Site ID – 00346, Edgefield, SC

May 2022

Bennie L'Anderwood

Bennie L. Underwood, P.E. Trustee, FPE Liquidation Trust

Jeff S. Becker ARCADIS U.S. ONAL G

2021 2nd SEMIANNUAL MONITORING AND ANNUAL SUMMARY REPORT

Former Federal Pacific Electric Co. Site Edgefield, South Carolina

Prepared for: Federal Pacific Electric

Prepared by: Arcadis U.S., Inc. 1450 Greene Street Suite 220 Augusta Georgia 30901-5201 Tel 706 828 4421 Fax 706 828 4722

Our Ref.: 30067293 Date: May 2022

CONTENTS

ΕX	ECU	TIVE SUMMARY	.1
1	INT	RODUCTION	.2
2	SUN	IMARY OF 2021 ACTIVITIES	.2
		Weekly Groundwater Recovery and Treatment System Operation, Maintenance, Monitoring, an thly Discharge Sampling	
	2.2	Quarterly Groundwater Gauging	.3
	2.3	Semiannual Surface-Water and Groundwater Quality Monitoring	.4
	2.4	Recovery and Treatment System Modifications	.4
		Main Treatment System PLC Panel Upgrade	.4
3	GRO	DUNDWATER FLOW AND RECOVERY SYSTEM INFLUENCE	.4
	3.1	Groundwater Occurrence and Flow	.4
	3.2	Groundwater Recovery and Treatment System	.5
4	SUF	RFACE WATER AND GROUNDWATER QUALITY	.5
	4.1	Surface Water Quality	.5
	4.2	Groundwater Quality	.6
		Saprolite Zone Groundwater	.6
		PWR Zone Groundwater	.6
		Bedrock Zone Groundwater	.6
5	GRO	DUNDWATER RECOVERY SYSTEM EFFECTIVENESS	.6
	202	1 Onsite System Groundwater Volume and CHC Mass Recovery	.7
	202 ⁻	1 Offsite System Groundwater Volume and CHC Mass Recovery	.7
	СНС	C Distribution and Mass Recovery Over Time	.8
6	PLA	NNED 2022 ACTIVITIES	.9

FIGURES

Figure 1	Well Gauging ar	nd Surface Water	Monitoring	Locations

- Figure 2 Groundwater Contours: Saprolite Zone September 2021
- Figure 3 Groundwater Contours: Partially Weathered Rock Zone September 2021
- Figure 4 Groundwater Contours: Bedrock Zone September 2021
- Figure 5 Groundwater Recovery System Capture Zone September 2021
- Figure 6 Surface Water Quality September 2021
- Figure 7 Trichloroethene Distribution: Saprolite September 2021
- Figure 8 Trichloroethene Distribution: PWR September 2021
- Figure 9 Trichloroethene Distribution: Bedrock September 2021
- Figure 10 Total Extracted CHC Mass by Well: 2021
- Figure 11 TCE Distribution in PWR and Bedrock: 2004, 2012, and 2021
- Figure 12 Influent CHC Concentration Trends: Recovery Wells: 2004 2021

TABLES

- Table 1 2021 Reporting and Regulatory Correspondence
 Table 2 Groundwater Elevation Gauging Data September and December 2021
 Table 3 Surface Water Quality Data 3Q21
 Table 4 Groundwater Quality Data 3Q21
- Table 5
 Groundwater Recovery Volumes January December 2021

APPENDICES

- A Groundwater Recovery/Treatment System Operating and Monitoring Data
- B Surface Water and Groundwater Quality Analytical Data Reports September 2021

EXECUTIVE SUMMARY

This report provides a summary of the status of FPE's ongoing groundwater recovery and compliance monitoring during the period from July to December 2021, a summary of 2021 remedial action effectiveness, and anticipated 2022 activities. The groundwater, surface water, and treatment/recovery system data collected during 2021 indicate the following:

- The saprolite and partially weathered rock (PWR) remain dewatered in most of the on-site area in response to continued groundwater extraction. The off-site recovery system has produced depressed groundwater levels in the vicinity of Rabbit Trail Road.
- The operating groundwater extraction systems continue to influence chlorinated hydrocarbon (CHC) concentration trends. In general, fluctuating, but overall decreasing dissolved CHC concentration trends are occurring both on-site and downgradient of the former FPE facility. The fluctuations in the concentration trends are seasonal and reflect variability in groundwater level and changes in transport pathways as a function of increasing capture zones and changes in pumping operations.
- Reported CHC concentrations in all sampled Odell Reservoir surface water stations were below the laboratory detection limits during both 2021 monitoring events. CHC concentrations at all reservoir stations have been below South Carolina Surface Water Quality Standards (SCSWQS) since March 2010 and are attributed to the startup and operation of the active off-site groundwater recovery system.
- In 2021, approximately 8.1 million gallons (Mgal) of groundwater and 184 lbs of CHC mass were extracted by the on-site recovery system (EW-1R, EW-2, EW-3, EW-4, and EW-5). This represents an approximate 7 percent increase in recovered groundwater and an approximate 24 percent decrease in mass recovery compared to 2020 and is attributed to the decreasing CHC concentrations in recovered groundwater during 2021.
- In 2021, the off-site active recovery system (EW-10, EW-11, EW-12, and FASW) extracted approximately 6.7 Mgal of groundwater and 85 lbs of total dissolved CHC mass. This represents an approximate 11 percent decrease in recovered groundwater and an approximate 25 percent decrease in mass recovery compared to 2020 and is attributed the decreasing CHC concentrations and lower volume of recovered groundwater during 2021.
- In 2021, the passive Toe Drain system recovered approximately 0.61 Mgal of groundwater and approximately 1.1 lbs of dissolved CHC mass. This represents an approximate 28 percent decrease in recovered groundwater and near equal mass recovery compared to 2020 and is attributed to seasonal variations and slightly higher CHC concentrations in recovered groundwater during 2021.
- Monthly National Pollutant Discharge Elimination System (NPDES) and POTW monitoring during 2021 reported three permit exceedances in April, May, and December 2021, respectively.

The following activities are planned for 2022:

- Continue operation and optimization of ongoing groundwater recovery and treatment systems.
- Planning/permitting of CHC mass removal at three on-site source areas.

arcadis.com G:\Augusta-GA\AProject\FPE Edgefield\AS30067293 (2021-2022)\Reports\Semiannual\3Q21 Semiannual\Text\fnl3Q-4Q21SAR.docx

1 INTRODUCTION

Arcadis U.S., Inc. (Arcadis) has prepared this 2021 2nd Semiannual Remedial Action and Annual Summary Report for the former Federal Pacific Electric Company (FPE) facility in Edgefield, South Carolina, on behalf of FPE. This report documents FPE's ongoing groundwater recovery and treatment operations, monthly and quarterly discharge monitoring, quarterly, semiannual groundwater and surface-water monitoring, and additional system modifications and investigations conducted during 2021.

This report provides a description of work performed, information regarding the distribution of dissolved chlorinated hydrocarbons (CHCs) in groundwater, trends in water quality, system modifications, recovery and treatment system operations, maintenance, performance, and a summary of CHC mass recovery during 2021. The report also includes tabulated data and laboratory analytical reports for the samples collected during the reporting period.

The following activities were conducted during the reporting period:

- Continuous oversight of recovery and treatment system operations, maintenance, and monitoring
- Monthly recovery system and discharge sampling
- Quarterly groundwater gauging and sewer-discharge sampling (March 2021, June 2021, September 2021, and December 7, 2021)
- Semiannual surface water and groundwater sampling (April 2021 and September 2021)
- Multi-media and main control panel PLC upgrade

2 SUMMARY OF 2021 ACTIVITIES

FPE operates on-site and off-site groundwater capture systems comprised currently of nine extraction wells and a Toe Drain capture system. Influent groundwater is conveyed to FPE's on-site treatment plant (see **Figure 1**). Recovered groundwater from the on-site and off-site capture systems is pumped to an equalization tank; it then passes through multi-media filters and is transferred to a low-profile air stripper for treatment. Once treated, the groundwater flows to an effluent holding tank, where the water is discharged to three different locations following carbon polishing, including on-site infiltration trenches, Beaverdam Creek (NPDES permitted outfall 001), and the on-site storm water pond (NPDES permitted outfall 002). Operation and maintenance of the current groundwater capture and treatment system consists of weekly inspections of the groundwater extraction and treatment components, as well as routine and response maintenance of the remediation systems. Additionally, the following activities are performed to assess CHC mass recovery and meet discharge compliance requirements:

- Monthly sampling of recovered groundwater from extraction wells and the Odell Reservoir Toe Drain capture system
- Monthly sampling of treated effluent (under National Pollution Discharge Elimination System [NPDES] permit number SC0047813)
- Quarterly sewer discharge sampling (ACPSA permit number FPE 2019-1)

The methodology and findings of the system operation, maintenance, and monitoring activities completed during the reporting period are summarized in the following sections of this report.

2.1 Weekly Groundwater Recovery and Treatment System Operation, Maintenance, Monitoring, and Monthly Discharge Sampling

Weekly system management events currently consist of groundwater recovery and treatment system inspections, routine system maintenance and repairs, and recording of system operating data. Response to system malfunctions/alarms and associated repairs and resets are performed on an as-needed basis. Inspection and maintenance logs are maintained at the facility, as required by the operating permit. **Table 1** of **Appendix A** provides a cumulative summary of system downtime and associated maintenance/repairs.

Water samples were collected monthly from the on-site and off-site extraction wells, Toe Drain influent, combined system influent, and effluent discharged to Beaverdam Creek (Outfall 001) and on-site storm water pond (Outfall 002). Results of the water sampling are used to evaluate CHC mass recovery/treatment system performance and to prepare the monthly Discharge Monitoring Report (DMR), as required under NPDES discharge permit (# SC0047813). All samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) by SGS North America, Orlando, Florida, using United States Environmental Protection Agency (USEPA) Method 8260B. In addition, Toe Drain effluent samples were analyzed for biological oxygen demand (BOD), total suspended solids (TSS), and pH (Pace Analytical). Monthly influent and effluent analytical data collected since September 2009 are provided in **Table 2** of **Appendix A**.

Quarterly ACPSA Discharge Monitoring composite samples of the system effluent were collected over a 24-hour period during March, June, September, and December 2021, in accordance with the permit requirements. Quarterly sewer effluent samples were analyzed for pH, BOD, TSS, Chemical Oxygen Demand (COD), Total Petroleum Hydrocarbons (TPH), barium, chromium, trichloroethene (TCE), and cis-1,2-dichloroethene (cis-1,2-DCE). All samples were analyzed by SGS using USEPA Methods. Analytical results for all parameters complied with permit conditions.

Effluent flow rates, recorded by the supervisory control and data acquisition (SCADA) system, are retrieved daily to document total treated effluent discharge volumes. These data, coupled with the effluent analytical data, comprise the NPDES and the ACPSA DMR data sets that are submitted monthly to the South Carolina Department of Health and Environmental Control (SCDHEC) and ACPSA.

2.2 Quarterly Groundwater Gauging

Water-levels were gauged quarterly during 2021 in approximately 120 wells located at the former FPE facility, the Star Fibers/Martin property, and other properties located in the vicinity of Rabbit Trail Road (**Figure 1**). Water-level measurements, which were obtained to the nearest 0.01 foot using an electronic water-level indicator, were used in conjunction with existing top-of-casing elevation data to determine groundwater elevations in the saprolite, partially weathered rock (PWR), and bedrock zones.

2.3 Semiannual Surface-Water and Groundwater Quality Monitoring

Surface-water quality monitoring was performed during April and September 2021 at established locations of the Odell Reservoir, the Odell Dam discharge pipes, and Beaverdam Creek . Surface water samples from the Odell Reservoir were collected from a depth approximately 1.5 feet above the reservoir bottom with a stainless-steel-bomb sampler and samples from the Odell Dam discharge pipes and Beaverdam Creek were collected directly from the surface. All surface water samples were placed in pre-preserved 40-ml VOA vials, placed on ice in a cooler and shipped to SGS under chain-of-custody protocol, for analysis of TCL VOCs via SW-846 Method 8260B. In situ field parameter measurements (pH, dissolved oxygen [DO], conductivity, temperature, total dissolved solids [TDS], oxidation-reduction potential [ORP], and turbidity) were measured at all sampling locations using a calibrated water quality meter.

Groundwater samples were collected from 23 and 59 established well locations during April 2021 and September 2021, respectively. Upon completion of water-level gauging, the monitoring wells containing groundwater were each purged of a minimum of three well volumes of water, or until the well was dry, using a submersible pump. Purge water from the sampled wells was discharged to the on-site treatment system. After purging, a representative groundwater sample was obtained from each well using disposable polyethylene bailers, transferred into laboratory-prepared containers, placed on ice in a cooler, and shipped to SGS under chain-of-custody protocol for analysis of TCL VOCs by SW-846 Method 8260B. Field parameters (pH, temperature, conductivity, DO, ORP, TDS, and turbidity) were measured and recorded upon sample collection.

2.4 Recovery and Treatment System Modifications

Main Treatment System PLC Panel Upgrade

As part of a multi-phase effort to upgrade the on-site and off-site system PLC panels initiated in 2020, Phase II activities were completed during 2021 with the fabrication and replacement of the multi-media filter (MMF) and main treatment system control panels/PLCs. Installation and startup of the replacement main PLC panel was completed July 18, 2021, with 9 days interruption to treatment system operation. All recovery wells and the treatment plant were shut down during the 9-day period, and the Toe Drain effluent was discharged directly to the ACPSA sewer outfall.

3 GROUNDWATER FLOW AND RECOVERY SYSTEM INFLUENCE

3.1 Groundwater Occurrence and Flow

Regional groundwater flows in a general north-northeast direction across the site. Measured groundwater elevations from the quarterly 2021 gauging events are provided in **Table 1**. **Figures 2, 3**, and **4** illustrate the potentiometric surfaces for the saprolite, PWR, and bedrock zones, respectively, during the 3Q21 monitoring event.

Localized gradient perturbations have developed in response to recovery and infiltration system operations. The potentiometric surfaces for each of the hydro-stratigraphic zones (saprolite, PWR, and bedrock) are influenced by the preferential anisotropy of the permeability resulting from fractures and foliations related to folding of the metamorphic and igneous bedrock along southwest-northeast axial planes. In response to groundwater extraction, the saprolite and PWR hydro-stratigraphic zones have been dewatered along these axial planes where resistant bedrock ridges occur and the saprolite unit is thin. The estimated capture zone of the current groundwater recovery system, based on September 2021 gauging data, is illustrated in **Figure 5**, and encompasses a majority of the groundwater in the three hydro-stratigraphic zones that contain detectable concentrations of dissolved CHCs exceeding SC Drinking Water Standards (SCDWS).

3.2 Groundwater Recovery and Treatment System

The on-site groundwater recovery system, which currently consists of extraction wells EW-1R, EW-2, EW-3, EW-4, and EW-5, has been in operation since June 2004. Replacement extraction well EW-1R was installed on December 19, 2016, piped to the existing treatment system, and brought on-line in April 2017. New extraction well EW-5 was constructed in existing open borehole monitoring well MW-55 in September 2019 and was brought online March 3, 2020. The off-site groundwater recovery system, which currently consists of extraction wells EW-10, EW-11, EW-12, and FASW, and the passive Toe Drain system, has been in operation in September 2009. EW-12, which was installed September 2014, has been on-line since February 2015. The Toe Drain capture system and its associated treatment system operated from January 1999 to 2009 when it was redirected to the onsite treatment plant. The Toe Drain Seep Collection system, which directs shallow groundwater to the Toe Drain Sump, was constructed and brought on line in July 2019.

The groundwater treatment system was put into operation in 2004 and currently consists of multi-media filtration, air stripping, and carbon polishing, with treated discharge going to two NPDES permitted outfalls, an on-site infiltration gallery, and an available POTW outfall. Except for effluent samples collected in April, May, and December 2021, analyzed constituents in treated effluent discharged to NPDES permitted outfalls 001 and 002 were all below method detection limits and/or permit discharge limits during 2021. Granular activated carbon filtration media was replaced following the April/May 2021 discharge limit exceedance and discharge to the NPDES outfalls resumed on June 10, 2021. Upon receipt of effluent analytical results (10 µg/L TCE) on December 28, 2021, a confirmation sample was immediately collected, all groundwater recovery well and treatment systems were immediately shutdown, the Toe Drain influent was redirected to the ACPSA permitted outfall, and SCDHEC was notified in accordance with NPDES Permit SC47813. An evaluation of treatment system equipment and operations ensued following system shutdown to determine the root cause and implement necessary corrective actions.

4 SURFACE WATER AND GROUNDWATER QUALITY

4.1 Surface Water Quality

The surface-water quality monitoring data from each location for 2021 are summarized in **Table 3** and the analytical laboratory report for the September 2021 monitoring event is included in **Appendix B**. Reported

CHC concentrations in surface-water samples collected during September 2021 are illustrated in **Figure 6**. Reported CHC concentrations in all surface-water samples from the dam discharge structure, the Odell Reservoir, and Beaverdam Creek were below detection during 2021. The analytical results for all reservoir samples collected since March 2010 have met the South Carolina Surface Water Quality Standards (SCSWQS).

4.2 Groundwater Quality

The groundwater quality monitoring data from each location for 2021 are summarized in **Table 4** and the analytical laboratory report for the September 2021 monitoring event is included in **Appendix B**. **Figures 7**, **8**, and **9** illustrate interpolated iso-concentration contours for dissolved TCE in the saprolite, PWR, and bedrock hydrogeologic zones, respectively. Following are overall observations of groundwater quality in the three hydro-stratigraphic zones.

Saprolite Zone Groundwater

Reported TCE concentrations in saprolite zone groundwater during 2021 indicate an order or magnitude decrease in downgradient well SMMW-3 as compared to those observed in September 2020. Conversely, reported TCE concentrations in saprolite well SMMW-2 were an order of magnitude greater in 2021 than those reported in September 2020. The reported 2021 TCE concentrations are within historic ranges and the fluctuations are attributed to seasonal variation.

PWR Zone Groundwater

Reported TCE concentrations in the PWR zone groundwater during 2021 are consistent with those reported in September 2020. The highest reported TCE concentration continues to be reported in Star Fiber Property well SMMW-4 (3.94 mg/L).

Bedrock Zone Groundwater

Reported TCE concentrations in the bedrock zone groundwater during 2021 are generally consistent with those reported in September 2020. Notable decreases of TCE concentrations in onsite recovery wells EW-2 and EW-5, and downgradient monitoring wells B-4SF, B-1SF, SMMW-7, and SMMW-9 are observed in September 2021 versus September 2020; however, 2020 and 2021 concentrations are of the same order of magnitude and the highest TCE concentration continues to be reported in Star Fiber Property well SMMW-9 (13.8 mg/L).

5 GROUNDWATER RECOVERY SYSTEM EFFECTIVENESS

Ongoing operation of the on-site and off-site groundwater extraction systems continues to remove CHC mass from the ground water. The 2021 monthly groundwater recovery volumes for each extraction well are presented in **Table 5** and the total CHC mass recovery for each extraction well during 2021 is illustrated in **Figure 10**. The total volume of groundwater recovered from the on-site, off-site, and Toe Drain groundwater recovery systems during 2021 was approximately 15.4 million gallons (mGAL) (**Table 5**), which represents an average continuous withdrawal rate of approximately 29 gallons per minute (gpm).

The cumulative total volume of groundwater recovered and treated by the system from 2004-2021 is approximately 222 mGal. Overall trends and 2021 groundwater extraction and CHC mass recovery for each of the recovery systems and summarized in the following.

2021 Onsite System Groundwater Volume and CHC Mass Recovery

Operation of the on-site extraction system has slowed downgradient migration of impacted groundwater by effectively lowering the hydraulic gradient from the facility to the downgradient Star Fiber property (see **Figure 5**). In addition, large portions of the saprolite have been dewatered onsite due to the operation of the extraction system. During 2021, the on-site system recovered a total of approximately 8 million gallons (Mgal) of groundwater, for a cumulative on-site total of approximately 119 Mgal since installation in 2004. Most of the groundwater has been extracted by recovery well EW-4, which produced approximately 59 percent of the total recovered on-site water volume during 2021. During 2021 the on-site extraction system recovered approximately 184 pounds (lbs) of CHC mass, with a majority (approximately 88 percent) of the CHC mass extracted by recovery wells EW-2, EW-4, and EW-5.

The following CHC concentration trends and 2021 mass recovery have been observed, based on groundwater extraction and samples collected from the extraction wells during 2021:

- EW-1R: TCE concentrations in EW-1R ranged from 2.0 mg/L (February) to 5.4 (May) mg/L during 2021 and are consistent with those reported in 2020; EW-1R recovered approximately 14 lbs of total CHCs in 2021.
- EW-2: In general, declining TCE concentration trends have been observed at this extraction well since September 2009. TCE ranged from 7.22 mg/L (March 2021) to 3.21 mg/L (October 2021) during 2021; EW-2 recovered approximately 36 lbs of total CHCs in 2021.
- EW-3: TCE concentrations have steadily declined since January 2015 and ranged from 1.1 mg/L (May 2021) to 0.62 mg/L (August 2021) during 2021; EW-3 recovered approximately 7 lbs of total CHCs in 2021.
- EW-4: TCE concentrations in well EW-4 have exhibited a steady decline since November 2014. Concentrations ranged from 1.08 mg/L (February 2021) to 1.54 mg/L (September 2021) during 2021; EW-4 recovered approximately 67 lbs of dissolved CHC mass during 2021.
- EW-5: TCE concentrations have continued to decline in new extraction well EW-5 since its initial startup in March 2020 with concentrations ranging from 6.76 mg/L (March 2021) to 3.62 mg/L (October 2021); EW-5 recovered approximately 59 lbs of dissolved CHC mass during 2021.

Overall mass recovery of the onsite recovery system during 2021 was approximately 58 lbs less than 2020. The reduced mass recovery is primarily attributed to decreasing concentrations as approximately 0.14 Mgal more groundwater was recovered compared to 2020. All recovery systems (except the Toe Drain) were shut down during planned treatment equipment upgrades during July 2021.

2021 Offsite System Groundwater Volume and CHC Mass Recovery

Sustained pumping of the offsite groundwater extraction wells has resulted in non-detectable concentrations of CHCs in the surface water of the Odell Reservoir since 2010. During 2021, the active

offsite system recovered approximately 6.7 Mgal of groundwater, for a cumulative total of approximately 88 Mgal since installation in 2009. Approximately 77 percent of the off-site groundwater recovered during 2021 was extracted by recovery wells EW-11 and EW-12, which recovered approximately 5.6 Mgal. The total CHC mass recovered by the active off-site system in 2021 was 85 lbs, representing a decrease of approximately 29 lbs when compared to 2020. The majority of the off-site CHC mass was recovered by extraction wells EW-10 and EW-12 (approximately 56 percent) of the off-site total. EW-12 recovered approximately 49 lbs in 2021, which is 34% lower than the mass recovered in 2020 (75 lbs).

During 2021, the passive Toe Drain system recovered approximately 0.61 Mgal of water and approximately 1.1 lbs of dissolved CHC mass. This represents an approximate 28 percent decrease in recovered groundwater and near equal mass recovery compared to 2020.

The following CHC concentration trends and 2021 mass recovery have been observed, based on groundwater extraction and samples collected from the extraction wells and Toe Drain during 2021:

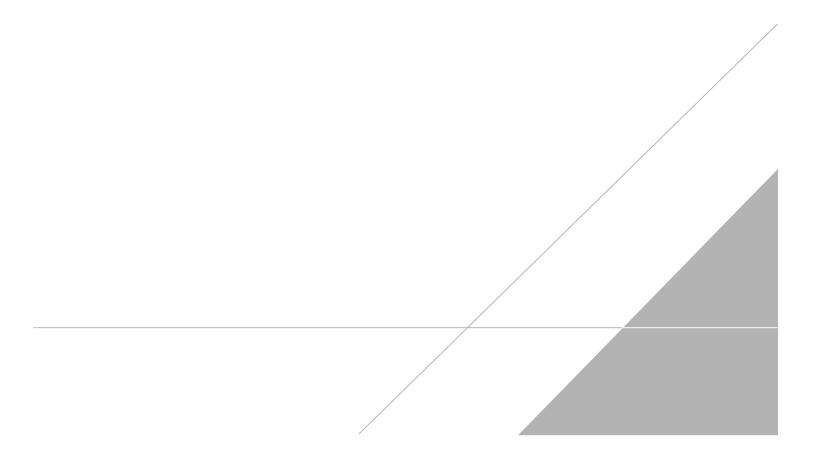
- EW-10: TCE concentrations have steadily decreased since the mid-2013 but remained steady during 2021 with concentrations ranging from 2.13 mg/L (May 2021) to 1.51 mg/L (November 2021); EW-10 recovered approximately 18 lbs of total CHCs in 2021.
- EW-11: TCE concentrations have steadily declined overall since startup in September 2009. Concentrations ranged from 0.494 mg/L (May 2021) to 0.331 mg/L (October 2021) with approximately 13 lbs of total CHCs recovered in 2021.
- EW-12: Overall decreasing TCE concentrations have been observed in EW-12 since fourth quarter 2018. Reported TCE concentrations ranged from to 2.4 mg/L (February 2021) to 1.62 mg/L (May 2021) during 2021; EW-12 recovered approximately 49 lbs of total CHCs in 2021.
- FASW: TCE concentrations have continued to exhibit a gradual decrease since 2009, with reported concentrations ranging from 0.486 (March 2021) to 1.67 mg/L (September 2021). FASW recovered approximately 5 lbs of total CHCs in 2021.
- Toe Drain: TCE concentrations have decreased overall since 2017 following the startup of upgradient extraction well EW-12 in 2014. The highest TCE concentrations are detected in the left Toe Drain and ranged from 0.083 mg/L (October) to 0.188 mg/L (May 2021) during 2021. The right Toe Drain continues to exhibit low TCE concentrations ranging from ND (January 2021) to 0.007 mg/L (September 2021) during 2021.

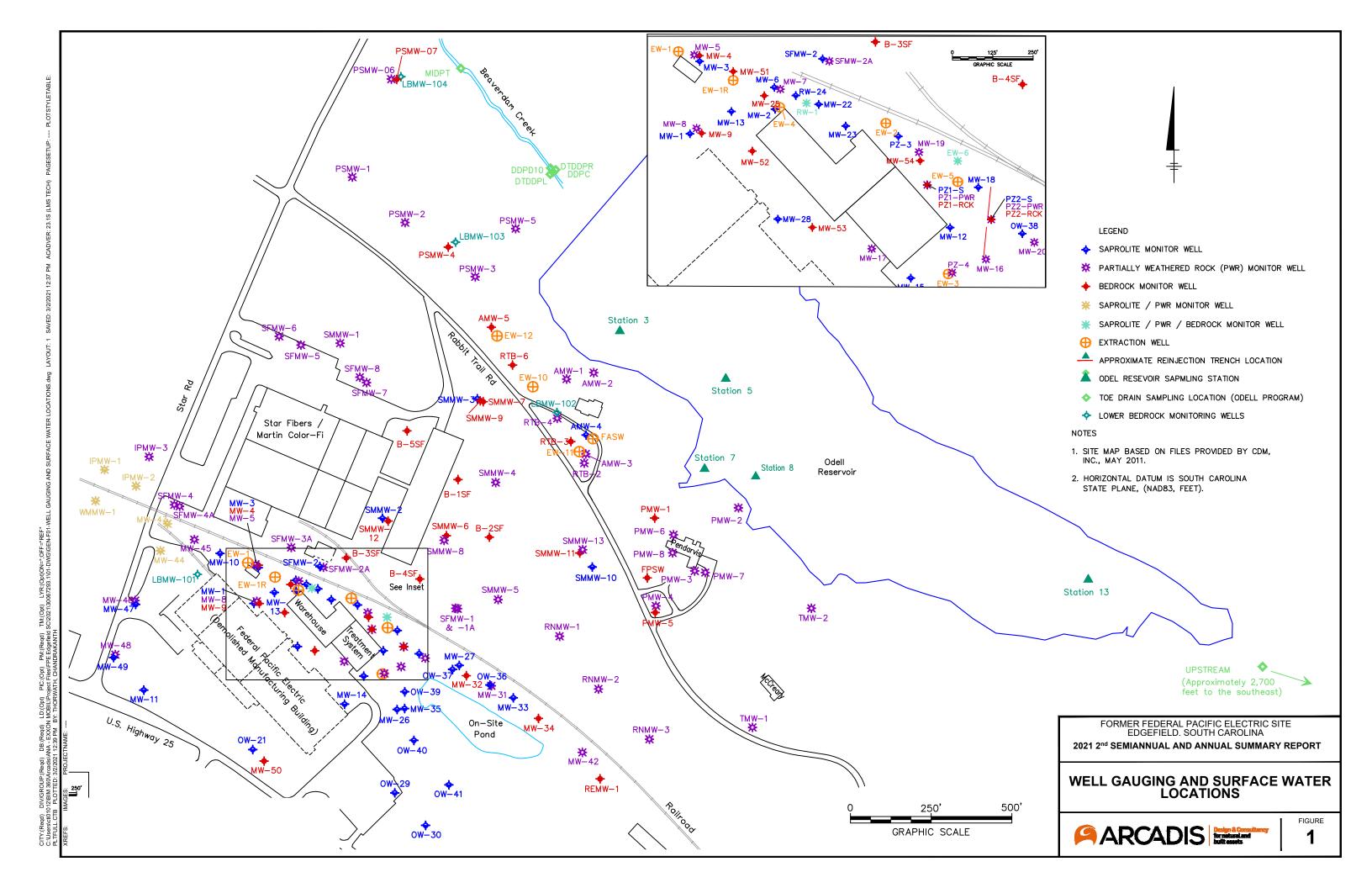
Overall mass recovery of the offsite recovery system during 2021 was approximately 29 lbs less than 2020. The reduced mass recovery is attributed to both decreasing concentrations and approximately 1.15 Mgal less recovered groundwater compared to 2020. All recovery systems (except the Toe Drain) were shut down during planned treatment equipment upgrades during July 2021.

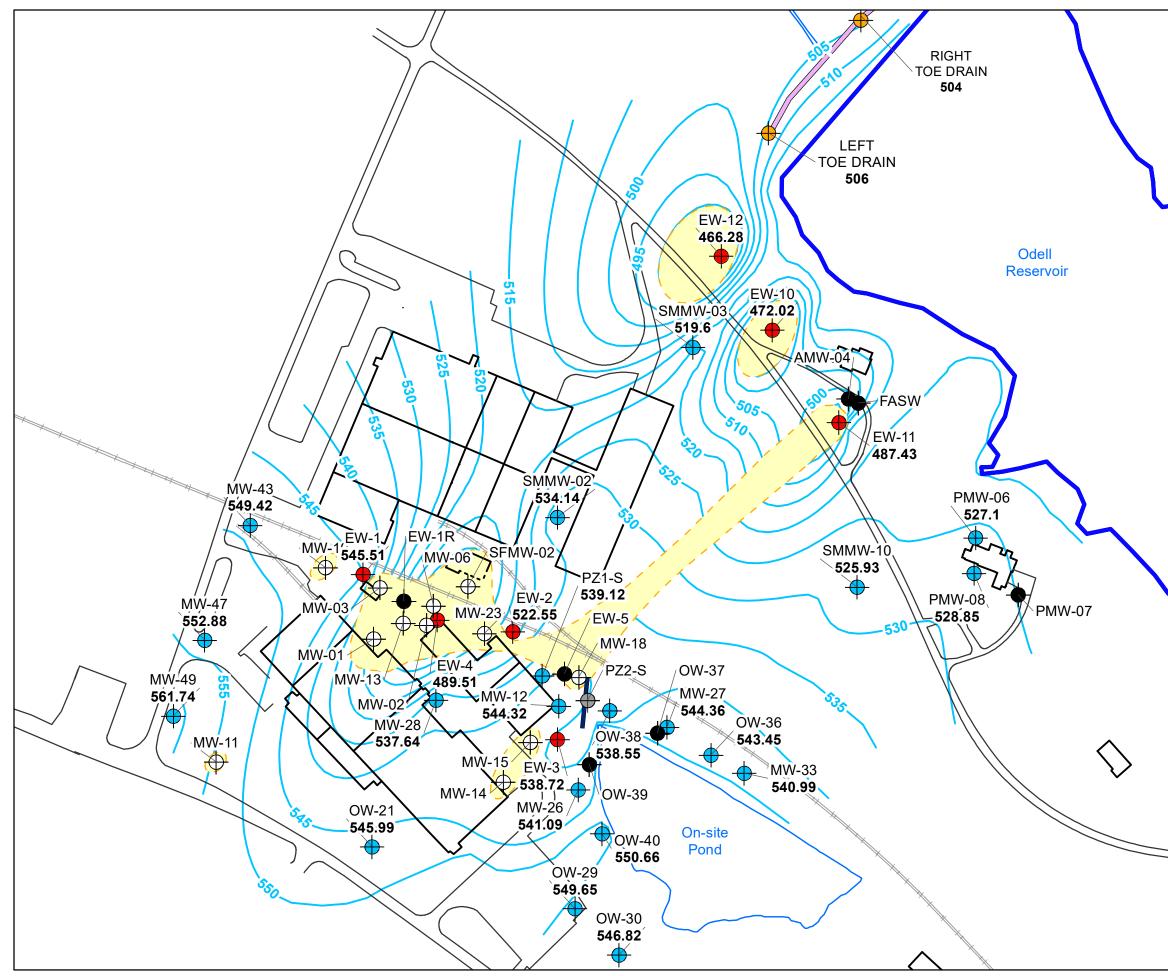
CHC Distribution and Mass Recovery Over Time

To date, approximately 222 Mgals of groundwater and 11,000 lbs total CHC mass have been extracted by the on-site and off-site recovery systems. The on-site groundwater recovery system has been effective in reducing downgradient migration of impacted groundwater, reducing residual CHC mass, and lowering concentrations throughout the plume. The off-site groundwater recovery system has been effective in

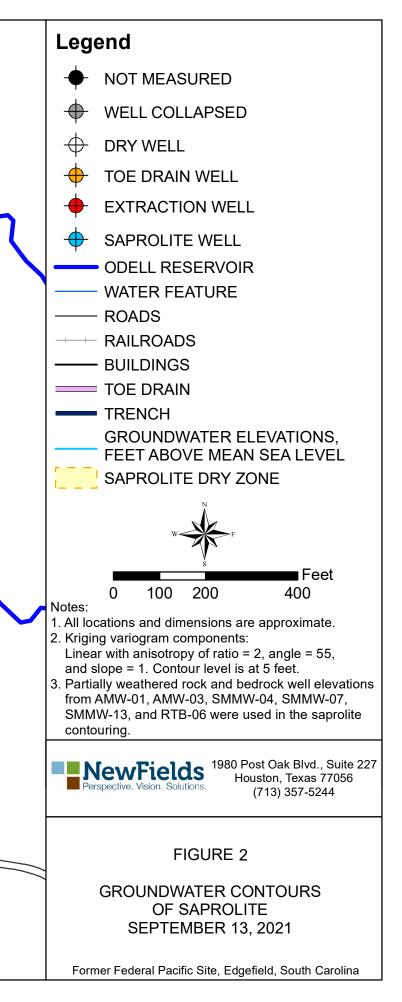
reducing dissolved CHC concentrations in the Odell Reservoir to non-detect levels since 2010, thus mitigating human and ecological exposure.

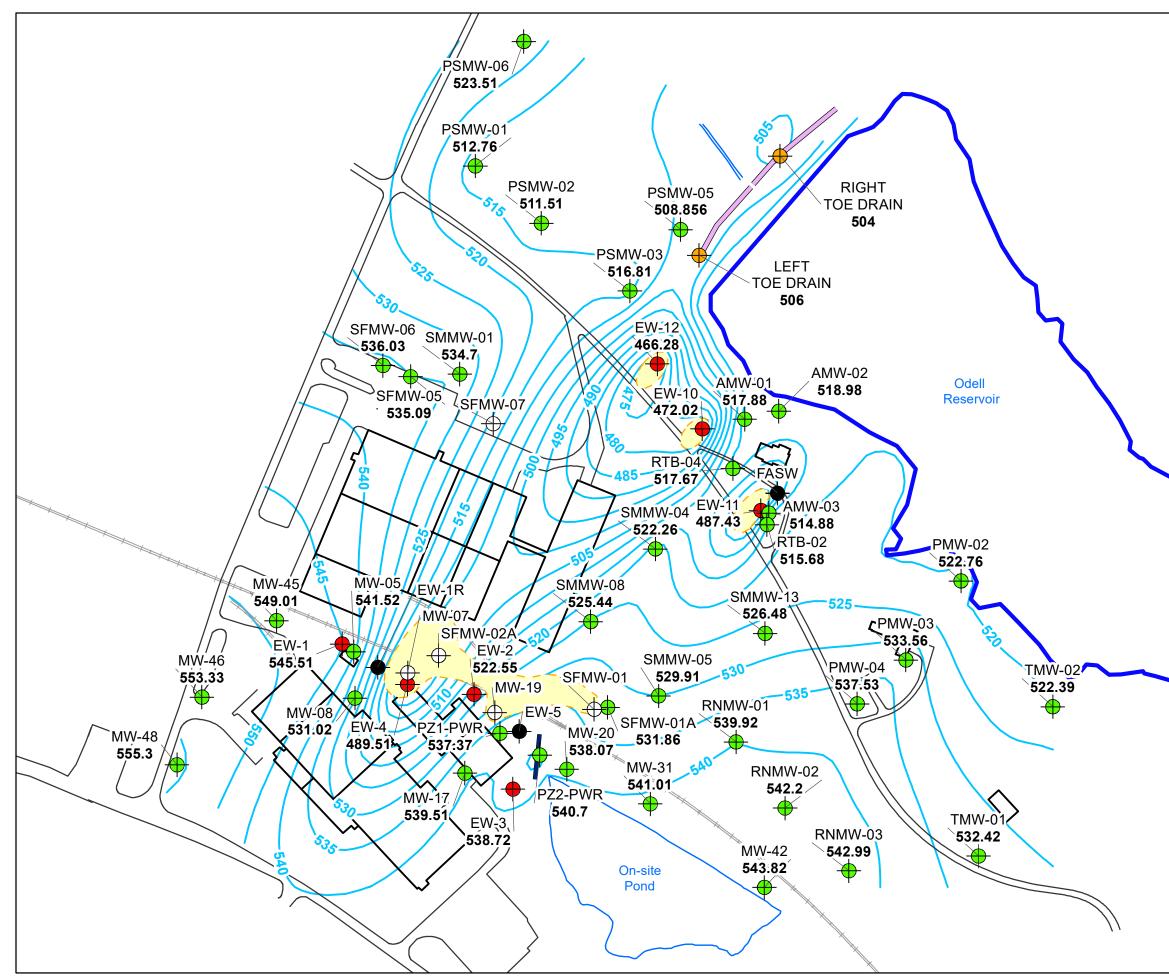

Since startup of the on-site groundwater recovery system in 2004, the overall distribution and concentration of dissolved CHCs (primarily TCE) in the PWR/bedrock zones have been reduced as illustrated in **Figure 11**. In 2004, the lateral and vertical extent of groundwater containing dissolved CHCs in PWR/bedrock zone groundwater exceeding SCDWS' consisted of one large on-site area, emanating from several source areas, that extended across the Starr Fibers property and onto the Rabbit Trail Rd property. Specifically, dissolved TCE concentrations in excess of 50 mg/L were detected in the vicinity of the former Drum Burial Area (DBA) with comparable concentrations being detected in downgradient monitor wells SMMW-7 and -9, suggesting hydraulic connection in the PWR and fractured bedrock between the two areas. Reported dissolved concentrations at the former Alfred house also exceeded 10 mg/L during 2004. Reported TCE concentrations in 2012 exhibited notable reductions, particularly at the former Alfred house, following 8 years of groundwater recovery. Reported TCE concentrations in 2021 exhibited further reductions with concentrations exceeding 5 mg/L being limited to the area at and just downgradient of the former Paint Bed Drying Area (PBDA) and on Starr Fiber property at well B-1SF and downgradient well cluster SMMW-7 and -9.

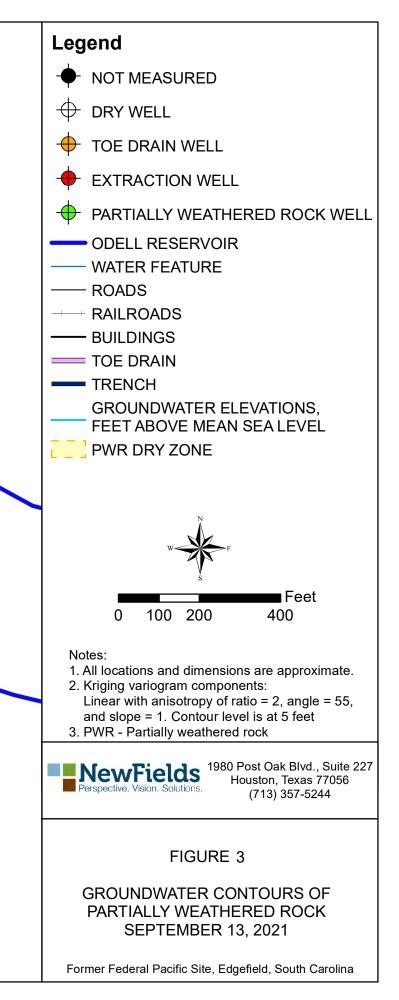

Although notable volumes of CHC mass have and continue to be removed from the PWR/bedrock zones by the on-site and off-site areas recovery systems, a majority of the recovery wells have exhibited declining CHC concentrations for at least 8 years. As illustrated in **Figure 12**, CHC recovery from PWR/bedrock recovery wells is generally characterized by a rapid decline in concentrations upon and shortly after initiating recovery, followed by gradual declines and relatively stable concentrations. It is expected that CHC concentrations in recovery system influent will continue to gradually decline to asymptotic conditions.

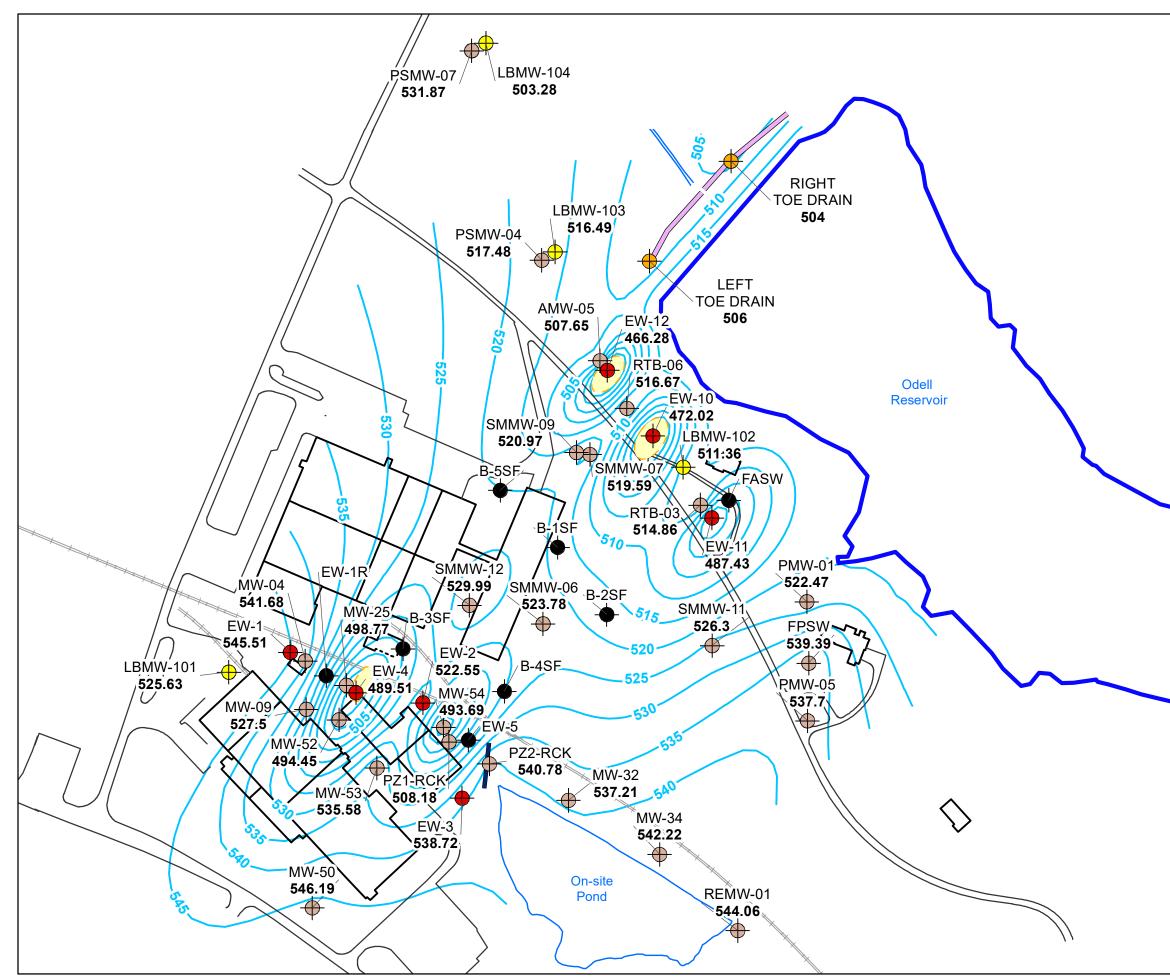

6 PLANNED 2022 ACTIVITIES

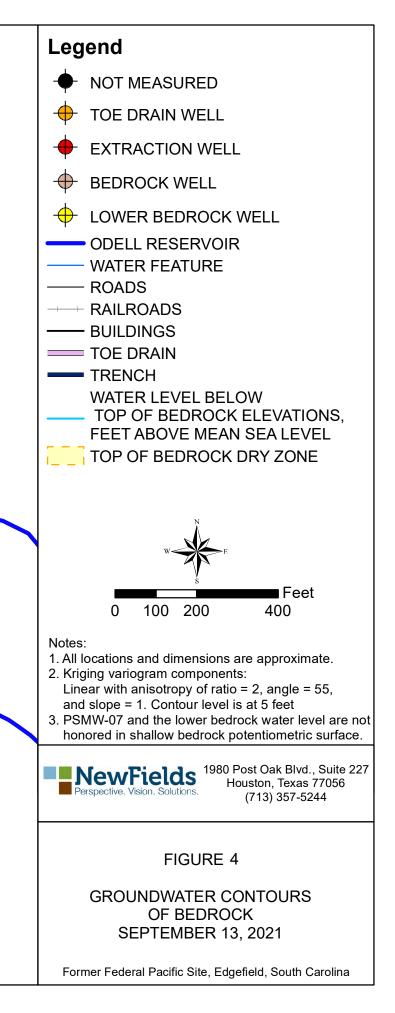
Future on-site remedial efforts will focus on optimizing the current groundwater CHC mass recovery efficiency and removal of mass within the current unsaturated zone at three primary source areas. Specifically, planned 2022 activities include planning/permitting of CHC mass removal from three identified source areas, the former DBA, former PBDA, and former Degreasing Operational Area (DOA). Ongoing off-site groundwater recovery will continue in 2022, with adjustments in drawdown depth and pumping rates to optimize recovery efficiency within the system as influent concentrations continue to decline.

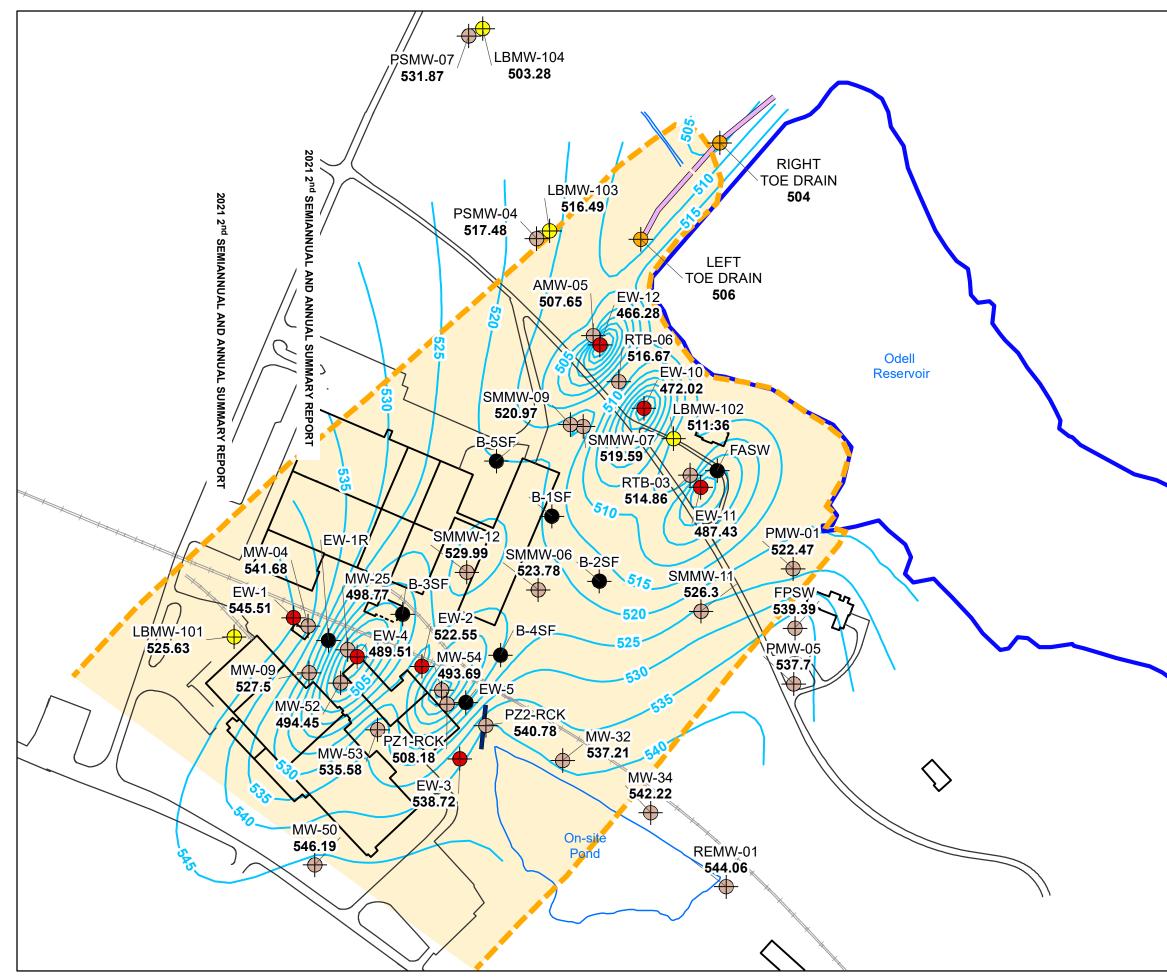

FIGURES

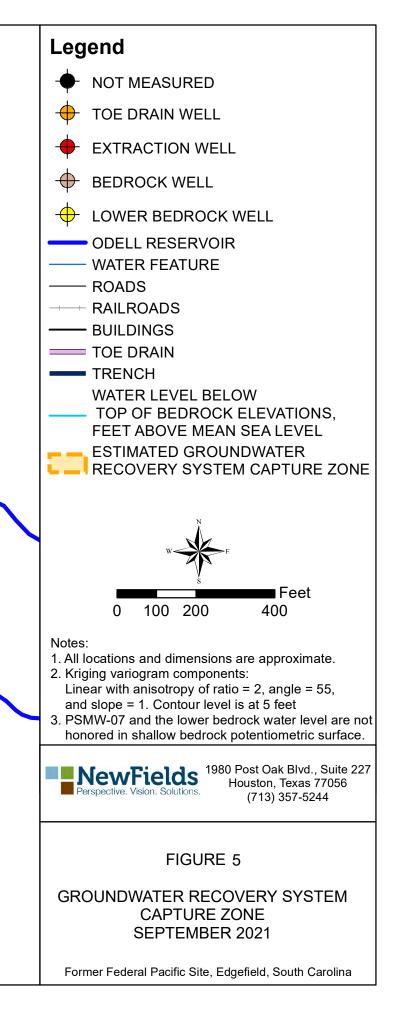


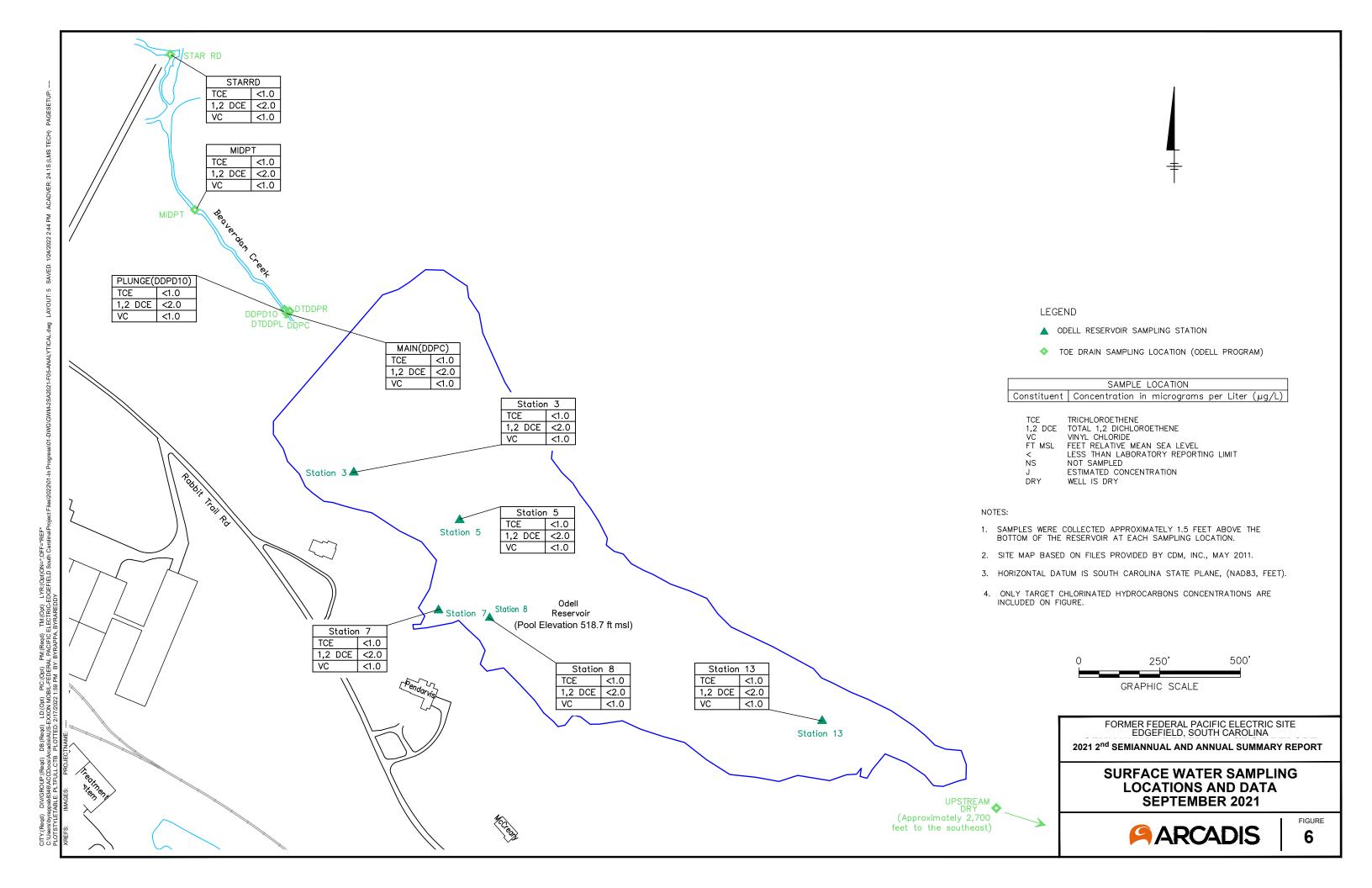


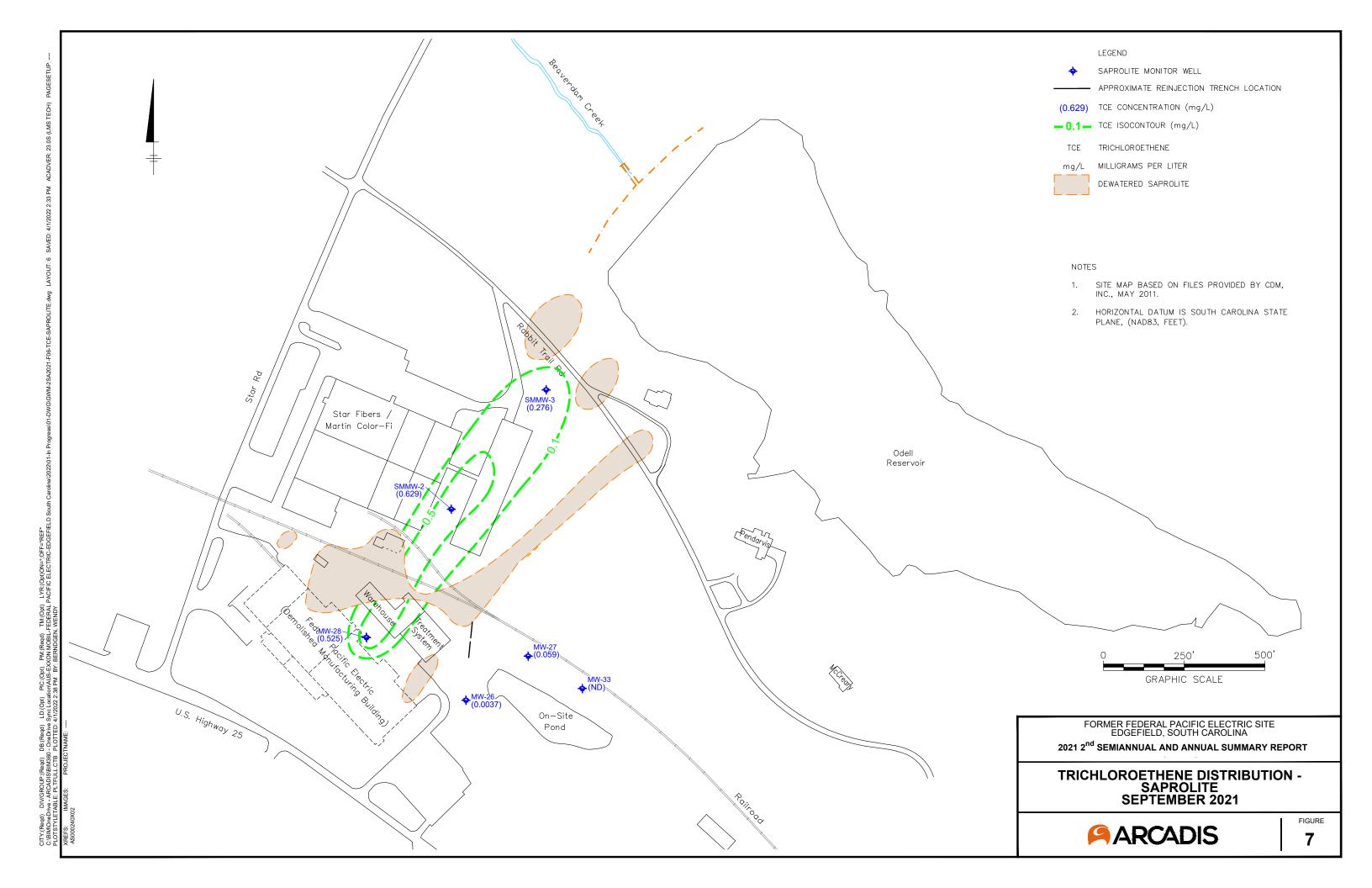

3/16/2022 W:\Edgefield_SC\1 - Site Investigation\GIS\2021\Groundwater\September GW\Sap GW Sept 2021.mxd JR

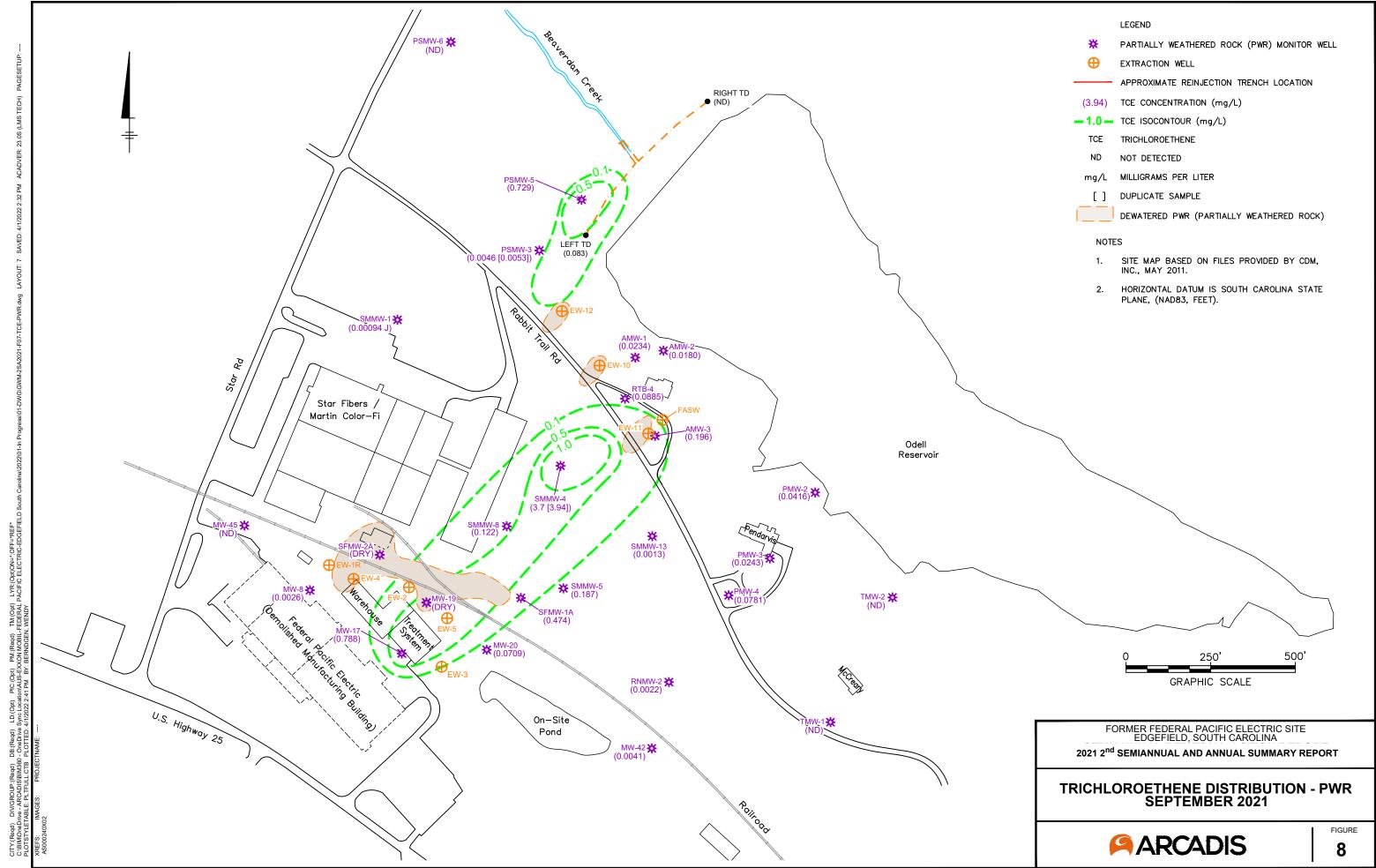



3/7/2022 W:\Edgefield_SC\1 - Site Investigation\GIS\2021\Groundwater\September GW\PWR GW Sept 2021.mxd JR

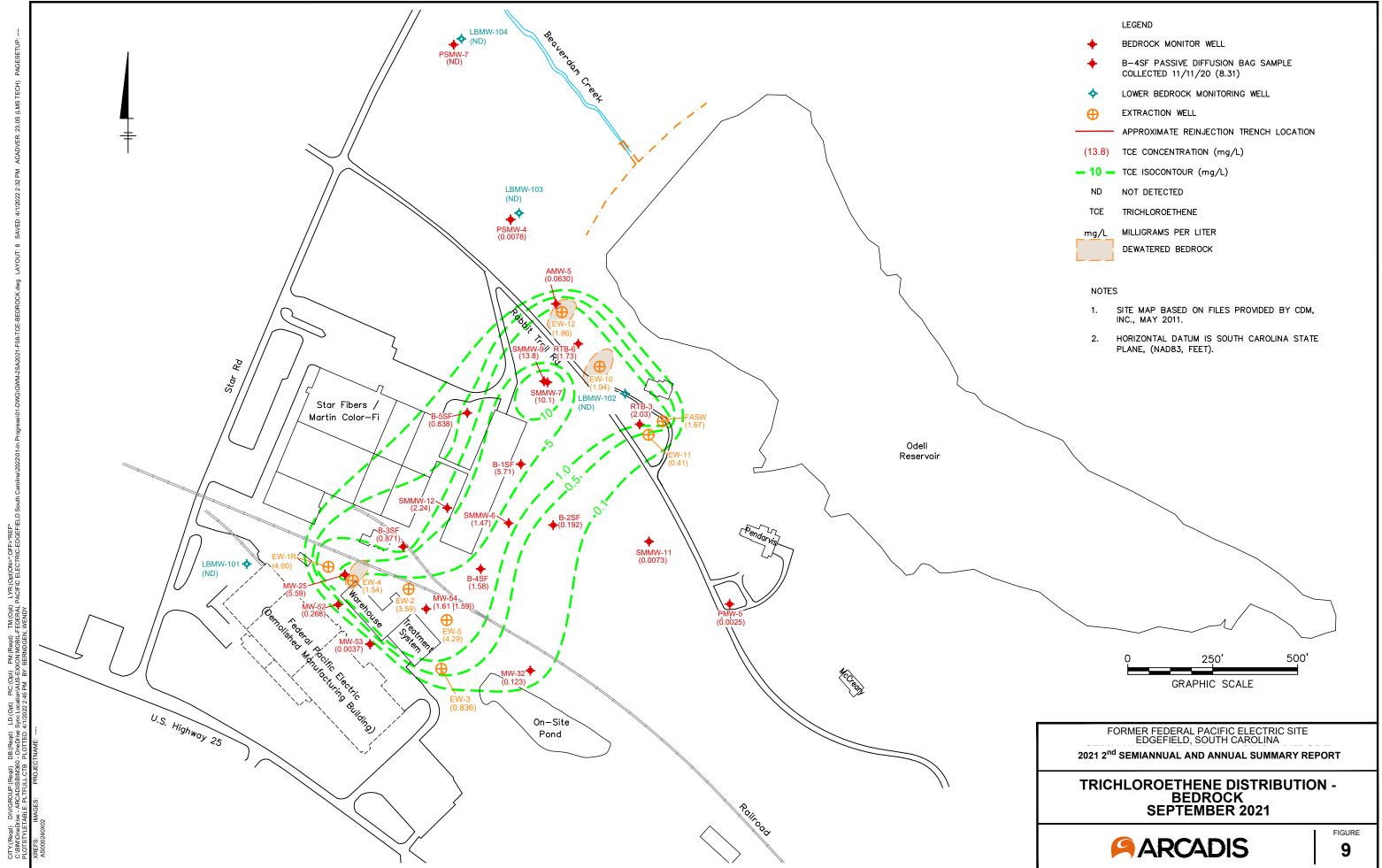


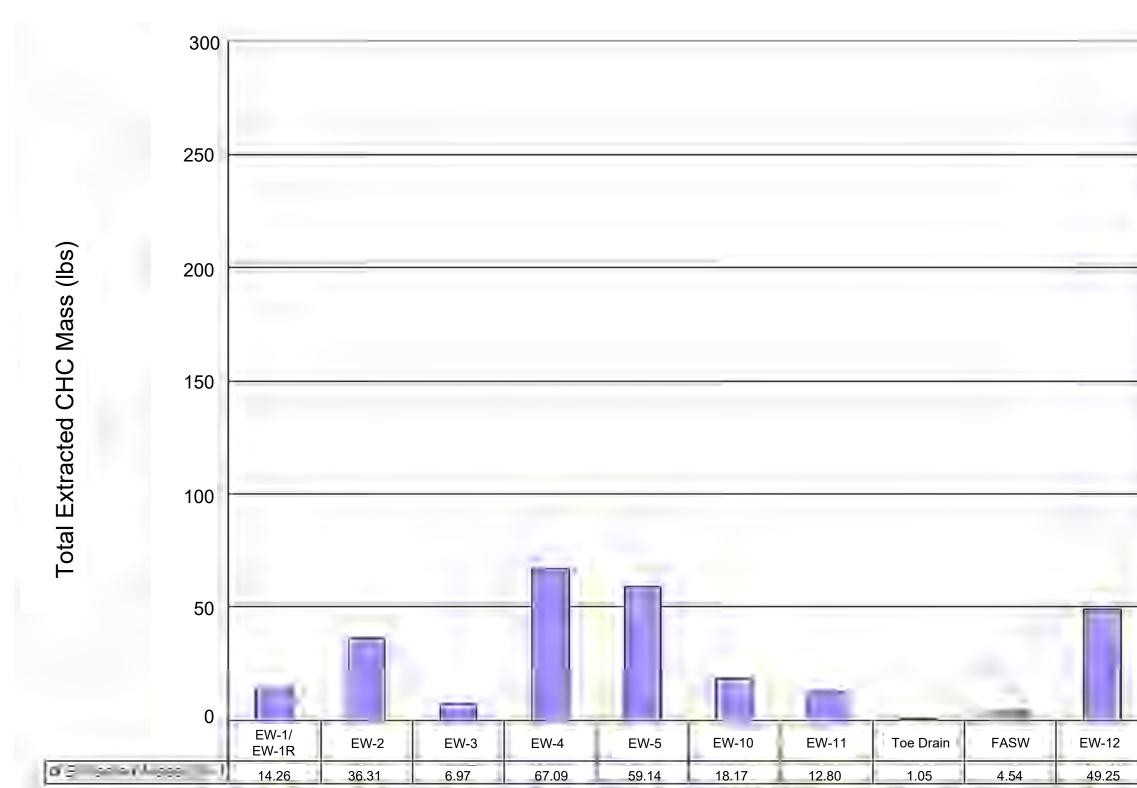

3/16/2022 W:\Edgefield_SC\1 - Site Investigation\GIS\2021\Groundwater\September GW\BD GW Sept 2021.mxd JR





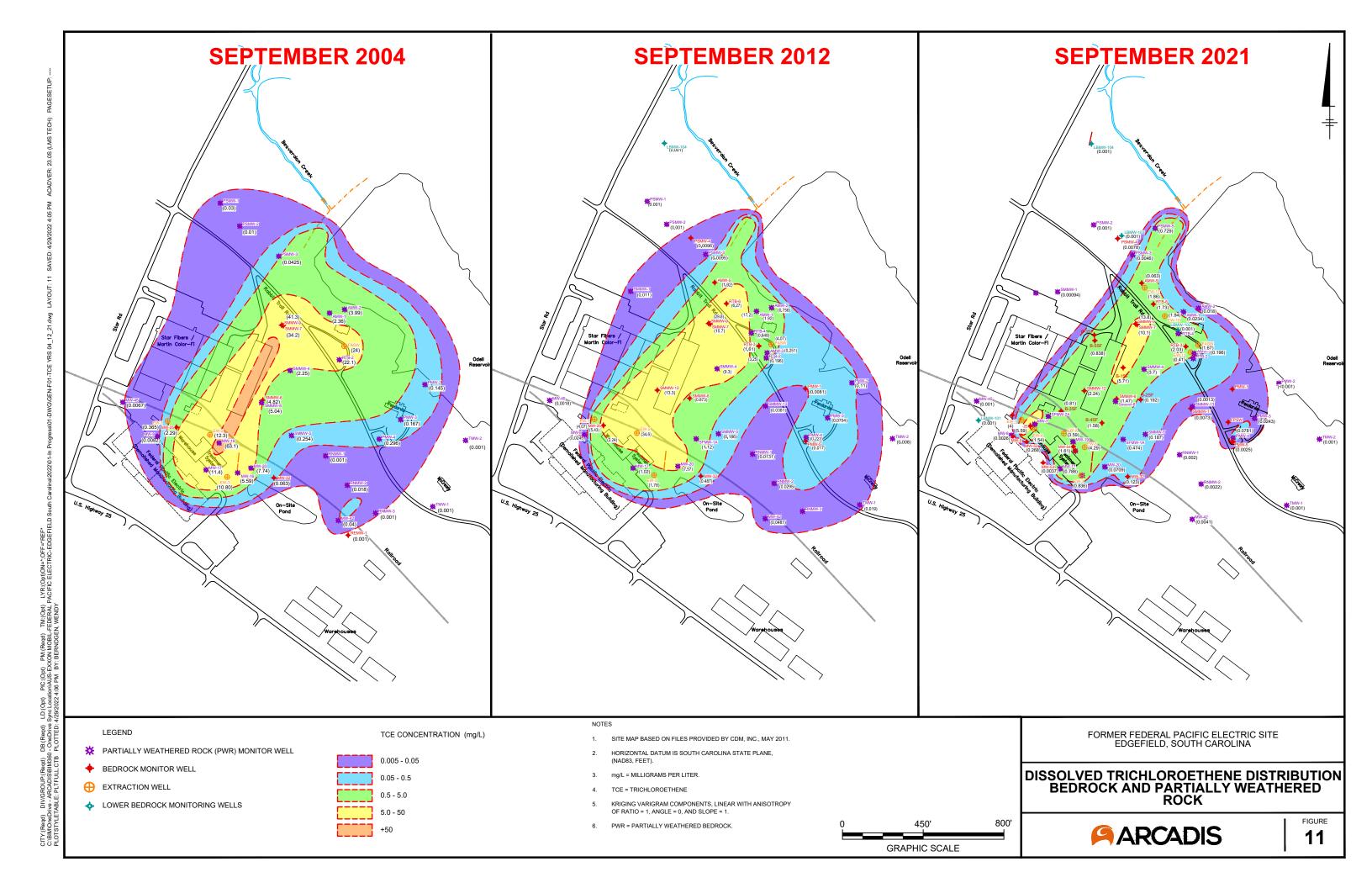
3/16/2022 W:\Edgefield_SC\1 - Site Investigation\GIS\2021\Reports\Annual Report\Fig 4 BD GW Sept 2021_RS.mxd JR





RARTIALLY WEATHERED	ROCK (PWR)	MONITOR	WELL
---------------------	------------	---------	------

	LEGEND
+	BEDROCK MONITOR WELL
+	B-4SF PASSIVE DIFFUSION BAG SAMPLE COLLECTED 11/11/20 (8.31)
	LOWER BEDROCK MONITORING WELL
•	EXTRACTION WELL
	APPROXIMATE REINJECTION TRENCH LOCATION
(13.8)	TCE CONCENTRATION (mg/L)
<u> </u>	TCE ISOCONTOUR (mg/L)
ND	NOT DETECTED
TCE	TRICHLOROETHENE
mg/L	MILLIGRAMS PER LITER
	DEWATERED BEDROCK
NOTES	


Notes: 1. lbs - Pounds

2. CHC - Chlorinated hydrocarbon

On-site: 183.78 lbs. Off-site: 84.76 lbs. Toe Drain: 1.05 lbs.

-	
_	
_	
Т	otal
2	69.58
	NewFields 1980 Post Oak Blvd., Suite 227 Houston, Texas 77056 (713) 357-5244
	FIGURE 10
	TOTAL EXTRACTED CHC MASS BY WELL: 2021

Former Federal Pacific Site, Edgefield, South Carolina

100 80 60 40 20 0 $Jan^{-04}Jan^{-05}Jan^{-06}Jan^{-07}Jan^{-08}Jan^{-09}Jan^{-10}Jan^{-11}Jan^{-12}Jan^{-13}Jan^{-14}Jan^{-15}Jan^{-16}Jan^{-17}Jan^{-18}Jan^{-19}Jan^{-20}Jan^{-21}Jan^{-22}Jan^{-22}Jan^{-22}Jan^{-21}Jan^{-22}Jan^{-21}Jan^{-22}Jan^{-21}Jan^{-22}Jan^{-21}Jan^{-22}Jan^{-21}Jan^{-22}Jan^{-21}Jan^{-22}Jan^{-21}Jan^{-22}Jan^{-21}Jan^{-22}J$ Date

Notes: 1. mg/L - milligrams per Liter 2. CHCs - Chlorinated hydrocarbons

Total CHCs (mg/L)

EW-1 EW-1R EW-2 EW-3 EW-4 EW-5 RW-1 EW-10 EW-10 EW-11 EW-12 Left toe drain FASW

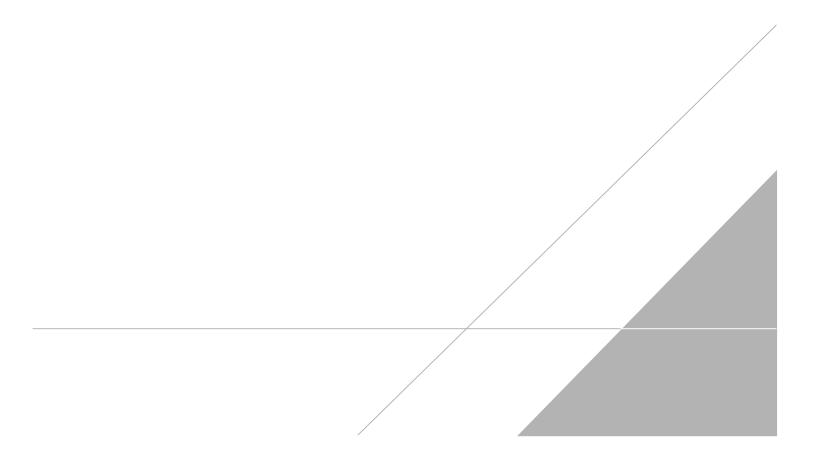

1980 Post Oak Blvd., Suite 227 Houston, Texas 77056 (713) 357-5244

FIGURE 12

INFLUENT CHC CONCENTRATION TRENDS 2004-2021

Former Federal Pacific Site, Edgefield, South Carolina

TABLES

Table 12021 Reporting and Regulatory CorrespondenceEdgefield, South CarolinaSite ID # 00346

Date	Title	Author
8/21/2021	Semiannual Remedial Action Report - 3Q20-4Q20	ARCADIS
8/23/2021	NPDES permit SC0047813 Notice of Violation AI-0004479	DHEC
9/21/2021	Notice of Alleged Violation/Notice of Enforcement Conference	DHEC
10/8/2021	Annual 2020 Summary Report	ARCADIS
10/21/2021	Enforcement Conference	DHEC/FPE
10/29/2021	Semiannual Remedial Action Report - 1Q21 - 2Q21	ARCADIS
11/8/2021	Semiannual Remedial Action Report - 1Q21 - 2Q21 approval	DHEC
11/23/2021	NOV Supplemental Information	De Maximis
12/10/2021	Comments on Off-Site Saturated Zone Report	DHEC
12/15/2021	Off-Site Saturated Zone Report	ARCADIS
12/17/2021	Sampling and Analysis Plan Revision 1	ARCADIS

Table 2Groundwater Elevation Gauging Data - 2021Former Federal Pacific Electric Co.Edgefield, South Carolina

			March 15, 2021		June 4, 2021		September 13, 2021		December 7, 2021
	Well Casing		Groundwater		Groundwater		Groundwater		Groundwater
Well ID	Elevation		Elevation		Elevation		Elevation		Elevation
	(ft msl)		(ft msl)		(ft msl)		(ft msl)		(ft msl)
AMW-01	524.70		518.86		517.50		517.88		517.34
AMW-02	522.23		519.47		518.70		518.98		518.75
AMW-03	542.25		515.12		514.67		514.88		514.65
AMW-04	541.81		516.11		515.49		NM		NM
AMW-05	536.41		509.79		508.16		507.65		507.13
B-1SF	553.50		NM		NM		NM		522.05
B-2SF	552.13		NM		NM		NM		517.74
B-3SF	554.75		NM		NM		NM		494.26
B-4SF	551.24		NM		NM		NM		477.44
B-5SF	549.35		NM		NM		NM		519.55
EW-1PZ	565.31		545.75		544.68		545.51		543.43
EW-1PRZ	565.44		516.97		512.29		NM 500.55		522.97
EW-2PZ	562.44		515.22		519.49		522.55		517.82
EW-3PZ	560.35		538.55		535.00		538.72		535.65
EW-4PZ	566.31		503.02 NM		507.39 NM	-	489.51 NM		481.81 NM
EW-5 EW-10PZ	562.05 531.91		472.29		472.00		472.02		471.95
EW-10PZ EW-11PZ	541.65		472.29		486.86	-	472.02		488.60
EW-11PZ EW-12PZ	532.73		469.73		469.73	-	466.28		471.34
FASW	541.43	_	NM		409.73		NM	_	NM
FPSW	539.39		538.96		538.48		539.39		539.28
LBMW-101	566.61		530.14		530.26		525.63	_	527.27
LBMW-102	540.85		519.51		517.04		511.36		516.59
LBMW-103			518.89		516.74		516.49		516.08
LBMW-104	508.35		505.73		499.74		503.28		499.92
MW-01	567.44		DRY		DRY		DRY		DRY
MW-02	565.61		DRY		DRY		DRY		DRY
MW-03	565.75		DRY		DRY		DRY		DRY
MW-04	564.61		542.56		540.41		541.68		539.16
MW-05	564.74		542.29		540.20		541.52		538.96
MW-06	564.59		DRY		DRY		DRY		DRY
MW-07	565.63		DRY		DRY		DRY		DRY
MW-08	567.07		530.61		531.88		531.02		528.80
MW-09	567.06	_	527.94		529.27		527.50		525.29
MW-10	567.24	_	549.47	_	NG	L	DRY	_	DRY
MW-11	573.14	_	DRY	_	DRY	_	DRY	_	DRY
MW-12	563.23	_	DRY	_	DRY		544.32	_	DRY
MW-13	564.88	-	DRY	-			DRY		DRY
MW-14 MW-15	564.01		548.74 DRY		NM DRY		DRY DRY	-	DRY DRY
MW-17	562.03 564.14		538.01	-	538.51	-	539.51	-	537.95
MW-17 MW-18	559.64	-	DRY	-	DRY	┢	DRY		DRY
MW-19	562.77	┝	536.42	┝	NM	-	DRY	-	DRY

G:\Augusta-GA\AProject\FPE Edgefield\AS30067293 (2021-2022)\Reports\Semiannual\3Q21 Semiannual\Tables\Table 2_FPE_Edgefield_V0-Draft (2)

Table 2Groundwater Elevation Gauging Data - 2021Former Federal Pacific Electric Co.Edgefield, South Carolina

		March 15, 2021	June 4, 2021	September 13, 2021	December 7, 2021
	Well Casing	Groundwater	Groundwater	Groundwater	Groundwater
Well ID	Elevation	Elevation	Elevation	Elevation	Elevation
	(ft msl)	(ft msl)	(ft msl)	(ft msl)	(ft msl)
MW-20	556.61	538.87	537.11	538.07	537.12
MW-23	562.03	DRY	DRY	DRY	DRY
MW-25	566.03	507.13	510.71	498.77	495.80
MW-26	563.02	541.67	539.77	541.09	539.85
MW-27	551.14	540.82	543.50	544.36	543.67
MW-28	565.51	533.53	536.91	537.64	535.97
MW-31	551.39	542.41	540.96	541.01	540.75
MW-32	554.04	539.18	536.75	537.21	537.03
MW-33	551.82	542.53	541.36	540.99	540.70
MW-34	553.78	543.73	542.66	542.22	541.70
MW-42	558.46	545.71	544.46	543.82	544.07
MW-43	561.06	551.26	548.94	549.42	547.90
MW-45	564.24	550.56	548.39	549.01	547.29
MW-46	565.99	555.28	553.32	553.33	551.90
MW-47	565.93	554.79	552.87	552.88	551.43
MW-48	568.60	556.05	554.40	555.30	553.84
MW-49	568.75	561.82	554.57	561.74	553.89
MW-50	569.65	546.88	546.37	546.19	544.95
MW-52	564.42	504.89	508.65	494.45	493.62
MW-53	564.22	533.33	534.38	535.58	534.06
MW-54	563.85	494.05	494.26	493.69	493.90
OW-21	568.24	546.59	546.18	545.99	544.72
OW-29	562.08	551.96	550.74	549.65	548.58
OW-30	565.26	548.89	547.81	546.82	545.89
OW-36	551.51	544.68	543.24	543.45	542.89
OW-37	555.10	NM	NM	NM	546.00
OW-38	557.76	539.22	537.44	538.55	537.56
OW-39	561.91	541.54	NM	NM	540.83
OW-40	561.28	552.88	551.24	550.66	549.55
PMW-01	527.22	523.76	522.44	522.47	522.51
PMW-02	522.76	522.49	522.29	522.76	522.55
PMW-03	539.72	534.41	533.49	533.56	533.23
PMW-04	546.58	538.65	537.52	537.53	537.01
PMW-05	546.55	538.86	537.72	537.70	537.22
PMW-06	531.64	 527.31	527.19	527.10	527.11
PMW-07	538.72	Unable to locate	Unable to locate	Unable to locate	Unable to locate
PMW-08	539.36	528.98	528.88	528.85	528.87
PSMW-01	520.24	 516.45	512.11	512.76	511.41
PSMW-02	521.25	514.78	510.52	511.51	511.22
PSMW-03	531.53	519.04	517.14	516.81	517.20
PSMW-04	525.30	519.47	517.36	517.48	516.74
PSMW-05	515.34	509.73	508.75	508.86	508.84
PSMW-06	531.64	525.38	522.14	523.51	522.74

Table 2Groundwater Elevation Gauging Data - 2021Former Federal Pacific Electric Co.Edgefield, South Carolina

		March 15, 2021	June 4, 2021	September 13, 2021	December 7, 2021
	Well Casing	Groundwater	Groundwater	Groundwater	Groundwater
Well ID	Elevation	Elevation	Elevation	Elevation	Elevation
	(ft msl)	(ft msl)	(ft msl)	(ft msl)	(ft msl)
PSMW-07	538.72	533.97	530.92	531.87	530.77
PZ1-PWR	561.75	DRY	DRY	537.37	DRY
PZ1-RCK	561.61	DRY	DRY	508.18	DRY
PZ1-S	561.65	538.64	NG	539.12	DRY
PZ2-PWR	561.16	NG	538.83	540.70	539.50
PZ2-RCK	560.94	NG	538.43	540.78	539.55
PZ2-S	561.21	Well Collapsed	Well Collapsed	Well Collapsed	Well Collapsed
REMW-01	559.81	542.91	544.77	544.06	543.21
RNMW-01	544.88	541.16	539.90	539.92	540.51
RNMW-02	557.35	543.87	542.46	542.20	541.43
RNMW-03	559.07	544.76	543.50	542.99	542.09
RTB-02	542.65	516.07	515.68	515.68	515.48
RTB-03	543.06	515.14	514.71	514.86	514.23
RTB-04	542.60	518.70	517.39	517.67	516.60
RTB-06	534.47	518.77	516.68	516.67	515.98
SFMW-01	550.97	DRY	DRY	DRY	DRY
SFMW-01A	551.08	533.26	532.19	531.86	531.20
SFMW-02	557.41	DRY	DRY	DRY	DRY
SFMW-02A	557.58	DRY	DRY	DRY	DRY
SFMW-05	545.45	538.07	NM	535.09	DRY
SFMW-06	545.43	538.77	535.07	536.03	534.33
SFMW-07	547.96	536.37	DRY	DRY	DRY
SMMW-01	544.00	537.15	533.09	534.70	532.35
SMMW-02	553.73	534.41	533.79	534.14	531.49
SMMW-03	543.05	522.36	519.92	519.60	518.22
SMMW-04	554.26	522.18	523.15	522.26	521.28
SMMW-05	550.15	532.42	530.36	529.91	529.42
SMMW-06	554.52	524.38	525.12	523.78	523.32
SMMW-07	542.59	522.39	520.19	519.59	518.33
SMMW-08	554.47	526.29	526.85	525.44	524.79
SMMW-09	542.34	523.29	521.15	520.97	519.74
SMMW-10	533.26	526.77	525.32	525.93	526.04
SMMW-11	540.12	528.78	526.25	526.30	525.89
SMMW-12	555.23	530.66	530.56	529.99	527.03
SMMW-13	540.56	529.12	526.48	526.48	526.03
TMW-01	540.41	536.85	532.57	532.42	530.66
TMW-02	523.88	522.83	522.16	522.39	522.12

Notes:

*=suspect measurement due to historic levels

ft msl = feet relative mean sea level

ft btoc = feet below top of casing

DRY = well was dry at the time of gauging

NM = not measured

		Volatile Organic Compounds (SW-846 8260B)										
Monitoring	1,1-	1,2-DCE	,2-DCE Vinyl			Carbon						
Well	Date	DCE	(total)	TCE	PCE	Chloride	Chloroform	Disulfide	Toluene	Acetone		
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
BEAVERDAM CREEK	AND ODELL	RESERV	DIR									
Main Discharge (DDPC)	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Plunge Pool (DDPD10)	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Midpoint	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Star Road	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Upstream	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021				1	Not Sampled	(Dry)					
Station 3	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Station 5	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Station 7	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Station 8	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Station 13	4/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	9/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		

Notes:

DCE = Dichloroethene

TCE = Trichloroethene

PCE = Tetrachloroethene

ug/L=micrograms/Liter

ND = Not Detected

Only those compounds that were detected in at least one sample above the Practical Quantitation Limit are included on this table.

Table 4Summary Groundwater Analytical Results - 2021Former Federal Pacific Electric Co.Edgefield, South Carolina

		Volatile Organic Compounds (SW-846 8260B)											
Monitoring	Sample	1,1- 1,1- cis-1,2- trans-1,2- 1,1,1- Vinyl											
Well	Date	DCE	DCA	DCE	DCE	TCA	TCE	PCE	Chloride	Chloroform			
		(μg/L)	(μg/L)	(μ g/L)	(μ g/L)	(μg/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μg/L)			
FORMER FF	PE FACILIT	(
MW-06	9/9/2021				No	ot Sampled	(Dry)						
MW-07	9/9/2021			-	No	ot Sampled	(Dry)						
MW-08	9/9/2021	0.72 J	ND	ND	ND	ND	2.6	0.45 J	ND	3.3			
MW-14	9/9/2021				No	ot Sampled	(Dry)						
MW-15	9/9/2021				No	ot Sampled	(Dry)		1				
MW-17	4/10/2021	9.8 J	ND	5.6 J	ND	ND	387	14.3	ND	ND			
	9/10/2021	14.8	ND	9.3 J	ND	ND	788	31.2	ND	ND			
MW-19	4/10/2021					ot Sampled							
104/ 00	9/9/2021	ND	ND	11.0		ot Sampled	()/	ND	ND	0.4			
MW-20	9/9/2021	ND	ND	11.8	0.38 J	ND	70.9	ND	ND	3.4			
MW-23 MW-25	9/9/2021	ND	ND	ND	ND	ot Sampled	(Dry) 3680	ND	ND	ND			
10100-25	4/10/2021 9/8/2021	ND	ND	2030	ND	ND ND	5590	ND	ND	ND			
MW-26	9/9/2021	ND	ND	0.31 J	ND	ND	3.7	ND	ND	ND			
MW-20 MW-27	9/9/2021	ND	ND	1.7	ND	ND	5.9	ND	ND	ND			
MW-28	4/10/2021	ND	ND	ND	ND	ND	157	10.6	ND	ND			
10100 20	9/10/2021	10.6	ND	4.1 J	ND	ND	525	26.0	ND	ND			
MW-32	9/9/2021	0.67 J	ND	108	ND	ND	123	ND	2.8	ND			
MW-33	9/8/2021	ND	ND	1.2	ND	ND	ND	ND	ND	ND			
MW-42	9/8/2021	ND	ND	ND	ND	ND	4.1	ND	ND	ND			
MW-45	9/8/2021	1.3	ND	ND	ND	ND	ND	ND	ND	ND			
MW-52	4/10/2021	ND	ND	39	ND	ND	207	1.5 J	ND	ND			
	9/10/2021	ND	ND	52.7	ND	ND	268	7.1	ND	ND			
MW-53	4/10/2021	20.9	0.47 J	ND	ND	ND	22.2	2.4	ND	0.51 J			
	9/10/2021	9.4	ND	ND	ND	ND	3.7	ND	ND	ND			
MW-54	4/10/2021	17.7 J	ND	84.9	ND	ND	1,380	54.1	ND	ND			
	9/10/2021	22.7 J [22.3]	ND [ND]	162 [158]	ND [ND]	ND [ND]	1610 [1,590]	66.9 [70.0]	ND [ND]	ND [ND]			
LBMW-101	9/7/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND			
STAR FIBER	RS/MARTIN												
B-1SF	9/9/2021	ND	ND	773	ND	ND	5710	ND	ND	ND			
B-2SF	9/9/2021	1.9 J	ND	21.2	ND	ND	192	0.80 J	ND	8.7			
B-3SF	9/10/2021	ND	ND	126	ND	ND	871	ND	ND	ND			
B-4SF	9/9/2021	ND	ND	93.6	ND	ND	1580	ND	ND	ND			
B-5SF	9/10/2021	ND	ND	66.9	ND	ND	838	ND	ND	ND			
SMMW-01	9/7/2021	ND	ND	ND	ND	ND	0.94 J	ND	ND	1.1			
SMMW-02	4/7/2021	ND	ND	6.3	ND	ND	29.2	ND	ND	ND			
	9/8/2021	ND	ND	28.2	ND	ND	629	ND	ND	ND			
SMMW-03	4/7/2021	ND	ND	52.4	ND	ND	295	2.5 J	ND	ND			
	9/8/2021	2.0 J	ND	53.5	ND	ND	276	ND	ND	ND			
SMMW-04	4/9/2021	ND	ND	645	ND	ND	4,690	ND	ND	ND			
01414/05	9/9/2021	ND	ND	488	ND	ND	3,940	ND	ND	ND			
SMMW-05	9/8/2021	ND	ND	60.9	ND	ND	187	ND	ND	ND			

G:\Augusta-GA\AProject\FPE Edgefield\AS30067293 (2021-2022)\Reports\Semiannual\3Q21 Semiannual\Tables\Table 4 _september2021-V0_Draft

Table 4 Summary Groundwater Analytical Results - 2021 Former Federal Pacific Electric Co. Edgefield, South Carolina

		Volatile Organic Compounds (SW-846 8260B)											
Monitoring	Sample	1,1-	1,1-	cis-1,2-	trans-1,2-	-	-	,	Vinyl				
Well	Date	DCE	DCA	DCE	DCE	TCA	TCE	PCE	-	Chloroform			
		(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)			
SMMW-06	4/9/2021	ND	ND	64.0	ND	ND	1,120	ND	ND	9.2 J			
	9/9/2021	ND	ND	69.0	ND	ND	1470	ND	ND	ND			
SMMW-07	4/7/2021	ND	ND	2,040	ND	ND	9,680	ND	ND	ND			
	9/8/2021	ND	ND	2,180	ND	ND	10,100	ND	ND	ND			
SMMW-08	9/9/2021	ND	ND	9.3	ND	ND	122	0.44 J	ND	5.6			
SMMW-09	4/7/2021	ND	ND	2,140	ND	ND	14,500	ND	ND	ND			
	9/8/2021	ND	ND	2,060	ND	ND	13,800	ND	ND	ND			
SMMW-10	9/7/2021	ND	ND	4.0	ND	ND	1.2	ND	ND	0.47 J			
SMMW-11	4/8/2021	0.61 J	0.50 J	65.5	0.35 J	ND	8.3	ND	12.4	ND			
	9/7/2021	ND	ND	20.0	ND	ND	7.3	ND	ND	ND			
SMMW-12	4/7/2021	ND	ND	209	ND	ND	1660	ND	ND	ND			
	9/8/2021	ND	ND	216	ND	ND	2240	ND	ND	ND			
SMMW-13	9/7/2021	ND	0.55 J	26.6	ND	ND	1.3	ND	ND	ND			
SFMW-01A	9/8/2021	ND	ND	20.3	ND	ND	474	ND	ND	ND			
SFMW-02A	4/7/2021					ot Sampled							
	9/8/2021	ND	ND			ot Sampled	ī	ND	ND	ND			
AMW-01	9/10/2021	ND	ND	7.3	ND	ND	23.4	ND	ND	ND			
AMW-02	4/8/2021 9/10/2021	ND ND	ND ND	3.5 [3.5] 6.5	ND ND	ND ND	12.9 [12.7] 18.0	ND ND	ND ND	ND ND			
AMW-03	4/9/2021	1.8 J	ND	48.1	ND	ND	202	ND	ND	ND			
AIVIVV-03	9/10/2021	1.8 J	ND	35.5	ND	ND	196	ND	ND	ND			
AMW-05	4/9/2021	4.8	2.9	10.6	ND	ND	97.3	ND	ND	ND			
AIVIV-05	9/10/2021	7.2	4.1	7.1	ND	ND	63.0	ND	0.56 J	ND			
PMW-02	4/7/2021	ND	ND	1.2	ND	ND	41.6	ND	ND	ND			
PMW-03	9/9/2021	ND	ND	0.53 J	ND	ND	24.3	ND	ND	ND			
PMW-04	4/7/2021	ND	ND	29.0	ND	ND	73.0	ND	ND	ND			
	9/9/2021	ND	ND	23.3	ND	ND	78.1	ND	ND	ND			
PMW-05	9/9/2021	ND	ND	0.50 J	ND	ND	2.5	ND	ND	ND			
PSMW-02	9/7/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND			
PSMW-03	9/9/2021	ND	ND	0.64 J	ND	ND	4.6	ND	ND	ND			
PSMW-04	4/8/2021	ND	ND	1.1	ND	ND	17.3	ND	ND	ND			
	9/9/2021	ND	ND	0.45 J	ND	ND	7.8	ND	ND	0.41 J			
PSMW-05	4/8/2021	ND	ND	113 [118]	ND	ND	777 [868]	ND	ND	ND			
	9/10/2021	ND	ND	122	ND	ND	729	ND	ND	ND			
PSMW-06	9/7/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND			
PSMW-07	9/7/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND			
RNMW-01	9/7/2021	ND	ND	ND	ND	ND	2.0	ND	ND	ND			
RNMW-02	9/7/2021	ND	ND	ND	ND	ND	2.2	ND	ND	ND			
RTB-03	9/10/2021	ND	ND	469	ND	ND	2030	ND	ND	ND			
RTB-04	9/10/2021	ND	ND	10.6	ND	ND	88.5	0.43 J	ND	ND			
RTB-06	4/8/2021	ND	ND	196	ND	ND	1,540	ND	30.9	ND			
	9/10/2021	11.4 J	ND	219 ND	ND	ND	1730 ND	ND	29.6	ND 0.57 J			
TMW-01	9/10/2021	ND	ND	ND	ND	ND	ND	ND	ND				

G:\Augusta-GA\AProject\FPE Edgefield\AS30067293 (2021-2022)\Reports\Semiannual\3Q21 Semiannual\Tables\Table 4 _september2021-V0_Draft

Table 4Summary Groundwater Analytical Results - 2021Former Federal Pacific Electric Co.Edgefield, South Carolina

		Volatile Organic Compounds (SW-846 8260B)								
Monitoring	Sample	1,1-	1,1-	cis-1,2-	trans-1,2-	1,1,1-			Vinyl	
Well	Date	DCE (μg/L)	DCA (μg/L)	DCE (μg/L)	DCE (μg/L)	τca (μg/L)	тсе (µg/L)	ΡCΕ (μg/L)	Chloride (µg/L)	$\begin{array}{c} \textbf{Chloroform} \\ (\mu g/L) \end{array}$
TMW-02	9/10/2021	ND	ND	ND	ND	ND	ND	ND	ND	0.61 J
LBMW-102	4/9/2021	ND	ND	4.9	ND	ND	1.3	ND	2.0	ND
	9/7/2021	ND	ND	1.7	ND	ND	ND	ND	1.2	ND
LBMW-103	9/8/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
LBMW-104	9/7/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
R Toe Drain	4/13/2022	ND	ND	1.7	ND	ND	3.2	ND	1.3	ND
	9/16/2021	ND	ND	2.7	ND	ND	6.7	ND	ND	ND
L Toe Drain	4/13/2022	1.3	ND	58.8	ND	ND	182	ND	4.8	ND
	9/16/2021	ND	ND	60.7	ND	ND	96.1	ND	9.0	ND

Notes:

[118] = Duplicate sample	TCA = Trichloroethane

ND = Not Detected

DCE = Dichloroethene TCE = Trichloroethene

DCA = Dichloroethane

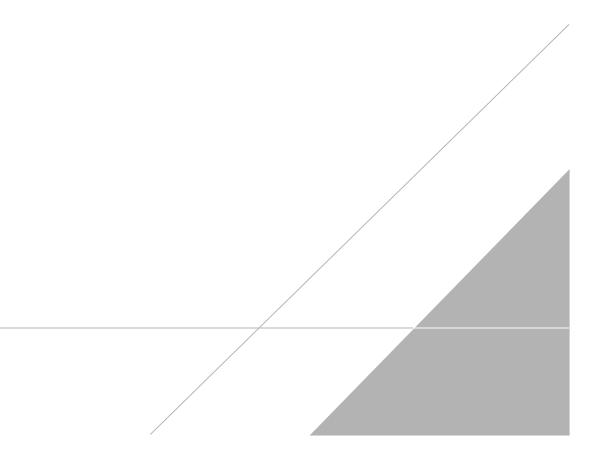
PCE = Tetrachloroethene R = Right

ug/L=micrograms/Liter L = Left

Only those compounds that were detected in at least one sample above the Practical Quantitation Limit are included on this table.

Table 5Groundwater Recovery Volumes - 2021Former Federal Pacific Electric Co.Edgefield, South Carolina

			On-Site F	Recovery Sy	Off-Site Recovery System							
Reporting Period	EW-1R	EW-2	EW-3	EW-4	EW-5	Total Recovered Groundwater (gallons)	EW-10	EW-11	EW-12	FASW	Toe Drain	Total Recovered Groundwater (gallons)
January-21	44,769	54,202	63,514	75,089	96,723	334,297	81,921	263,887	198,348	19,383	68,273	631,812
February-21	49,211	64,915	65,526	342,133	93,742	615,527	83,144	265,231	218,137	19,102	66,875	652,489
March-21	63,540	47,520	46,062	402,798	119,758	679,678	66,946	208,516	289,946	4,717	41,007	611,132
April-21	51,593	60,480	48,172	315,058	97,258	572,561	85,931	274,042	224,949	1,828	44,727	631,477
May-21	50,904	59,184	59,910	295,490	97,365	562,853	81,298	272,301	227,836	2,257	39,990	623,682
June-21	65,760	64,800	96,756	391,473	119,239	738,028	97,576	335,717	274,846	6,499	50,407	765,045
July-21	26,423	73,440	32,404	362,359	100,100	594,726	49,270	128,540	134,703	9,798	35,792	358,103
August-21	35,762	72,288	35,725	901,855	81,534	1,127,164	64,380	213,884	182,223	6,439	48,888	515,814
September-21	42,364	69,840	56,009	440,294	102,173	710,680	82,741	269,224	248,053	7,423	42,569	650,010
October-21	40,776	70,848	63,010	433,440	166,292	774,366	83,613	275,607	253,217	8,665	56,549	677,651
November-21	36,225	62,704	82,896	423,504	94,406	699,735	79,889	257,402	118,558	29,168	46,866	531,883
December-21	44,340	70,128	65,103	428,544	99,849	707,964	84,566	229,299	267,840	28,352	65,177	675,234
Totals:	551,667	770,349	715,087	4,812,036	1,268,439	8,117,578	941,275	2,993,650	2,638,656	143,631	607,120	7,324,332


Total Recovered Groundwater All Recovery Systems (Gallons) = 15,441,910

Notes:

EW=extraction well

APPENDIX A

Groundwater Recovery/Treatment System Operating and Monitoring Data

Dates	Cause	Actions Taken
6/30/04 - 7/2/04	Power Outage : when power came back on for the system, the low pressure alarm for the air stripper blower was triggered. This shut down the influent equalization tank transfer pumps, and once the high level in the influent tank was reached, the extraction well pumps were shut down.	An automatic reset was programmed for the air stripper blower so that when a power outage occurs the blower attempts to restart automatically before an alarm is triggered.
Effluent to ACPSA/ Trenches	PLC Failure : some condensate formed inside an electrical conduit and dripped onto one of the PLC modules, causing the module to fault and produce erroneous readings.	The conduit ends within the data control center were modified with drains so that no water can fall onto the electrical components of the control center.
	No signific	ant downtime
	No signific	ant downtime
	RW-1 : a break was experienced where the extraction line connected to the well casing. A small amount of water (< 50 gallons) was lost from this line (underground) before the problem was diagnosed.	Repairs were made to the connection between the extraction line and the well casing. The well has been operating normally since the repairs.
5/1/05 - 7/31/05	-	ant downtime
8/1/05 - 10/31/05		ant downtime
11/1/05 - 1/31/06		ant downtime
2/1/06 - 4/30/06		ant downtime
7/16/06 - 7/17/06	Power Outage : the system was down for two days, and the downtime is believed to be associated with a power outage from a thunderstorm. The system did not properly reset when power was restored.	Further action has not been taken at this time since the automatic reset is currently functioning properly. CDM will continue to monitor the system closely.
10/19/06 - 10/22/06	Sump Alarm : the system was down for approximately four days due to inadvertently tripping the high-high level switch on the floor sump while transferring purge water from sampling activities. The autodialer did not call out when this occurred. The system was reset when the operator made his next visit to the site.	A contactor was replaced in the sump control panel. The sump pumps are now functioning normally, and the autodialer properly calls out when the high-high level switch is tripped.
1/21/07 - 2/12/07	RW-1 : the extraction well pump stopped working due to a problem with the motor.	The motor was replaced on February 12, 2007, and the well is now operating normally.
4/10/2007	Multi-media filter : a small leak was discovered on a gasket line access port (side of filter) for one of the three multi-media filters.	groundwater was rerouted through one of the two other filters.
7/17/07 - 7/23/07	RW-1 was taken offline on July 17, 2007, and EW-4 was started in its place on July 23, 2007.	This replacement was planned and not related to a problem with the treatment system.
8/1/07 - 10/31/07	No signific	ant downtime
1/10/2008	EW-1 : Lower than normal extraction rates were observed for this well in late December.	The well pump and down-hole piping was replaced on January 10, 2008.
2/1/08 - 4/30/08	No signific	ant downtime
5/1/08 - 7/31/08	No signific	ant downtime
10/15/08 - 10/27/08	EW-1: offline due to pump failure	The well pump was replaced on October 27, 2008.
10/27/08 - 11/7/08	EW-2: offline due to pump failure	The well pump was replaced on November 7, 2008.
11/8/08 - 1/31/09	No signific	ant downtime
2/1/09 - 4/30/09	No signific	ant downtime
	· · · · · · · · · · · · · · · · · · ·	

Dates	Cause	Actions Taken
7/15/2009	Extraction wells turned off to allow tie-in of piping for the new offsite conveyance system.	No action necessary. System was restarted on July 16, 2009.
8/1/09 - 10/31/09	No signific	ant downtime
1/14/2010	Sump Alarm: the high level switch was accidentally tripped during carbon drum backwashing. The condition was brief and returned to normal before the autodialer called out. However, once tripped, all extraction wells and the treatment system turned off until they were manually reset.	A 10-minute delay has been programmed into the floor sump high level alarm. If the switch is accidentally tripped and then returns to normal within 10 minutes, no system shutdowns occur.
2/9/2010	Influent Tank High Level : For a brief period, the incoming flow to the influent tank was higher than the outgoing flow, and the high level switch tripped. This caused all the extraction wells to shutdown until they could be manually reset.	The transfer pumps were not pumping at full capacity, and CDM has made programming modifications to prevent this event from happening again.
2/19/2010	Air Stripper Blower Failure: a suspected electrical surge caused the air stripper blower to shutdown.	The electrical setup was reviewed and confirmed to be ok. The blower has been monitored since this event, and the problem has not reoccurred.
3/3/10 - 3/5/10	EW-10: hose inside well became dislodged.	Hose connection to hard piping was repaired.
6/6/10 - 6/28/10	EW-1: offline due to pump failure	The well pump was replaced on June 28, 2010.
7/8/10 - 7/12/10	EW-11: offline due to pump failure	Troubleshooting revealed that some wiring inside the well electrical box needed to be repaired. This was done on Monday, July 12th.
8/19/2010	Air Stripper High Level : The air stripper level indicator malfunctioned, reporting erroneous high level readings to the control panel. This caused all the extraction wells to shutdown for a brief period.	The problem was corrected and the system was restarted within four hours of the extraction wells shutdown.
12/10/10 - 12/14/10	EW-4: offline to fix a minor leak at the wellhead	The small leak was fixed and EW-4 was put back online on 12/14/10.
12/15/10 - 12/30/10	Modem Failure : The offsite system communications modem failed. The offsite wells and toe drain pumps continued to function normally, but offsite performance data were not transferred to the main system computer in this period.	A new modem was installed on 12/30/10.
2/11/11 - 2/12/11	Power outage: The treatment system was without power for approximately 10 hours due to a car crash that damaged a power pole adjacent to the site.	Once power was restored, the system was reset and began functioning normally again.
2/23/2011	EW-10: low pumping rate and consequent high water level	Opened diaphragm valve wide open; cycled pump; pump issue resolved and well adjusted to 3.5 gpm
3/29/2011	Agency inspections: ACPSA collect effluent sample; Edgefield Water & Sewer on site to read meter	ARCADIS split effluent samples with ACPSA
4/5/2011	Power outage: Toe drain recovery system was without power for approximately 12 hours due to downed power lines along Rabbit Trail Rd.	Began arranging backup power source for toe system; power restored at approximately 1530 hrs; system back online; reset autodialer; notified SCDHEC of system upset and ~90 gallon of untreated toe drain influent escaped to Beaver Dam Creek.

Dates	Cause	Actions Taken
	Power outage: storm in early AM caused short	Reset influent and EW-4 pumps; cleared all alarms;
4/10/2011	term power outage; influent and EW-4 pumps not reset automatically	reset autodialer
	Influent and EW-4 pump failure: storm in early	Reset influent and EW-4 pumps; cleared all alarms;
4/22/2011	AM caused short term power outage; pumps not	reset autodialer
	reset automatically	
	Recovery well EW-10 failure: decrease in	Replace bad pump/motor assembly
6/9/2011	pumping rate over several days and ultimate	
	failure	
8/14/2011	Power outage - short term	computer UPS failed resulting in no data logging for
	FW A numer failure alarmy short tarm namer	~ 8 hrs; replaced UPS 8/16
8/30/2011	EW-4 pump failure alarm: short term power outage; pump not reset automatically	Reset EW-4 pump; cleared alarm; reset autodialer
		Manually report modern apyaral times hafere repoirs
9/10/2011	SCADA communication failure to offsite wells:	Manually reset modem several times before repairs made to main phone line by AT&T
		Removed/cleaned/re-install filter; cleared alarm;
9/16/2011	Air stripper filter alarm: aged and clogged filter	reset autodialer
	Toe drain effluent line moisture sensor alarm:	Replaced sensor
9/22/2011	no moisture, sensor bad	Replaced Sensor
		Remotely reset modem several times before repairs
10/4/2011	SCADA communication failure to offsite wells:	made to main phone line by AT&T
	EW-4 pump failure alarm: short term power	Reset EW-4 pump; cleared alarm; reset autodialer
10/17/2011	outage; pump not reset automatically	
10/30/2011	SCADA communication failure to offsite wells	Remotely reset modem
44/4/0044	Toe Drain sump influent line: reduced flow from	Opened and cleaned TD sump and influent lines
11/1/2011	iron fouling	
11/3/2011	Alarm: Toe drain alarm	Replaced leak detection sensor on toe drain piping
11/3/2011		
11/17/2011	EW-1 Level Probe failure	Replace level probe
11/22/2011	Recovery well EW-11 pump failure; pump and	Purchased/installed new pump/motor/piping -
11/22/2011	motor failure	12/13/11 (well down for 20 days)
12/1/2011	Elevated GAC drum backpressure	Replace GAC drums; Replace level probe
,	EW-2 Level Probe failure	
12/4-7/11	Toe drain effluent line moisture sensor alarm:	Cleaned sensor probe
	no moisture	Installed book up generates as 40/00/44 as the tast
1/5/2011	Toe Drain Backup Power Supply: grid power outages	Installed back-up generator on 12/20/11 and put on line 1/5/12
1/31/2012	Toe Drain Pumps: decreased pumping rates	Purchased and installed replacement pumps
2/29/2012	System Backwash Sludge Tank: full	Removed ~3,000 gal iron/water via vac truck and
<i>LI LJI L</i> U I L	System Datewash Shuuye Tank. Tun	transport/dispose at EQ Augusta
	Alarm: for pipe leak; sensor wet from heavy rain.	
3/2/2012	Alarm: for filter trouble, preset on.	Preset on.
3/5/2012	Alarm: Rabbit Trail power failure.	On.
0,0,2012	Alarm: Toe Drain pipe leak, caused by heavy	On.
4/1/2012	rain.	
4/17/2012	Well EW-11 shut off.	Testing
4/19/2012	FASW off.	Testing
1/10/2012	Shut down EW-10 at 1310. Restart EW-11 at	
4/24/2012	1510 and shut down at 1715.	Testing
4/29/2012	Security Alarm: Unknown	Reset alarm, inspect system
6/1/2012	Backwash Filter Alarm: PLC fault	Adjust solenoid, reset alarm and restarted system
6/22/2012	Backwash Filter Alarm: PLC fault	Adjust solehold, reset alarm and restarted system
0/22/2012		Aujust solenolu, reset alann and restarted System

Dates	Cause	Actions Taken				
6/24/2012	FASW Failure Alarm: and filter tank leak.	Reset alarm, fixed leak on filter tank, and inspect system				
0/24/2012		Reset alarm, fixed leak on filter tank, and inspect				
7/13/2012	FASW Failure Alarm: and filter tank leak.	system				
	Alarm: Rabbit Trail power failure and filter system	Checked system, drained influent tank, reset alarm,				
7/18/2012	problem.	and system restart.				
	Alarm: Rabbit Trail power failure and filter system	Checked system, drained influent tank, reset alarm,				
7/19/2012	problem.	and system restart.				
	Alarm: Rabbit Trail power failure and filter system					
7/30/2012	problem.	Reset alarm and restarted backwash filter				
7/31/2012 to 8/2/2012	Alarm: EW-10 fail	Reset Pump				
8/21/2012	All onsite recovery wells down	Auto system reset and wells back on line after 2 hours				
		Reset alarm and pump restart. Repair off-site				
	Alarm: Rabbit Trail power failure. EW-10 and EW					
10/27/2012 to 11/3/2012	11 down.	(11/3/12)				
		Checked system, drained influent tank, reset alarm,				
11/11/2012	Alarm: Filter system	and system restart. Reset filter system discharge pressure.				
11/14/2012		Reset set: monitored. Backwashed Filter C. Finish				
12/20/2012	Alarm: High discharge pressure on filter system	repair of mixer M1. Back in service.				
12/20/2012		Backwashed Filter C. Monitored twice. Filter A back				
12/21/2012	Alarm: High discharge pressure on filter system	in service.				
	Alarm: Filter high pressure.	Backwashed Filter A & C.				
	Sludge holding tank valves would not open when	Manually opened values and drained tank.				
12/22/2012	filled.					
/	Alarm: Filter system trouble. Filter B alarm	Checked system, drained influent tank, reset alarm,				
12/26/2012	showing valve P/C problem.	and system restart. Backwashed filter A & C.				
1/04/0010	Water in containment area from a leak in filter A	Backwash filters A & C and clean air stripper trays				
1/24/2013	and buildup in air stripper trays Water in containment area from a seal leak in filter					
1/30/2013	A	replace seal				
2/1/2013	Alarm: Power Surge. Filter system fault.	Checked system, reset alarm. Reset filters				
_, ., _0.0		Repair PLC; All run times reset to 11/15/12 recorded				
		times; run air stripper in manual mode to treat Toe				
	Alarm: PLC Fault; system down for filter	Drain water during filter repair; all systems back on				
2/2/2013 to 2/14/13	replacement	line 2/14/13				
2/20/2013	buildup in air stripper trays	clean air stripper trays				
3/6/2013	Alarm: Filter pressure	Reset pressure differential on A, B, & C.				
3/12/2013	buildup in air stripper trays	clean air stripper trays				
3/14/2013	Alarm: Filter pressure, EW-4 offline	Reset backwash filters & alarms. Back in service.				
3/18/2013	Alarm: Filter system trouble. (Storm/heavy rain)	System filter fault reset filter, monitor.				
3/23/2013	Alarm: Power failure and filter system fault	Reset alarm and system restart				
3/07/0010	Toe Drain system down for maintenance	Cleaned toe drain sump; replaced TD sump pumps; cleaned TD lines and replaced four Fernco couplings on piping; system back up same day.				
3/27/2013		Resume off-site recovery				
5/2/2013	SCADA upgrades completed buildup in air stripper trays	clean air stripper trays				
5/7/2013	Alarm: Filter system trouble	System filter fault reset filter, monitor.				
5/24/2013	Maini. Filler System trouble	Cystem niter rault reset niter, mornitor.				

Dates	Cause	Actions Taken
	Pressure transducer is causing pump to short	
6/6/2013	cycle because it's pressure signal is intermittent	Replace pressure transducer
6/23/2013	Alarm: Toe drain pump overload	Checked system, reset alarm. Reset filters
6/24/2013	Alarm: Toe drain pump overload	Checked system, reset alarm. Reset filters
6/29/2013	Alarm: Toe drain high level (P100 failed)	Reset alarm
6/30/2013	Alarm: Toe drain high level (P100 failed)	Reset alarm
7/6/2013	Alarm: Toe drain high level (P100:P150)	Reset alarm
7/8/2013	Alarm: Toe drain high level	Reset alarm
7/11/2013	Redox level low	Added 4 buckets of redox
7/14/2013	Alarm: Toe drain sump high level	Reset alarm
		Cleaned toe drain sump; replaced TD sump pumps;
7/18/2013	Toe Drain system down for maintenance	system back up same day.
8/6/2013	Alarm: Toe drain communication alarm	Remotely reset modem
9/23/2013	Alarm: Toe drain power fail	Reset alarm
10/24/2013	Shut down toe drain return pumps	Restart Pumps on 10/29/13
	Alarm: Power failure and modem communication	
11/14/2013	problems	Restart system; work with AT&T per modem issues
2/2/2014	Alarm: Toe drain high level	Changed out P-100 pump/motor; restart
		Cleaned toe drain sump and jetted line; system bac
2/9/2014	Toe Drain system down for maintenance	up same day.
2/21/2014	Alarm: Toe drain high level (P100 failed)	Reset alarm
2/12/2014	Lost power from ice and snow storm	2/14/14 power back on
3/11/2014	FASW flow meter giving erratic readings	Cleaned FASW flow meter
3/25/2014	Power surge; air compressor power fault	reset breaker and power up unit
		Reset UPS and Rabbit Trail control panel; system
4/6/2014	Alarm: Short term power failure	back on line
5/8/2014	Annual SCDHEC compliance inspection	No findings
		Reset EW-1; system back on line; change GAC
5/26/2014	Alarm: Short term power failure	units
6/13/2014	SCADA system not responding remotely	reboot system; change out modem
8/9/2014	Alarm: EW-11 down from apparent power surge	Reset EW-11 and back on line
8/23/2014	SCADA system not responding remotely	reboot system; change out modem
0/20/201E	Alarm: TE sump high level	Connections in P100 pump control box cleaned; pump back in service and operating
8/30/2015		Reset dial up at residence; communication back in
9/9/2014	TD communication failure	service
9/15/2014	Alarm: EW-4 down	Reset EW-4 and back on line
11/24/2014	Alarm: Rabbit Trail communication failure	Replaced APC and system back on line
11/24/2014	EW-10, EW-11, and FASW offline; tapping into	influent conveyance line back in service; EW-10,
12/17/2014	influent line for EW-12	EW-11, and FASW back on line
12/29/2014	Alarm: Rabbit Trail communication failure	Rewired APC and system back on line
12/20/2011	Alarm: Communication failure at Rabbit Trail	TD UPS replaced 1/2/15; treatment facility phone
12/31/2014	Road; phone line down at treatment facility	line repaired 1/3/15
1/4/2015	Alarm: Well EW-11 down	Reset EW-11 and back on line
1/23/2015	Alarm: Communication failure	Reboot computer and back online
1/26/2015	Alarm: Filter system	Reset and back online
2/1/2015	Alarm: Well EW-10 down	Reset EW-10 and back on line
2/5/2015	SCE&G cut power to treatment facility 0955 hrs	Power back on and systems back up at 1037 hrs
_, 0, _0 10	Alarm: Well EW-2 down (pump bad); EW-11	Replaced EW-11 effluent line on 2/24/15; replaced

Dates	Cause	Actions Taken
	Offsite extraction wells on and off during line	
2/19/2015	pressure testing - 4 hours	All wells back in service same day - 2/19/15
3/9/2015	Alarm: Toe Drain high level	Replaced TD pump 3/9/15; TD back in service
4/3/2015	Alarm: EW-11 down	Reset EW-11 and back on line
5/21/2015	Security Alarm: Unknown	reset sensitivity of security cameras
6/16/2015	Alarm: EW-4 overload fault	Reset EW-4 and back on line
6/18/2015	Alarm: EW-4 tripped off, will not stay running	Replaced pump and motor 6/30/15, well back on li
6/30/2015	Alarm: EW-10 faulted	Reset EW-10 and back on line same day
7/26/2015	Alarm: Transfer pump VFD fault	Reset VFD and monitored system
7/28/2015	Alarm: Transfer pump VFD Failed	Replaced VFD and system back on line
8/13/2015	Alarm: EW-10 tripped off	Reset VFD, back on.
8/13/2015	Remote system login issue	Trouble shot PLC, rebooted computer;
8/14/2015		Installed a new pump/motor and well placed back
8/19/2015	Alarm: EW-10 fault	online
		Reset PLC and system back on line-TD offline <24
8/20/2015	Alarm: Toe Drain PLC	hours
8/24/2015	TD PLC issue	Replace PLC in-out module; system back online
10/5/2015	Alarm: EW-10 tripped off	Reset EW-10 and back in service
		Reset EW-10 and EW-11, monitored, and back in
10/12/2105	Alarm: EW-10 and EW-11 tripped off	service
11/4/2015	Alarm: Remote access communication failure	AT&T troubleshoot phone line and fixed the proble
11/8/2015	Alarm: EW-12 tripped off	Reset EW-12 and rebooted computer
	Routine maintenance: Offsite extraction wells and	Conveyance line jetting/cleaning; restart all offsite
11/18-19/2015	Toe Drain shut down	systems following maintenance
		Systems rebooted and back online-systems
11/28/2015	Alarm: SCADA and HMI Panel not working	offline<24 hours
1/30/2016	Alarm: EW-12 fault	Pump/motor pulled and replaced on 2/9/16
1/30/2016	EW-12 off for troubleshooting pump	Pump/motor pulled and replaced on 2/9/17
2/9/2016	Alarm: EW-12 pump shaft broken	Pump replaced
2/19/2016	Alarm: EW-10 tripped off	Reset EW-10 and back in service
2/25/2016	EW-10 motor fault	EW-10 pump and motor replaced on 3/4/16
3/7/2016	Alarm: EW-10 tripped off	Electrical trouble-shoot and repair for EW-10
4/21/2016	Alarm: Filter reset	Filter reset cleared out on filter panel
5/3/2016	EW-1 turned off for rebound testing	EW-1 turned on before sampling on 5/12/16
5/21/2016	Alarm: Toe Drain P100 tripped off	Toe Drain P100 pump and motor replaced
5/29/2016	Alarm: FSW pump faulted; computer down	Rebooted and back in service
5/31/2016	Alarm: EW-12 tripped off	Reset and back online
0,01,2010		Replaced capacitor box, pump and motor and bac
C/0/004C	Alarm: Toe Drain P150 stopped running	in service
0/0/2010	Alarm: Rabbit Trail communication failure	Phone service repaired phone lines on 7/21/16
6/8/2016 7/18/2016		
7/18/2016		Phone service repaired phone lines on 7/21/16
7/18/2016 7/18/2016	Alarm: Toe drain communication alarm	Phone service repaired phone lines on 7/21/16 EW-1 replaced level transmitter
7/18/2016 7/18/2016 7/18/2016	Alarm: Toe drain communication alarm EW-1 will not start in auto troubleshoot	EW-1 replaced level transmitter
7/18/2016 7/18/2016	Alarm: Toe drain communication alarm	EW-1 replaced level transmitter Reset and back online
7/18/2016 7/18/2016 7/18/2016 8/2/2016	Alarm: Toe drain communication alarm EW-1 will not start in auto troubleshoot Troubleshoot EW-12 flow meter	EW-1 replaced level transmitter Reset and back online Installed new transducer in Trench #2 on 9/22/16;
7/18/2016 7/18/2016 7/18/2016 8/2/2016 8/4/2016	Alarm: Toe drain communication alarm EW-1 will not start in auto troubleshoot Troubleshoot EW-12 flow meter Trench #2's transducer is bad	EW-1 replaced level transmitter Reset and back online Installed new transducer in Trench #2 on 9/22/16; still not working
7/18/2016 7/18/2016 7/18/2016 8/2/2016	Alarm: Toe drain communication alarm EW-1 will not start in auto troubleshoot Troubleshoot EW-12 flow meter	EW-1 replaced level transmitter Reset and back online Installed new transducer in Trench #2 on 9/22/16;

Dates	Cause	Actions Taken
9/7/2016	Alarm: PLC shut down due to bad UPS power supply	Disconnected bad UPS power supply and redirected power to P/C power; plant back online; restarted pumps, wells, and plant; bad UPS replaced on 9/8/16 with new battery back-up
9/12-14/2016	Toe Drain modification	Reconfigured Toe Drain influent header for easier sampling; installed second port in sump housing
		Transducer in Trench #2 still not working - PLC
9/22/2016	New transducer installed in Trench #2	needs addressing
10/8/2016	Alarm: EW-11 tripped off	EW-11 reset and back in service
11/12/2016	Alarm: EW-11 tripped off	EW-11 reset and back in service
12/3/2016	Treatment system down for one day for carbon system piping installation	Carbon system piping installed and restarted treatment system; effluent flow meter reset
12/10/2016	Treatment system down for one day for carbon system piping installation	Carbon system piping installed and restarted treatment system
1/29/2017	Alarm: Toe Drain high level	Changed P150 motor; bad control box
3/1/2017	Alarm: Air Stripper high level	Reset pump and pulled level down; restart plant
5/1/2017	Alarm: EW-12 tripped off	EW-12 reset and back in service
6/6/2017	Alarm: EW-12 tripped off	EW-12 reset and back in service
6/15/2017	EW-2 level transducer malfunction; well shut down	Transducer replaced and well back in service
6/16/2017	Alarm: EW-10 and EW-11 tripped off	Reset both and back in service
6/20/2017	Alarm: EW-11 tripped off	EW-11 reset and back in service
8/8/2017	Alarm: EW-10 tripped off	EW-10 reset and back in service
	Alarm: Air stripper effluent pump failure.	
8/9/2017	Treatment system down	Reset pump. Treatment system back in service
8/14/2017	Alarm: EW-11 tripped off	EW-11 reset and back in service
8/20/2017	Alarm: EW-10 and EW-11 tripped off	Reset both and back in service
8/23/2017	Alarm: EW-11 tripped off due to NFP signal	EW-11 fault and transducer changed, well reset and back in service
8/29/2017	Trench #1's motor not working properly	Adjusted motor in Trench #1
9/12/2017	Alarm: Rabbit Trail communication down due to power outage	ATT repaired phone lines and back in service on 9/14/18
10/13/2017	Alarm: EW-10 and EW-11 tripped off	Reset both and back in service
11/6/2017	Alarm: EW-10 and EW-11 faults	Restricted operation of wells during daylight working hours; replaced transducer bellows on 11/28/17 and returned to operating full-time
1/4/2018	Alarm: Air stripper effluent pump failed; treatment system down	Installed new pump P-4A; treatment system back in service on 1/5/18
1/5/2018	P-4B pump troubleshoot - pump has a leak	Effluent fail safe for tank and throughout system installed
3/12/2018	Alarm: EW-12 faulting and can't achieve desired drawdown	Installed pressure gauges on EW-10, EW-11, and EW-12 to monitor line pressures for diagnosis
4/15/2018	Alarm: Effluent pump (P-4A and -4B) failed	Replaced pump P-4B and repaired shaft coupling of P-4A; system back in service 4/16/18
5/4/2018	Alarm: Offsite extraction system communication fa	Contacted ATT for phone service inspection; ATT reported phone and internet service issues resolved 5/10/18
5/15/2018	Increasing Toe Drain influent line pressures and decreasing flows	Cleaned TD influent/effluent lines, replaced TD sump pumps, and cleaned offsite extraction well influent line; all placed back in service 5/15/18

Dates	Cause	Actions Taken
5/18/2018	Alarm: EW-12 faulting and can't achieve desired drawdown	Replaced with larger pump/motor; back in service 5/18/18
6/15/2018	Continued EW-12 faulting and performance issues	Replaced flow meter and adjust VFD; back in service and operating normally 6/21/18
7/1/2018	Alarm: AS discharge pump P3B fault resulted in air stripper and sump high level alarms	Cleared fault, toggled to P3A pump and system bac on line 7/1/18; reprogrammed PLC so P3 pumps would automatically toggle to backup pump if one fails.
8/14/2018	Persistent communication issues between Rabbit Trail Rd systems and on-site treatment system since April 2018.	AT&T determined issues on their side and resolved com issues on 8/24/18
9/8/2018	Alarm: EW-12 fault	Reset fault and placed EW-12 back in service; adjusted pumping levels in EW-10 and EW-11
9/13/2018	Shut down all system due to pending hurricane	No effects from storm; all systems place back in service 9/17/18
10/8/2018	Alarm: EW-12 fault	Reset fault and placed EW-12 back in service; adjusted pumping level in EW-12 from 33' to 36'
10/10/2018	Shut down all systems due to pending hurricane	No effects from storm; all systems place back in service 10/11/18
12/6/2018	Alarm: Influent pump P2B faulting;	Switch to P2A; P2B seized and needs replacemen purchase/replacement scheduled for 1Q19
12/17/2018	Alarm: continued EW-12 faulting	Upgraded surge protection on EW-12 VFD and reprogrammed; EW-12 placed back in service 12/17/18
1/3/2019	Alarm: FASW fault due to influent line backpressure	Changed pumping level of EW-11 to reduce backpressure same day
4/3/2019	Alarm: AS transfer pump P-2B fault	Toggled to pump P-3B and system back online same day
4/24/2019	Alarm: EW-1R pump/motor fault	Replaced pump/motor 5/1/19 and placed back in operation
4/26/2019	Alarm: EW-10 pump motor overloading	Replaced pump/motor 5/3/19 and placed back in service
6/3/2019	Alarm: AS transfer pump P-3B fault	Toggled to pump P-3A and system back online same day
6/7/2019	Alarm: EW-12 PLC input card faulty, needs replacement	EW-10, EW-11, and EW-12 PLC input cards replaced 7/24/19 and placed back online
7/18/2019	Alarm: AS transfer pump P-3A/3B fault; treatment system shutdown	Replaced AS transfer pump P-3B; made programming adjustments to VFD/PLC; treatment system placed back online 7/30/19
8/14/2019	Alarm: AS transfer pump P-3A fault;	Toggled to pump P-3B and system back online same day
8/16/2019	Alarm: EW-12 Rabbit Trail Road VFD faults	Replaced I/O modules and systems placed back in operation 8/29/19
12/13/2019	Alarm: EW-3 pump motor overloading	Replaced EW-3 pump/motor and placed back in operation 1/9/20
1/10/2020	Alarm: EW-2 pump/motor fault	Replaced EW-2 pump/motor and placed back in operation 1/16/20
2/6/2020	Alarm: Airstripper transfer pump P-3B fault	Reset VFD and placed back in operation 2/7/20
2/14/2020	Alarm: Airstripper transfer pump P-3B fault	Reset VFD and placed back in operation 2/16/20
3/17/2020	Alarm: Airstripper transfer pump P-3A fault	Reset VFD and placed back in operation 3/7/20
		Reloaded PLC parameters in both VFDs and place

G:Augusta-GA\AProject\FPE Edgefield\AS30067293 (2021-2022)\Reports\Semiannual\3Q21 Semiannual\Appendix\Appendix A - Groundwater RecoveryTreatment\Monthly SystemDT Tbl1_18 of 9

Dates	Cause	Actions Taken
4/12/2020	Alarm: Power and offsite communitication failure	Reboot recovery/treatment systems and placed back in operation 4/13/20
4/21/2020	Alarm: Power and offsite communitication failure	Reboot recovery/treatment systems and placed back in operation 4/23/20
4/25/2020	Alarm: Power and offsite communitication failure	Reboot recovery/treatment systems and placed back in operation 4/27/20
6/5/2020	Alarm: Airstripper transfer pump P-3A fault	Reset VFD and placed back in operation 6/5/20
7/19/2020	Alarm: Airstripper transfer pump P-3A fault	Reset VFD and placed back in operation 7/20/20
8/14/2020	Alarm: Power and offsite communitication failure	Reboot recovery/treatment systems and placed back in operation 8/15/20
9/26/2020	Alarm: Power and offsite communitication failure	Reboot recovery/treatment systems and placed back in operation 9/27/20; control room communication restored 9/29/20.
	Offsite extraction wells off due to panel and	Offsite extraction well system restarted and placed
10/16/2020	communication system replacement	in operation $10/17/20$.
11/10/2020	Alarm: Extraction well FASW fault	Replaced pump/motor 12/17/20
11/30/2020	Alarm: Main plant power failure	System reset itself and back in operation 11/30/20
1/26/2021	Alarm: Power and offsite communitication failure	Reboot offsite recovery systems and placed back in operation 1/26/21
2/25/2021	Alarm: FASW extration well fault	Reset and placed back in service 2/25/21
3/7/2021	Alarm: Airstripper transfer pump P-3A/P-3B fault and shut system down	Reset all pumps and VFDs and placed back in service 3/7/21
4/16/2021	Alarm: EW-12 extraction well fault	Reset VFD and UPS and placed back in service
5/5/2021	Alarm: Main plant power failure	Reset systems and place back in service 5/5/21
5/17/2021	Take GAC vessels offline for carbon change out	GAC replaced and vessels placed back in service 5/26/21
6/7/2021	Alarm: Airstripper transfer pump P-3A/P-3B fault and shut system down	Reset all pumps and VFDs and placed back in service 6/8/21
6/14/2021	Alarm: EW-2 extraction well fault	Reset and placed back in service 6/14/21
1/28/2021	Alarm: Airstripper sump high level	Restart P-3 pumps and pump down AS sump; placed system back in service 1/28/21
2/25/2021	Alarm: Airstripper sump high level	Restart P-3 pumps and pump down AS sump; placed system back in service 2/26/21
5/5/2021	Alarm: Airstripper sump high level	Restart P-3 pumps and pump down AS sump; placed system back in service 5/5/21
6/7/2021	Alarm: Floor sump high level	Pumped down EQ tank, reset P-2 pumps, placed back in service 5/5/2021
7/10/2021	All recovery/treatment systems offline for main control panel/PLC changeout	Complete control panel installation and systems restart 7/18/21
8/6/2021	Alarm: Air stripper blower fault	Replaced blower starter in panel; placed back in service 8/8/21
9/14/2021	Alarm: Effluent P-4B pump fault	Reset all pumps and VFDs and placed back in service 9/14/21
12/16/2021	Alarm: Power outage at Rabbit Trail and Toe Drain	Restart well EW-12 and all other wells restart in auto; placed back in service 12/17/21
12/23/2021	Alarm: Power outage at main plant	Restart P-3 VFD; placed back in service 12/23/21
12/28/2021	Received effluent data with TCE exceedance	Shut all systems down; reroute Toe Drain influent to sewer outfall

							Volati	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (µg/L)	MEK (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
Effluent to	9/23/2009	ND	ND	ND	ND	3.4	ND	ND	ND	ND	ND	ND	2	ND
Outfall	10/15/2009	ND	ND	ND	ND	19.9	ND	ND	ND	ND	ND	ND	12	ND
#2/ACPSA/	11/12/2009	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	1	ND
Trenches	12/15/2009	ND	ND	ND	ND	5.1	ND	ND	ND	ND	ND	ND	4	ND
	1/21/2010	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	1	ND
	2/18/2010	ND	ND	ND	ND	0.71 J	ND	ND	ND	ND	ND	ND	0.75 J	ND
	3/30/2010	ND	ND	ND	ND	18.1	ND	ND	ND	ND	ND	ND	26	ND
	4/26/2010	ND	ND	ND	ND	0.89 J	ND	ND	ND	ND	ND	ND	1	ND
	5/27/2010	ND	ND	ND	ND	7.8	ND	ND	ND	ND	ND	ND	12	ND
	6/22/2010	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND	ND	7	ND
	7/23/2010	ND	ND	ND	ND	23.4	ND	ND	ND	ND	ND	ND	37	ND
	8/25/2010	ND	ND	ND	ND	2.1	ND	ND	ND	ND	ND	ND	3	ND
	9/22/2010	0.93 J*	ND	0.79 J*	0.82 J*	151*	ND	ND	ND	ND	ND	1.3 J*	328*	ND
	10/14/2010	ND	ND	ND	ND	0.71 J	ND	ND	ND	ND	ND	ND	0.81 J	ND
	10/20/2010	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	2	ND
	11/2/2010	ND	ND	ND	ND	2.3	ND	ND	ND	ND	ND	ND	3	ND
	12/7/2010	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	2	ND
	1/6/2011	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND	1	ND
	2/10/2011	ND	ND	ND	ND	2.0	ND	ND	ND	ND	ND	ND	3	ND
	3/16/2011	ND	ND	ND	ND	3.0	ND	ND	ND	ND	ND	ND	3	ND
	4/12/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.34J	ND
	5/19/2011	ND	ND	ND	ND	0.73 J	ND	ND	ND	ND	ND	ND	0.92 J	ND
	6/16/2011	ND	ND	ND	ND	0.61 J	ND	ND	ND	ND	ND	ND	0.73 J	ND
	7/14/2011	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	2	ND
	8/11/2011	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	2	ND
	9/8/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	ND
	10/13/2011	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	2	ND
	11/10/2011	ND	ND	ND	ND	0.84 J	ND	ND	ND	ND	ND	ND	1	ND
	12/8/2011	ND	ND	ND	ND	2.7	ND	ND	ND	ND	ND	ND	3	ND
	1/12/2012	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	1	ND
	2/9/2012	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	1	ND
	3/15/2012	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	4	ND
	4/13/2012	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	2	ND
	5/15/2012	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	2	ND
	6/7/2012	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND	3	ND
	7/17/2012	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	2	ND
	8/16/2012	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	3	ND
	9/13/2012	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	3	ND
	10/11/2012	ND	ND	ND	ND	0.93 J	ND	ND	ND	ND	ND	ND	3	ND
	11/8/2012	ND	ND	ND	ND	0.85 J	ND	ND	ND	ND	ND	ND	1	ND
	12/6/2012	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND	2	ND
	1/10/2013	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND	4	ND
	2/21/2013	ND	ND	ND	ND	0.8 J	ND	ND	ND	ND	ND	ND	2	ND
	3/14/2013	ND	ND	ND	ND	0.43 J	ND	ND	ND	ND	ND	ND	0.59 J	ND
	4/4/2013	ND	ND	ND	ND	0.67 J	ND	ND	ND	ND	ND	ND	2	ND
	5/9/2013	ND	ND	ND	ND	0.63 J	ND	ND	3.7 J	ND	ND	ND	2	ND
	6/13/2013	ND	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	27	ND
	7/11/2013	ND	ND	ND	ND	0.54 J	ND	ND	ND	ND	ND	ND	2	ND
	8/8/2013	ND	ND	ND	ND	0.86 J	ND	ND	ND	ND	ND	ND	3	ND
	9/12/2013	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	5	ND
	10/24/2013	ND	ND	ND	ND	0.81 J	ND	ND	ND	ND	ND	ND	3	ND
	11/14/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/12/2013	ND	ND	ND	ND	0.74 J	ND	ND	ND	ND	ND	ND	1	ND
	1/16/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/17/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	3/6/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	4/3/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND

							Volat	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
Effluent to	5/8/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
Outfall	6/17/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
#2/ACPSA/	7/10/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	ND
Trenches	8/14/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	9/11/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	10/9/2014	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	4	ND
	11/13/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	12/11/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	1/15/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	2/12/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	3/19/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/16/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	5/14/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	6/11/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	7/1/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/13/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/17/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/15/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/12/2015	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	2	ND
	12/4/2015	ND	ND	ND	ND	3.1	ND	ND	ND	ND	ND	ND	5	ND
	1/14/2016	ND	ND	ND	ND	ND	ND	ND	NDb	ND	ND	ND	ND	ND
	2/11/2016	ND	ND ND	ND	ND	ND	ND	ND ND	NDb	ND ND	ND ND	ND	ND ND	ND ND
	3/17/2016	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND			ND		ND ND
	4/14/2016				ND	ND			ND	ND ND	ND	ND	1	
	5/12/2016 6/16/2016	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	1	ND ND
	7/14/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	8/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	9/9/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	10/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	11/17/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	12/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	1/12/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	2/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/12/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/13/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/15/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/25/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/19/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/12/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/14/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/15/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/15/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/17/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/14/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/17/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/13/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/15/2018	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND
	12/13/2018	ND ND		ND ND	ND			ND		ND ND	ND ND	ND	ND ND	ND
	1/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

							Volati	le Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
Effluent to	2/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Outfall	3/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
#2/ACPSA/	4/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trenches	5/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(continued)	6/13/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
, , ,	7/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/12/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/10/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-	11/13/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/12/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/30/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	4/16/2020	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
	5/15/2020 6/10/2020	ND ND	ND ND	ND ND	ND ND	ND 0.28 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.72 J	ND ND
	6/10/2020 7/16/2020	ND ND	ND ND	ND ND	ND ND	0.28 J 0.30 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.72 J 0.59 J	ND ND
	8/13/2020	ND	ND	ND	ND	0.30 J ND	ND	ND	ND	ND	ND	ND	0.59 J 0.70 J	ND
	9/17/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.76 J	ND
-	10/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.61 J	ND
	11/12/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.89 J	ND
-	12/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.62 J	ND
	1/14/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.88 J	ND
	2/11/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.88 J	ND
	3/11/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.89 J	ND
	4/15/2021	ND	ND	ND	ND	5.2	ND	ND	ND	ND	ND	ND	13	ND
	5/4/2021	ND	ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	6	ND
	5/13/2021	ND	ND	ND	ND	1.1	ND	ND	ND	ND	0.62	ND	5	ND
	6/14/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/20/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-	8/19/2021 9/16/2021	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
-	10/14/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/20/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-	12/16/2021	ND	ND	ND	ND	2.9	ND	ND	ND	ND	ND	ND	12	ND
Effluent to	1/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NPDES	2/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Outfall	3/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
#001	4/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-	8/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-	9/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-	10/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/1/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/1/2009 1/1/2010	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	2/1/2010	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
	3/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1	9/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1	10/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

							Volat	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (μg/L)	VC (μg/L)
					-									
Effluent to	11/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NPDES	12/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Outfall	1/6/2011	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND	1	ND
#001	2/10/2011	ND	ND	ND	ND	2.0	ND	ND	ND	ND	ND	ND	ND	ND
(continued)	3/16/2011	ND	ND	ND	ND	3.0	ND	ND	ND	ND	ND	ND	3	ND
	4/12/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.34	ND
	5/19/2011	ND	ND ND	ND	ND ND	0.73	ND ND	ND ND	ND ND	ND ND	ND	ND	0.92	ND ND
	6/22/2011 7/14/2011	ND ND	ND ND	ND ND	ND	1.3 ND	ND ND	ND	ND	ND ND	ND ND	ND ND	∠ ND	ND ND
	8/11/2011	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	2	ND
	9/8/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	∠ ND	ND
	10/13/2011	ND	ND	ND	ND	0.35	ND	ND	ND	ND	ND	ND	2	ND
	11/10/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26	ND
	12/8/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/12/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/20/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/12/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/15/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/7/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	ND
	7/17/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	.22	ND
	8/16/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/13/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/11/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/8/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/6/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/10/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	.34	ND
	2/21/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	.35	ND
	3/14/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/4/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/9/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/13/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/11/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/8/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/12/2013 10/24/2013	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/8/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/6/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/16/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/17/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/6/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/3/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/8/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/12/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/10/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/14/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/11/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	10/9/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/13/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/11/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/15/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/12/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/19/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/16/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/14/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/11/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
I	7/1/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

							Volati	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
Effluent to	8/13/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NPDES	9/17/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Outfall	10/15/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
#001	11/12/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NDb	ND
(continued)	12/4/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/14/2016	ND	ND	ND	ND	ND	ND	ND	NDb	ND	ND	ND	ND	ND
	2/11/2016	ND	ND	ND	ND	ND	ND	ND	NDb	ND	ND	ND	ND	ND
	3/17/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/14/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/16/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/14/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/9/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/16/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/12/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/12/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/13/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/15/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/25/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/17/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/19/2017	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND
	10/12/2017	ND ND	ND	ND	ND		ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/16/2017		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND
	12/14/2017 1/11/2018	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/15/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/15/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/17/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/14/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/17/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/13/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/15/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/13/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/13/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/12/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/10/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/13/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/12/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/30/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.87 J	ND
1	4/16/2020	ND	ND	ND	ND	0.36 J	ND	ND	ND	ND	ND	ND	1	ND

							Volati	ile Organ	nic Compo	unds				
Location	Date	1,1-	1,1-	1,1,1-	1,1,2-	cis-1,2-	trans-	MEK	Acetone	Chloroform	Methylene	PCE	TCE	VC
Location	Date	DCE	DCA	TCA	TCA	DCE	1,2-DCE	(µg/L)	μg/L)	chioroionn (μg/L)	Chloride	μg/L)	μg/L)	νC (μg/L)
		(μ g/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L/	(µg/上)
Effluent to	5/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.49 J	ND
NPDES	6/10/2020	ND	ND	ND	ND	0.28 J	ND	ND	ND	ND	ND	ND	0.72 J	ND
Outfall	7/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.81 J	ND
#001	8/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
(continued)	9/17/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.98 J	ND
	10/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.62 J	ND
	11/12/2020 12/16/2020	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1 0.72 J	ND ND
	1/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.72 J	ND
	2/11/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.78 J	ND
	3/11/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.96 J	ND
	4/15/2021	ND	ND	ND	ND	5.9	ND	ND	ND	ND	ND	ND	12	ND
	5/4/2021	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	6	ND
	5/13/2021	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	5	ND
	6/14/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.75 J	ND
	7/20/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.69 J	ND
	8/19/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND
	9/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/14/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.53 J	ND
	11/20/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.42 J	ND
	12/16/2021	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	5.2	ND
EW-1	9/23/2009	14.6	1.6	ND	ND	1.6	ND	ND	ND	ND	ND	ND	57	ND
	12/15/2009	13.8	2.1	ND	ND	4.8	ND	ND	ND	0.24 J	ND	ND	97	ND
	1/21/2010	12.7	2.0	ND	ND	5.7 7.6	ND	ND ND	ND	ND	ND	ND	89	ND
	2/18/2010 3/30/2010	8.6 8.5	1.8 1.6	ND ND	ND ND	7.6	ND ND	ND ND	ND ND	0.24 J ND	ND ND	ND ND	122 107	ND ND
	4/26/2010	6.5 13.2	2.4	ND	ND	6.2	ND	ND	ND	ND	ND	ND	93	ND
	5/27/2010	15.2	2.4	ND	ND	2.3	ND	ND	ND	ND	ND	ND	58	ND
	6/22/2010	10.1	2.7	ND	ND	2.0	EW-		- Pump Fai		ND	ND	00	ND
	7/23/2010	18.5	3.0	ND	ND	1.1	ND	ND	ND	ND	ND	ND	40	ND
	8/25/2010	15.4	2.5	ND	ND	1.1	ND	ND	ND	ND	ND	ND	53	ND
	9/22/2010	21.4	3.3	ND	ND	0.89 J	ND	ND	ND	0.34 J	ND	ND	36	ND
	10/20/2010	21.7	3.6	ND	ND	0.83 J	ND	ND	ND	0.41 J	ND	ND	32	ND
	11/2/2010	19.4	3.4	ND	ND	0.42 J	ND	ND	ND	0.38 J	ND	ND	28	ND
	12/7/2010	26.3	4.7	ND	ND	0.62 J	ND	ND	ND	0.48 J	ND	ND	28	ND
	1/6/2011	22.3	4.2	ND	ND	0.73 J	ND	ND	ND	0.46 J	ND	ND	24	ND
	2/10/2011	22.0	3.8	ND	ND	0.68 J	ND	ND	ND	0.39 J	ND	ND	32	ND
	3/16/2011	21.6	4.3	ND	ND	1.0	ND	ND	ND	0.52J	ND	ND	34	ND
	4/12/2011	16.5	3.2	ND	ND	1.6	ND	ND	ND	0.40J	ND	ND	53	ND
	5/19/2011	18.4 18.6	3.8 3.7	ND ND	ND ND	2.1 0.90 J	ND ND	ND ND	ND ND	ND 0.29 J	ND ND	ND ND	43 29	ND ND
	6/16/2011		-										-	
	7/14/2011 8/11/2011	25.9 25.7	4.2 4.7	ND ND	ND ND	0.72 J 0.54 J	ND ND	ND ND	ND ND	0.32 J ND	ND ND	ND ND	23 21	ND ND
	9/8/2011	25.6	5.2	ND	ND	0.54 J	ND	ND	ND	0.43 J	ND	ND	18	ND
	10/13/2011	25.0	5.2	ND	ND	0.58 J	ND	ND	ND	0.43 J	ND	ND	22	ND
	11/10/2011	22.9	4.9	ND	ND	ND	ND	ND	ND	0.37 J	ND	ND	21	ND
	12/8/2011	20.6	4.5	ND	ND	0.53 J	ND	ND	ND	0.57 J	ND	ND	20	ND
	1/12/2012	19.1	3.6	ND	ND	0.73 J	ND	ND	ND	0.37 J	ND	ND	26	ND
	2/9/2012	16.9	3.4	ND	ND	0.54 J	ND	ND	ND	0.47 J	ND	ND	26	ND
	3/15/2012	15.4	2.8	ND	ND	0.51 J	ND	ND	ND	ND	ND	ND	30	ND
	4/12/2012	16.2	3.3	ND	ND	0.59 J	ND	ND	ND	0.28 J	ND	ND	31	ND
	5/15/2012	19.1	3.8	ND	ND	0.38 J	ND	ND	ND	0.24 J	ND	ND	30	ND
	6/7/2012	18.1	3.8	ND	ND	1.1	ND	ND	ND	0.30 J	ND	ND	30	ND
	7/17/2012	16	4.0	ND	ND	0.78 J	ND	ND	ND	0.30 J	ND	ND	31	ND
	8/16/2012	17.3	3.6	ND	ND	0.41 J	ND	ND	ND	ND	ND	ND	32	ND
	9/13/2012	14.9	3.0	ND	ND	0.40 J	ND	ND	ND	ND	ND	ND	29	ND
	10/11/2012	15.4	3.1	ND	ND	0.23 J	ND	ND	ND	ND	ND	ND	27	ND

							Volati	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE	1,1- DCA	1, 1, 1- TCA	1,1,2- TCA	cis-1,2- DCE	trans- 1,2-DCE	MEK (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
		(μ g/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EW-1	11/8/2012	19.2 ^p	3.7 ^p	ND	ND	0.60 J ^p	ND	ND	ND	0.29 J ^p	ND	ND	20.4 ^p	ND
(continued)	12/6/2012	18.1	3.9	ND	ND	0.31 J	ND	ND	ND	0.25 J	ND	ND	20	ND
	1/10/2013	14.4	2.9	ND	ND	0.64 J	ND	ND	ND	ND	ND	ND	31	ND
	2/21/2013	13.2	2.5	ND	ND	3.3	ND	ND	ND	0.23 J	ND	ND	45	ND
	3/14/2013	13.7	2.3	ND	ND ND	1.2	ND	ND	ND	ND ND	ND	ND ND	30 29	ND ND
	4/4/2013 5/9/2013	11.3 11.1	2.0 2.0	ND ND	ND	1.1 1.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	29 36	ND ND
	6/13/2013	8.3	1.4	ND	ND	1.2	ND	ND	ND	ND	ND	ND	30	ND
	7/11/2013	9.2	1.6	ND	ND	1.6	ND	ND	ND	ND	ND	ND	46	ND
	8/8/2013	6.1	1.3	ND	ND	1.8	ND	ND	ND	ND	ND	ND	45	ND
	9/12/2013	7.6	1.4	ND	ND	1.7	ND	ND	ND	ND	ND	ND	41	ND
	10/10/2013	8.7	1.5	ND	ND	1.1	ND	ND	ND	ND	ND	ND	32	ND
	11/14/2013	15.2	2.5	ND	ND	0.52 J	ND	ND	ND	ND	ND	ND	25	ND
	12/12/2013	10.9	1.9	ND	ND	0.51 J	ND	ND	ND	ND	ND	ND	22	ND
	1/16/2014 2/17/2014	10.4 13.4	1.8 2.1	ND ND	ND ND	ND 4.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	27 52	ND ND
	3/6/2014	9.6	1.6	ND	ND	4.1 ND	ND	ND	ND	ND	ND	ND	26	ND
	4/3/2014	10.5	1.6	ND	ND	1.1	ND	ND	ND	ND	ND	ND	20	ND
	5/8/2014	9.0	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	ND
	6/12/2014	9.8	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	24	ND
	7/10/2014	12.2	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND
	8/14/2014	11.1	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND
	9/11/2014	11.8	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	ND
	10/9/2014	13.6	2.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND
	11/13/2014 12/11/2014	16.5 13.2	2.9 2.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10 15	ND ND
	1/15/2014	13.2	1.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	26	ND
	2/12/2015	10.4	2.0	ND	ND	5.5	ND	ND	ND	ND	ND	ND	33	ND
	3/19/2015	9.6	1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	ND
	4/16/2015	10.5	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	18	ND
	5/14/2015	7.7	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	18	ND
	6/11/2015	8.9	1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND
	7/1/2015	10.7	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND
	8/13/2015	14.5	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	ND
	9/17/2015 10/15/2015	11.9 10.9	2.2 1.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	11 15	ND ND
	11/12/2015	8.0	1.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND
	12/3/2015	8.0	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND
	1/14/2016	8.2	1.2	ND	ND	ND	ND	ND	NDb	ND	ND	ND	19	ND
	2/11/2016	7.7	1.2	ND	ND	ND	ND	ND	NDb	ND	ND	ND	19	ND
	3/17/2016	7.0	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	ND
	4/14/2016	6.2	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND
	5/26/2016	8.3	1.4	ND	ND	2.0	ND	ND Not S	ND	ND	ND	ND	21	ND
	6/23/2016 7/14/2016	10.9	1.4	10	ND	80	ND	Not Sa ND	ampled ND	ND	ND	12	139 ^a	ND
	8/11/2016	10.8 7.9	1.4	1.3 ND	ND	8.0 2.3	ND ND	ND	ND	ND ND	ND ND	4.2 ND	40	ND ND
	9/9/2016	8.5	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND
	10/13/2016	8.7	1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	8	ND
	11/17/2016	9.4	1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	ND
	12/7/2016	9.1	1.6	ND	ND	13.2	ND	ND	ND	ND	ND	1.4	73	ND
	1/12/2017	7.3	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND
EW-1R	2/16/2017	2.4	1.0	ND	ND	1.7	ND	ND	ND	ND	ND	ND	28	ND
start-up	3/12/2017	5.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND
	4/13/2017	5.4	ND	ND	ND	ND 2.4	ND	ND	ND	ND	ND	ND	14	ND
	5/11/2017 6/15/2017	7.7 7.1	ND ND	ND ND	ND ND	2.4 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	194 315	ND ND
	7/25/2017	5.9	ND	ND	ND	4.1	ND	ND	ND	ND	ND	ND	358b	ND

							Volati	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-1R	8/16/2017	5.7	ND	ND	ND	3.9	ND	ND	ND	ND	ND	ND	338	ND
(continued)	9/19/2017	5.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	281	ND
	10/12/2017	6.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	301	ND
	11/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	288	ND
	12/14/2017	7.2	1.5	ND	ND	2.1	ND	ND	ND	ND	ND	ND	193	ND
	1/11/2018	6.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	333	ND
	2/15/2018	5.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	405	ND
	3/15/2018	5.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	299	ND
	4/12/2018	5.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	353	ND
	5/17/2018 6/14/2018	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	549 698	ND ND
	7/19/2018	ND 5.3	1.0	ND	ND	ND 4.6	ND ND	ND	ND	ND ND	ND ND	ND	698 756	ND ND
	8/17/2018	5.7	ND	ND	ND	4.6 3.9	ND ND	ND	ND	ND	ND	ND	338	ND
	9/13/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	959	ND
	10/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,100	ND
	11/15/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,660	ND
	12/13/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,160	ND
	1/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,350	ND
	2/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,550	ND
	3/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,570	ND
	4/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,590	ND
	5/16/2019													
	6/13/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,050	ND
	7/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,860	ND
	8/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,000	ND
	9/12/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,910	ND
	10/10/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,430	ND
	11/13/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,500	ND
	12/12/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,040	ND
	1/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,610	ND
	2/13/2020 3/12/2020	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2,590 3,950	ND ND
	4/16/2020	ND	ND	ND	ND	59 J	ND ND	ND	ND	ND	ND	ND	5,360	ND
	5/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5,020	ND
	6/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5,150	ND
	7/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,920	ND
	8/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,620	ND
	9/17/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,640	ND
	10/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,440	ND
	11/12/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,780	ND
	12/16/2020	ND	ND	ND	ND	17.5 J	ND	ND	ND	ND	ND	ND	1,820	ND
	1/14/2021	ND	ND	ND	ND	7.9 J	ND	ND	ND	ND	ND	ND	2,240	ND
	2/11/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,000	ND
	3/11/2021	ND	ND	ND	ND	14.0 J	ND	ND	ND	ND	ND	ND	3,330	ND
	4/15/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,770	ND
	5/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5,380	ND
	6/14/2021	ND	ND	ND	ND	25.2 J	ND	ND	ND	ND	ND	ND	3,960	ND
	7/20/2021	ND	ND	ND	ND	6.0 J	ND	ND	ND	ND 22.9	ND	ND	1,180	ND
	8/19/2021	ND	ND	ND	ND	ND	ND	ND	ND	23.8	ND	ND	2,440	ND
	9/16/2021 10/14/2021	ND ND	ND ND	ND ND	ND ND	ND 12.6 J	ND ND	ND ND	ND ND	ND ND	138 J ND	ND ND	4,000 2,390	ND ND
	10/14/2021	ND ND	ND	ND	ND	12.6 J 10.4 J	ND ND	ND	ND	ND ND	ND ND	ND	2,390	ND ND
	12/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,090	ND
EW-2	9/23/2009	533	ND	653	ND	1,180	ND	ND	ND	ND	ND	579	85,400	ND
	12/15/2009	668	ND	786	ND	1,130	ND	ND	ND	ND	ND	692	70,100	ND
	1/21/2010	430	ND	477	ND	893	ND	ND	ND	ND	ND	559	65,400	ND
1	2/18/2010	349	ND	605	ND	808	ND	ND	ND	ND	ND	548	58,600	ND

		1					Volat	ile Orgar	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-2	3/30/2010	384	ND	581	ND	896	ND	ND	ND	ND	ND	627	58,400	ND
(continued)	4/26/2010	440	ND	483	ND	1,020	ND	ND	ND	ND	ND	636	68,400	ND
	5/27/2010	337	ND	392	ND	820	ND	ND	ND	ND	ND	502	49,900	ND
	6/22/2010	292 J	ND	435 J	ND	683	ND	ND	ND	ND	ND	546	56,900	ND
	7/23/2010	ND	ND	498 J	ND	808	ND	ND	ND	ND	ND	510	54,300	ND
	8/25/2010	389	ND	498	ND	668	ND	ND	ND	ND	ND	627	47,800	ND
	9/22/2010	380	ND	453	ND	715	ND	ND	ND	ND	ND	546	46,500	ND
	10/20/2010	385	ND	440	ND	659	ND	ND	ND	ND	ND	627	48,500	ND
	11/2/2010 12/7/2010	435 497	ND ND	607 508	ND ND	732 718	ND ND	ND ND	ND ND	ND ND	ND ND	746 650	62,100 46,000	ND ND
	1/6/2011	497	ND	465	ND	613	ND	ND	ND	ND	ND	539	48,000	ND
	2/10/2011	405	ND	403	ND	587	ND	ND	ND	ND	ND	559	43,500	ND
	3/16/2011	391	ND	359	ND	639	ND	ND	ND	ND	ND	577	47,400	ND
	4/12/2011	411	6.3J	439	9.9J	598	ND	ND	ND	6.3J	ND	699	44,800	ND
	5/19/2011	404	ND	415	ND	677	ND	ND	ND	ND	ND	584	45,300	ND
	6/16/2011	399	ND	415	ND	641	ND	ND	ND	ND	ND	496	43,300	ND
	7/14/2011	458	ND	501	ND	657	ND	ND	ND	ND	ND	622	44,900	ND
	8/11/2011	387	ND	467	ND	631	ND	ND	ND	ND	ND	659	35,300	ND
	9/8/2011	50.6*	ND	58.3*	ND	57.3*	ND	ND	ND	ND	ND	65.6*	3,460*	ND
	10/13/2011	445	ND	473	ND	604	ND	ND	ND	ND	ND	730	36,000	ND
	11/10/2011	446	ND	426	ND	538	ND	ND	ND	ND	ND	680	38,300	ND
	12/8/2011	460	ND	438	ND	606	ND	ND	ND	ND	ND	735	42,400	ND
	1/12/2012	406	ND	392	6.5 J	527	ND	ND	ND	ND	ND	640	37,300	ND
	2/9/2012	332	ND	335	ND	390	ND	ND	ND	ND	ND	531	38,600 ^a	ND
	3/15/2012	349	ND	323	ND	443	ND	ND	ND	ND	ND	652	32,700	ND
	4/12/2012	407	ND	372	ND	497	ND	ND	ND	ND	ND	770	38,300 ^a	ND
	5/15/2012	355	ND	332	ND	440	ND	ND	ND	ND	ND	647	32,900 ^a	ND
	6/7/2012	389	ND	383	ND	469	ND	ND	ND	ND	ND	670	29,800 ^a	ND
	7/17/2012	388	ND	390	ND	476	ND	ND	ND	ND	ND	588	34,000 ^a	ND
	8/16/2012	380	ND	389	ND	474	ND	ND	ND	ND	ND	580	34,400 ^a	ND
	9/13/2012 10/11/2012	372 377	ND ND	410 373	ND ND	465 460	ND ND	ND ND	ND ND	ND ND	ND ND	572 561	34,600 35,200 ^a	ND ND
	11/8/2012	401	ND	373	ND	460	ND	ND	ND	ND	ND	561	30,800	ND
	12/6/2012	359	ND	374	ND	445	ND	ND	ND	ND	ND	612	30,500	ND
	1/10/2013	419	ND	356	ND	468	ND	ND	ND	ND	ND	609	31,100	ND
	2/21/2013	464	ND	467	ND	444	ND	ND	ND	ND	ND	834	34,800 ^a	ND
	3/14/2013	375	ND	329	ND	423	ND	ND	ND	ND	ND	624	31,500 ^a	ND
	4/4/2013	447	ND	352	ND	440	ND	ND	ND	ND	ND	699	34,700 ^a	ND
	5/9/2013	421	ND	398	ND	454	ND	ND	ND	ND	ND	718	34,000	ND
	6/13/2013	429	ND	422	ND	496	ND	ND	ND	ND	ND	694	39,500	ND
	7/11/2013	365	ND	305	ND	493	ND	ND	ND	ND	ND	632	36,700	ND
	8/8/2013	300	ND	324	ND	523	ND	ND	ND	ND	197 J	565	41,200	ND
	9/12/2013	417	ND	356	ND	613	ND	ND	ND	ND	ND	585	41,900 ^a	ND
	10/10/2013	387	ND	343	ND	541	ND	ND	ND	ND	ND	543	44,400 ^a	ND
	11/14/2013	499	ND	402	ND	581	ND	ND	ND	ND	ND	716	31,000 ^a	ND
	12/12/2013	474	ND	499	ND	543	ND	ND	ND	ND	ND	762	33,700 ^a	ND
	1/16/2014	308	ND	311	ND	421	ND	ND	ND	ND	ND	484	25,200	ND
	2/17/2014	432 ^a	7.0	359 ^a	7.0	531 ^ª	1.9	ND	ND	5.5	ND	698 ^a	31,300	ND
	3/6/2014	325	ND	265	ND	353	ND	ND	ND	ND	ND	655	31,300 ^a	ND
	4/3/2014	384	ND	227	ND	429	ND	ND	ND	ND	ND	490	25,400	ND
	5/8/2014	259	ND	202	ND	407	ND	ND	ND	ND	ND	534	25,400 ^a	ND
	6/12/2014	336	ND	213	ND	448	ND	ND	ND	ND	ND	519	26,200	ND
	7/10/2014	304	ND	228	ND	304	ND	ND	ND	ND	ND	481	21,700 ^a	ND
	8/14/2014	ND 254	ND	212	ND	361	ND	ND	ND	ND	ND	440	21,000 18.600	ND
	9/11/2014 10/9/2014	254 372	ND ND	195 248	ND ND	325 425	ND ND	ND ND	ND ND	ND ND	ND ND	509 579	18,600 20,000 ^a	ND ND
	11/13/2014	394	ND	300	ND	425	ND	ND	ND	ND	ND	579	20,000	ND
I	11/13/2014	394	IND	300	UVI	400		UVI	ND			570	20,400	ND

							Volat	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-2	12/11/2014	244	ND	203	ND	276	ND	ND	ND	ND	ND	447	15,100	ND
(continued)	1/15/2015	337	ND	226	ND	322	ND	ND	ND	ND	ND	587	18,000 ^a	ND
	2/12/2015	337	ND	228	ND	363	ND	ND	ND	ND	ND	571	18,500 ^a	ND
	3/19/2015	349	ND	220	ND	360	ND	ND	ND	ND	ND	737	18,200 ^a	ND
	4/16/2015	310	ND	153	ND	289	ND	ND	ND	ND	ND	457	16,900	ND
	5/14/2015	262	ND	146	ND	308	ND	ND	ND	ND	ND	444	16,800	ND
	6/11/2015	359	ND	ND	ND	425	ND	ND	ND	ND	ND	382	16,500	ND
	7/1/2015	307	ND	156	ND	357	ND	ND	ND	ND	ND	519	16,200	ND
	8/13/2015	315	ND	443	ND	302	ND	ND	ND	ND	ND	443	16,600	ND
	9/17/2015	302	ND	164	ND	324	ND	ND	ND	ND	ND	433	15,100	ND
	10/15/2015	327	ND	ND	ND	306	ND	ND	ND	ND	ND	425	15,100	ND
	11/12/2015	290b	5.3	170b	3.7	255b	1.4	ND	ND	4.3	ND	502b	18,200	ND
	12/3/2015	284	ND	ND	ND	ND	ND	ND	ND	ND	ND	424	13,700	ND
	1/14/2016	342	ND	210	ND	267	ND	ND	NDb	ND	ND	477	17,600	ND
	2/11/2016	323	ND	ND	ND	308	ND	ND	NDb	ND	ND	439	16,400	ND
	3/17/2016	331	ND	166	ND	318	ND	ND	ND	ND	ND	401	16,400	ND
	4/14/2016	302	ND	168	ND	334	ND	ND	ND	ND	ND	382	15,000	ND
	5/12/2016	269	ND	149	ND	292	ND	ND	ND	ND	ND	372	16,700	ND
	6/23/2016	320	ND	149	ND	322	ND	ND	ND	ND	ND	402	14,900	ND
	7/14/2016	285	ND	148	ND	285	ND	ND	ND	ND	ND	401	13,900	ND
	8/11/2016	252	ND	ND	ND	203	ND	ND	ND	ND	ND	423	13,200	ND
	9/9/2016	296	ND	ND	ND	274	ND	ND	ND	ND	ND	421	10,600	ND
	10/13/2016	290	ND	152	ND	238	ND	ND	ND	ND	ND	442	12,600	ND
	11/17/2016	269	ND	145	ND	210	ND	ND	ND	ND	ND	444	11,300	ND
	12/7/2016	209	ND	ND	ND	210	ND	ND	ND	ND	ND	444	12,500	ND
	1/12/2017	337	ND	ND	ND	233	ND	ND	ND	ND	ND	402	14,600	ND
	2/16/2017	317	ND	ND	ND	233	ND	ND	ND	ND	ND	520	13,800	ND
	3/12/2017	333	ND	ND	ND	220	ND	ND	ND	ND	ND	503	15,800	ND
	4/13/2017	334	ND	161	ND	229	ND	ND	ND	ND	ND	446	15,500	ND
	5/11/2017	322	ND	173	ND	213	ND	ND	ND	ND	ND	536	13,100	ND
	6/15/2017	322	ND	175	ND	291			- Pump Fai		ND	550	13,100	ND
	7/25/2017	274	ND	142	ND	263	ND	ND	ND	ND	ND	347	11,900	ND
	8/17/2017	267	ND	142	ND	263	ND	ND	ND	ND	ND	463	11,500b	ND
	9/19/2017	400	ND	246	ND	203 254	ND	ND	ND	ND	ND	523	11,800b	ND
	10/12/2017	320	ND	ND	ND	255	ND	ND	ND	ND	ND	460	11,700	ND
	11/16/2017	244	ND	154	ND	233	ND	ND	ND	ND	ND	400	10,400b	ND
	12/14/2017	303	ND	153	ND	252	ND	ND	ND	ND	ND	410	10,400	ND
	1/11/2018	303	ND	153	ND	233	ND	ND	ND	ND	ND	542	13,400	ND
	2/15/2018	268	ND	139	ND	264	ND	ND	ND	ND	ND		9,860	ND
	3/15/2018	257	ND	ND	ND	200	ND	ND	ND	ND	ND	395 474	9,860	ND
	4/12/2018	257	ND ND	137	ND ND	271	ND ND	ND	ND	ND	ND	474 436	12,500	ND
	5/17/2018	269 243	ND ND	128 109	ND ND	236 236	ND ND	ND ND	ND ND	ND ND	ND ND	426 405	11,000 10,400	ND ND
	6/14/2018 7/19/2018		ND 5.2	115			ND ND	ND	ND	ND	ND			ND
	7/19/2018 8/17/2018	241			2.6	250				ND ND		362	11,100	
		239 351	ND ND	154 ND	ND ND	261 337	ND ND	ND ND	ND ND		ND ND	364	9,010 12,200	ND
	9/13/2018								1	ND	ND	516		ND
	10/10/2018	291	ND	186	ND	309	ND	ND	ND	ND	ND	428	11,800	ND
	11/15/2018	212	ND	131	ND	232	ND	ND	ND	ND	ND	291	7,840	ND
	12/13/2018	310	ND	175	ND	304	ND	ND	ND	ND	ND	470	9,140	ND
	1/17/2019	341	ND	173	ND	319	ND	ND	ND	ND	ND	501	9,250	ND
	2/14/2019	284	ND	ND	ND	277	ND	ND	ND	ND	ND	428	10,900	ND
	3/14/2019	313	ND	ND	ND	343	ND	ND	ND	ND	ND	434	10,500	ND
	4/11/2019	269	ND	ND	ND	270	ND	ND	ND	ND	ND	399	10,400	ND
	5/16/2019	261	ND	128	ND	254	ND	ND	ND	ND	ND	424	8,860	ND
	6/13/2019	241	ND	130	ND	202	ND	ND	ND	ND	ND	357	8,450	ND
	7/11/2019	ND	ND	ND	ND	501	ND	ND	ND	ND	ND	ND	1,770	ND
	8/15/2019	192	ND	ND	ND	259	ND	ND	ND	ND	ND	370	7,860	ND

							Volati	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-2	9/12/2019	212	ND	112	ND	193	ND	ND	ND	ND	ND	374	7,440	ND
(continued)	10/10/2019	192	ND	99.8	ND	177	ND	ND	ND	ND	ND	299	7,390	ND
	11/13/2019	232	ND	121	ND	201	ND	ND	ND	ND	ND	308	7,240	ND
	12/12/2019	184	ND	111	ND	191	ND	ND	ND	ND	ND	358	6,490	ND
	1/17/2020							Not Sa	ampled					
	2/13/2020	250	ND	124	ND	181	ND	ND	ND	ND	ND	340	7,140	ND
	3/12/2020	166	ND	84.2 J	ND	88.8 J	ND	ND	ND	ND	ND	313	5,280	ND
	4/16/2020	242	ND	118	ND	144	ND	ND	ND	ND	ND	337	6,670	ND
	5/15/2020	244	ND	124	ND	166	ND	ND	ND	ND	ND	369	7,350	ND
	6/10/2020	281	ND	138	ND	168	ND	ND	ND	ND	ND	397	7,690	ND
	7/16/2020	283	ND	136	ND	173 J	ND	ND	ND	ND	ND	409	7,410	ND
	8/13/2020	211	ND	119	ND	ND	ND	ND	ND	ND	ND	328	5,710	ND
	9/17/2020	186	ND	98.3 J	ND	110 J	ND	ND	ND	ND	ND	331	5,820	ND
	10/15/2020	224	ND	119	ND	ND	ND	ND	ND	ND	ND	364	6,720	ND
	11/12/2020	202	ND	109	ND	128 J	ND	ND	ND	ND	ND	317	5,240	ND
	12/16/2020	250	ND	127	ND	141 J	ND	ND	ND	ND	ND	363	6,320	ND
	1/14/2021	272	ND	147	ND	137	ND	ND	ND	ND	ND	459	6,790	ND
	2/11/2021	241	ND	107	ND	ND	ND	ND	ND	ND	ND	427	5,720	ND
	3/11/2021	284	ND	131	ND	173	ND	ND	ND	ND	ND	455	7,220	ND
	4/15/2021	227	ND	104	ND	149	ND	ND	ND	ND	ND	334	6,180	ND
	5/13/2021	268	ND	130	ND	118	ND	ND	ND	ND	ND	330	6,350	ND
	6/14/2021	239	ND	141	ND	142	ND	ND	ND	ND	ND	292	5,150	ND
	7/20/2021	260	ND	159	ND	145	ND	ND	ND	ND	ND	408	5,900	ND
	8/19/2021	168 ^b	ND	103	ND	146	ND	ND	ND	ND	ND	341	5,270	ND
	9/16/2021	146	ND	81.4	ND	83.9	ND	ND	ND	ND	ND	217	3,590	ND
	10/14/2021	159	ND	91	ND	98.8	ND	ND	ND	ND	ND	222	3,210	ND
	11/20/2021	163	ND	99.5	ND	109	ND	ND	ND	ND	ND	238	3,700	ND
	12/16/2021	279	ND	138	ND	135	ND	ND	ND	ND	ND	323	4,900	ND
EW-3	9/23/2009	ND	ND	ND	ND	295	3.1 J	ND	ND	2.9 J	ND	51.5	2,340	ND
	12/15/2009	ND	ND	ND	ND	359	4.3 J	ND	ND	3.6 J	ND	52.6	2,400	ND
	1/21/2010	ND	ND	ND	ND	249	4.1 J	ND	ND	4.1 J	ND	37.8	2,340	ND
	2/18/2010	ND	ND	ND	ND	216	ND	ND	ND	4 J	ND	26.7	2,080	ND
	3/30/2010	ND	ND	ND	ND	252	7.5	ND	ND	3.7 J	ND	43	2,350	ND
	4/26/2010	ND	ND	ND	ND	241	4.2 J	ND	ND	4.8 J	ND	33.7	2,690	ND
	5/27/2010	ND	ND	ND	ND	222	4.5 J	ND	ND	3.8 J	ND	35	2,440	ND
	6/22/2010	ND	ND	ND	ND	229	4.7 J	ND	ND	4.1 J	ND	43.2	2,350	ND
	7/23/2010	ND	ND	ND	ND	287	27.1	ND	ND	ND	ND	50.5	2,300	ND
	8/25/2010	ND	ND	ND	ND	354	2.9 J	ND	ND	4.9 J	ND	57.9	2,900	ND
	9/22/2010	ND	ND	ND	ND	337	ND	ND	ND	5 J	ND	45.4	2,440	ND
	10/20/2010	ND	ND	ND	ND	260	9	ND	ND	4.8	ND	40.3	2,660	ND
	11/2/2010	ND	ND	ND	ND	336	4.8 J	ND	ND	5.2	ND	55.7	3,410	ND
	12/7/2010	13.5	ND	11.5	ND	527	5.3 J	ND	ND	7.9 J	ND	75.6	4,160	ND
	1/6/2011	ND	ND	ND	ND	505	2.9 J	ND	ND	5.9 J	ND	88.8	2,900	ND
	2/10/2011	ND	ND	ND	ND	459	9.2 J	ND	ND	ND	ND	76.5	2,630	ND
	3/16/2011	1 J	ND	ND	ND	308	2.3 J	ND	ND	5.1	ND	43.7	2,280	ND
	4/12/2011	ND	ND	ND	ND	334	3.5 J	ND	ND	5.4 J	ND	53.2	2,410	ND
	5/19/2011	ND	ND	ND	ND	299	13.0	ND	ND	4.7 J	ND	51.7	2,140	ND
	6/16/2011	ND	ND	ND	ND	248	9.1	ND	ND	4.5 J	ND	41.7	2,020	ND
	7/14/2011	ND	ND	ND	ND	306	4.3 J	ND	ND	3.9 J	ND	55.1	1,750	ND
	8/11/2011	ND	ND	ND	ND	388	ND	ND	ND	4.1 J	ND	78.3	2,270	ND
	9/8/2011	1.4 J	ND	ND	ND	377	4.0 J	ND	ND	4.8 J	ND	65.1	1,740	ND
	10/13/2011	2.0 J	ND	ND	ND	377	2.9	ND	ND	4.9	ND	78.5	1,840	ND
	11/10/2011	1.8	0.27 J	ND	ND	452	5.0	ND	ND	4.7	ND	73.2	1,940	0.40 J
	12/8/2011	2.2 J	ND	ND	ND	380	8.5	ND	ND	4.1 J	ND	72.4	1,970	ND
	1/12/2012	ND	ND	ND	ND	344	2.9 J	ND	ND	4 J	ND	51.8	1,910	ND
	2/9/2012	ND	ND	ND	ND	285	5.3 J	ND	ND	4.3 J	ND	46.4	1,630	ND
	3/15/2012	ND	ND	ND	ND	269	ND	ND	ND	3.3 J	ND	40.2	1,670 ^a	ND

Analytical Data ment System

							Volati	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-3	4/12/2012	ND	ND	ND	ND	268	ND	ND	ND	3.1 J	ND	43.6	1,440	ND
(continued)	5/15/2012	ND	ND	ND	ND	246	ND	ND	ND	3.2 J	ND	56.2	1,680 ^a	ND
(continued)	6/7/2012	ND	ND	ND	ND	331	ND	ND	ND	3.7 J	ND	60.9	1,860 ^a	ND
	7/17/2012	1.2J	ND	ND	ND	306 J	5.1	ND	ND	4.1 J	ND	61	1,690 ^a	ND
	8/16/2012	ND	ND	ND	ND	387	2.1 J	ND	ND	3.6 J	ND	65.8	1,730 ^a	ND
	9/13/2012	ND	ND	ND	ND	355	5.6 J	ND	ND	3 J	ND	73.1	1,780	ND
	10/11/2012	ND	ND	ND	ND	339	8	ND	ND	3.3 J	ND	78.1	1,310 ^a	ND
	11/8/2012	190	4.2 J	203	4.1 J	380	3.2 J	ND	ND	5	ND	338	8,240	ND
	12/6/2012	ND	ND	ND	ND	322	ND	ND	ND	2.9 J	ND	65.8	1,830	ND
	1/10/2013	ND	ND	ND	ND	412	ND	ND	ND	17.5	ND	91.6	1,830	ND
	2/21/2013	ND	ND	ND	ND	548	25.5	ND	ND	10.4	ND	102	2,280 ^a	ND
	3/14/2013	1.5 J	ND	ND	ND	486	1.9 J	ND	ND	7.6	ND	71	1,810 ^a	ND
	4/4/2013	ND	ND	ND	ND	398	ND	ND	ND	7.8 J	ND	69.1	1,560	ND
	5/9/2013	ND	ND	ND	ND	357	ND	ND	ND	6.4 J	ND	71.1	1,880	ND
	6/13/2013	ND	ND	ND	ND	297	2 J	ND	ND	6.1	ND	62.7	1,750 ^a	ND
	7/11/2013	ND	ND	ND	ND	367	1.6 J	ND	ND	4.8 J	ND	87.9	1,380 ^a	ND
	8/8/2013	ND	ND	ND	ND	299	ND	ND	ND	5.6 J	ND	77.4	1,740	ND
	9/12/2013	ND	ND	ND	ND	349	9.5	ND	ND	5.8	ND	73	2,340 ^a	ND
	10/10/2013	ND	ND	ND	ND	256	7.9 J	ND	ND	5.6 J	ND	46.5	2,480	ND
	11/14/2013	ND	ND	ND	ND	308	6.0	ND	ND	6.9	ND	65	2,450 ^a	ND
	12/12/2013	ND	ND	ND	ND	487	ND	ND	ND	ND	ND	178	2,660	ND
	1/16/2014	ND	ND	ND	ND	440	10.4	ND	ND	ND	ND	101	2,210 ^a	ND
	2/17/2014	ND	ND	ND	ND	704	ND	ND	ND	23	ND	142	4,880 ^a	ND
	3/6/2014	ND	ND	ND	ND	214	ND	ND	ND	ND	ND	54.9	2,030	ND
	4/3/2014	ND	ND	ND	ND	235	ND	ND	ND	ND	ND	37.1	1,790	ND
	5/8/2014	ND	ND	ND	ND	229	ND	ND	ND	5.9	ND	36.3	2,190 ^a	ND
	6/12/2014	ND	ND	ND	ND	313	ND	ND	ND	ND	ND	52	2,570	ND
	7/10/2014	ND	ND	ND	ND	209	ND	ND	ND	ND	ND	37.3	2,680 ^a	ND
	8/14/2014	ND	ND	ND	ND	428	ND	ND	ND	ND	ND	78.8	2,790	ND
	9/11/2014	1.2	ND	ND	ND	306 ^a	2.9	ND	ND	6.1	ND	76.9	2,590 ^a	ND
	10/9/2014	ND	ND	ND	ND	322	9.8	ND	ND	ND	ND	81.3 ^a	2,530 ^a	ND
	11/13/2014	ND	ND	ND	ND	351	ND	ND	ND	ND	ND	47.4	2,770	ND
	12/11/2014	1.4	ND	ND	ND	388 ^a	ND	ND	ND	ND	ND	74.6	2,230	ND
	1/15/2015	ND	ND	ND	ND	364	ND	ND	ND	ND	ND	57.3	2,620	ND
	2/12/2015	ND	ND	ND	ND	417	12.5	ND	ND	6.8	ND	66.4	2,660 ^a	ND
	3/19/2015	ND	ND	ND	ND ND	298	ND	ND	ND	ND	ND	46	2,070	ND
	4/16/2015 5/14/2015	ND ND	ND ND	ND ND	ND ND	2.8 251	ND ND	ND ND	ND ND	ND ND	ND ND	ND 44.6	22 1,960	ND ND
	6/11/2015	ND	ND	ND	ND	200	ND	ND	ND	ND	ND	44.0 ND	1,900	ND
	7/1/2015	ND	ND	ND	ND	200	ND	ND	ND	ND	ND	42.3	2,250b	ND
	8/13/2015	ND	ND	ND	ND	341	ND	ND	ND	ND	ND	42.3 66.1	2,2500	ND
	9/17/2015	ND	ND	ND	ND	431	ND	ND	ND	ND	ND	92.5	2,040	ND
	10/15/2015	ND	ND	ND	ND	346	ND	ND	ND	ND	ND	69.9	1,880	ND
	11/12/2015	1.2	ND	ND	ND	313b	2.5	ND	ND	3.5	ND	84.6	1,170b	ND
	12/3/2015	ND	ND	ND	ND	265	ND	ND	ND	ND	ND	56.7	1,450b	ND
	1/14/2016	ND	ND	ND	ND	235	ND	ND	NDb	ND	ND	47.2	1,4305	ND
	2/11/2016	ND	ND	ND	ND	233	ND	ND	NDb	ND	ND	46.9	1,320	ND
	3/17/2016	ND	ND	ND	ND	214	ND	ND	ND	ND	ND	35.4	1,270	ND
	4/14/2016	ND	ND	ND	ND	235	ND	ND	ND	ND	ND	42.5	1,360	ND
	5/12/2016	ND	ND	ND	ND	266	ND	ND	ND	ND	ND	46.6	1,770	ND
	6/23/2016	ND	ND	ND	ND	368	ND	ND	ND	ND	ND	83.1	1,730	ND
	7/14/2016	ND	ND	ND	ND	265	ND	ND	ND	ND	ND	63.9	1,720	ND
	8/11/2016	ND	ND	ND	ND	294	ND	ND	ND	ND	ND	72.9	1,650	ND
	9/9/2016	ND	ND	ND	ND	301	ND	ND	ND	ND	ND	83.8	1,430	ND
	10/13/2016	ND	ND	ND	ND	292	ND	ND	ND	ND	ND	76.5	1,720	ND
	11/17/2016	ND	ND	ND	ND	183	ND	ND	ND	ND	ND	52.2	1,280	ND
	12/7/2016	ND	ND	ND	ND	242	ND	ND	ND	ND	ND	59.7	1,670	ND

							Volati	ile Orgar	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (µg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-3	1/12/2017	ND	ND	ND	ND	309	ND	ND	ND	ND	ND	68.0	1,540	ND
(continued)	2/16/2017	ND	ND	ND	ND	252	ND	ND	ND	ND	ND	46.6	1,280	ND
	3/12/2017	ND	ND	ND	ND	179	ND	ND	ND	ND	ND	29.3	1,310	ND
	4/13/2017	ND	ND	ND	ND	215	ND	ND	ND	ND	ND	40.4	1,460	ND
	5/11/2017	ND	ND	ND	ND	256	ND	ND	ND	ND	ND	57.8	1,350	ND
	6/15/2017	ND	ND	ND	ND	34	ND	ND	ND	ND	ND	106	1,750	ND
	7/25/2017	ND	ND	ND	ND	248	ND	ND	ND	ND	ND	64.1	1,230	ND
	8/16/2017	ND	ND	ND	ND	202	ND	ND	ND	ND	ND	62.5	1,180	ND
	9/19/2017	ND	ND	ND	ND	221	ND	ND	ND	ND	ND	63.0	1,120	ND
	10/12/2017	ND	ND	ND	ND	224	ND	ND	ND	ND	ND	71.9	1,070	ND
	11/16/2017	ND	ND	ND	ND	273	ND	ND	ND	ND	ND	76.6	1,040	ND
	12/14/2017	ND	ND	ND	ND	299	ND	ND	ND	ND	ND	86.9	1,270	ND
	1/11/2018	ND	ND	ND	ND	369	ND	ND	ND	ND	ND	105	1,280	ND
	2/15/2018	ND	ND	ND	ND	297	ND	ND	ND	ND	ND	75.2	1,020	ND
	3/15/2018	ND	ND	ND	ND	283	ND	ND	ND	ND	ND	84.7	1,080	ND
	4/12/2018	ND	ND	ND	ND	257	ND	ND	ND	ND	ND	73.4	1,030	ND
	5/17/2018	ND	ND	ND	ND	204	ND	ND	ND	ND	ND	74.5	1,050	ND
	6/14/2018	ND	ND	ND	ND	272	ND	ND	ND	ND	ND	99.9	1,130	ND
	7/19/2018	1.5	ND	ND	ND	195	1.7	ND	ND	ND	ND	97.5	921	ND
	8/17/2018	ND	ND	ND	ND	202	ND	ND	ND	ND	ND	62.5	1,180	ND
	9/13/2018	ND	ND	ND	ND	228	ND	ND	ND	ND	ND	88.3	894	ND
	10/10/2018	ND	ND	ND	ND	269	ND	ND	ND	ND	ND	97.8	1,110	ND
	11/15/2018	ND	ND	ND	ND	274	ND	ND	ND	ND	ND	96.7	936	ND
	12/13/2018	ND	ND	ND	ND	206	ND	ND	ND	ND	ND	84.1	885	ND
	1/17/2019	ND	ND	ND	ND	216	ND	ND	ND	ND	ND	85.5	889	ND
	2/14/2019	ND	ND	ND	ND	206	ND	ND	ND	ND	ND	59.3	1,010	ND
	3/14/2019	ND	ND	ND	ND	185	ND	ND	ND	ND	ND	35.0	871	ND
	4/11/2019	ND	ND	ND	ND	212	ND	ND	ND	ND	ND	45.6	1,220	ND
	5/16/2019	ND	ND	ND	ND	243	ND	ND	ND	ND	ND	61.2	1,300	ND
	6/13/2019	ND	ND	ND	ND	209	ND	ND	ND	ND	ND	45.9	1,130	ND
	7/11/2019	ND	ND	ND	ND	224	ND	ND	ND	ND	ND	63.7	1,380	ND
	8/15/2019	ND	ND	ND	ND	178	ND	ND	ND	ND	ND	50.6	1,100	ND
	9/12/2019	ND	ND	ND	ND	227	ND	ND	ND	ND	ND	76.4	1,140	ND
	10/10/2019	ND	ND	ND	ND	173	ND	ND	ND	ND	ND	42.6	871	ND
	11/13/2019	ND	ND	ND	ND	343	ND	ND	ND	ND	ND	84.6	1,360	ND
	12/12/2019	ND	ND	ND	ND	322	ND	ND	ND	ND	ND	75.3	952	ND
	1/16/2020	ND	ND	ND	ND	201	ND	ND	ND	ND	ND	47.4	943	ND
	2/13/2020	ND	ND	ND	ND	214	ND	ND	ND	ND	ND	50.3	896	ND
	3/12/2020	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	41.4	726	ND
	4/16/2020	ND	ND	ND	ND	198	ND	ND	ND	ND	ND	32.6	938	ND
	5/15/2020	ND	ND	ND	ND	203	2.3 J	ND	ND	ND	ND	34.5	956	ND
	6/10/2020	ND	ND	ND	ND	191	ND	ND	ND	ND	ND	38.9	1,020	ND
	7/16/2020	ND	ND	ND	ND	175	ND	ND	ND	ND	ND	32.3	954	ND
	8/13/2020	ND	ND	ND	ND	163	ND	ND	ND	ND	ND	29.5	994	ND
	9/17/2020	ND	ND	ND	ND	151	ND	ND	ND	ND	ND	37.2	1,140	ND
	10/15/2020	ND	ND	ND	ND	154	ND	ND	ND	ND	ND	36.9	1,060	ND
	11/12/2020	ND	ND	ND	ND	184	ND	ND	ND	ND ND	ND	52.9	848	ND
	12/16/2020	ND	ND	ND	ND	220	ND	ND	ND	ND ND	ND	78.3	858	ND
	1/14/2021	ND	ND	ND	ND	181	ND	ND	ND	ND	ND	68.3	833	ND
	2/11/2021	ND ND	ND ND	ND ND	ND	189 184	ND ND	ND ND	ND ND	ND 36 I	ND ND	72.6	751 863	ND ND
	3/11/2021 4/15/2021				ND					3.6 J	ND ND	53.1		
		ND ND	ND ND	ND ND	ND	215 218	ND ND	ND ND	ND ND	ND ND	ND ND	68.5	907	ND ND
	5/13/2021				ND					ND ND	ND	58.8	1,100	
	6/14/2021 7/20/2021	ND	ND	ND	ND ND	234 158	ND	ND	ND ND	ND ND	ND	56.4	976	ND
	8/19/2021	ND ND	ND ND	ND ND	ND ND	158	ND ND	ND ND	ND ND	ND ND	ND ND	19.4 J 40.5	1,020 624	ND ND
	9/16/2021	ND ND	ND ND	ND	ND	201	ND ND	ND	ND	ND	ND		836	ND ND
I	9/10/2021	IND	IND	ND	IND	201	שא	ND				80.6	030	UND

							Volati	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-3	10/14/2021	1.2 J	ND	ND	ND	176 ^b J	1.3 J	ND	ND	1.0 J	ND	64.9	650 ^b	ND
(continued)	11/20/2021	ND	ND	ND	ND	214	ND	ND	ND	ND	ND	62.6	855	ND
	12/16/2021	ND	ND	ND	ND	214	ND	ND	ND	ND	ND	67.8	826 ^c	ND
EW-4	9/23/2009	ND	ND	ND	ND	2,280	ND	ND	ND	ND	ND	ND	5,130	ND
	12/15/2009	11 J	ND	ND	ND	2,320	12.1 J	ND	ND	ND	ND	7.4 J	5,380	ND
	1/21/2010	ND	ND ND	ND	ND	2,180	14.5 J	ND	ND	ND ND	ND ND	ND	4,420	ND
	2/18/2010 3/30/2010	ND 6.4 J	ND ND	ND ND	ND ND	2,190 2,000	10.5 J 15.5	ND ND	ND ND	ND	ND	ND 6.3 J	3,650 4,430	ND ND
	4/26/2010	7.9 J	ND	ND	ND	1,900	11.7	ND	ND	ND	ND	7.1 J	4,430	ND
	5/27/2010	5.6 J	ND	ND	ND	2,000	15.3	ND	ND	ND	ND	7.1 J	5,200	ND
	6/22/2010	ND	ND	ND	ND	1,710	20.7 J	ND	ND	ND	ND	ND	3,860	ND
	7/23/10 ¹	ND	ND	ND	ND	1,760	154	ND	ND	ND	ND	ND	4,510	ND
	8/25/10 ²	5.4 J	ND	ND	ND	1,780	56.3	ND	ND	ND	ND	7.2 J	4,740	ND
	9/22/2010	6.9 J	ND	ND	ND	1,970	37.5	ND	ND	ND	ND	7.2 J	4,730	ND
	10/20/2010	6.3	ND	ND	ND	1,730	22.0	ND	ND	ND	ND	6.7	4,330	ND
	11/2/2010	6.0	ND	ND	ND	1,870	20.8	ND	ND	ND	ND	7.1	4,950	ND
	12/7/2010	8.2 J	ND	ND	ND	1,830	16.2	ND	ND	ND	ND	6.9 J	4,570	ND
	1/6/2011	ND	ND	ND	ND	1,440	7 J	ND	ND	ND	ND	ND	3,560	ND
	2/10/2011	ND	ND	ND	ND	1,330	33.1	ND	ND	ND	ND	ND	3,410	ND
	3/16/2011	5.5	ND	ND	ND	1,510	6.0	ND	ND	ND	ND	5.6	4,220	ND
	4/12/2011	8.0 J	ND ND	ND	ND	1,390	7.7 J	ND	ND	ND ND	ND ND	7.8J	4,580	ND
	5/19/2011 6/16/2011	ND 5.0 J	ND ND	ND ND	ND ND	1,490 1,430	198 30.3	ND ND	ND ND	ND	ND	6.0 5.9 J	3,750 3,720	ND ND
	7/14/2011	5.6	ND	ND	ND	1,430	6.4	ND	ND	ND	ND	5.8	3,030	ND
	8/11/2011	ND	ND	ND	ND	1,130	64.4	ND	ND	ND	ND	7.5 J	3,640	ND
	9/8/2011	6.5	ND	ND	ND	1,230	24.4	ND	ND	ND	ND	7.3	2,850	ND
	10/13/2011	6.2 J	ND	ND	ND	1,250	21.8	ND	ND	ND	ND	7.3 J	3,430	ND
	11/10/2011	2	0.49 J	ND	ND	1,230	105	ND	ND	1 J	ND	6.5	3,140	0.69 J
	12/8/2011	7 J	ND	ND	ND	1,290	12.1	ND	ND	ND	ND	7.5 J	3,230	ND
	1/12/2012	4.1 J	ND	ND	ND	1,270	49.7	ND	ND	ND	ND	5.6	3,320	ND
	2/9/2012	6.1 J	ND	ND	ND	1,070	12.5	ND	ND	ND	ND	7.4 J	2,790 ^a	ND
	3/15/2012	5.3 J	ND	ND	ND	1,210	17.1	ND	ND	ND	ND	8.0 J	3,100 ^a	ND
	4/12/2012	5.2 J	ND	ND	ND	1,080	7.8 J	ND	ND	ND	ND	7.4 J	2,830 ^a	ND
	5/15/2012	6.0 J	ND	ND	ND	1,180	8.7 J	ND	ND	ND	ND	7.4 J	3,220 ^a	ND
	6/7/2012	ND	ND	ND	ND	1,070	13.5	ND	ND	ND	ND	6.6 J	3,040 ^a	ND
	7/17/2012	7.0 J	ND	ND	ND	1,140	18.5	ND	ND	ND	ND	8.0 J	3,380 ^a	ND
	8/16/2012 9/13/2012	5.6 J ND	ND ND	ND ND	ND ND	1,200 706	5 J 9.2 J	ND ND	ND ND	ND ND	ND ND	5.9 J 6.7 J	3,430 ^a 2,240	ND ND
		5.2 J	ND	ND	ND			ND		ND	ND	6.7 J 7.7 J	2,240 3,440 ^a	ND
	10/11/2012 11/8/2012	5.2 J 8.2 J	ND	ND	ND	1,060 1,000	27.1 8.8 J	ND	ND ND	ND	ND	7.7 J 7.4 J	3,220	ND
	12/6/2012	5.1 J	ND	ND	ND	1,000	8.2 J	ND	ND	ND	ND	7.4 J 8.1 J	3,050	ND
	1/10/2012	6.5 J	ND	ND	ND	850	5.9 J	ND	ND	ND	ND	9.4 J	2,920	ND
	2/21/2013	3.5 J	ND	ND	ND	904	57.8	ND	ND	ND	ND	7.2 J	3,500 ^a	ND
	3/14/2013	5.8	ND	ND	ND	569	3.0 J	ND	ND	1.3 J	ND	7.4	1,770 ^a	ND
	4/4/2013	14.1	ND	ND	ND	765	10	ND	ND	ND	ND	5.0	3,220 ^a	ND
	5/9/2013	ND	ND	ND	ND	846	ND	ND	ND	ND	ND	ND	3,810	ND
	6/13/2013	ND	ND	ND	ND	842	ND	ND	ND	ND	ND	ND	3,520	ND
	7/11/2013	7.0	ND	ND	ND	941	4.9 J	ND	ND	1.3 J	ND	8.8	2,780 ^a	ND
	8/8/2013	ND	ND	ND	ND	1,000	ND	ND	ND	ND	ND	ND	4,110	ND
	9/12/2013	5.3 J	ND	ND	ND	881	4.6 J	ND	ND	ND	ND	5.9 J	3,260	ND
	10/10/2013	ND	ND	ND	ND	931	23.3	ND	ND	ND	ND	7.0 J	4,600 ^a	ND
	11/14/2013	5.6	ND	ND	ND	861	9.9	ND	ND	ND	ND	9.1	3,220 ^a	ND
	12/12/2013	7.3 J	ND ND	ND ND	ND	782	5.4 J	ND	ND ND	ND ND	ND ND	9.6 J	4,220 ^a	ND
	1/16/2014 2/17/2014	ND ND	ND ND	ND ND	ND ND	989 1,260	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3,330 4,090	ND ND
	3/6/2014	ND	ND	ND	ND	865	ND	ND	ND	ND	ND	ND	4,090 3,830 ^a	ND
	4/3/2014	ND	ND	ND	ND	1,120	ND	ND	ND	ND	ND	ND	3,400	ND
l	4/3/2014	ND		ND	UVI	1,120	ND	IND	טא		טאו	ND	3,400	שא

							Volati	le Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (µg/L)	1,1,1- ТСА (µg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-4	5/8/2014	5.7	ND	ND	ND	1,190	6.5	ND	ND	ND	ND	6.3	3,540 ^a	ND
(continued)	6/12/2014	ND	ND	ND	ND	313	ND	ND	ND	ND	ND	52.0	4,090 ^a	ND
	7/10/2014	ND	ND	ND	ND	829	24.2	ND	ND	ND	ND	ND	3,790 ^a	ND
	8/14/2014	ND	ND	ND	ND	1,280	ND	ND	ND	ND	ND	ND	3,620	ND
	9/11/2014	ND	ND	ND	ND	1,120	ND	ND	ND	ND	ND	ND	3,190	ND
	10/9/2014	ND	ND	ND	ND	1,460	39.4	ND	ND	ND	ND	ND	3,350 ^a	ND
	11/13/2014	ND	ND	ND	ND	1,490	ND	ND	ND	ND	ND	ND	3,450	ND
	12/11/2014	ND	ND	ND	ND	1,170	ND	ND	ND	ND	ND	ND	2,950	ND
	1/15/2015	ND	ND ND	ND ND	ND ND	928 1,070 ^a	ND 00.4	ND ND	ND	ND	ND	ND	2,650 2,530 ^a	ND ND
	2/12/2015 3/19/2015	5.1 ND	ND ND	ND	ND ND	1,070	32.1 ND	ND	ND ND	ND ND	ND ND	6.3 ND	2,530	ND ND
	4/16/2015	ND	ND	ND	ND	953	ND	ND	ND	ND	ND	ND	2,430	ND
	5/14/2015	ND	ND	ND	ND	955	ND	ND	ND	ND	ND	ND	2,180	ND
	6/11/2015	ND	ND	ND	ND	831	ND	ND	ND	ND	ND	ND	1,990	ND
	7/1/2015	ND	ND	ND	ND	1,060	ND	ND	ND	ND	ND	ND	2,620b	ND
	8/13/2015	ND	ND	ND	ND	872	ND	ND	ND	ND	ND	ND	2,740	ND
	9/17/2015	ND	ND	ND	ND	843	ND	ND	ND	ND	ND	ND	2,110	ND
	10/15/2015	ND	ND	ND	ND	861	ND	ND	ND	ND	ND	ND	2,150b	ND
	11/12/2015	6.1	ND	ND	ND	897b	5.4	ND	ND	1.4	ND	7.0	2,350b	ND
	12/3/2015	ND	ND	ND	ND	827	ND	ND	ND	ND	ND	ND	2,210b	ND
	1/14/2016	ND	ND	ND	ND	881	ND	ND	NDb	ND	ND	ND	2,250	ND
	2/11/2016	ND	ND	ND	ND	826	ND	ND	NDb	ND	ND	ND	1,960	ND
	3/17/2016	ND	ND	ND	ND	803	ND	ND	ND	ND	ND	ND	1,950	ND
	4/14/2016	ND	ND	ND	ND	881	ND	ND	ND	ND	ND	ND	2,120	ND
	5/12/2016	ND	ND	ND	ND	1,050	ND	ND	ND	ND	ND	ND	2,740b	ND
	6/23/2016	ND	ND	ND	ND	782	ND	ND	ND	ND	ND	ND	1,840	ND
	7/14/2016	ND	ND	ND	ND	1,000	ND	ND	ND	ND	ND	ND	2,900b	ND
	8/11/2016	ND	ND	ND	ND	964	ND	ND	ND	ND	ND	ND	2,750	ND
	9/9/2016	ND	ND	ND	ND	877	ND	ND	ND	ND	ND	ND	2,290	ND
	10/13/2016	ND	ND	ND	ND	858	ND	ND	ND	ND	ND	ND	2,080	ND
	11/17/2016 12/7/2016	ND ND	ND ND	ND ND	ND ND	816 958	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2,100 2,160	ND ND
	1/12/2017	ND	ND	ND	ND	958 828	ND	ND	ND	ND	ND	ND	2,180	ND
	2/16/2017	ND	ND	ND	ND	822	ND	ND	ND	ND	ND	ND	1,830	ND
	3/12/2017	ND	ND	ND	ND	822	ND	ND	ND	ND	ND	ND	2,280	ND
	4/13/2017	ND	ND	ND	ND	730	ND	ND	ND	ND	ND	ND	1,940	ND
	5/11/2017	ND	ND	ND	ND	636	ND	ND	ND	ND	ND	ND	1,580	ND
	6/15/2017	ND	ND	ND	ND	706	ND	ND	ND	ND	ND	ND	1,750	ND
	7/25/2017	ND	ND	ND	ND	574	ND	ND	ND	ND	ND	ND	1,640	ND
	8/16/2017	ND	ND	ND	ND	536	ND	ND	ND	ND	ND	ND	1,470	ND
	9/19/2017	ND	ND	ND	ND	564	ND	ND	ND	ND	ND	ND	1,420	ND
	10/12/2017	ND	ND	ND	ND	598	ND	ND	ND	ND	ND	ND	1,600	ND
	11/16/2017	ND	ND	ND	ND	473	ND	ND	ND	ND	ND	ND	1,270	ND
	12/14/2017	ND	ND	ND	ND	545	ND	ND	ND	ND	ND	ND	1,530	ND
	1/11/2018	ND	ND	ND	ND	537	ND	ND	ND	ND	ND	ND	1,430	ND
	2/15/2018	ND	ND	ND	ND	423	ND	ND	ND	ND	ND	ND	1,260	ND
	3/15/2018	ND	ND	ND	ND	349	ND	ND	ND	ND	ND	ND	1,090	ND
	4/12/2018	ND	ND	ND	ND	485	ND	ND	ND	ND	ND	ND	1,500	ND
	5/17/2018	ND	ND	ND	ND	351	ND	ND	ND	ND	ND	ND	1,260	ND
	6/14/2018	ND	ND	ND	ND	455	ND	ND	ND	ND	ND	ND	1,580	ND
	7/19/2018	5.6	ND	ND	ND	387	3.3	ND	ND	1.6	ND	ND	1,400	ND
	8/17/2018	ND	ND	ND	ND	536	ND	ND	ND	ND	ND	ND	1,470	ND
	9/13/2018	ND	ND	ND	ND	441	ND	ND	ND	ND	ND	ND	1,440	ND
	10/10/2018	ND	ND	ND	ND	465	ND	ND	ND	ND	ND	ND	1,710	ND
	11/15/2018 12/13/2018	ND ND	ND ND	ND ND	ND ND	368 448	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,350 1,430	ND ND
		ND ND	ND ND	ND ND	ND	448		ND			ND	ND	-	
1	1/17/2019	IND	IND	IND	IND	499	ND	IND	ND	ND	UND	IND	1,430	ND

							Volati	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	ΜΕΚ (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-4	2/17/2019	ND	ND	ND	ND	552	ND	ND	ND	ND	ND	ND	1,680	ND
(continued)	3/14/2019	ND	ND	ND	ND	533	ND	ND	ND	ND	ND	ND	1,600	ND
	4/11/2019	ND	ND	ND	ND	604	ND	ND	ND	ND	ND	ND	1,940	ND
	5/16/2019	ND	ND	ND	ND	571	ND	ND	ND	ND	ND	ND	1,910	ND
	6/13/2019	ND	ND	ND	ND	538	ND	ND	ND	ND	ND	ND	1,850	ND
	7/11/2019	ND	ND	ND	ND	528	ND	ND	ND	ND	ND	ND	1,840	ND
	8/15/2019	ND	ND	ND	ND	380	ND	ND	ND	ND	ND	ND	1,600	ND
	9/12/2019	ND	ND	ND	ND	451	ND	ND	ND	ND	ND	ND	1,770	ND
	10/10/2019	ND	ND	ND	ND	362	ND	ND	ND	ND	ND	ND	1,380	ND
	11/13/2019	ND	ND	ND	ND	598	ND	ND	ND	ND	ND	ND	1,490	ND
	12/12/2019	ND	ND	ND	ND	393	ND	ND	ND	ND	ND	ND	1,200	ND
	1/16/2020	ND	ND	ND	ND	407	ND	ND	ND	ND	ND	ND	1,310	ND
	2/13/2020	ND	ND	ND	ND	458	ND	ND	ND	ND	ND	ND	1,470	ND
	3/12/2020	ND	ND	ND	ND	445	ND	ND	ND	ND	ND	4.7 J	1,370	ND
	4/16/2020	ND	ND	ND	ND	551	ND	ND	ND	ND	ND	ND	1,610	ND
	5/15/2020	ND	ND	ND	ND	456	ND	ND	ND	ND	ND	ND	1,300	ND
	6/10/2020	ND	ND	ND	ND	437	ND	ND	ND	ND	ND	ND	1,430	ND
	7/16/2020	ND	ND	ND	ND	501	ND	ND	ND	ND	ND	ND	1,690	ND
	8/13/2020	ND	ND	ND	ND	469	ND	ND	ND	ND	ND	ND	1,530	ND
	9/17/2020	ND	ND	ND	ND	352	ND	ND	ND	ND	ND	ND	1,340	ND
	10/15/2020	ND	ND	ND	ND	391	ND	ND	ND	ND	ND	ND	1,400	ND
	11/12/2020	ND	ND	ND	ND	553	ND	ND	ND	ND	ND	ND	1,590	ND
	12/16/2020	ND	ND	ND	ND	460	ND	ND	ND	ND	ND	ND	1,370	ND
	1/14/2021	ND	ND	ND	ND	457	ND	ND	ND	ND	ND	ND	1,300	ND
	2/11/2021	ND	ND	ND	ND	517	ND	ND	ND	ND	ND	5.7 J	1,080	ND
	3/11/2021	ND	ND	ND	ND	476	ND	ND	ND	ND	ND	6.0 J	1,260	ND
	4/15/2021	ND	ND	ND	ND	509	ND	ND	ND	ND	ND	ND	1,350	ND
	5/13/2021	ND	ND	ND	ND	503	ND	ND	ND	ND	ND	4.7 J	1,510	ND
	6/14/2021	3.2	ND	ND	ND	468	2.8	ND	ND	1.4 J	ND	4.5	1,300	ND
	7/20/2021 8/19/2021	ND ND	ND ND	ND ND	ND ND	303 441	ND ND	ND ND	ND ND	ND ND	ND ND	6.6 J 12.1 J	1,120 1,430	ND ND
	9/16/2021	ND	ND	ND	ND	441	ND	ND	ND	ND	50.0 J	ND	1,430	ND
	10/14/2021	ND	ND	ND	ND	432	ND	ND	ND	ND	ND	ND	1,340	ND
	11/20/2021	ND	ND	ND	ND	418	ND	ND	ND	ND	ND	ND	1,290	ND
	12/16/2021	ND	ND	ND	ND	489	ND	ND	ND	ND	ND	ND	1,600	ND
EW-5	3/12/2020	ND	ND	ND	ND	796	ND	ND	ND	ND	ND	ND	13,800	ND
211 3	4/16/2020	37.5	2.6	ND	10.6	763	1.2	22.3	ND	1.1	ND	47.7	11,100	1.5
	5/14/2020	ND	ND	ND	ND	580	ND	ND	ND	ND	ND	45.7 J	10,000	ND
	6/10/2020	32.7 J	ND	ND	ND	612	ND	ND	ND	ND	ND	47.5 J	10,700	ND
	7/16/2020	ND	ND	ND	ND	559	ND	ND	ND	ND	ND	44.8 J	8,900	ND
	8/13/2020	ND	ND	ND	ND	534	ND	ND	ND	ND	ND	52.8 J	7,200	ND
	9/17/2020	ND	ND	ND	ND	444	ND	ND	ND	ND	ND	47.8 J	7,060	ND
	10/15/2020	ND	ND	ND	ND	490	ND	ND	ND	ND	ND	36.8 J	7,360	ND
	11/12/2020	ND	ND	ND	ND	576	ND	ND	ND	ND	ND	54.1 J	6,640	ND
	12/16/2020	ND	ND	ND	ND	545	ND	ND	ND	ND	ND	ND	6,930	ND
	1/14/2021	ND	ND	ND	ND	589	ND	ND	ND	ND	ND	67.3 J	6,330	ND
	2/11/2021	ND	ND	ND	ND	688	ND	ND	ND	ND	ND	61.2 J	5,680	ND
	3/11/2021	ND	ND	ND	ND	717	ND	ND	ND	ND	ND	60.9 J	6,760	ND
	4/15/2021	ND	ND	ND	ND	761	ND	ND	ND	ND	ND	49.5 J	6,320	ND
	5/13/2021	ND	ND	ND	ND	709	ND	ND	ND	ND	ND	48.8 J	6,870	ND
	6/14/2021	ND	ND	ND	ND	707	16.6 J	ND	ND	ND	ND	56.9	5,520	ND
	7/20/2021	ND	ND	ND	ND	648	ND	ND	ND	ND	ND	52.3	5,130 ^b	ND
	8/19/2021	32.0 ^b J	ND	ND	ND	873	ND	ND	ND	ND	ND	59.5 J	5,900	ND
	9/16/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	249 J	35.2 J	4,290	ND
	10/14/2021	28.0 J	ND	ND	ND	541	ND	ND	ND	ND	ND	ND	3,620	ND
	11/20/2021	ND	ND	ND	ND	685	34.9 J	ND	ND	ND	ND	47.1 J	4,630	ND
	12/16/2021	44.5 J	ND	ND	ND	747	ND	ND	ND	ND	ND	52.1 ° J	4,050 ^c	ND

							Volat	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	ΜΕΚ (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-10	9/18/2009	ND	ND	ND	ND	1,030	ND	ND	ND	ND	ND	ND	7,150	ND
	9/25/2009	ND	ND	ND	ND	831	ND	ND	ND	ND	ND	ND	7,440	ND
	9/30/2009	ND	ND	ND	ND	687	ND	ND	ND	ND	ND	ND	6,180	ND
	10/7/2009	ND	ND	ND	ND	774	ND	ND	ND	ND	ND	ND	5,380	ND
	11/5/2009	ND	ND	ND	ND	915	ND	ND	ND	ND	ND	ND	5,710	ND
	12/3/2009	5.6 J	ND	ND	ND	869	2.8 J	ND	ND	ND	ND	5.1 J	4,650	ND
	12/29/2009	4.6 J	ND	ND	ND	860	ND	ND	ND	ND	ND	4.4 J	6,120	ND
	1/21/2010	ND	ND	ND	ND	1,130	ND	ND	ND	ND	ND	ND	4,210	ND
	2/18/2010	ND	ND	ND	ND	1,080	ND	ND	ND	ND	ND	ND	5,330	ND
	3/30/2010	ND	ND	ND	ND	1,080	5.4 J	ND	ND	ND	ND	5.2 J	6,360	ND
	4/26/2010	ND	ND	ND	ND	1,180	ND	ND	ND	ND	ND	5.5 J	6,660	ND
	5/27/2010	ND	ND	ND	ND	1,290	ND	ND	ND	ND	ND	ND	6,760	ND
	6/22/2010	ND	ND	ND	ND	1,090	9.8 J	ND	ND	ND	ND	ND	6,250	ND
	7/23/2010	ND	ND	ND	ND	1,260	20.1 J	ND	ND	ND	ND	ND	6,370	ND
	8/25/2010	ND	ND	ND	ND	1,360	11.9	ND	ND	ND	ND	5.4 J	7,330	ND
	9/22/2010	ND	ND	ND	ND	1,670	ND	ND	ND	ND	ND	ND	7,820	ND
	10/20/2010	5.9 J	ND	ND	ND	1,550	9.1 J	ND	ND	ND	ND	5.8 J	7,600	ND
	11/2/2010	6.5 J	ND	ND	ND	1,990	5.6 J	ND	ND	ND	ND	6.5 J	9,800	ND
	12/7/2010	8.8 J	ND	ND	ND	2,260	7.8 J	ND	ND	ND	ND	6.6 J	9,350	ND
	1/6/2011	ND	ND	ND	ND	2,180	ND	ND	ND	ND	ND	ND	9,070	ND
	2/10/2011	ND	ND	ND	ND	2,510	7.2 J	ND	ND	ND	ND	ND	9,780	ND
	3/16/2011	ND	ND	ND	ND	2,590	7.7 J	ND	ND	ND	ND	ND	10,600	ND
	4/12/2011	9.2J	ND	ND	ND	2,880	8.9 J	ND	ND	ND	ND	6.1 J	11,200	ND
	5/19/2011	10	ND	ND	ND	3,040	29.1	ND	ND	ND ND	ND	5.8 J	11,100	ND
	6/16/2011 7/14/2011	7.1 J 8.8 J	ND ND	ND ND	ND ND	3,040 3,070	ND 29	ND ND	ND ND	ND ND	8.6 J ND	ND ND	11,400 10,200	ND ND
	8/11/2011	0.0 J 12.7	ND	ND	0.91 J	3,370	29 ND	ND	ND	ND	ND	8.0	12,200	4.3
	9/8/2011	12.7	ND	ND	ND	2,930	11.7	ND	ND	ND	ND	6.7 J	9,460	4.3 ND
	10/13/2011	ND	ND	ND	ND	3,610	ND	ND	ND	ND	ND	ND	13,200	ND
	11/10/2011	13.8	ND	ND	ND	4,000	17.1	ND	ND	ND	ND	5.6 J	14,400	4.8 J
	12/8/2011	16.5 J	ND	ND	ND	4,230	17.7 J	ND	ND	ND	ND	ND	15,400	ND
	1/12/2012	ND	ND	ND	ND	4,290	ND	ND	ND	ND	ND	ND	15,100	ND
	2/9/2012	ND	ND	ND	ND	3,520	ND	ND	ND	ND	ND	ND	12,400	ND
	3/15/2012	ND	ND	ND	ND	4,640	ND	ND	ND	ND	ND	ND	14,800 ^a	ND
	4/12/2012	12.6J	ND	ND	ND	4,720 ^a	13.6 J	ND	ND	ND	ND	ND	15,900 ^a	ND
	5/15/2012	ND	ND	ND	ND	4,650	ND	ND	ND	ND	ND	ND	18,000 ^a	ND
	6/7/2012	ND	ND	ND	ND	4,070 ^a	12.7	ND	ND	ND	ND	5.3 J	15,100 ^a	3.3 J
	7/17/2012	ND	ND	ND	ND	4,480	ND	ND	ND	ND	ND	ND	16,600	ND
	8/16/2012	13.9 J	ND	ND	ND	4,920 ^a	10.8 J	ND	ND	ND	ND	ND	15,500 ^a	ND
	9/13/2012	ND	ND	ND	ND	4,380 ^a	ND	ND	ND	ND	ND	ND	17,200	ND
	10/11/2012	ND	ND	ND	ND	4,680	ND	ND	ND	ND	ND	ND	18,000 ^a	ND
	11/8/2012	ND	ND	ND	ND	4,380	29.4 J	ND	ND	ND	ND	ND	15,900	ND
	12/6/2012	ND	ND	ND	ND	4,680	ND	ND	ND	ND	ND	ND	16,100	ND
	1/10/2013	ND	ND	ND	ND	4,270	ND	ND	ND	ND	ND	ND	16,700	ND
	2/21/2013	14.7 J	ND	ND	ND	4,560	18.7 J	ND	ND	ND	ND	ND	18,200 ^a	ND
	3/14/2013	ND	ND	ND	ND	4,940	ND	ND	ND	ND	ND	ND	17,500	ND
	4/4/2013	ND	ND	ND	ND	4,740	ND	ND	ND	ND	ND	ND	18,800 ^a	ND
	5/9/2013	ND	ND	ND	ND	4,580	ND	ND	ND	ND	ND	ND	18,000	ND
	6/13/2013	ND	ND	ND	ND	4,010	ND	ND	ND	ND	ND	ND	15,500	ND
	7/11/2013	ND	ND	ND	ND	4,150	ND	ND	ND	ND	ND	ND	14,600	ND
	8/8/2013	ND	ND	ND	ND	4,310	ND	ND	ND	ND	ND	ND	16,100	ND
	9/12/2013	ND	ND	ND	ND	4,030	ND	ND	ND	ND	ND	ND	13,700	ND
	10/10/2013	ND	ND	ND	ND	3,960	ND 0.7.1	ND	ND ND	ND	ND	ND	15,300	ND
	11/14/2013	ND 10.5	ND	ND	ND	3,770	9.7 J	ND	ND	ND	ND	ND	16,500 ^a 10.400 ^a	ND
	12/12/2013	10.5	ND	ND	ND	2,980	11.2 J	ND	ND	ND	ND	ND	- /	ND
	1/16/2014	ND	ND	ND	ND	3,450	ND	ND	ND	ND	ND	ND	11,800	ND
1	2/17/2014	ND	ND	ND	ND	3,780	ND	ND	ND	ND	ND	ND	13,600 ^a	ND

Location Date 1,1- DCE 1,1- DCA 1,1,1- (µg/L) 1,1,2- (µg/L) Cis-1,2- (µg/L) trans- DCE MEK (µg/L) Acetone (µg/L) Chloroform (µg/L) Methyle Chlori (µg/L) EW-10 (continued) 3/62/014 ND ND ND ND ND 2,580 ND ND<	PCE (µg/L) ND ND	TCE (μg/L) 13,500 ^a 10,500 11,800 ^a 11,100 ^a 13,300 ^a 10,900 ^a 9,470 ^a 11,500 ^a 12,100 9,630 ^a	VC (µg/L) ND ND ND ND ND ND ND ND
(continued) 4/3/2014 ND ND ND ND 2,940 ND ND <th>ND ND ND ND ND ND ND ND ND ND ND</th> <th>10,500 11,800^a 11,100^a 13,300^a 10,900^a 9,470^a 11,500^a 12,100</th> <th>ND ND ND ND ND ND</th>	ND ND ND ND ND ND ND ND ND ND ND	10,500 11,800 ^a 11,100 ^a 13,300 ^a 10,900 ^a 9,470 ^a 11,500 ^a 12,100	ND ND ND ND ND ND
5/8/2014 ND ND ND 3,050 ND ND ND ND ND 6/12/2014 ND	ND ND ND ND ND ND ND ND ND ND	11,800 ^a 11,100 ^a 13,300 ^a 10,900 ^a 9,470 ^a 11,500 ^a 12,100	ND ND ND ND ND
6/12/2014 ND ND ND 3,020 ND	ND ND ND ND ND ND ND ND ND ND	11,100 ^a 13,300 ^a 10,900 ^a 9,470 ^a 11,500 ^a 12,100	ND ND ND ND
7/10/2014 ND ND ND 2,790 ND ND ND ND ND 8/14/2014 ND	ND ND ND ND ND ND ND ND	13,300 ^a 10,900 ^a 9,470 ^a 11,500 ^a 12,100	ND ND ND
8/14/2014 ND ND ND 2,720 ND ND ND ND ND 9/11/2014 ND	ND ND ND ND ND ND ND	10,900 ^a 9,470 ^a 11,500 ^a 12,100	ND ND
9/11/2014 ND ND ND 2,380 ND ND ND ND ND 10/9/2014 ND	ND ND ND ND ND ND	9,470 ^a 11,500 ^a 12,100	ND
10/9/2014 ND ND ND 2,820 ND ND ND ND ND 11/13/2014 ND ND <td>ND ND ND ND ND</td> <td>11,500^a 12,100</td> <td></td>	ND ND ND ND ND	11,500 ^a 12,100	
11/13/2014 ND	ND ND ND ND	12,100	ND
12/11/2014 ND ND ND ND 2,490 ⁸ ND ND ND ND ND ND 1/15/2015 ND ND<	ND ND ND		ND
1/15/2015 ND ND ND ND 2,470 ND ND ND ND 2/12/2015 ND	ND ND		ND
2/12/2015 ND ND ND ND 2,440 ND	ND	8,870 ^a	ND
3/19/2015 ND ND ND ND 2,640 ND		6,610 ^a	ND
4/16/2015 ND ND ND ND 2,210 ND	ND	8,820 ^a	ND
5/14/2015 ND ND ND ND 1,890 ND	ND	7,850	ND
6/11/2015 ND ND ND ND 2,010 ND	ND	8,140	ND
8/13/2015 ND ND ND ND 1,780 ND	ND	7,750	ND
9/17/2015 ND ND ND ND 1,930 ND	ND	8,160b	ND
10/15/2015 ND ND ND ND 1,830 ND ND ND ND ND ND 11/12/2015 5.4 ND ND ND 2,420b 5.2 ND ND ND ND 12/3/2015 ND ND ND ND 1,770 ND ND ND ND 1/14/2016 ND ND ND ND 1,660 ND ND ND ND 2/11/2016 ND ND ND ND 1,750 ND ND ND ND 3/17/2016 ND ND ND ND 1,600 ND ND ND 4/14/2016 ND ND ND 1,550 ND ND ND ND 5/12/2016 ND ND ND ND 1,490 ND ND ND ND	ND	7,220	ND
11/12/2015 5.4 ND ND 2,420b 5.2 ND ND ND ND 12/3/2015 ND ND ND ND 1,770 ND ND ND ND 1/14/2016 ND ND ND ND 1,660 ND ND ND ND 2/11/2016 ND ND ND ND 1,750 ND ND ND ND 3/17/2016 ND ND ND ND 1,600 ND ND ND ND 4/14/2016 ND ND ND 1,550 ND ND ND ND 5/12/2016 ND ND ND 1,580 ND ND ND ND 6/23/2016 ND ND ND ND ND ND ND ND ND	ND	8,080	ND
12/3/2015 ND ND ND ND 1,770 ND ND ND ND ND 1/14/2016 ND ND ND ND 1,660 ND ND ND ND 2/11/2016 ND ND ND ND 1,750 ND ND ND ND 3/17/2016 ND ND ND ND 1,600 ND ND ND ND 4/14/2016 ND ND ND ND 1,550 ND ND ND ND 5/12/2016 ND ND ND 1,490 ND ND ND	ND	8,040	ND
1/14/2016 ND ND ND 1,660 ND ND ND ND 2/11/2016 ND ND ND ND 1,750 ND ND ND ND 3/17/2016 ND ND ND ND 1,600 ND ND ND ND 4/14/2016 ND ND ND ND 1,550 ND ND ND ND 5/12/2016 ND ND ND ND 1,580 ND ND ND ND 6/23/2016 ND ND ND ND 1,490 ND ND ND	3.2	10,000b	1.8
2/11/2016 ND ND ND 1,750 ND ND ND ND ND 3/17/2016 ND ND ND ND 1,600 ND ND ND ND 4/14/2016 ND ND ND ND 1,550 ND ND ND ND 5/12/2016 ND ND ND ND 1,580 ND ND ND ND 6/23/2016 ND ND ND ND 1,490 ND ND ND ND	ND	7,490b	ND
3/17/2016 ND ND ND 1,600 ND ND ND ND 4/14/2016 ND ND ND ND 1,550 ND ND ND ND 5/12/2016 ND ND ND ND 1,580 ND ND ND ND 6/23/2016 ND ND ND ND 1,490 ND ND ND ND	ND	7,160b	ND
4/14/2016 ND ND ND 1,550 ND ND ND ND 5/12/2016 ND ND ND ND 1,580 ND ND ND ND 6/23/2016 ND ND ND ND 1,490 ND ND ND ND	ND	7,520	ND
5/12/2016 ND ND ND 1,580 ND	ND	6,640	ND
6/23/2016 ND ND ND ND 1,490 ND ND ND ND ND ND	ND	5,890b	ND
	ND	6,530b	ND
	ND	5,920	ND
7/14/2016 ND ND ND 1,540 ND	ND ND	6,610 6,310b	ND ND
9/9/2016 ND ND ND ND 1,480 ND	ND	6,010	ND
10/13/2016 ND ND ND ND 1,570 ND ND ND ND ND ND	ND	7,150	ND
11/17/2016 ND ND ND ND 1,560 ND ND ND ND ND	ND	6,210b	ND
12/7/2016 ND ND ND ND 1,860 ND ND ND ND ND	ND	7,990	ND
1/12/2017 ND ND ND ND 1,770 ND ND ND ND ND	ND	8,310	ND
2/16/2017 ND ND ND ND 1,550 ND ND ND ND ND	ND	6,080	ND
3/12/2017 ND ND ND ND 1,480 ND ND ND ND ND ND	ND	7,300	ND
4/13/2017 ND ND ND ND 1,410 ND ND ND ND ND ND	ND	6,840b	ND
5/11/2017 ND ND ND ND 1,390 ND ND ND ND ND ND	ND	6,150b	ND
6/15/2017 ND ND ND ND 1,350 ND ND ND ND ND	ND	6,260	ND
7/25/2017 ND ND ND ND 1,310 ND ND ND ND ND ND	ND	5,800	ND
8/16/2017 ND ND ND ND 1,230 ND ND ND ND ND ND	ND	4,810	ND
9/19/2017 ND ND ND ND 1,280 ND ND ND ND ND	ND	4,870	ND
10/12/2017 ND ND ND ND 1,370 ND ND ND ND ND	ND	5,680	MD
11/16/2017 ND ND ND ND 1,080 ND ND ND ND ND ND	ND	4,800b	MD
12/14/2017 ND ND ND ND 1,200 ND ND ND ND ND ND	ND	5,060	MD
1/11/2018 ND ND ND ND 1,380 ND ND ND ND ND ND	ND	3,250	ND
2/15/2018 ND ND ND ND 920 ND ND ND ND ND ND	ND	3,830	ND
3/15/2018 ND ND ND ND 973 ND ND ND ND ND ND	ND	4,340	ND
4/12/2018 ND ND ND 913 ND	ND ND	4,130 3,730	ND ND
6/14/2018 ND ND ND ND 850 ND ND ND ND ND ND ND	ND	3,730	ND ND
7/19/2018 2.4 ND ND ND 707 2 ND ND ND ND ND	ND	3,860	ND
8/17/2018 ND ND ND ND 1,230 ND ND ND ND ND	ND	4,810	ND
9/13/2018 ND ND ND ND 712 ND ND ND ND ND ND	ND	2,910	ND
10/10/2018 ND ND ND ND 702 ND ND ND ND ND ND	ND	3,250	ND
11/15/2018 1.1 ND ND ND 425 1.1 ND ND ND ND	ND		

							Volati	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-10	12/13/2018	ND	ND	ND	ND	574	ND	ND	ND	ND	ND	ND	2,200	ND
(Continued)	1/17/2019	ND	ND	ND	ND	676	ND	ND	ND	ND	ND	ND	2,440	ND
	2/17/2019	ND	ND	ND	ND	720	ND	ND	ND	ND	ND	ND	2,440	ND
	3/14/2019	ND	ND	ND	ND	765	ND	ND	ND	ND	ND	ND	2,860	ND
	4/11/2019	ND	ND	ND	ND	741	ND	ND	ND	ND	ND	ND	3,050	ND
	5/16/2019	ND	ND	ND	ND	722	ND	ND	ND	ND	ND	ND	2,840	ND
	6/13/2019	ND	ND	ND	ND	605	ND	ND	ND	ND	ND	ND	2,340	ND
	7/11/2019	ND	ND	ND	ND	615	ND	ND	ND	ND	ND	ND	2,580	ND
	8/15/2019	ND	ND	ND	ND	557	ND	ND	ND	ND	ND	ND	2,570	ND
	9/12/2019	ND	ND	ND	ND	594	ND	ND	ND	ND	ND	ND	2,330	ND
	10/10/2019	ND	ND	ND	ND	514	ND	ND	ND	ND	ND	ND	2,140	ND
	11/13/2019 12/12/2019	ND ND	ND ND	ND ND	ND ND	591 442	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2,250	ND ND
	1/16/2020	ND	ND	ND	ND	361	ND	ND	ND	ND	ND	ND	1,760	ND
	2/13/2020	ND	ND	ND	ND	363	ND	ND	ND	ND	ND	ND	1,570	ND
	3/12/2020	ND	ND	ND	ND	332	ND	ND	ND	ND	ND	ND	1,340	ND
	4/16/2020	ND	ND	ND	ND	557	ND	ND	ND	ND	ND	ND	2,190	ND
	5/15/2020	ND	ND	ND	ND	501	ND	ND	ND	ND	ND	ND	1,540	ND
	6/10/2020	ND	ND	ND	ND	575	ND	ND	ND	ND	ND	ND	2,320	ND
	7/16/2020	ND	ND	ND	ND	403	ND	ND	ND	ND	ND	ND	1,570	ND
	8/13/2020	ND	ND	ND	ND	422	ND	ND	ND	ND	ND	ND	1,940	ND
	9/17/2020	ND	ND	ND	ND	357	ND	ND	ND	ND	ND	ND	1,660	ND
	10/15/2020	ND	ND	ND	ND	406	ND	ND	ND	ND	ND	ND	1,920	ND
	11/12/2020	ND	ND	ND	ND	390	ND	ND	ND	ND	ND	ND	1,690	ND
	12/16/2020	ND	ND	ND	ND	443	ND	ND	ND	ND	ND	ND	1,600	ND
	1/14/2021	ND	ND	ND	ND	394	ND	ND	ND	ND	ND	ND	1,730	ND
	2/11/2021	ND	ND	ND	ND	497	ND	ND	ND	ND	ND	ND	1,880	ND
	3/11/2021	ND	ND	ND	ND	434	ND	ND	ND	ND	ND	ND	1,840	ND
	4/15/2021	ND	ND	ND	ND	407	ND	ND	ND	ND	ND	ND	1,560	ND
	5/13/2021	ND	ND	ND	ND	444	ND	ND	ND	ND	ND	ND	2,130	ND
	6/14/2021	ND	ND	ND ND	ND ND	416 382	ND	ND ND	ND	ND	ND	ND	1,950	ND
	7/20/2021 8/19/2021	ND ND	ND ND	ND ND	ND	470	ND ND	ND	ND ND	ND ND	ND ND	ND ND	1,640 1,980	ND ND
	9/16/2021	ND	ND	ND	ND	393	ND	ND	ND	ND	62.7 J	ND	1,980	ND
	10/14/2021	ND	ND	ND	ND	347	ND	ND	ND	ND	ND	ND	1,530	ND
	11/20/2021	ND	ND	ND	ND	383	ND	ND	ND	ND	ND	ND	1,510	ND
	12/16/2021	ND	ND	ND	ND	372	ND	ND	ND	ND	ND	ND	1,730	ND
EW-11	9/18/2009	466	ND	75.6 J	ND	14,500	50.2 J	ND	ND	ND	ND	283	19,300	ND
	9/25/2009	679	ND	103	ND	12,900	34.7 J	ND	ND	ND	ND	276	21,400	ND
	9/30/2009	573	ND	101	ND	11,000	30.6 J	ND	ND	ND	ND	223	19,200	ND
	10/7/2009	531	ND	ND	ND	9,570	ND	ND	ND	ND	ND	259	17,600	ND
	11/5/2009	589	ND	118	ND	7,500	35.6 J	ND	ND	ND	ND	183	13,700	ND
	12/3/2009	593	ND	148	ND	6,080	26.8	ND	ND	ND	ND	194	13,300	14.1 J
	12/29/2009	317	ND	94.1	ND	3,240	ND	ND	ND	ND	ND	144	8,950	ND
	1/21/2010	304	ND	75.2	ND	2,880	11.2 J	ND	ND	ND	ND	127	8,030	ND
	2/18/2010	218	ND	79.7	ND	2,710	7.8 J	ND	ND	ND	ND	90.9	6,090	ND
	3/30/2010	205	ND	61.5	ND	2,080	10.8	ND	ND	ND	ND	103	6,340	ND
	4/26/2010	239	ND	60.1	ND	2,160	13.3 J	ND	ND	ND	ND	101	5,990	ND
	5/27/2010	131	ND	ND	ND	1,620	ND 17.6 L	ND	ND	ND	ND	53.9	4,910	ND
	6/22/2010 7/23/2010	158 135	ND ND	48.3 56.8	ND ND	1,800 1,830	17.6 J 95.5	ND ND	ND ND	ND ND	ND ND	73.3 67.6	4,930 5,690	ND ND
	8/25/2010	135	ND	48.3	ND	1,830	95.5 35	ND	ND	ND	ND	67.6 81.6	5,690	ND
	9/22/2010	194	ND	40.3 47.7 J	ND	2,030	35 ND	ND	ND	ND	ND	66.3	5,030	ND
	10/20/2010	154	ND	42.1	ND	1,590	12.6	ND	ND	ND	ND	71.9	4,660	ND
	11/2/2010	168	ND	51.6	ND	1,870	ND	ND	ND	ND	ND	78.3	5,700	ND
	12/7/2010	186	3.7 J	44.4	ND	1,800	11.7	ND	ND	ND	ND	69.6	5,060	ND
	1/6/2011	161	ND	39.3	ND	1,580	6.8 J	ND	ND	ND	ND	58.4	4,450	ND

							Volat	ile Orgar	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (μg/L)	VC (µg/L)
					-									
EW-11	2/10/2011	154	ND	34.5	ND	1,390	10.2	ND	ND	ND	ND	62.7	4,330	ND
(Continued)	3/16/2011	128	2.4 J	25.5	ND	1,460	5	ND	ND	ND	ND	49.7	4,220	3.6
	4/12/2011	132	ND	31.9	ND	1,260	5.4J	ND	ND	ND	ND	63.1	4,110	7.0 J
	5/19/2011	115	2.8 J	29.5	ND	1,430	41.0	ND	ND	ND	ND	55.4	3,980	9.9
	6/16/2011 7/14/2011	121 102	2.5 J 2.1 J	27.8 22.8	ND ND	1,250 1,010	17.8 17.4	ND ND	ND ND	ND ND	ND ND	48.3 42.8	3,760 2,870	9.7 J 6.3
	8/11/2011	102	2.1 J 3.0	30.3	1.3	1,480	6.8	ND	ND	0.63 J	ND	42.8 63.9	4,090	9.2
	9/8/2011	108	ND	25.4	ND	1,480	14.8	ND	ND	0.03 J ND	ND	45.3	3,070	9.2
	10/13/2011	117	3.2 J	28.9	ND	1,230	30.0	ND	ND	ND	ND	50.3	3,890	10.7
	11/10/2011	99	2.4 J	20.3	ND	1,430	20.0	ND	ND	ND	ND	39.8	3,800	10.7
	12/8/2011**	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1/12/2012**	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2/9/2012	1.1	2.9J	22.2	ND	1,420	12.2	ND	ND	ND	ND	41.3	3,210 ^a	ND
	3/15/2012	110	ND	18.1	ND	1,450	5.9J	ND	ND	ND	ND	45	3,370 ^a	23.9
	4/12/2012	94.1	ND	15.9	ND	1,280	18.1	ND	ND	ND	ND	43.7	3,530 ^a	27.6
	5/15/2012	102	ND	17.5	ND	1,390	10.9	ND	ND	ND	ND	42.1	3,460 ^a	27.9
	6/7/2012	73.9	2.9J	18.5	ND	1,340	15.5	ND	ND	ND	ND	34.7	3,250 ^a	24.9
	7/17/2012	78.9	3.1J	17.1	ND	1,160	15.6	ND	ND	ND	ND	38.5	3,620 ^a	18.6
	8/16/2012	94.9	ND	15.4	ND	1,380	3.4 J	ND	ND	ND	ND	36.3	3,510 ^a	21.4
	9/13/2012	91	ND	15 J	ND	1,110	ND	ND	ND	ND	ND	36.5	3,250	16.9 J
	10/11/2012	97.8	2.4	15.7	0.87 J	1,010 ^a	8.6	ND	ND	0.48 J	ND	39.7	2,540 ^a	21.4
	11/8/2012	17.8	ND	9.6 J	ND	878	4.3 J	ND	ND	ND	ND	27.4	2,620	18.6
	12/6/2012	74.5	ND	11.2 J	ND	1,130	6.6 J	ND	ND	ND	ND	34.9	2,920	18.4 J
	1/10/2013	57.5	ND	11.4 J	ND	848	5.4 J	ND	ND	ND	ND	32.3	2,660	12.3 J
	2/21/2013	49.8	ND	8.2 J	ND	906	22.1	ND	ND	ND	ND	29.2	2,400 ^a	15.9
	3/14/2013	72.7	ND	ND	ND	978	ND	ND	ND	ND	ND	29.2	2,520	21.4
	4/4/2013	65.3	ND	7	ND	919	3.9 J	ND	ND	ND	ND	25.7	2,690 ^a	14
	5/9/2013	67.6	ND	9.1 J	ND	934	ND	ND	ND	ND	ND	28.4	2,810 2,530 ^a	15.7 J
	6/13/2013 7/11/2013	65.3	ND 1.7 J	9.2 J 6.4	ND ND	861 807	ND 2.5 J	ND ND	ND ND	ND ND	ND ND	28.7 28.1	2,530 1,790 ^a	13.3 14
	8/8/2013	65.5 43.1	ND	6.4 5.5 J	ND	783	2.5 J ND	ND	ND	ND	7.7	25.7	1,790 1,570 ^a	10.7
	9/12/2013	52.1	ND	5.3 J	ND	783	3.8 J	ND	ND	ND	ND	23.7	1,940	14.8
	10/10/2013	43.7	ND	ND	ND	653	ND	ND	ND	ND	ND	19.3 J	2,140	ND
	11/14/2013	45.7	ND	4.3 J	ND	670	4.6 J	ND	ND	ND	ND	21.2	1,950 ^a	7.9
	12/12/2013	27.9	1.1 J	4	0.43 J	494	2.1	ND	ND	ND	ND	16.1	1,870 ^a	4
	1/16/2014	35.3	ND	ND	ND	566	ND	ND	ND	ND	ND	16.8	1,610	ND
	2/17/2014	48.8	ND	ND	ND	611	ND	ND	ND	ND	ND	19.7	4,020	ND
	3/6/2014	34.4	ND	ND	ND	406	ND	ND	ND	ND	ND	19.1	1,690	ND
	4/3/2014	34.6	ND	ND	ND	464	ND	ND	ND	ND	ND	14.8	1,460 ^a	ND
	5/8/2014	30.2	ND	ND	ND	435	ND	ND	ND	ND	ND	15.7	1,370 ^a	ND
	6/12/2014	32.5	ND	ND	ND	448	ND	ND	ND	ND	ND	15.3	1,560	ND
	7/10/2014	25.5	ND	ND	ND	688	ND	ND	ND	ND	ND	17.9	1,530 ^a	ND
	8/14/2014	26.8	ND	ND	ND	434	ND	ND	ND	ND	ND	11.4	1,370 ^a	ND
	9/11/2014	23.9	ND	ND	ND	345	ND	ND	ND	ND	ND	13.4	1,360	ND
	10/9/2014	27.2	1.1	2.6	ND	466 ^a	1.4	ND	ND	ND	ND	14.2 ^a	1,570 ^a	2.2
	11/13/2014	27.3	ND	ND	ND	466	ND	ND	ND	ND	ND	10.3	1,550	ND
	12/11/2014	24.8	ND	ND	ND	367	ND	ND	ND	ND	ND	12.6	1,390	ND
	1/15/2015	24.8	ND	ND	ND	352	ND	ND	ND	ND	ND	12.7	1,400 ^a	ND
	2/12/2015	22.5	ND	ND	ND	332	ND	ND	ND	ND	ND	9.8	1,400 ^a	ND
	3/19/2015	21.8	ND	ND	ND	336	ND	ND	ND	ND	ND	ND	1,190	ND
	4/16/2015	22.2	ND	ND	ND	288	ND	ND	ND	ND	ND	ND	980	ND
	5/14/2015	22.3	ND ND	ND ND	ND ND	263	ND ND	ND ND	ND	ND	ND ND	ND ND	1,120 987	ND ND
	6/11/2015 7/1/2015	22.7	ND ND	ND	ND	267	ND ND		ND	ND	ND ND	ND 9.5		
	7/1/2015 8/13/2015	21.2	ND ND	ND	ND	298	ND ND	ND	ND	ND	ND ND	9.5	1,170b	ND ND
	9/17/2015	24.6 ND	ND ND	ND ND	ND ND	305 280	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,240 1,110	ND ND
	10/15/2015	18.5	ND	ND	ND	240	ND	ND	-	ND			969	ND
I	10/15/2015	10.5	ND	ND	טא	∠40	IND	IND	ND	UND	ND	ND	909	UND

							Volati	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-11	11/12/2015	4.9	ND	ND	ND	233b	ND	ND	ND	ND	ND	2.4	1,390b	1.6
(continued)	12/3/2015	16.9	ND	ND	ND	224	ND	ND	ND	ND	ND	ND	1,080b	ND
	1/14/2016	ND	ND	ND	ND	185	ND	ND	NDb	ND	ND	ND	997	ND
	2/11/2016	16.3	ND	ND	ND	226	ND	ND	NDb	ND	ND	ND	1,120c	ND
	3/17/2016	14.8	ND	ND	ND	208	ND	ND	ND	ND	ND	ND	914b	ND
	4/14/2016	14.1	ND	ND	ND	210	ND	ND	ND	ND	ND	ND	857	ND
	5/12/2016	ND	ND	ND	ND	204	ND	ND	ND	ND ND	ND	ND	1,110	ND ND
	6/23/2016 7/14/2016	ND ND	ND ND	ND ND	ND ND	213 204	ND ND	ND ND	ND ND	ND	ND ND	ND ND	1,060 1,120	ND ND
	8/11/2016	ND	ND	ND	ND	204	ND	ND	ND	ND	ND	ND	1,120	ND
	9/9/2016	ND	ND	ND	ND	165	ND	ND	ND	ND	ND	ND	933	ND
	10/13/2016	ND	ND	ND	ND	207	ND	ND	ND	ND	ND	ND	1,070	ND
	11/17/2016	ND	ND	ND	ND	176	ND	ND	ND	ND	ND	ND	1,170	ND
	12/7/2016	ND	ND	ND	ND	189	ND	ND	ND	ND	ND	ND	1,190	ND
	1/12/2017	ND	ND	ND	ND	188	ND	ND	ND	ND	ND	ND	1,120	ND
	2/16/2017	10.9	ND	ND	ND	188	ND	ND	ND	ND	ND	ND	942	ND
	3/12/2017	ND	ND	ND	ND	160	ND	ND	ND	ND	ND	ND	994	ND
	4/13/2017	ND	ND	ND	ND	139	ND	ND	ND	ND	ND	ND	968	ND
	5/11/2017	10.4	ND	ND	ND	165	ND	ND	ND	ND	ND	ND	943	ND
	6/15/2017	ND	ND	ND	ND	175	ND	ND	ND	ND	ND	ND	1,050	ND
	7/25/2017	ND	ND	ND	ND	163	ND	ND	ND	ND	ND	ND	912	ND
	8/17/2017	9.6	ND	ND	ND	169	ND	ND	ND	ND	ND	5.7	786b	ND
	9/19/2017	ND	ND	ND	ND	139	ND	ND	ND	ND	ND	ND	608	ND
	10/12/2017	10.0	ND	ND	ND	164	ND	ND	ND	ND	ND	ND	846	ND
	11/16/2017	10.4	ND	ND	ND	171	ND	ND	ND	ND	ND	ND	785	ND
	12/14/2017	ND	ND	ND	ND	166	ND	ND	ND	ND	ND	ND	879	ND
	1/11/2018	ND	ND	ND	ND	163	ND	ND	ND	ND	ND	ND	851	ND
	2/15/2018	ND ND	ND ND	ND ND	ND ND	125 107	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	589 529	ND ND
	3/15/2018 4/12/2018	ND	ND	ND	ND	107	ND	ND	ND	ND	ND	ND	529	ND
	5/17/2018	ND	ND	ND	ND	93.7	ND	ND	ND	ND	ND	ND	503	ND
	6/14/2018	ND	ND	ND	ND	117	ND	ND	ND	ND	ND	ND	634	ND
	7/19/2018	5.9	ND	ND	ND	93.7	ND	ND	ND	4.1	ND	3.3	509	ND
	8/17/2018	9.6	ND	ND	ND	169	ND	ND	ND	ND	ND	5.7	786	ND
	9/13/2018	ND	ND	ND	ND	129	ND	ND	ND	ND	ND	ND	605	ND
	10/10/2018	6.5	ND	ND	ND	124	ND	ND	ND	6	ND	ND	635	ND
	11/15/2018	ND	ND	ND	ND	103	ND	ND	ND	ND	ND	ND	480	ND
	12/13/2018	ND	ND	ND	ND	105	ND	ND	ND	ND	ND	ND	506	ND
	1/17/2019	6.0	ND	ND	ND	106	ND	ND	ND	ND	ND	ND	479	ND
	2/17/2019	ND	ND	ND	ND	107	ND	ND	ND	ND	ND	ND	590	ND
	3/14/2019	5.3	ND	ND	ND	104	ND	ND	ND	4.7	ND	2.9	482	ND
	4/11/2019	ND	ND	ND	ND	95.5	ND	ND	ND	ND	ND	ND	556	ND
	5/16/2019	5.6	ND	ND	ND	108	ND	ND	ND	5.3	ND	ND	531	ND
	6/13/2019	ND	ND	ND	ND	80.0	ND	ND	ND	5.2	ND	ND	499	ND
	7/11/2019	ND	ND	ND	ND	94.4	ND	ND	ND	ND	ND	ND	572	ND
	8/15/2019	ND	ND	ND	ND	76.1	ND	ND	ND	ND	ND	ND	504	ND
	9/12/2019	ND	ND	ND	ND	100.0	ND	ND	ND	6.9	ND	ND	557	ND
	10/10/2019	ND	ND	ND	ND	114.0	ND	ND	ND	ND	ND	ND	711	ND
	11/13/2019	ND	ND	ND	ND	94.3	ND	ND	ND	ND	ND	ND	593	ND
	12/12/2019	ND	ND ND	ND ND	ND ND	88.3 80.4	ND ND	ND ND	ND ND	5.5	ND ND	ND ND	450 462	ND ND
	1/16/2020 2/13/2020	ND ND	ND ND	ND ND	ND	80.4 69.8	ND ND	ND	ND ND	5.2 ND	ND ND	ND	462 390	ND ND
	3/12/2020	ND ND	ND ND	ND ND	ND ND	58.5	ND ND	ND	ND	3.6 J	ND	ND	390	ND ND
	4/16/2020	3.2	ND ND	ND ND	ND	77.8	ND ND	ND	ND	3.6 J 4.0 J	ND	1.9 J	438	ND ND
	5/15/2020	3.5 J	ND	ND	ND	76.1	ND	ND	ND	4.0 J 4.5 J	ND	2.2 J	438	ND
	6/10/2020	5.1	ND	ND	ND	88.0	ND	ND	ND	5.8	ND	2.2 J 2.5 J	475	ND
	7/16/2020	2.9 J	ND	ND	ND	67.9	ND	ND	ND	4.3 J	ND	1.9 J	427	ND
I I	1/10/2020	2.3 J				01.9				ч.3 J		1.30	721	

							Volat	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-11	8/13/2020	2.9 J	ND	ND	ND	65.8	ND	ND	ND	4.8 J	ND	1.5 J	419	ND
(continued)	9/17/2020	4.4 J	ND	ND	ND	68.0	ND	ND	ND	5.5	ND	2.5 J	437	ND
. ,	10/15/2020	3.9 J	ND	ND	ND	89.1	ND	ND	ND	6.7	ND	1.8 J	543	ND
	11/12/2020	4.1 J	ND	ND	ND	86.1	ND	ND	ND	5.6	ND	2.5 J	426	ND
	12/16/2020	4.5 J	ND	ND	ND	93.5	ND	ND	ND	5.6	ND	2.7 J	417	ND
	1/14/2021	4.6 J	ND	ND	ND	81.1	ND	ND	ND	5.6	ND	2.3 J	454	ND
	2/11/2021	4.8 J	ND	ND	ND	94.3	ND	ND	ND	5.5	ND	2.9 J	430	ND
	3/11/2021	4.6 J	ND	ND	ND	92.5	ND	ND	ND	5.5	ND	2.5 J	484	ND
	4/15/2021	3.0 J	ND	ND	ND	70.3	ND	ND	ND	3.6 J	ND	1.9 J	367	ND
	5/13/2021	4.4 J	ND	ND	ND	85.7	ND	ND	ND	6.6 J	ND	ND	494	ND
	6/14/2021	4.0 J	ND	ND	ND	83.8	ND	ND	ND	5.8	ND	2.3 J	428	ND
	7/20/2021	3.3 J	ND	ND	ND	70.5	ND	ND	ND	4.9 J	ND	1.9 J	371	ND
	8/19/2021	3.5 ^d J	ND	ND	ND	83.9	ND	ND	ND	5.2	ND	2.6 J	429	ND
	9/16/2021	3.3 J	ND	ND	ND	72.3	ND	ND	ND	5.3	13.6 J	1.7 J	410	ND
	10/14/2021	3.5 J	ND	ND	ND	66.6	ND	ND	ND	4.1 J	ND	2.4 J	331	ND
	11/20/2021	3.2 J	ND	ND	ND	74.8	ND	ND	ND	4.8 J	ND	1.9 J	355	ND
	12/16/2021	3.9 J	ND	ND	ND	75.0	ND	ND	ND	5.1	ND	ND	388	ND
EW-12	10/16/2014	ND	ND	ND	ND	152	ND	ND	ND	ND	ND	ND	1,240	ND
	3/19/2015	ND	ND	ND	ND	75.2	ND	ND	ND	ND	ND	ND	341 ^a	ND
	4/16/2015	ND	ND	ND	ND	70.5	ND	ND	ND	ND	ND	ND	405	ND
	5/14/2015	ND	ND	ND	ND	75.4	ND	ND	ND	ND	ND	ND	270	ND
	6/11/2015	ND	ND	ND	ND	56.6	ND	ND	ND	ND	ND	ND	303	ND
	7/1/2015	ND	ND	ND	ND	73	ND	ND	ND	ND	ND	ND	361b	ND
	8/13/2015	ND	ND	ND	ND	62.4	ND	ND	ND	ND	ND	ND	360	ND
	9/17/2015	ND	ND	ND	ND	61.3	ND	ND	ND	ND	ND	ND	331	ND
I F	10/15/2015	ND	ND	ND	ND	55.4	ND	ND	ND	ND	ND	ND	296b	ND
	11/12/2015	ND	ND	ND	ND	52.2	ND	ND	ND	ND	ND	ND	250b	ND
	12/3/2015	ND	ND	ND	ND	48	ND	ND	ND	ND	ND	ND	259	ND
	1/14/2016	ND	ND	ND	ND	44.9	ND	ND	NDb	ND	ND	ND	283b	ND
	2/11/2016	ND	ND	ND	ND	113	ND	ND	NDb	ND	ND	ND	809	ND
	3/17/2016	ND	ND	ND	ND	91.9	ND	ND	NDb	ND	ND	ND	482b	ND
	4/14/2016	ND	ND	ND	ND	137	ND	ND	ND	ND	ND	ND	775	ND
	5/12/2016	ND	ND	ND	ND	124	ND	ND	ND	ND	ND	ND	832	ND
	6/23/2016	ND	ND	ND	ND	145	ND	ND	ND	ND	ND	ND	732	ND
	7/14/2016	ND	ND	ND	ND	142	ND	ND	ND	ND	ND	ND	843	ND
	8/11/2016	ND	ND	ND	ND	161	ND	ND	ND	ND	ND	ND	916b	ND
	9/9/2016	ND	ND	ND	ND	167	ND	ND	ND	ND	ND	ND	913b	ND
	10/13/2016	ND	ND	ND	ND	211	ND	ND	ND	ND	ND	ND	961	ND
	11/17/2016	ND	ND	ND	ND	203	ND	ND	ND	ND	ND	ND	1,180	ND
	12/7/2016	ND	ND	ND	ND	290	ND	ND	ND	ND	ND	ND	1,570	ND
	1/12/2017	ND	ND	ND	ND	372	ND	ND	ND	ND	ND	ND	1,950	ND
	2/16/2017	ND	ND	ND	ND	409	ND	ND	ND	ND	ND	ND	1,860	ND
	3/12/2017	ND	ND	ND	ND	405	ND	ND	ND	ND	ND	ND	1,800	ND
	4/13/2017	ND	ND	ND	ND	383	ND	ND	ND	ND	ND	ND	2,320	ND
	5/11/2017	ND	ND	ND	ND	513	ND	ND	ND	ND	ND	ND	2,320	ND
	6/15/2017	ND	ND	ND	ND	524	ND	ND	ND	ND	ND	ND	2,320	ND
	7/25/2017	ND	ND	ND	ND	241	ND	ND	ND	ND	ND	ND	1,140	ND
	8/16/2017	ND	ND	ND	ND	587	ND	ND	ND	ND	ND	ND	2,810	ND
	9/19/2017	ND	ND	ND	ND	813	ND	ND	ND	ND	ND	ND	3,360	ND
	10/12/2017	ND	ND	ND	ND	713	ND	ND	ND	ND	ND	ND	3,300	ND
	11/16/2017	ND	ND	ND	ND	801	ND	ND	ND	ND	ND	ND	3,100	ND
		ND ND			ND	801	ND	ND	ND	ND	ND	ND	-	
	12/14/2017 1/11/2018	ND ND	ND ND	ND ND	ND ND	1,070	ND ND	ND	ND	ND	ND	ND ND	3,790 4,720	ND ND
	2/15/2018					-							-	
	3/15/2018	ND	ND	ND	ND ND	909	ND	ND	ND	ND ND	ND ND	ND	4,010	ND
	3/15/2018 4/12/2018	ND ND	ND ND	ND ND	ND ND	1,030 1,070	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4,840 4,960	ND ND
						-							-	
	5/17/2018	ND	ND	ND	ND	1,040	ND	ND	ND	ND	ND	ND	4,780	ND

							Volat	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
EW-12	6/14/2018	ND	ND	ND	ND	962	ND	ND	ND	ND	ND	ND	4,790	ND
(continued)	7/19/2018	5	1.6	ND	ND	859	3.6	ND	ND	ND	ND	1.7	4,700	8.6
	8/17/2018	ND	ND	ND	ND	587	ND	ND	ND	ND	ND	ND	2,810	ND
	9/13/2018	ND	ND	ND	ND	1,100	ND	ND	ND	ND	ND	ND	5,330	ND
	10/10/2018	ND	ND	ND	ND	1,020	ND	ND	ND	ND	ND	ND	5,450	ND
	11/15/2018	ND	ND	ND	ND	820	ND	ND	ND	ND	ND	ND	3,720	ND
	12/13/2018 1/17/2019	ND ND	ND ND	ND ND	ND ND	890 886	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4,050 3,860	ND ND
	2/14/2019	ND	ND	ND	ND	660	ND	ND	ND	ND	ND	ND	3,860	ND
	3/14/2019	ND	ND	ND	ND	724	ND	ND	ND	ND	ND	ND	3,430	ND
	4/11/2019	ND	ND	ND	ND	670	ND	ND	ND	ND	ND	ND	3,590	ND
	5/16/2019	ND	ND	ND	ND	647	ND	ND	ND	ND	ND	ND	3,370	ND
	6/13/2019	ND	ND	ND	ND	576	ND	ND	ND	ND	ND	ND	3,350	ND
	7/11/2019	ND	ND	ND	ND	542	ND	ND	ND	ND	ND	ND	2,570	ND
	8/15/2019	ND	ND	ND	ND	586	ND	ND	ND	ND	ND	ND	3,290	ND
	9/12/2019	ND	ND	ND	ND	795	ND	ND	ND	ND	ND	ND	4,420	ND
	10/10/2019	ND	ND	ND	ND	630	ND	ND	ND	ND	ND	ND	3,180	ND
	11/13/2019	ND	ND	ND	ND	725	ND	ND	ND	ND	ND	ND	3,990	ND
	12/12/2019	ND	ND	ND	ND	675	ND	ND	ND	ND	ND	ND	3,400	ND
	1/16/2020	ND	ND	ND	ND	549	ND	ND	ND	ND	ND	ND	2,540	ND
	2/13/2020	ND	ND	ND	ND	645	ND	ND	ND	ND	ND	ND	3,480	ND
	3/12/2020 4/16/2020	ND ND	ND ND	ND ND	ND ND	416 ND	ND 504	ND ND	ND ND	ND ND	ND ND	ND ND	2,600 2,870	ND ND
	5/15/2020	ND	ND	ND	ND	ND	393	ND	ND	ND	ND	ND	1,630	ND
	6/10/2020	ND	ND	ND	ND	ND	423	ND	ND	ND	ND	ND	2,380	ND
	7/16/2020	ND	ND	ND	ND	ND	396	ND	ND	ND	ND	ND	2,230	ND
	8/13/2020	ND	ND	ND	ND	ND	369	ND	ND	ND	ND	ND	2,320 ^b	ND
	9/17/2020	ND	ND	ND	ND	ND	385	ND	ND	ND	ND	ND	2,330	ND
	10/15/2020	ND	ND	ND	ND	ND	684	ND	ND	ND	ND	ND	2,630 ^c	ND
	11/12/2020	ND	ND	ND	ND	ND	438	ND	ND	ND	ND	ND	2,710	ND
	12/16/2020	ND	ND	ND	ND	ND	400	ND	ND	ND	ND	ND	2,560	ND
	1/14/2021	ND	ND	ND	ND	ND	443	ND	ND	ND	ND	ND	2,400 b	ND
	2/11/2021	ND	ND	ND	ND	ND	468	ND	ND	ND	ND	ND	2,400	ND
	3/11/2021	ND	ND	ND	ND	403	ND	ND	ND	ND	ND	ND	2,330	ND
	4/28/2021 5/13/2021	ND	ND	ND	ND	296	ND	Not Sa ND	ampled	ND	ND	ND	1,620	ND
	6/14/2021	ND ND	ND	ND	ND	296 305	ND	ND	ND ND	ND	ND ND	ND	1,620	ND ND
	7/20/2021	ND	ND	ND	ND	232	ND	ND	ND	ND	ND	ND	1,840	ND
	8/19/2021	ND	ND	ND	ND	343	ND	ND	ND	ND	ND	ND	1,240	ND
	9/16/2021	ND	ND	ND	ND	298	ND	ND	ND	ND	66.3 J	ND	1,860	ND
	10/14/2021	ND	ND	ND	ND	298	ND	ND	ND	ND	ND	ND	1,750	ND
	11/20/2021	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	12/16/2021	ND	ND	ND	ND	345	ND	ND	ND	ND	ND	ND	2,190	ND
FASW	10/7/2009	276	9 J	11.7	ND	6,110	37.1	ND	ND	ND	ND	76.7	6,700	8.2 J
	11/5/2009	307	ND	ND	ND	6,900	33.3 J	ND	ND	ND	ND	99.9	7,970	ND
	12/3/2009	175	ND	5 J	ND	3,880	11.2	ND	ND	ND	ND	76.8	4,910	ND
	12/29/2009	170	4.5 J	ND	ND	3,550	9.8 J	ND	ND	ND	ND	82.8	5,310	ND
	1/21/2010	156	ND	ND	ND	3,130	15 J	ND	ND	ND	ND	83.9	3,490	ND
	2/18/2010 3/30/2010	99.6 114	ND ND	ND	ND ND	3,150 2,760	ND 17.2	ND ND	ND ND	ND ND	ND ND	58.5	4,590 5,390	ND
	4/26/2010	114	ND 3.8 J	3.8 J 4.1 J	ND ND	2,760	17.2	ND ND	ND ND	ND ND	ND ND	75.4 76.9	5,390	ND ND
	5/27/2010	93.1	3.8 J ND	4.1 J	ND	2,950	5.3 J	ND	ND	ND	ND	54.8	4,580	ND
	6/22/2010	103	ND	ND	ND	2,420	11.6 J	ND	ND	ND	ND	63.7	4,760	ND
	7/23/2010	87.7	ND	ND	ND	2,430	128	ND	ND	ND	ND	59.4	4,950	ND
	8/25/2010	104	ND	3.6 J	ND	2,510	91.8	ND	ND	ND	ND	78	5,300	ND
	9/22/2010	137	ND	ND	ND	3,210	ND	ND	ND	ND	ND	73.5	5,510	ND
1	10/20/2010	117	3.1 J	3.5 J	ND	2,730	19.1	ND	ND	ND	ND	72.2	5,590	ND

							Volat	le Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
FASW	11/2/2010	124	ND	4 J	ND	2,900	6 J	ND	ND	ND	ND	80.5	6,640	4.4 J
(continued)	12/7/2010	135	4.1 J	4.1 J	1.4 J	3,040	25.3	ND	ND	ND	ND	73.1	5,750	5.3
	1/6/2011	114	ND	ND	ND	2,630	8 J	ND	ND	ND	ND	59.3	5,210	ND
	2/10/2011	123	ND	ND	ND	2,580	ND	ND	ND	ND	ND	67.6	5,330	ND
	3/10/2011	121	ND	3.5 J	ND	2,400	14.5	ND	ND	ND	ND	73	5,660	6.1 J
	4/12/2011	106	ND	3.0J	ND	2,380	5.6 J	ND	ND	ND	ND	73.5	5,310	4.7 J
	5/19/2011	53.4	2.2 J	2.0 J	ND	1,800	141	ND	ND	ND	ND	51.0	4,540	5.4
	6/16/2011	72.7	ND	ND	ND	1,420	24.2	ND	ND	ND	ND	42.1	4,200	3.9 J
	7/14/2011	72.5	ND	ND	ND	1,430	19.4 J	ND	ND	ND	ND	41.4	4,130	ND
	8/11/2011	57.1	ND	ND	ND	1,360	25.6	ND	ND	ND	ND	41.9	3,680	ND 4.0
	9/8/2011	64.0	ND	1.9	ND	1,260	14.8	ND	ND	ND	ND	38.3	3,500	4.2
	10/13/2011 11/10/2011	69.3 29.4	ND 1.6 J	ND 1.9 J	ND 0.79 J	1,280 1,210	16.4 76.8	ND ND	ND ND	ND 0.55 J	ND ND	39.6 34.2	3,830 3,450	3.9 J 3.5
	12/8/2011	72.1	ND	ND	ND	1,350	70.8 9 J	ND	ND	0.55 J ND	ND	34.2	4,070	5.5 J
	1/12/2012	67.5	ND	ND	ND	1,350	9 J ND	ND	ND	ND	ND	31.7	3,520	5.9 J
	2/9/2012	55.9	ND	ND	ND	1,220	8.0 J	ND	ND	ND	ND	31.0	3,350 ^a	9.0 J
	3/15/2012	58	ND	ND	ND	1,190	ND	ND	ND	ND	ND	31.8	3,360 ^a	8.9
	4/21/2012	55.8	ND	ND	ND	1,080	6.9 J	ND	ND	ND	ND	34.3	3,760 ^a	10.6
	5/15/2012	55.5	ND	ND	ND	1,130 ^a	12.2	ND	ND	ND	ND	33.7	3,950 ^a	9
	6/7/2012	35.6	ND	ND	ND	1,060	9.4 J	ND	ND	ND	ND	27.5	3,590 ^a	9.6 J
	7/17/2012	0010				.,	FAS		- Pump Fa			2.10	-,	0.00
	8/16/2012	67.7	ND	ND	ND	1,300	ND	ND	ND	ND	ND	34.9	4,180 ^a	11.8
	9/13/2012	60.4	ND	ND	ND	1,050	ND	ND	ND	ND	ND	32.3	4,070	ND
	10/11/2012	60.9	ND	ND	ND	1,120	2.7 J	ND	ND	ND	ND	3.2	4,130 ^a	8.7
	11/8/2012	53.9	ND	ND	ND	949	5.9 J	ND	ND	ND	ND	30.4	3,720	10.3
	12/6/2012	57.5	ND	ND	ND	1,090	ND	ND	ND	ND	ND	29.8	3,610	11.7 J
	1/10/2013	54.7	ND	ND	ND	946	ND	ND	ND	ND	ND	32.4	3,590	12.6
	2/21/2013	51.7	ND	ND	ND	1,050	13.9	ND	ND	ND	ND	31.4	3,630 ^a	10.9
	3/14/2013	61.7	ND	ND	ND	1,060	ND	ND	ND	ND	ND	27.3	3,740	10.7 J
	4/4/2013	71.2	ND	ND	ND	1,050	ND	ND	ND	ND	ND	26.8	3,580	ND
	5/9/2013	53.3	ND	ND	ND	963	ND	ND	ND	ND	ND	27.1 J	4,110	9.3 J
	6/13/2013	39.8	ND	ND	ND	784	ND	ND	ND	ND	ND	24.8 J	3,490	ND
	7/11/2013	42.1	ND	ND	ND	772	ND	ND	ND	ND	ND	22.6 J	2,740	ND
	8/8/2013	45.9	ND	ND	ND	1,010	ND	ND	ND	ND	25.6 J	29.9	3,920	ND
	9/12/2013 10/10/2013	54.7	ND ND	ND ND	ND ND	961 938	ND ND	ND ND	ND ND	ND ND	ND ND	25.2	3,630 ^a 4,210 ^a	16.8 10
	11/14/2013	47.3 54.2	ND	ND	ND	938 1,050	2.2 J	ND	ND	ND	ND	26.4 28.8	4,210 4,180 ^a	11.6
	12/12/2013	62.3	ND	ND	ND	1,030	ND	ND	ND	ND	ND	39	3,650 ^a	12.5
	1/16/2014	44.4	ND	ND	ND	873	ND	ND	ND	ND	ND	22.9	3,230	ND
	2/17/2014	58.3	ND	ND	ND	957	ND	ND	ND	ND	ND	25.5	4,020	ND
	3/6/2014	43.7	ND	ND	ND	693	ND	ND	ND	ND	ND	266	3,630	ND
	4/3/2014	46.4	ND	ND	ND	828	ND	ND	ND	ND	ND	21.5	3,270	ND
	5/8/2014	38.9	ND	ND	ND	819	ND	ND	ND	ND	ND	21.8	2,800 ^a	6.4
	6/12/2014	46.7	ND	ND	ND	896	ND	ND	ND	ND	ND	22.9	3,740 ^a	ND
	7/10/2014	17.6	ND	ND	ND	688	ND	ND	ND	ND	ND	17.9	3,000 ^a	ND
	8/14/2014	41.2	ND	ND	ND	888	ND	ND	ND	ND	ND	ND	3,430	ND
	9/11/2014	38.4	ND	ND	ND	761	ND	ND	ND	ND	ND	20.5	3,520	ND
	10/9/2014	52.7	ND	ND	ND	1,060	ND	ND	ND	ND	ND	25	4,000 ^a	ND
	11/13/2014	39.1	ND	ND	ND	1,010	ND	ND	ND	ND	ND	ND	3,940	ND
	12/11/2014	40.2	ND	ND	ND	824	ND	ND	ND	ND	ND	ND	3,530	ND
	1/15/2015	36.3	ND	ND	ND	721	ND	ND	ND	ND	ND	ND	3,510	ND
	2/12/2015	39.2	ND	ND	ND	811	ND	ND	ND	ND	ND	18.7	3,120 ^a	ND
	3/19/2015	44.7	ND	ND	ND	943	ND	ND	ND	ND	ND	23.1	3,520 ^a	ND
	4/16/2015	70.1	ND	ND	ND	1,290	ND	ND	ND	ND	ND	31.2	3,040	ND
	5/14/2015	ND	ND	ND	ND	670	ND	ND	ND	ND	ND	ND	3,210	ND
	6/11/2015	ND	ND	ND	ND	729	ND	ND	ND	ND	ND	ND	3,250	ND
1	7/1/2015	ND	ND	ND	ND	773	ND	ND	ND	ND	ND	ND	3,470	ND

							Volati	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (µg/L)	MEK (µg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
	8/13/2015	50.5	ND	ND	ND	722	ND	ND	ND	ND	ND	ND	3,390	ND
	9/17/2015	ND	ND	ND	ND	752	ND	ND	ND	ND	ND	ND	3,140	ND
	10/15/2015	ND	ND	ND	ND	681	ND	ND	ND	ND	ND	ND	3,140	ND
	11/12/2015	39.1	1.1	ND	ND	698b	1.5	ND	ND	ND	ND	23.6	3,230b	4.6
	12/3/2015	ND	ND	ND	ND	655	ND	ND	ND	ND	ND	ND	2,980	ND
	1/14/2016	ND	ND	ND	ND	567	ND	ND	NDb	ND	ND	ND	2,880	ND
	2/11/2016	ND	ND	ND	ND ND	664 568	ND	ND ND	NDb	ND	ND	ND	3,140	ND
	3/17/2016 4/14/2016	36.0 33.1	ND ND	ND ND	ND	585	ND ND	ND	ND ND	ND ND	ND ND	ND ND	2,400 2,250	ND ND
	5/12/2016	ND	ND	ND	ND	625	ND	ND	ND	ND	ND	ND	3,060	ND
	6/23/2016	41.2	ND	ND	ND	716	ND	ND	ND	ND	ND	ND	3,000	ND
	7/14/2016	42.8	ND	ND	ND	718	ND	ND	ND	ND	ND	ND	3,090b	ND
	8/11/2016	ND	ND	ND	ND	705	ND	ND	ND	ND	ND	ND	2,990	ND
	9/9/2016	ND	ND	ND	ND	579	ND	ND	ND	ND	ND	ND	2,580	ND
	10/13/2016	ND	ND	ND	ND	694	ND	ND	ND	ND	ND	ND	2,840	ND
	11/17/2016	ND	ND	ND	ND	579	ND	ND	ND	ND	ND	ND	2,940	ND
	12/7/2016	ND	ND	ND	ND	725	ND	ND	ND	ND	ND	ND	3,440	ND
	1/12/2017	ND	ND	ND	ND	713	ND	ND	ND	ND	ND	ND	3,550	ND
	2/16/2017	ND	ND	ND	ND	636	ND	ND	ND	ND	ND	ND	2,700	ND
	3/12/2017	ND	ND	ND	ND	612	ND	ND	ND	ND	ND	ND	3,230	ND
	4/13/2017	ND	ND	ND	ND	542	ND	ND	ND	ND	ND	ND	3,130	ND
	5/11/2017	31.7	ND	ND	ND	555	ND	ND	ND	ND	ND	ND	2,480	ND
	6/15/2017	42.1	ND	ND	ND	669	ND	ND	ND	ND	ND	ND	2,790	ND
	7/25/2017	ND	ND	ND	ND	621	ND	ND	ND	ND	ND	ND	2,880	ND
	8/16/2017	34.0	ND	ND	ND	628	ND	ND	ND	ND	ND	ND	2,900b	ND
	9/19/2017	31.6	ND	ND	ND	606	ND	ND	ND	ND	ND	ND	2,390	ND
	10/12/2017	ND 32.7	ND	ND	ND ND	664 584	ND	ND ND	ND	ND	ND	ND	2,750	ND
	11/16/2017 12/14/2017	30.0	ND ND	ND ND	ND	582	ND ND	ND	ND ND	ND ND	ND ND	ND ND	2,360 2,620	ND ND
	1/11/2018	26.9	ND	ND	ND	555	ND	ND	ND	ND	ND	ND	2,020	ND
	2/15/2018	20.9	ND	ND	ND	483	ND	ND	ND	ND	ND	ND	1,900	ND
	3/15/2018	28.2	ND	ND	ND	553	ND	ND	ND	ND	ND	ND	2,290	ND
	4/12/2018	ND	ND	ND	ND	367	ND	ND	ND	ND	ND	ND	1,320	ND
	5/17/2018	ND	ND	ND	ND	515	ND	ND	ND	ND	ND	ND	2,150	ND
	6/14/2018	ND	ND	ND	ND	538	ND	ND	ND	ND	ND	ND	2,370	ND
	7/19/2018	27.1	ND	ND	ND	483	ND	ND	ND	ND	ND	14.3	2,140	1.3
	8/17/2018	34	ND	ND	ND	628	ND	ND	ND	ND	ND	ND	2,900	ND
	9/13/2018	25.5	ND	ND	ND	548	ND	ND	ND	ND	ND	ND	2,150	ND
	10/10/2018	ND	ND	ND	ND	531	ND	ND	ND	ND	ND	ND	2,450	ND
	11/15/2018	ND	ND	ND	ND	450	ND	ND	ND	ND	ND	ND	1,770	ND
	12/13/2018	ND	ND	ND	ND	473	ND	ND	ND	ND	ND	ND	1,930	ND
	1/17/2019	28.9	ND	ND	ND	527	ND	ND	ND	ND	ND	ND	1,970	ND
	2/14/2019	ND	ND	ND	ND	513	ND	ND	ND	ND	ND	ND	2,230	ND
	3/14/2019	22.3	ND	ND	ND	509	ND	ND	ND	ND	ND	11.1	2,030	ND
	4/11/2019 5/16/2019	ND 26.5	ND ND	ND ND	ND ND	484 524	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2,090	ND
	6/13/2019	26.5 ND	ND ND	ND	ND	524 424	ND ND	ND	ND	ND ND	ND ND	ND	2,170 2,110	ND ND
	7/11/2019	23.6	ND	ND	ND	424	ND	ND	ND	ND	ND	ND	2,110	ND
	8/15/2019	23.0 ND	ND	ND	ND	456	ND	ND	ND	ND	ND	ND	1,710	ND
	9/12/2019	24.9	ND	ND	ND	535	ND	ND	ND	ND	ND	ND	1,860	ND
	10/10/2019	32.4	ND	ND	ND	672	ND	ND	ND	ND	ND	ND	2,070	ND
	11/13/2019	26.1	ND	ND	ND	612	ND	ND	ND	ND	ND	ND	2,000	ND
	12/12/2019	ND	ND	ND	ND	424	ND	ND	ND	ND	ND	ND	1,620	ND
	1/16/2020	ND	ND	ND	ND	443	ND	ND	ND	ND	ND	ND	1,800	ND
	2/13/2020	ND	ND	ND	ND	395	ND	ND	ND	ND	ND	ND	1,620	ND
	3/12/2020	12.4 J	ND	ND	ND	323	ND	ND	ND	ND	ND	7.1 J	1,390	ND
	4/16/2020	22.1	ND	ND	ND	411	ND	ND	ND	ND	ND	9.2 J	1,770	ND

							Volati	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
FASW	5/15/2020	17.5 J	ND	ND	ND	388	ND	ND	ND	ND	ND	9.2 J	1,670	ND
(continued)	6/10/2020	14.5 J	ND	ND	ND	346	ND	ND	ND	ND	ND	6.9 J	1,590	ND
. ,	7/16/2020	18.3 J	ND	ND	ND	414	ND	ND	ND	ND	ND	9.2 J	1,790	ND
	8/13/2020	15.5 J	ND	ND	ND	360	ND	ND	ND	ND	ND	5.9 J	1,620	ND
	9/17/2020	18.5 J	ND	ND	ND	409	ND	ND	ND	ND	ND	8.6 J	1,950	ND
	10/15/2020	ND	ND	ND	ND	347	ND	ND	ND	ND	ND	ND	1,790	ND
	11/12/2020	3.8 J	ND	ND	ND	82.6	ND	ND	ND	5.8	11.3	2.1 J	416	ND
	1/14/2021	14.9 J	ND	ND	ND	283	ND	ND	ND	ND	ND	9.1 J	1,260	ND
	2/11/2021	22.1 J	ND	ND	ND	446	ND	ND	ND	ND	ND	8.9 J	1,560	ND
	3/11/2021	ND	ND	ND	ND	403	ND	ND	ND	ND	ND	ND	2,330	ND
	4/15/2021	14.6 J	ND	ND	ND	358	ND	ND	ND	ND	ND	8.1 J	1,440	ND
	5/13/2021	19.4 J	ND	ND	ND	403	ND	ND	ND	ND	ND	7.6 J	1,660	ND
	6/14/2021	ND	ND	ND	ND	342	ND	ND	ND	ND	ND	ND	1,450	ND
	7/20/2021	14.9 J	ND	ND	ND	348	ND	ND	ND	ND	ND	8.1 J	1,290	ND
	8/19/2021	15.3 ^d J	ND	ND	ND	419	ND	ND	ND	ND	ND	10.8 J	1,630	ND
	9/16/2021	16.7 J	ND	ND	ND	381	ND	ND	ND	ND	ND	9.1 J	1,670	ND
	10/14/2021	16.6 J	ND	ND	ND	325	ND	ND	ND	ND	ND	9.3 J	1,220	ND
	11/20/2021	15.6 J	ND	ND	ND	405	ND	ND	ND	ND	ND	6.6 J	1,460	ND
	12/16/2021	18.7 J	ND	ND	ND	386	ND	ND	ND	ND	ND	ND	1,620	ND
Left Toe	9/18/2009	ND	ND	ND	ND	659	ND	ND	ND	ND	ND	ND	4,720	22.9 J
Drain	9/25/2009	ND	ND	ND	ND	651	ND	ND	ND	ND	ND	ND	6,610	18.9 J
	9/30/2009	4.5 J	ND	ND	ND	747	2.2 J	ND	ND	ND	ND	ND	5,420	28.2
	10/7/2009	ND	ND	ND	ND	621	ND	ND	ND	ND	ND	ND	4,120	31.8
	11/5/2009	ND	ND	ND	ND	781	ND	ND	ND	ND	ND	ND	5,170	22.4 J
	12/29/2009	ND	ND	ND	ND	583	ND	ND	ND	ND	ND	ND	4,840	13.3
	2/18/2010	ND	ND	ND	ND	306	ND	ND	ND	ND	ND	ND	2,330	5.2 J
	3/30/2010	ND	ND	ND	ND	284	ND	ND	ND	ND	ND	ND	2,430	ND
	4/26/2010	4.9 J	ND	ND	ND	280	2.1 J	ND	ND	ND	ND	ND	2,280	5.8
	5/27/2010	ND	ND	ND	ND	340	ND	ND	ND	ND	ND	ND	3,100	8.6
	6/22/2010	ND	ND	ND	ND	413	ND	ND	ND	ND	ND	ND	3,170	13.9 J
	7/23/2010	ND	ND	ND	ND	594	15.1 J	ND	ND	ND	ND	ND	4,520	15.3 J
	8/25/2010	ND	ND	ND	ND	642	ND	ND	ND	ND	ND	ND	4,760	17
	9/22/2010	ND	ND	ND	ND	715	ND	ND	ND	ND	ND	ND	4,620	21.3 J
	10/20/2010	4.7 J	ND	ND	ND	735	ND	ND	ND	ND	ND	ND	5,520	20.5
	11/2/2010	5.2 J	ND	ND	ND	605	ND	ND	ND	ND	ND	ND	4,220	20.2
	12/7/2010	4.2 J	ND	ND	ND	659	ND	ND	ND	ND	ND	ND	5,210	20.1
	1/6/2011	6.3 J	ND	ND	ND	808	ND	ND	ND	ND	ND	ND	6,200	26.2
	2/10/2011	6.8 J	ND	ND	ND	836	ND	ND	ND	ND	ND	ND	6,360	25.7
	3/16/2011	ND	ND	ND	NA	664	2.8 J	NA	NA	ND	NA	ND	5,700	25.6
	4/12/2011	5.3J	ND	ND	ND	599	2.6 J	ND	ND	ND	ND	ND	4,210	18.2
	5/19/2011	3.8 J	ND	ND	ND	613	3.7 J	ND	ND	ND	ND	ND	3,490	19.3
	6/16/2011	3.2 J	ND	ND	NA	515	2.2 J	NA	NA	ND	NA	ND	3,330 ^a	18
	7/14/2011	4.0 J	ND	ND	ND	595	2.2 J	ND	ND	ND	ND	ND	3,540	17.6
	8/11/2011	ND	ND	ND	ND	732	ND	ND	ND	ND	ND	ND	4,080	22
	9/8/2011	5.8	ND	ND	ND	716	3.2 J	ND	ND	ND	ND	ND	4,070	34
	10/13/2011	ND	ND	ND	ND	820	ND	ND	ND	ND	ND	ND	5,550	38.1
	11/10/2011	8.4	ND	ND	ND	851	5.2	ND	ND	ND	ND	ND	5,370	38.5
	12/8/2011	9.5 J	ND	ND	ND	1,000	5.7 J	ND	ND	ND	ND	ND	7,510	53.5
	1/12/2012	6.4 J	ND	ND	ND	899	ND	ND	ND	ND	ND	ND	6,710	42.1
	2/9/2012	7.5	0.35 J	ND	ND	879 ^a	4.1	ND	ND	0.77 J	ND	ND	5,930 ^a	51.3
	3/15/2012	ND	ND	ND	ND	926	ND	ND	ND	ND	ND	ND	5,510	38.0 J
	4/12/2012	4.3 J	ND	ND	ND	826	ND	ND	ND	ND	ND	ND	5,100 ^a	38.6
	5/15/2012	ND	ND	ND	ND	792	ND	ND	ND	ND	ND	ND	4,570 ^a	30.9
	6/7/2012	ND	ND	ND	ND	738	ND	ND	ND	ND	ND	ND	4,240 ^a	30.4
	7/17/2012	ND	ND	ND	ND	773	ND	ND	ND	ND	ND	ND	3,900 ^a	31.4
	8/16/2012	4.2 J	ND	ND	ND	757	ND	ND	ND	ND	ND	ND	4,100 ^a	26
	9/13/2012	ND	ND	ND	ND	670	ND	ND	ND	ND	ND	ND	4,180	26.7

							Volat	ile Orgar	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1, 1, 1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
Left Toe	10/11/2012	5.6 J	ND	ND	ND	662	ND	ND	ND	ND	ND	ND	4,170 ^a	24.1
Drain	11/8/2012	ND	ND	ND	ND	429	4.7 J	ND	ND	ND	ND	ND	1,980	13.9
(continued)	12/6/2012	4.9 J	ND	ND	ND	645	ND	ND	ND	ND	ND	ND	4,030	22.2
	1/10/2013	ND	ND	ND	ND	723	ND	ND	ND	ND	ND	ND	4,850	30.3
	2/21/2013	6.5 J	ND	ND	ND	887	6.8 J	ND	ND	ND	ND	ND	6,290 ^a	32.3
	3/14/2013	5.9 J	ND	ND	ND	871	2.8 J	ND	ND	ND	ND	ND	4,690 ^a	38.6
	4/4/2013	ND	ND	ND	ND	772	ND	ND	ND	ND	ND	ND	4,560 ^a	22.8
	5/9/2013	ND	ND	ND	ND	516	ND	ND	ND	ND	ND	ND	3,160	19.6 J
	6/13/2013	ND	ND	ND	ND	444	ND	ND	ND	ND	ND	ND	2,800 ^a	15.6
	7/11/2013	ND	ND	ND	ND	319	ND	ND	ND	ND	ND	ND	1,750 ^a	9.6
	8/8/2013	ND	ND	ND	ND	371	ND	ND	ND	ND	ND	ND	1,860 ^a	12.3
	9/12/2013	1.9 J	ND	ND	ND ND	352	ND	ND	ND	ND ND	ND	ND	1,960 ^a	13.2
	10/10/2013	ND	ND	ND		395	ND	ND	ND		ND	ND	2,280 3,440 ^a	12.6 J
	11/14/2013	4.1 J	ND	ND	ND	557	ND	ND	ND	ND	ND	ND		21.7
	12/12/2013 1/16/2014	4.5 J ND	ND ND	ND ND	ND ND	436 548	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3,560 ^a 3,060	19.8 ND
	2/17/2014	ND	ND	ND	ND	438	ND	ND	ND	ND	ND	ND	2,750 ^a	
	3/6/2014	ND ND	ND ND	ND	ND	438 249	ND	ND	ND	ND	ND	ND ND	2,750 2,120 ^a	16.3 12.3
	4/3/2014	ND	ND	ND	ND	249	ND	ND	ND	ND	ND	ND	1,200	ND
	5/8/2014	ND	ND	ND	ND	191	ND	ND	ND	ND	ND	ND	1,200	ND
	6/12/2014	ND	ND	ND	ND	242	ND	ND	ND	ND	ND	ND	1,190	ND
	7/10/2014	ND	ND	ND	ND	250	ND	ND	ND	ND	ND	ND	1,630 ^a	8.5
	8/14/2014	ND	ND	ND	ND	410	ND	ND	ND	ND	ND	ND	2.330 ^a	13.7
	9/11/2014	ND	ND	ND	ND	355	ND	ND	ND	ND	ND	ND	2,000 2,170 ^a	13.5
	10/9/2014	ND	ND	ND	ND	586	ND	ND	ND	ND	ND	ND	2,910 ^a	23.4
	11/13/2014	ND	ND	ND	ND	616	ND	ND	ND	ND	ND	ND	3,230	ND
	12/11/2014	4.3	ND	ND	ND	548 ^a	2.4	ND	ND	ND	ND	ND	3,040	26.8
	1/15/2015	ND	ND	ND	ND	519	ND	ND	ND	ND	ND	ND	3,900	ND
	2/12/2015	3.1	ND	ND	ND	420 ^a	1.7	ND	ND	ND	ND	ND	2,470 ^a	16.9
	3/19/2015	ND	ND	ND	ND	388	ND	ND	ND	ND	ND	ND	2,380	ND
	4/16/2015	ND	ND	ND	ND	344	ND	ND	ND	ND	ND	ND	1,960	ND
	5/14/2015	ND	ND	ND	ND	273	ND	ND	ND	ND	ND	ND	1,690	15.8
	6/11/2015	ND	ND	ND	ND	300	ND	ND	ND	ND	ND	ND	1,680	ND
	7/1/2015	ND	ND	ND	ND	346	ND	ND	ND	ND	ND	ND	2,250b	13.5
	8/13/2015	ND	ND	ND	ND	351	ND	ND	ND	ND	ND	ND	2,200	ND
	9/17/2015	ND	ND	ND	ND	494	ND	ND	ND	ND	ND	ND	2,360b	ND
	10/15/2015	ND	ND	ND	ND	377	ND	ND	ND	ND	ND	ND	2,730	ND
	11/12/2015	3.6	ND	ND	ND	373	2.0	ND	ND	ND	ND	ND	2,660	18.6
	12/4/2015	ND	ND	ND	ND	386	ND	ND	ND	ND	ND	ND	2,910	ND
	1/14/2016	ND	ND	ND	ND	265	ND	ND	NDb	ND	ND	ND	1,950	ND
	2/11/2016	ND	ND	ND	ND	257	ND	ND	ND	ND	ND	ND	1,670	ND
	3/17/2016	ND	ND	ND	ND	235	ND	ND	ND	ND	ND	ND	1,460	ND
	4/14/2016	ND	ND	ND	ND	250	ND	ND	ND	ND	ND	ND	1,410	ND
	5/12/2016	ND	ND	ND	ND	216	ND	ND	ND	ND	ND	ND	1,530	ND
	6/16/2016	ND	ND	ND	ND	231	ND	ND	ND	ND	ND	ND	1,470	ND
	7/14/2016	ND	ND	ND	ND	259	ND	ND	ND	ND	ND	ND	1,620	ND
	8/11/2016 9/9/2016	ND	ND	ND	ND ND	234 198	ND ND	ND	ND ND	ND ND	ND	ND	1,430	ND
		ND ND	ND ND	ND			ND ND	ND ND	ND ND		ND ND	ND ND	1,140b	10.7
	10/13/2016 11/17/2016	ND ND	ND ND	ND ND	ND ND	210 177	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,350 1,150b	ND ND
	12/7/2016	ND ND	ND ND	ND	ND	177	ND	ND	ND	ND	ND	ND	1,1500	ND ND
	1/12/2016	ND	ND	ND	ND	247	ND	ND	ND	ND	ND	ND	2,020	ND
	2/16/2017	ND	ND	ND	ND	247	ND	ND	ND	ND	ND	ND	1,600	ND
	3/12/2017	ND	ND	ND	ND	171	ND	ND	ND	ND	ND	ND	1,000	ND
	4/13/2017	ND	ND	ND	ND	138	ND	ND	ND	ND	ND	ND	1,430	ND
	5/11/2017	ND	ND	ND	ND	130	ND	ND	ND	ND	ND	ND	937b	ND
	6/15/2017	ND	ND	ND	ND	113	ND	ND	ND	ND	ND	ND	784	ND
1	0/10/2017					110							704	

							Volati	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
Left Toe	7/25/2017	ND	ND	ND	ND	127	ND	ND	ND	ND	ND	ND	736	ND
Drain	8/17/2017	ND	ND	ND	ND	115	ND	ND	ND	ND	ND	ND	649	ND
(continued)	9/19/2017	ND	ND	ND	ND	120	ND	ND	ND	ND	ND	ND	616	ND
	10/12/2017	ND	ND	ND	ND	117	ND	ND	ND	ND	ND	ND	660	ND
	11/16/2017	ND	ND	ND	ND	100	ND	ND	ND	ND	ND	ND	522	ND
	12/14/2017	ND	ND	ND	ND	109	ND	ND	ND	ND	ND	ND	687	ND
	1/11/2018	ND	ND	ND	ND	120	ND	ND	ND	ND	ND	ND	669	ND
	2/15/2018	ND	ND	ND	ND	92.9	ND	ND	ND	ND	ND	ND	585	ND
	3/15/2018	ND	ND	ND	ND	72.9	ND	ND	ND	ND ND	ND	ND	441	ND
	4/12/2018 5/17/2018	ND ND	ND ND	ND ND	ND ND	81.5 58.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	463 341	ND ND
	6/14/2018	ND	ND	ND	ND	42.3	ND	ND	ND	ND	ND	ND	224	ND
	7/19/2018	ND	ND	ND	ND	48.1	ND	ND	ND	ND	ND	ND	194	1.4
	8/17/2018	ND	ND	ND	ND	115	ND	ND	ND	ND	ND	ND	649	ND
	9/13/2018	ND	ND	ND	ND	37.6	ND	ND	ND	ND	ND	ND	154	ND
	10/10/2018	ND	ND	ND	ND	38.1	ND	ND	ND	ND	ND	ND	158	1.6
	11/15/2018	ND	ND	ND	ND	37.5	ND	ND	ND	ND	ND	ND	154	1.4
	12/13/2018	ND	ND	ND	ND	37.1	ND	ND	ND	ND	ND	ND	219	ND
	1/17/2019	ND	ND	ND	ND	43.8	ND	ND	ND	ND	ND	ND	228	1.1
	2/14/2019	ND	ND	ND	ND	32.8	ND	ND	ND	ND	ND	ND	205	ND
	3/14/2019	ND	ND	ND	ND	41.8	ND	ND	ND	ND	ND	ND	202	1.0
	4/11/2019	ND	ND	ND	ND	29.8	ND	ND	ND	ND	ND	ND	182	ND
	5/16/2019	ND	ND	ND	ND	26.9	ND	ND	ND	ND	ND	ND	139	ND
	6/16/2019	ND	ND	ND	ND	19.5	ND	ND	ND	ND	ND	ND	108	ND
	7/11/2019	ND	ND	ND	ND	23.3	ND	ND	ND	ND	ND	ND	108	ND
	8/15/2019	ND	ND	ND	ND	23.9	ND	ND	ND	ND	ND	ND	114	ND
	9/15/2019	ND	ND	ND	ND	22.0	ND	ND	ND	ND	ND	ND	98	ND
	10/10/2019	ND	ND ND	ND ND	ND ND	30.3 38.3	ND	ND ND	ND	ND ND	ND	ND ND	121 146	2.2
	11/13/2019 12/12/2019	ND ND	ND	ND	ND	30.3	ND ND	ND	50.8 ND	ND	ND ND	ND	146	3.4 2.6
	1/16/2020	ND	ND	ND	ND	36.9	ND	ND	ND	ND	ND	ND	149	ND
	2/13/2020	ND	ND	ND	ND	42.6	ND	ND	ND	ND	ND	ND	168	2.5
	3/12/2020	ND	ND	ND	ND	33.1	ND	ND	ND	ND	ND	ND	126	2.2 J
	4/16/2020	ND	ND	ND	ND	50.4	ND	ND	ND	ND	ND	ND	202	3.7 J
	5/15/2020	ND	ND	ND	ND	34.0	ND	ND	ND	ND	ND	ND	132	3.2
	6/10/2020	0.90 J	ND	ND	ND	36.9	ND	ND	ND	ND	ND	ND	113	3.4
	7/16/2020	0.81 J	ND	ND	ND	33.1 ^d	0.33 J	ND	ND	ND	ND	ND	74	1.8 ^d J
	8/13/2020	0.69 J	ND	ND	ND	41.1	ND	ND	ND	ND	ND	ND	81	3.9
	9/17/2020	0.74 J	ND	ND	ND	39.0	0.25 J	ND	ND	ND	ND	ND	83	5.4
	10/15/2020	0.58 J	ND	ND	ND	39.7	ND	ND	ND	ND	ND	ND	80	4.9 °
	11/12/2020	0.75 J	ND	ND	ND	45.7	0.23 J	ND	ND	ND	ND	ND	99	5.6
	12/16/2020	ND 1.2.1	ND	ND	ND	43.6	ND	ND	ND	ND	ND	ND	119	6.4
	1/14/2021	1.2 J	ND	ND	ND	47.8	ND	ND	ND	ND	ND	ND	159	5.7
	2/11/2021 3/11/2021	1.5 J 1.7 J	ND ND	ND ND	ND ND	63.2 57.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	172 184	5.3 5.2
	4/15/2021	1.7 J 1.3 J	ND	ND ND	ND	57.9 58.8	ND ND	ND	ND	ND ND	ND ND	ND ND	184	5.2 4.8
	5/13/2021	1.3 J 1.4 J	ND	ND	ND	56.6	ND	ND	ND	ND	ND	ND	182	4.6
	6/14/2021	ND	ND	ND	ND	57.9	ND	ND	ND	ND	ND	ND	156	4.0
	7/20/2021	0.75 J	ND	ND	ND	46.5	ND	ND	ND	ND	ND	ND	100	4.5
	8/19/2021	0.75 ^d J	ND	ND	ND	54.9	ND	ND	ND	ND	4.0 J	ND	116	7.2
	9/16/2021	0.92 J	ND	ND	ND	60.7	ND	ND	ND	ND	ND	ND	96.1 ^b	9
	10/14/2021	0.54 J	ND	ND	ND	48.7	ND	ND	ND	ND	ND	ND	83	4.3
	11/20/2021	0.52 J	ND	ND	ND	53.8	ND	ND	ND	ND	ND	ND	98	5.3
	12/16/2021	ND	ND	ND	ND	57.3	ND	ND	ND	ND	ND	ND	150 E	5.8
Right Toe	9/18/2009	ND	ND	ND	ND	17.8	ND	ND	ND	ND	ND	ND	171	2
Drain	12/29/2009	ND	ND	ND	ND	4.1	ND	ND	ND	ND	ND	ND	5	1.9
1	2/18/2010	ND	ND	ND	ND	3.5	ND	ND	ND	ND	ND	ND	3	1.8

							Volat	ile Orgar	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (µg/L)	1, 1, 1- TCA (μg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
Right Toe	3/30/2010	ND	ND	ND	ND	6.8	ND	ND	ND	ND	ND	ND	27	1.9
Drain	4/26/2010	ND	ND	ND	ND	5.5	ND	ND	5.7 J	ND	ND	ND	12	1.9
(continued)	5/27/2010	ND	ND	ND	ND	7.9	ND	ND	3.6 J	ND	ND	ND	45	2.2
	6/22/2010	ND	ND	ND	ND	7.3	ND	ND	ND	ND	ND	ND	52	4
	7/23/2010	ND	ND	ND	ND	17.3	ND	ND	ND	ND	ND	ND	113	2.8
	8/25/2010	ND	ND	ND	ND	18.9	ND	ND	ND	ND	ND	ND	99	3.9
	9/22/2010	ND	ND	ND	ND	11.1	ND	ND	ND	ND	ND	ND	80	2.6
	10/20/2010	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	ND	2.3
	11/2/2010	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	0.34 J	1.9
	12/7/2010	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	3	2.6
	1/6/2011	ND	ND	ND	ND	3.8	ND	ND	ND	ND	ND	ND	16	2.1
	2/10/2011	ND	ND	ND	ND	5.9	ND	ND	ND	ND	ND	ND	28	2.1
	3/16/2011	ND	ND	ND	NA	4.9	ND	NA	NA	ND	NA	ND	4	2.6
	4/12/2011	ND	ND	ND	ND	6.1	ND	ND	ND	ND	ND	ND	19	2.5
	5/19/2011	ND	ND	ND	ND	3.2	ND	ND	15.5	ND	ND	ND	5	0.97 J
	6/16/2011	ND	ND ND	ND	NA ND	5.5	ND	NA	NA	ND	NA	ND ND	74	1.7
	7/14/2011	ND		ND	ND ND	2.5 J	ND	ND	ND	ND ND	ND ND		11 22	ND 0.72 J
	8/11/2011	ND	ND	ND		4.1	ND	ND	18.4			ND		
	9/8/2011	ND	ND	ND	ND	1.1	ND	ND	11.5	ND ND	ND	ND	0.38 J	ND
	10/13/2011 11/10/2011	ND ND	ND ND	ND ND	ND ND	0.63 J	ND ND	ND ND	9.0 J 8.7 J	ND ND	ND ND	ND ND	0.42 J 103	0.79 J 1.3
	12/8/2011	ND	ND	ND	ND	14.4 6.1	ND	ND	1	ND	ND	ND	38	2.3
	1/12/2012	ND	ND	ND	ND	7.2	ND	ND	18 ND	ND	ND	ND	21	2.3
	2/9/2012	ND	ND	ND	ND	4.4	ND	ND	10.8	ND	ND	ND	13	2.5
	3/15/2012	ND	ND	ND	ND	6.2	ND	ND	10.8	ND	ND	ND	13	4.5
	4/12/2012	ND	ND	ND	ND	6.2	ND	ND	ND	ND	ND	ND	32	3.3
	5/15/2012	ND	ND	ND	ND	6.1	ND	ND	ND	ND	ND	ND	30	2.4
	6/7/2012	ND	ND	ND	ND	6.9	ND	ND	25.5	ND	ND	ND	35	2.4
	7/17/2012	ND	ND	ND	ND	12.7	ND	ND	19.6	ND	ND	ND	79	0.81 J
	8/16/2012	ND	ND	ND	ND	2.8	ND	ND	25.3	ND	ND	ND	8	1.9
	9/13/2012	ND	ND	ND	ND	5.7	ND	ND	ND	ND	ND	ND	29	1.4
	10/11/2012	ND	ND	ND	ND	0.75 J	ND	ND	5.0 J	ND	ND	ND	7	0.52 J
	11/8/2012	ND	ND	ND	ND	4.8	ND	ND	4.6 J	ND	0.27 J	ND	27	0.66 J
	12/6/2012	ND	ND	ND	ND	5.1	ND	ND	ND	ND	ND	ND	31	1.1
	1/10/2013	0.28 J	ND	ND	ND	3.5	ND	ND	ND	ND	ND	ND	4	3.2
	2/21/2013	0.38 J	ND	ND	ND	7.3	ND	ND	ND	ND	ND	ND	18	2.8
	3/14/2013	0.52 J	ND	ND	ND	9.4	ND	ND	7.2 J	ND	ND	ND	18	4
	4/4/2013	ND	ND	ND	ND	7.4	ND	ND	ND	ND	ND	ND	10	2.1
	5/9/2013	ND	ND	ND	ND	8.9	ND	ND	ND	ND	ND	ND	42	2.1
	6/13/2013	ND	ND	ND	ND	8.2	ND	ND	ND	ND	ND	ND	31	1.7
	7/11/2013	0.25 J	ND	ND	ND	10.3	ND	ND	ND	ND	ND	ND	47	2.4
	8/8/2013	ND	ND	ND	ND	8.5	ND	ND	34.8	ND	ND	ND	35	3.3
	9/12/2013	ND	ND	ND	ND	6.4	ND	ND	6.6 J	ND	ND	ND	17	3.4
	10/10/2013	ND	ND	ND	ND	1.7	ND	ND	17.9	ND	ND	ND	8	2.4
	11/14/2013	ND	ND	ND	ND	2.2	ND	ND	13.8	ND	ND	ND	9	4.1
[12/12/2013	0.47 J	ND	ND	ND	4.9	ND	ND	ND	ND	ND	ND	10	3.6
	1/16/2014	ND	ND	ND	ND	5.0	ND	ND	ND	ND	ND	ND	11	2.2
[2/17/2014	ND	ND	ND	ND	5.9	ND	ND	ND	ND	ND	ND	16	1.9
	3/6/2014	ND	ND	ND	ND	3.4	ND	ND	ND	ND	ND	ND	8	2.9
	4/3/2014	ND	ND	ND	ND	5.0	ND	ND	ND	ND	ND	ND	11	2.3
	5/8/2014	ND	ND	ND	ND	3.5	ND	ND	ND	ND	ND	ND	5	1.4
	6/12/2014	ND	ND	ND	ND	3.4	ND	ND	ND	ND	ND	ND	3	2.2
	7/10/2014	ND	ND	ND	ND	1.7	ND	ND	121	ND	ND	ND	2	1.5
	8/14/2014	ND	ND	ND	ND	2.2	ND	ND	ND	ND	ND	ND	10	2.8
	9/11/2014	ND	ND	ND	ND	2.3	ND	ND	ND	ND	ND	ND	34	1.4
	10/9/2014	ND	ND	ND	ND	2.1	ND	ND	ND	ND	ND	ND	16	3.4
1	11/13/2014	ND	ND	ND	ND	2.1	ND	ND	ND	ND	ND	ND	12	3.8

							Volat	ile Organ	nic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- ТСА (µg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
	12/11/2014	ND	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	5	4.3
	1/15/2015	ND	ND	ND	ND	3.5	ND	ND	ND	ND	ND	ND	9	1.6
	2/12/2015	ND	ND	ND	ND	7.6	ND	ND	ND	ND	ND	ND	92	1.9
	3/19/2015	ND	ND	ND	ND	4.7	ND	ND	ND	ND	ND	ND	20	2.6
	4/16/2015	ND	ND	ND	ND	4.2	ND	ND	ND	ND	ND	ND	35	1.8
	5/14/2015	ND	ND	ND	ND	3.1	ND	ND	ND	ND	ND	ND	12	2
	6/11/2015	ND	ND	ND	ND	4.3	ND	ND	ND	ND	ND	ND	51	1.4
	7/1/2015 8/13/2015	ND ND	ND ND	ND ND	ND ND	4.9 2.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	72 39	ND ND
	9/17/2015	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	14	ND
	10/15/2015	ND	ND	ND	ND	3.2	ND	ND	ND	ND	ND	ND	14	1.6
	11/12/2015	ND	ND	ND	ND	4.9	ND	ND	ND	ND	ND	ND	50	ND
	12/4/2015	ND	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND	70	2.7
	1/14/2016	ND	ND	ND	ND	4.3	ND	ND	NDb	ND	ND	ND	53	1.6
	2/11/2016	ND	ND	ND	ND	4.6	ND	ND	ND	ND	ND	ND	45	1.6
	3/17/2016	ND	ND	ND	ND	4.9	ND	ND	ND	ND	ND	ND	27	2.2
	4/14/2016	ND	ND	ND	ND	5.6	ND	ND	ND	ND	ND	ND	31	2.0
	5/12/2016	ND	ND	ND	ND	4.4	ND	ND	ND	ND	ND	ND	29	2.8
	6/16/2016	ND	ND	ND	ND	3.2	ND	ND	ND	ND	ND	ND	32	1.4
	7/14/2016	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	5	ND
	8/11/2016	ND	ND	ND	ND	3.3	ND	ND	ND	ND	ND	ND	50	1.5
	9/9/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	10/13/2016	ND	ND	ND	ND	3.1	ND	ND	ND	ND	ND	ND	15	1.1
	11/17/2016	ND	ND	ND	ND	4.1	ND	ND	ND	ND	ND	ND	17	ND
	12/7/2016	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	4	1.6
	1/12/2017	ND	ND	ND	ND	6.5	ND	ND	ND	ND	ND	ND	25	ND
	2/16/2017	ND	ND	ND	ND	6.8	ND	ND	ND	ND	ND	ND	12	1.7
	3/12/2017	ND	ND	ND	ND	10.3	ND	ND	ND	ND	ND	ND	14	2.3
	4/13/2017	ND	ND	ND	ND	5.9	ND	ND	ND	ND	ND	ND	14	2.0
	5/11/2017	ND	ND	ND	ND	4.9	ND	ND	ND	ND	ND	ND	19	ND
	6/15/2017 7/25/2017	ND ND	ND ND	ND ND	ND ND	2.3 4.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	11 25	ND ND
	8/16/2017	ND	ND	ND	ND	2.4	ND	ND	ND	ND	ND	ND	14	ND
	9/19/2017	ND	ND	ND	ND	2.4	ND	ND	ND	ND	ND	ND	14	ND
	10/12/2017	ND	ND	ND	ND	3.4	ND	ND	ND	ND	ND	ND	21	ND
	11/16/2017	ND	ND	ND	ND	2.4	ND	ND	ND	ND	ND	ND	11	ND
	12/14/2017	ND	ND	ND	ND	2.1	ND	ND	ND	ND	ND	ND	4	ND
	1/11/2018	ND	ND	ND	ND	3.2	ND	ND	ND	ND	ND	ND	7	ND
	2/15/2018	ND	ND	ND	ND	6.2	ND	ND	ND	ND	ND	ND	24	ND
	3/15/2018	ND	ND	ND	ND	2.7	ND	ND	ND	ND	ND	ND	4	ND
	4/12/2018	ND	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	18	ND
	5/17/2018	ND	ND	ND	ND	3.6	ND	ND	ND	ND	ND	ND	12	ND
	6/14/2018	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	5	ND
	7/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	ND
	8/17/2018	ND	ND	ND	ND	2.4	ND	ND	ND	ND	ND	ND	14	ND
	9/13/2018	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	10	ND
	10/10/2018	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	4	ND
	11/15/2018	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND
	12/13/2018	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND
	1/17/2019	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND	ND	1.1
	2/14/2019	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	1	ND 1.2
	3/14/2019 4/11/2019	ND ND	ND ND	ND ND	ND ND	2.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2	1.2
	5/16/2019	ND	ND ND	ND	ND	1.8 1.2	ND ND	ND	ND	ND	ND ND	ND	2	1.3 ND
	6/16/2019	ND	ND ND	ND	ND	1.2 ND	ND ND	ND	ND	ND	ND	ND	2	ND ND
	7/11/2019	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	1	ND ND
	8/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
1	0/10/2013			שיי				110	- 10				4	

ata

Appendix A Table 2 Groundwater Treatment Analytical Data FPE Groundwater Treatment System Edgefield, South Carolina

							Volati	ile Organ	ic Compo	unds				
Location	Date	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	cis-1,2- DCE (µg/L)	trans- 1,2-DCE (μg/L)	MEK (μg/L)	Acetone (µg/L)	Chloroform (µg/L)	Methylene Chloride (μg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
Right Toe	9/12/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Drain	10/10/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(continued)	11/13/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/12/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/16/2020	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND
	2/13/2020	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	4	ND
	3/14/2020	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	3	0.79 J
	4/16/2020	ND	ND	ND	ND	1.6 J	ND	ND	ND	ND	ND	ND	3	0.73 J
	5/15/2020	ND	ND	ND	ND	0.63 J	ND	ND	ND	ND	ND	ND	1	ND
	6/10/2020	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND	1	0.64 J
	7/16/2020	ND	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND	ND	2	0.96 J
	8/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
	9/17/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.53 J
	10/15/2020	ND	ND	ND	ND	0.41 J	ND	ND	ND	ND	ND	ND	1	ND
	11/12/2020	ND	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND	ND	2	ND
	12/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.68 J
	1/14/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65 J
	2/11/2021	ND	ND	ND	ND	2.2	ND	ND	ND	ND	ND	ND	4	1.0
	3/11/2021	ND	ND	ND	ND	0.69 J	ND	ND	ND	ND	ND	ND	0.37 J	0.89 J
	4/15/2021	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	3	1.3
	5/13/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.42 J
	6/14/2021	ND	ND	ND	ND	1.3	ND	ND	14.6 J	ND	ND	ND	4	ND
	7/20/2021	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	3	0.69 J
	8/19/2021	ND	ND	ND	ND	3.2	ND	ND	ND	ND	ND	ND	6	1.2
	9/16/2021	ND	ND	ND	ND	2.7	ND	ND	ND	ND	ND	ND	7	ND
	10/14/2021	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	3	0.48 J
	11/20/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.38 J	ND
	12/16/2021	ND	ND	ND	ND	1.2	ND	ND	11.5 J	ND	ND	ND	2.0	ND

Notes

J - Estimated Value

NA - Not Analyzed

ND - Not Detected

DCA - Dichloroethane

DCE - Dichloroethene

MEK - Methyl Ethyl Ketone (2-butanone)

PCE - Tetrachloroethene

TCA - Trichloroethane

TCE - Trichloroethene

VC - Vinyl Chloride

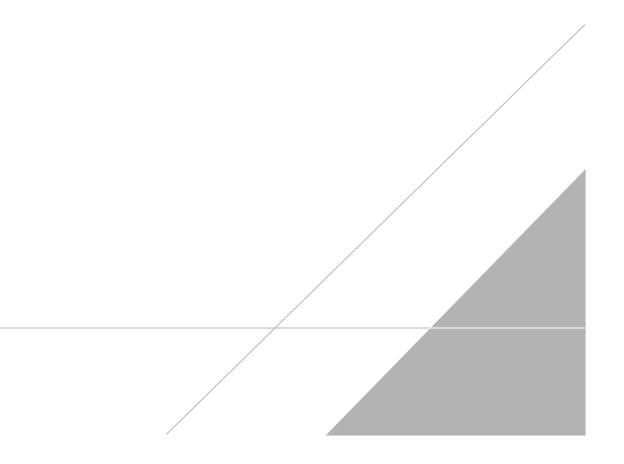
b- Indicates analyte found in associated method blank

^a Run #2

* Suspect result, believed to be erroneous

** Recovery well EW-11 not sampled due to pump/motor/piping failure

¹ It is believed that sample labels for EW-2 and EW-4 were inadvertently switched for samples collected on 7/23/10. Data have been corrected in this table. ² It is believed that sample labels for EW-2 and EW-4 were inadvertently switched for samples collected on 8/25/10. Data have been corrected in this table.


All constituent units are micrograms/liter (μ g/L).

Only those compounds that were detected in at least one sample above the practical quantitation limit are shown.

Bold values for effluent sampling results indicate those above South Carolina Maximum Contaminant Levels (SC R.61-58.5). Suspect results are not bolded. ^P (pH=3) Sample pH did not satisfy field preservation criteria

APPENDIX B

Surface Water and Groundwater Quality Data Reports – September 2021

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

Technical Report for

ARCADIS Geraghty & Miller

FPE; Edgefield, SC

30067293.2.2

SGS Job Number: FA88882

Sampling Date: 09/13/21

Report to:

ARCADIS Geraghty & Miller 1450 Greene St Suite 220 Augusta, GA 30901 jeff.beckner@arcadis-us.com

ATTN: Jeff Beckner

Total number of pages in report: 50

Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Evita Martinez 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, UT, VT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 50

FA88882

Reissue #1 10/01/21

e-Hardcopy 2.0

Automated Report

September 29, 2021

Jeff Beckner Arcadis Geraghty & Miller 1450 Greene St Augusta, FL 30901

RE: SGS North America Inc. - Orlando job FA88882 Reissue

Dear Mr. Beckner,

The final report for job number FA88882 has been edited to reflect requested corrections. These edits have been incorporated into the revised report.

Matrix sample and Matrix sample Duplicate for FA88882-1 through FA88882-7 have been re-processed.

SGS North America Inc. - Orlando apologies for any inconvenience this may have caused. Please feel free to contact us if we can be of further assistance

Sincerely,

SGS North America Inc. - Orlando

Florida 4405 Vineland Road Suite C-15 Orlando, FL 32811 tel: 407 425-6700 fax: 407 425-0707

Table of Contents

N
ω
4
СЛ

	-11		
_		_	
-	ж	-	

Section 1: Sample Summary	4
Section 2: Summary of Hits	5
Section 3: Sample Results	6
3.1: FA88882-1: STAR RD	7
3.2: FA88882-2: MIDPOINT	9
3.3: FA88882-3: DDPD10	11
3.4: FA88882-4: DDPC	13
3.5: FA88882-5: STA-3	15
3.6: FA88882-6: STA-5	17
3.7: FA88882-7: STA-7	19
3.8: FA88882-8: STA-8	21
3.9: FA88882-9: STA-13	23
3.10: FA88882-10: DUP-4	25
3.11: FA88882-11: TB	27
Section 4: Misc. Forms	29
4.1: Chain of Custody	30
Section 5: MS Volatiles - QC Data Summaries	
5.1: Method Blank Summary	33
5.2: Blank Spike Summary	39
5.3: Matrix Spike/Matrix Spike Duplicate Summary	45

Sample Summary

ARCADIS Geraghty & Miller

FPE; Edgefield, SC Project No: 30067293.2.2

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co Organics ND		Its reported as = Not detecte			cted. The following app	olies:
FA88882-1	09/13/21	12:15 RR	09/14/21	AQ	Ground Water	STAR RD
FA88882-2	09/13/21	12:30 RR	09/14/21	AQ	Ground Water	MIDPOINT
FA88882-3	09/13/21	12:40 RR	09/14/21	AQ	Ground Water	DDPD10
FA88882-4	09/13/21	12:45 RR	09/14/21	AQ	Ground Water	DDPC
FA88882-5	09/13/21	13:15 RR	09/14/21	AQ	Ground Water	STA-3
FA88882-6	09/13/21	13:20 RR	09/14/21	AQ	Ground Water	STA-5
FA88882-7	09/13/21	13:25 RR	09/14/21	AQ	Ground Water	STA-7
FA88882-8	09/13/21	13:30 RR	09/14/21	AQ	Ground Water	STA-8
FA88882-9	09/13/21	13:40 RR	09/14/21	AQ	Ground Water	STA-13
FA88882-10	09/13/21	00:00 RR	09/14/21	AQ	Ground Water	DUP-4
FA88882-11	09/13/21	00:00 RR	09/14/21	AQ	Trip Blank Water	ТВ

Summaryof HitsJob Number:FA88882Account:ARCADIS Geraghty & MillerProject:FPE; Edgefield, SCCollected:09/13/21

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
FA88882-1	STAR RD					
No hits reported	in this sample.					
FA88882-2	MIDPOINT					
No hits reported	in this sample.					
FA88882-3	DDPD10					
No hits reported	in this sample.					
FA88882-4	DDPC					
No hits reported	in this sample.					
FA88882-5	STA-3					
No hits reported	in this sample.					
FA88882-6	STA-5					
No hits reported	in this sample.					
FA88882-7	STA-7					
No hits reported	in this sample.					
FA88882-8	STA-8					
No hits reported	in this sample.					
FA88882-9	STA-13					
No hits reported	in this sample.					
FA88882-10	DUP-4					
No hits reported	in this sample.					
FA88882-11	ТВ					
Toluene		0.75 J	1.0	0.30	ug/l	SW846 8260D


```
Page 1 of 1
```

N

SGS

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

Lab Sam Matrix: Method: Project:		51AK KD 5A88882-1 AQ - Ground W 5W846 8260D FPE; Edgefield,			D	ate Sampled: (ate Received: (ercent Solids: 1	
Run #1 Run #2	File ID 1P81500.	DF D 1	Analyzed 09/24/21 17:23	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1P3302
	Purge V	Jumo					

Report of Analysis

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

7 of 50

E = Indicates value exceeds calibration range

J = Indicates an estimated value

	ω
	•
	<u> </u>

ω

Page 2 of 2

Client Sample ID:	STAR RD		
Lab Sample ID:	FA88882-1	Date Sampled:	09/13/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^b	ND	1.0	0.41	ug/l	
	m, p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	106%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	116%		79-12	.5%	
2037-26-5	Toluene-D8	95%		85-11	2%	
460-00-4	4-Bromofluorobenzene	106%		83-11	8%	

(a) Associated CCV and BS recovery outside control limits high, sample was ND.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

SGS

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		MIDPOINT FA88882-2 AQ - Ground Water SW846 8260D FPE; Edgefield, SC			Date Sampled:09/13/21Date Received:09/14/21Percent Solids:n/a			
Run #1 Run #2	File ID 1P8150		DF 1	Analyzed 09/24/21 17:56	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1P3302
Run #1 Run #2	Purge 5.0 ml	Volume						

Report of Analysis

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

3.2

9 of 50

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Matrix:

Method:

Project:

		1	v		
Client Sample ID:	MIDPOINT				
Lab Sample ID:	FA88882-2		Date	Sampled:	09/13/21

Report of Analysis

Page 2 of 2

Date Received: 09/14/21

Percent Solids: n/a

ω

AQ - Ground Water

FPE; Edgefield, SC

SW846 8260D

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^b	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	95%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	94%		79-12	.5%	
2037-26-5	Toluene-D8	95%		85-11	2%	
460-00-4	4-Bromofluorobenzene	103%		83-11	8%	

(a) Associated CCV and BS recovery outside control limits high, sample was ND.

(b) Associated CCV outside of control limits high, sample was ND.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Lab Sam Matrix: Method: Project:	ple ID: FA AQ SW	E DDPD10 FA88882-3 AQ - Ground Water SW846 8260D FPE; Edgefield, SC			Date Sampled:09/13/21Date Received:09/14/21Percent Solids:n/a		
Run #1 Run #2	File ID 1P81504.D	DF 1	Analyzed 09/24/21 18:29	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1P3302
Run #1 Run #2	Purge Volu 5.0 ml	me					

Report of Analysis

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ ပ

ω

11 of 50 SGS

E = Indicates value exceeds calibration range

J = Indicates an estimated value

	ω
	5 L .
	ω

Client Sample ID:	DDPD10		
Lab Sample ID:	FA88882-3	Date Sampled:	09/13/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^b	ND	1.0	0.41	ug/l	
	m, p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	107%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	120%		79-12	25%	
2037-26-5	Toluene-D8	93%		85-11	2%	
460-00-4	4-Bromofluorobenzene	103%		83-11	8%	

(a) Associated CCV and BS recovery outside control limits high, sample was ND.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

SGS

Report of Ai	nalysis
--------------	---------

Client Sa Lab Samj Matrix: Method: Project:	A(SV	DPC 88882-4) - Ground Wa /846 8260D E; Edgefield,			Da	L	9/13/21 9/14/21 a
Run #1 Run #2	File ID 1P81506.D	DF 1	Analyzed 09/24/21 19:02	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1P3302
Run #1 Run #2	Purge Vol 5.0 ml	ime					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4

ယ

13 of 50 SGS

E = Indicates value exceeds calibration range

J = Indicates an estimated value

ω

Client Sample ID:	DDPC		
Lab Sample ID:	FA88882-4 Da	te Sampled:	09/13/21
Matrix:	AQ - Ground Water Da	te Received:	09/14/21
Method:	SW846 8260D Per	rcent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^b	ND	1.0	0.41	ug/l	
	m, p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	108%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	122%		79-12	.5%	
2037-26-5	Toluene-D8	95%		85-11	2%	
460-00-4	4-Bromofluorobenzene	102%		83-11	8%	

(a) Associated CCV and BS recovery outside control limits high, sample was ND.

(b) Associated CCV outside of control limits high, sample was ND.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis					Page 1 of 2		
Client Sam Lab Samp Matrix: Method: Project:	-	STA-3 FA88882-5 AQ - Ground Wa SW846 8260D FPE; Edgefield,				Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 1P8150	DF 8.D 1	Analyzed 09/24/21 19:34	By CV	Prep Date n/a	Prep Batc n/a	h Analytical Batch V1P3302
Run #1 Run #2	Purge 5.0 ml	Volume					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω 5

ω

15 of 50 FA88882

SGS

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2	
-------------	--

Client Sample ID:STA-3Lab Sample ID:FA88882-5Date Sampled:09/13/21Matrix:AQ - Ground WaterDate Received:09/14/21Method:SW846 8260DPercent Solids:n/aProject:FPE; Edgefield, SCFPE; Edgefield, SCFPE; Edgefield, SC

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^b	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7	Dibromofluoromethane	108%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	124%		79-12	.5%	
2037-26-5	Toluene-D8	95%		85-11	2%	
460-00-4	4-Bromofluorobenzene	101%		83-11	8%	

(a) Associated CCV and BS recovery outside control limits high, sample was ND.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

SGS

Report of Ana	alvsis
----------------------	--------

Client Sar Lab Samp Matrix: Method: Project:	AQ - SW8	STA-5 FA88882-6 AQ - Ground Water SW846 8260D FPE; Edgefield, SC			Date Sampled:09/13/21Date Received:09/14/21Percent Solids:n/a		
Run #1 Run #2	File ID 1P81510.D	DF 1	Analyzed 09/24/21 20:07	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1P3302
Run #1	Purge Volun 5.0 ml	ne					

Run #2

VOA TCL List (SOM02.0)

CAS No.	AS No. Compound		RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2	3.6
-------------	-----

ω

Client Sample ID:	STA-5		
Lab Sample ID:	FA88882-6	Date Sampled:	09/13/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^b	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	111%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	128% c		79-12	25%	
2037-26-5	Toluene-D8	95%		85-11	2%	
460-00-4	4-Bromofluorobenzene	104%		83-11	8%	

(a) Associated CCV and BS recovery outside control limits high, sample was ND.

(b) Associated CCV outside of control limits high, sample was ND.

(c) Outside control limits; however, sample is ND.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS

18 of 50

Report of Analysis							Page 1 of 2
Client San Lab Samp Matrix: Method: Project:	le ID:	STA-7 FA88882-7 AQ - Ground Water SW846 8260D FPE; Edgefield, SC				Date Sampled: Date Received: Percent Solids:	• • • • = • = = =
Run #1 Run #2	File ID 1P81512	DF .D 1	Analyzed 09/24/21 20:40	By CV	Prep Date n/a	Prep Batc n/a	h Analytical Batch V1P3302
Run #1 Run #2	Purge V 5.0 ml	olume					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2	of 2
--------	------

Client Sample ID:	STA-7		
Lab Sample ID:	FA88882-7 Date Samp	led:	09/13/21
Matrix:	AQ - Ground Water Date Recei	ved:	09/14/21
Method:	SW846 8260D Percent So	lids:	n/a
Project:	FPE; Edgefield, SC		

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^b	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	109%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	124%		79-12	25%	
2037-26-5	Toluene-D8	94%		85-11	2%	
460-00-4	4-Bromofluorobenzene	104%		83-11	8%	

(a) Associated CCV and BS recovery outside control limits high, sample was ND.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.7

Report of Ana	alvsis
----------------------	--------

Client Sa Lab Samj Matrix: Method: Project:	ple ID: FA8 AQ SW8	9: STA-8 FA88882-8 AQ - Ground Water SW846 8260D FPE; Edgefield, SC				Date Sampled:09/13/21Date Received:09/14/21Percent Solids:n/a			
Run #1 Run #2	File ID 1A38035.D	DF 1	Analyzed 09/27/21 13:37	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A1596		
Run #1 Run #2	Purge Volur 5.0 ml	ne							

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ယ

ω .00

21 of 50

E = Indicates value exceeds calibration range

J = Indicates an estimated value

D 0 60	ω
Page 2 of 2	ö

Client Sample ID:STA-8Lab Sample ID:FA88882-8Date Sampled:09/13/21Matrix:AQ - Ground WaterDate Received:09/14/21Method:SW846 8260DPercent Solids:n/aProject:FPE; Edgefield, SCPercent Solids:n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide b	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	99%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	99%		79-12	25%	
2037-26-5	Toluene-D8	95%		85-1	12%	
460-00-4	4-Bromofluorobenzene	99%		83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND. (b) Associated CCV outside control limits low.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

22 of 50

				Report	of Ai	nalysis		Page 1 of 2
Client San Lab Sam Matrix: Method: Project:	-	SW846	32-9 round Wat			D	Date Sampled: Date Received: ercent Solids:	
Run #1 Run #2	File ID 2P8148	3.D	DF 1	Analyzed 09/24/21 12:42	By CV	Prep Date n/a	Prep Batcl n/a	Analytical Batch V2P3303
Run #1	Purge 5.0 ml	olume						

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

ა .9

23 of 50

E = Indicates value exceeds calibration range

J = Indicates an estimated value

D 0 00	ω
Page 2 of 2	o i

ω

Client Sample ID:	STA-13		
Lab Sample ID:	FA88882-9	Date Sampled:	09/13/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^a	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	104%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	108%		79-12	25%	
2037-26-5	Toluene-D8	96%		85-11	2%	
460-00-4	4-Bromofluorobenzene	102%		83-11	8%	

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound
 - 24 of 50 SGS

Report	of	Analysis
LUPULU		

Client San Lab Samj Matrix: Method: Project:	AQ - SW8	-4 8882-10 Ground Wa 46 8260D Edgefield,			Da	ate Sampled: 09 ate Received: 09 prcent Solids: n/	
Run #1 Run #2	File ID 2P81485.D	DF 1	Analyzed 09/24/21 13:15	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V2P3303
Run #1	Purge Volun 5.0 ml	ne					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

25 of 50

E = Indicates value exceeds calibration range

J = Indicates an estimated value

ω
-
0

Page 2 of 2

Client Sample ID:	DUP-4		
Lab Sample ID:	FA88882-10	Date Sampled:	09/13/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^a	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7	Dibromofluoromethane	104%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	110%	79-125%			
2037-26-5	Toluene-D8	94%		85-11	2%	
460-00-4	4-Bromofluorobenzene	100%		83-11	8%	

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

SGS North America Inc.

Client Sa Lab Samj Matrix: Method: Project:	ple ID: FA8 AQ - SW8	8882-11 Trip Blank 46 8260D Edgefield,			Da	nte Sampled: 09 nte Received: 09 rcent Solids: n/	
Run #1 Run #2	File ID 2P81481.D	DF 1	Analyzed 09/24/21 12:09	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V2P3303
Run #1 Run #2	Purge Volun 5.0 ml	ne					

Report of Analysis

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.11

27 of 50

E = Indicates value exceeds calibration range

J = Indicates an estimated value

	ω
	-
	-

Page 2 of 2

Client Sample ID: TB Lab Sample ID: FA88882-11 Date Sampled: 09/13/21 Matrix: **Date Received:** 09/14/21 AQ - Trip Blank Water Method: SW846 8260D Percent Solids: n/a **Project:** FPE; Edgefield, SC

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	0.75	1.0	0.30	ug/l	J
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride ^a	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	108%	79-125%			
2037-26-5	Toluene-D8	96%		85-1	12%	
460-00-4	4-Bromofluorobenzene	103%		83-1	18%	

(a) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

SGS

28 of 50

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

				CHAIN A	NALY						Page _	of	- FAS	
Contact & Company Name:	Telephone:				Preservat	ive B								Keys
B <u>JEFF</u> Bectner/ <u>APCA9</u> Address 1450 <u>Greene</u> <u>54</u> <u>Ster21</u> Cap					Flitered (_			A. H ₂ SO ₄	Container Information Key: 1. 40 ml Viel
Address:	Fax:				# of Contain								B. HCL C. HNO,	2. 1 L Amber 3. 250 ml Plastic
City State Zio	E-mail Addres	65			Informati	on							D. NaOH E. None	4. 500 ml Plastic 5. Encore
Augustalor A 30901						'PA	RAMET	ER ANA	LYSIS	METH	IOD	/	F. Other:	6. 2 oz. Glass 7. 4 oz. Glass
roject Namer Location (Aty, State): FPE / ECGEFIEL (, 5C	Project #:				\neg	32 /	/	/	-/	/	/	/	H. Other:	8. 8 oz. Glass 9. Other: 10. Other:
PLEACHE REGIRD	Sampler's Sig	anature:	Rik	2	× Kola	v /	/	/		/		/	Matrix Key: SO - Soil SE	- Sediment NL - NAPL/Oil
Sample ID	Colle	oction	Туре (•	0	1/20	/	/	/	/	/	/	/	W - Water SL T - Tissue A -	- Sludge SW - Sample Wipe Air Other
Sample ID	Date	Time	Comp (Grab Matr	* Sol	/	/	/	/	/	/	/	REMARKS	
Star Rd	9-13-2	1215		XU	1 8	1	[1	1		(
Midpoint	9-13	1230		Xu	1 X				1					
DOPDID	9-13	1240		XII	IX	-								
DDPC.	9-13	1245	-	XIA	X									
sta-3	G-12	1312		XII	1 N		_							
340 5	9-13	1320		XW			x					<u>, , , , , , , , , , , , , , , , , , , </u>		
NIC D		1.000		XVI	1									
	9-13	1325		A C	15									
574-8	9-13	1730	- ,	XW	X									
549-13	9-13	1340	-	XW	X									
pup-y	9-13	\frown		2 V	X									
703					2									
							-							
												INIT	IAL ASSESSMENT	
														NX
pecial Instructions/Comments:								Special Q				LAB	EL VERIFICATION	20-
Laboratory Informati	on and Rece	aint	_		Pall	nguished By			Received By	4 IM	1 0	elinquished	P.,	Laboration Develop 1
ab Name: (ustody Sea	l (✓)	Prin	ited Name:			Printed Name	C/		Printed Name:	TT/	Printed Na	Laboratory Received By
000	Intac	~	Not In	tact en	Leggi	2 Ria	vo	Fignatura	<u>×</u>		Cierceburge	tχ		Jefer H
Cooler packed with ice (✓)		~	L NOT IN	itact Sig	Pari	shi	P	Signature:	'		Signature:	/	Signature	taut
pecify Turnaround Requirements:	Sample R	eceipt:		Fin	ADA	Intr	/	Firm/Courier:			Firm/Courier:		Firm: C	2
hipping Tracking #:	Condition	/Cooler Ter	mp:	Daj	HHC-	INT,	2	Dale/Time:			Date/Time:		Date/Time:	all'I Dag
				0	1152	1116	60							9111171 198/01

FA88882: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Job Number: FA8888	2	Client: A	RCADIS		Project: FPE/EDGE	FIELD		
Date / Time Received: 9/14/202	21 10:00:00 A	M [Delivery Method:	FX	Airbill #'s: 5061 4510) 5369		
Therm ID: IR 1;		т	herm CF: 0.2;		# of Cooler	's: 1		
Cooler Temps (Raw Measure	ed) °C: Coole	er 1: (1.2);						
Cooler Temps (Correcte	d) °C: Coole	er 1: (1.4);						
Cooler Information	Y or	N		Sample Information		Y or	N	N/A
1. Custody Seals Present	\checkmark			1. Sample labels present	on bottles			
2. Custody Seals Intact	\checkmark			2. Samples preserved pro	perly	\checkmark		
3. Temp criteria achieved	\checkmark			3. Sufficient volume/conta	iners recvd for analysis:			
4. Cooler temp verification	IR Gun			4. Condition of sample		Intact		
5. Cooler media	Ice (Bag)			5. Sample recvd within HT	г	\checkmark		
				6. Dates/Times/IDs on CC	OC match Sample Label	\checkmark		
Trip Blank Information	<u>Y or</u>	<u>N N</u>	<u>A</u>	7. VOCs have headspace			\checkmark	
1. Trip Blank present / cooler	\checkmark			8. Bottles received for uns	specified tests		\checkmark	
2. Trip Blank listed on COC	\checkmark			9. Compositing instruction	is clear			\checkmark
	W or	с .	/A	10. Voa Soil Kits/Jars rece	eived past 48hrs?			\checkmark
				11. % Solids Jar received	?			\checkmark
3. Type Of TB Received				12. Residual Chlorine Pre	sent?			
Misc. Information								
Number of Encores: 25-Gran	n	5-Gram	Numb	per of 5035 Field Kits:	Number of La	ab Filtered M	etals:	
Test Strip Lot #s:	pH 0-3	230315	pH	10-12 219813A	Other: (Spec	cify)		
Residual Chlorine Test Strip Lot					_			
Comments								
SM001 Technician Rev. Date 05/24/17	n: PETERH		Date: 9/14/2021	10:00:00 A	Reviewer:		Date:	

FA88882: Chain of Custody Page 2 of 2

4.1 **4**

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA88882

Account:	ARCGMSCA ARCADIS Geraghty & Miller										
Project:	FPE; Edgefield, SC										
Sample	File ID	DF	Analyzed 09/24/21	By	Prep Date	Prep Batch	Analytical Batch				
V1P3302-MB	1P81478.D	1		CV	n/a	n/a	V1P3302				
The QC repor	ted here applies to	o the follo			Method: SW84	6 8260D					

FA88882-1, FA88882-2, FA88882-3, FA88882-4, FA88882-5, FA88882-6, FA88882-7

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.31	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l
76-13-1	Freon 113	ND	1.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l
79-20-9	Methyl Acetate	ND	20	5.0	ug/l
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l

Method Blank Summary Job Number: FA88882

Job Number: Account: Project:	FA88882 ARCGMSCA A FPE; Edgefield,		Geraghty & Mil	ler			
Sample V1P3302-MB	File ID 1P81478.D	DF 1	Analyzed 09/24/21	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1P3302
The QC reported here applies to the following samples:						Method: SW84	6 8260D

FA88882-1, FA88882-2, FA88882-3, FA88882-4, FA88882-5, FA88882-6, FA88882-7

CAS No.	Compound	Result	RL	MDL	Units Q
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l
100-42-5	Styrene	ND	1.0	0.22	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l
	m,p-Xylene	ND	2.0	0.47	ug/l
95-47-6	o-Xylene	ND	1.0	0.26	ug/l

CAS No.	Surrogate Recoveries		Limits
17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	104% 108% 96% 101%	83-118% 79-125% 85-112% 83-118%

Page 2 of 2

Job Number:	FA88882									
Account:	ARCGMSCA ARCADIS Geraghty & Miller									
Project:	FPE; Edgefield, SC									
Sample	File ID	DF	Analyzed 09/24/21	By	Prep Date	Prep Batch				
V2P3303-MB	2P81479.D	1		CV	n/a	n/a				

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-9, FA88882-10, FA88882-11

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.31	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l
76-13-1	Freon 113	ND	1.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l
79-20-9	Methyl Acetate	ND	20	5.0	ug/l
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l

Analytical Batch V2P3303

Sample	File ID	DF	Analyzed	By	Prep Date
Account: Project:	ARCGMSCA FPE; Edgefield		Geraghty & Mill	ler	
Job Number:	FA88882				

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V2P3303-MB	2P81479.D	1	09/24/21	CV	n/a	n/a	V2P3303

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-9, FA88882-10, FA88882-11

CAS No.	Compound	Result	RL	MDL	Units Q
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l
100-42-5	Styrene	ND	1.0	0.22	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l
	m,p-Xylene	ND	2.0	0.47	ug/l
95-47-6	o-Xylene	ND	1.0	0.26	ug/l

CAS No.	Surrogate Recoveries		Limits
1868 52 7	Dibromofluoromethane	104%	83-118%
	1,2-Dichloroethane-D4	104%	79-125%
	Toluene-D8	96%	85-112%
460-00-4	4-Bromofluorobenzene	101%	83-118%

G

Page 2 of 2

Job Number:	FA88882
Account:	ARCGMSCA ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V1A1596-MB	1A38029.D	1	09/27/21	CV	n/a	n/a	V1A1596

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-8

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.31	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l
76-13-1	Freon 113	ND	1.0	0.48	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l
79-20-9	Methyl Acetate	ND	20	5.0	ug/l
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l

5.1.3

S

Job Number:	FA88882
Account:	ARCGMSCA ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC

Sample	File ID	DF	Analyzed 09/27/21	By	Prep Date	Prep Batch	Analytical Batch
V1A1596-MB	1A38029.D	1		CV	n/a	n/a	V1A1596

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-8

CAS No.	Compound	Result	RL	MDL	Units Q
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l
100-42-5	Styrene	ND	1.0	0.22	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l
	m,p-Xylene	ND	2.0	0.47	ug/l
95-47-6	o-Xylene	ND	1.0	0.26	ug/l
	-				-

CAS No.	Surrogate Recoveries		Limits
17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	99% 98% 97%	83-118% 79-125% 85-112%
460-00-4	4-Bromofluorobenzene	98%	83-118%

Page 2 of 2

Blank Spike Summary Job Number: FA88882

Account:	ARCGMSCA ARCADIS Geraghty & Miller							
Project:	FPE; Edgefield, SC							
Sample	File ID	DF	Analyzed 09/24/21	By	Prep Date	Prep Batch	Analytical Batch	
V1P3302-BS	1P81474.D	1		CV	n/a	n/a	V1P3302	
The QC repor	ted here applies to	o the follo	wing samples:			Method: SW84	5 8260D	

FA88882-1, FA88882-2, FA88882-3, FA88882-4, FA88882-5, FA88882-6, FA88882-7

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	106	85	50-147
71-43-2	Benzene	25	27.1	108	81-122
74-97-5	Bromochloromethane	25	21.3	85	76-123
75-27-4	Bromodichloromethane	25	28.5	114	79-123
75-25-2	Bromoform	25	26.2	105	66-123
78-93-3	2-Butanone (MEK)	125	120	96	56-143
75-15-0	Carbon Disulfide	25	23.7	95	66-148
56-23-5	Carbon Tetrachloride	25	32.3	129	76-136
108-90-7	Chlorobenzene	25	25.6	102	82-124
75-00-3	Chloroethane	25	30.3	121	62-144
67-66-3	Chloroform	25	27.6	110	80-124
110-82-7	Cyclohexane	25	25.6	102	73-138
124-48-1	Dibromochloromethane	25	25.8	103	78-122
96-12-8	1,2-Dibromo-3-chloropropane	25	24.5	98	64-123
106-93-4	1,2-Dibromoethane	25	24.5	98	75-120
75-71-8	Dichlorodifluoromethane	25	22.4	90	42-167
95-50-1	1,2-Dichlorobenzene	25	25.2	101	82-124
541-73-1	1,3-Dichlorobenzene	25	25.1	100	84-125
106-46-7	1,4-Dichlorobenzene	25	24.9	100	78-120
75-34-3	1,1-Dichloroethane	25	27.9	112	81-122
107-06-2	1,2-Dichloroethane	25	27.1	108	75-125
75-35-4	1,1-Dichloroethylene	25	28.7	115	78-137
156-59-2	cis-1,2-Dichloroethylene	25	26.7	107	78-120
156-60-5	trans-1,2-Dichloroethylene	25	27.8	111	76-127
78-87-5	1,2-Dichloropropane	25	25.1	100	76-124
10061-01-5	cis-1,3-Dichloropropene	25	27.1	108	75-118
10061-02-6	trans-1,3-Dichloropropene	25	27.6	110	80-120
100-41-4	Ethylbenzene	25	26.4	106	81-121
76-13-1	Freon 113	25	27.6	110	72-134
591-78-6	2-Hexanone	125	121	97	61-129
98-82-8	Isopropylbenzene	25	27.6	110	83-132
79-20-9	Methyl Acetate	125	121	97	65-126
74-83-9	Methyl Bromide	25	36.8	147*	59-143
74-87-3	Methyl Chloride	25	24.1	96	50-159
108-87-2	Methylcyclohexane	25	27.4	110	76-129
75-09-2	Methylene Chloride	25	22.6	90	69-135

* = Outside of Control Limits.

5.2.1

G

SGS

39 of 50

Blank Spike Summary Job Number: FA88882

Account:	ARCGMSCA ARCADIS Geraghty & Miller							
Project:	FPE; Edgefield, SC							
Sample	File ID	DF	Analyzed 09/24/21	By	Prep Date	Prep Batch	Analytical Batch	
V1P3302-BS	1P81474.D	1		CV	n/a	n/a	V1P3302	
The QC report	ted here applies to	o the follo	owing samples:			Method: SW84	6 8260D	

FA88882-1, FA88882-2, FA88882-3, FA88882-4, FA88882-5, FA88882-6, FA88882-7

CAS No.	Compound	Spike ug/l	BS ug/	_	BSP %	Limits
108-10-1	4-Methyl-2-pentanone (MIBK)	125	124	1	99	66-122
1634-04-4	Methyl Tert Butyl Ether	25	24.	7	99	72-117
100-42-5	Styrene	25	25.	5	102	78-119
79-34-5	1,1,2,2-Tetrachloroethane	25	22.	2	89	72-120
127-18-4	Tetrachloroethylene	25	25.	7	103	76-135
108-88-3	Toluene	25	25.	1	100	80-120
87-61-6	1,2,3-Trichlorobenzene	25	24.	7	99	68-131
120-82-1	1,2,4-Trichlorobenzene	25	25.	6	102	73-129
71-55-6	1,1,1-Trichloroethane	25	30.	2	121	75-130
79-00-5	1,1,2-Trichloroethane	25	23.	4	94	76-119
79-01-6	Trichloroethylene	25	27.	2	109	81-126
75-69-4	Trichlorofluoromethane	25	37.	4	150	71-156
75-01-4	Vinyl Chloride	25	34.	4	138	69-159
	m,p-Xylene	50	53.	3	107	79-126
95-47-6	o-Xylene	25	26.	7	107	80-127
CAS No.	Surrogate Recoveries	BSP		Lim	its	
1868-53-7	Dibromofluoromethane	104%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	108%		79-1	25%	
2037-26-5	Toluene-D8	97%		85-1	12%	

102%

83-118%

4-Bromofluorobenzene

460-00-4

Page 2 of 2

S

Job Number:	FA88882									
Account:	ARCGMSCA ARCADIS Geraghty & Miller									
Project:	FPE; Edgefield, SC									
Sample	File ID	DF	Analyzed 09/24/21	By	Prep Date	Prep Batch	Analytical Batch			
V2P3303-BS	2P81475.D	1		CV	n/a	n/a	V2P3303			

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-9, FA88882-10, FA88882-11

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	104	83	50-147
71-43-2	Benzene	25	26.2	105	81-122
74-97-5	Bromochloromethane	23 25	20.2	105 97	76-123
74-97-3	Bromodichloromethane	23 25	24.2	97 111	70-123
75-25-2	Bromoform	25 25	26.5	106	66-123
78-93-3	2-Butanone (MEK)	125	20.5 115	92	56-143
75-15-0	Carbon Disulfide	25	24.8	99	56-143 66-148
56-23-5	Carbon Tetrachloride	25	30.5	122	76-136
108-90-7	Chlorobenzene	25	25.1	100	82-124
75-00-3	Chloroethane	25	28.5	114	62-144
67-66-3	Chloroform	25	26.5	106	80-124
110-82-7	Cyclohexane	25	24.8	99	73-138
124-48-1	Dibromochloromethane	25	25.2	101	78-122
96-12-8	1,2-Dibromo-3-chloropropane	25	24.2	97	64-123
106-93-4	1,2-Dibromoethane	25	23.1	92	75-120
75-71-8	Dichlorodifluoromethane	25	23.7	95	42-167
95-50-1	1,2-Dichlorobenzene	25	24.9	100	82-124
541-73-1	1,3-Dichlorobenzene	25	25.0	100	84-125
106-46-7	1,4-Dichlorobenzene	25	24.8	99	78-120
75-34-3	1,1-Dichloroethane	25	27.6	110	81-122
107-06-2	1,2-Dichloroethane	25	26.7	107	75-125
75-35-4	1,1-Dichloroethylene	25	27.8	111	78-137
156-59-2	cis-1,2-Dichloroethylene	25	25.8	103	78-120
156-60-5	trans-1,2-Dichloroethylene	25	26.3	105	76-127
78-87-5	1,2-Dichloropropane	25	24.4	98	76-124
10061-01-5	cis-1,3-Dichloropropene	25	25.8	103	75-118
10061-02-6	trans-1,3-Dichloropropene	25	26.2	105	80-120
100-41-4	Ethylbenzene	25	25.5	102	81-121
76-13-1	Freon 113	25	26.3	105	72-134
591-78-6	2-Hexanone	125	115	92	61-129
98-82-8	Isopropylbenzene	25	27.5	110	83-132
79-20-9	Methyl Acetate	125	115	92	65-126
74-83-9	Methyl Bromide	25	33.2	133	59-143
74-87-3	Methyl Chloride	25	29.3	117	50-159
108-87-2	Methylcyclohexane	25	27.3	109	76-129
75-09-2	Methylene Chloride	25	20.4	82	69-135

* = Outside of Control Limits.

5.2.2

G

Job Number: Account: Project:		ARCGMSCA ARCADIS Geraghty & Miller FPE; Edgefield, SC									
Sample	File ID	DF	Analyzed 09/24/21	By	Prep Date	Prep Batch	Analytical Batch				
V2P3303-BS	2P81475.D	1		CV	n/a	n/a	V2P3303				

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-9, FA88882-10, FA88882-11

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
108-10-1	4-Methyl-2-pentanone (MIBK)	125	121	97	66-122
1634-04-4	Methyl Tert Butyl Ether	25	24.2	97	72-117
100-42-5	Styrene	25	25.3	101	78-119
79-34-5	1,1,2,2-Tetrachloroethane	25	22.0	88	72-120
127-18-4	Tetrachloroethylene	25	25.0	100	76-135
108-88-3	Toluene	25	24.7	99	80-120
87-61-6	1,2,3-Trichlorobenzene	25	24.7	99	68-131
120-82-1	1,2,4-Trichlorobenzene	25	24.6	98	73-129
71-55-6	1,1,1-Trichloroethane	25	29.1	116	75-130
79-00-5	1,1,2-Trichloroethane	25	23.8	95	76-119
79-01-6	Trichloroethylene	25	26.1	104	81-126
75-69-4	Trichlorofluoromethane	25	36.4	146	71-156
75-01-4	Vinyl Chloride	25	36.6	146	69-159
	m,p-Xylene	50	51.9	104	79-126
95-47-6	o-Xylene	25	25.9	104	80-127
CAS No.	Surrogate Recoveries	BSP	I	Limits	
1060 52 7	Dibromoflyoromothene	1040/	c	2 1100/	

1868-53-7	Dibromofluoromethane	104%	83-118%
17060-07-0	1,2-Dichloroethane-D4	105%	79-125%
2037-26-5	Toluene-D8	98%	85-112%
460-00-4	4-Bromofluorobenzene	100%	83-118%

42 of 50

Job Number: Account: Project:	FA88882 ARCGMSCA Al FPE; Edgefield,		Geraghty & Mill	ler			
Sample	File ID	DF	Analyzed 09/27/21	By	Prep Date	Prep Batch	Analytical Batch
V1A1596-BS	1A38025.D	1		CV	n/a	n/a	V1A1596

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	103	82	50-147
71-43-2	Benzene	25	27.4	110	81-122
74-97-5	Bromochloromethane	25	26.3	105	76-123
75-27-4	Bromodichloromethane	25	25.8	103	79-123
75-25-2	Bromoform	25	23.7	95	66-123
78-93-3	2-Butanone (MEK)	125	115	92	56-143
75-15-0	Carbon Disulfide	25	23.4	94	66-148
56-23-5	Carbon Tetrachloride	25	26.8	107	76-136
108-90-7	Chlorobenzene	25	25.5	102	82-124
75-00-3	Chloroethane	25	26.5	106	62-144
67-66-3	Chloroform	25	26.4	106	80-124
110-82-7	Cyclohexane	25	26.4	106	73-138
124-48-1	Dibromochloromethane	25	23.9	96	78-122
96-12-8	1,2-Dibromo-3-chloropropane	25	21.6	86	64-123
106-93-4	1,2-Dibromoethane	25	24.2	97	75-120
75-71-8	Dichlorodifluoromethane	25	20.0	80	42-167
95-50-1	1,2-Dichlorobenzene	25	25.0	100	82-124
541-73-1	1,3-Dichlorobenzene	25	26.0	104	84-125
106-46-7	1,4-Dichlorobenzene	25	24.8	99	78-120
75-34-3	1,1-Dichloroethane	25	28.2	113	81-122
107-06-2	1,2-Dichloroethane	25	24.9	100	75-125
75-35-4	1,1-Dichloroethylene	25	27.8	111	78-137
156-59-2	cis-1,2-Dichloroethylene	25	27.1	108	78-120
156-60-5	trans-1,2-Dichloroethylene	25	27.0	108	76-127
78-87-5	1,2-Dichloropropane	25	26.4	106	76-124
10061-01-5	cis-1,3-Dichloropropene	25	26.0	104	75-118
10061-02-6	trans-1,3-Dichloropropene	25	25.4	102	80-120
100-41-4	Ethylbenzene	25	25.5	102	81-121
76-13-1	Freon 113	25	26.6	106	72-134
591-78-6	2-Hexanone	125	116	93	61-129
98-82-8	Isopropylbenzene	25	26.7	107	83-132
79-20-9	Methyl Acetate	125	124	99	65-126
74-83-9	Methyl Bromide	25	19.2	77	59-143
74-87-3	Methyl Chloride	25	20.8	83	50-159
108-87-2	Methylcyclohexane	25	27.5	110	76-129
75-09-2	Methylene Chloride	25	23.7	95	69-135

* = Outside of Control Limits.

Page 1 of 2

Job Number: Account: Project:		FA88882 ARCGMSCA ARCADIS Geraghty & Miller FPE; Edgefield, SC									
Sample	File ID	DF	Analyzed 09/27/21	By	Prep Date	Prep Batch	Analytical Batch				
V1A1596-BS	1A38025.D	1		CV	n/a	n/a	V1A1596				

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-8

CAS No.	Compound	Spike ug/l	BS ug/		BSP %	Limits
108-10-1	4-Methyl-2-pentanone (MIBK)	125	121	l	97	66-122
1634-04-4	Methyl Tert Butyl Ether	25	24.	0	96	72-117
100-42-5	Styrene	25	25.	7	103	78-119
79-34-5	1,1,2,2-Tetrachloroethane	25	24.	2	97	72-120
127-18-4	Tetrachloroethylene	25	24.	9	100	76-135
108-88-3	Toluene	25	25.	0	100	80-120
87-61-6	1,2,3-Trichlorobenzene	25	24.	0	96	68-131
120-82-1	1,2,4-Trichlorobenzene	25	24.	2	97	73-129
71-55-6	1,1,1-Trichloroethane	25	26.	9	108	75-130
79-00-5	1,1,2-Trichloroethane	25	24.	5	98	76-119
79-01-6	Trichloroethylene	25	27.	0	108	81-126
75-69-4	Trichlorofluoromethane	25	27.	7	111	71-156
75-01-4	Vinyl Chloride	25	25.	0	100	69-159
	m, p-Xylene	50	50.	7	101	79-126
95-47-6	o-Xylene	25	25.	8	103	80-127
CAS No.	Surrogate Recoveries	BSP		Lim	its	
1868-53-7	Dibromofluoromethane	102%		83-1	18%	

	8		
1868-53-7	Dibromofluoromethane	102%	83-118%
17060-07-0	1,2-Dichloroethane-D4	95%	79-125%
2037-26-5	Toluene-D8	97%	85-112%
460-00-4	4-Bromofluorobenzene	104%	83-118%

Job Number:	FA88882
Account:	ARCGMSCA ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC

Sample	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
FA89134-1MS	2P81517.D	5	09/24/21	ČV	n/a	n/a	V2P3303
FA89134-1MSD	2P81519.D	5	09/24/21	CV	n/a	n/a	V2P3303
FA89134-1	2P81487.D	1	09/24/21	CV	n/a	n/a	V2P3303

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-9, FA88882-10, FA88882-11

CAS No.	Compound	FA89134-1 ug/l Q		Spike 1g/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND	6	525	836	134	625	534	85	44*	50-147/21
71-43-2	Benzene	ND	1	125	134	107	125	131	105	2	81-122/14
74-97-5	Bromochloromethane	ND		125	125	100	125	127	102	2	76-123/14
75-27-4	Bromodichloromethane	ND		125	147	118	125	143	114	3	79-123/19
75-25-2	Bromoform	ND	1	125	136	109	125	129	103	5	66-123/21
78-93-3	2-Butanone (MEK)	ND	6	525	589	94	625	587	94	0	56-143/18
75-15-0	Carbon Disulfide	ND		125	202	162*	125	122	98	49*	66-148/23
56-23-5	Carbon Tetrachloride	ND	1	125	175	140*	125	173	138*	1	76-136/23
108-90-7	Chlorobenzene	ND	1	125	123	98	125	124	99	1	82-124/14
75-00-3	Chloroethane	ND	1	125	180	144	125	187	150*	4	62-144/20
67-66-3	Chloroform	ND	1	125	145	116	125	144	115	1	80-124/15
110-82-7	Cyclohexane	ND	1	125	125	100	125	127	102	2	73-138/18
124-48-1	Dibromochloromethane	ND	1	125	126	101	125	128	102	2	78-122/19
96-12-8	1,2-Dibromo-3-chloropropane	ND	1	125	126	101	125	130	104	3	64-123/18
106-93-4	1,2-Dibromoethane	ND	1	125	116	93	125	114	91	2	75-120/13
75-71-8	Dichlorodifluoromethane	ND	1	125	171	137	125	154	123	10	42-167/19
95-50-1	1,2-Dichlorobenzene	ND	1	125	124	99	125	127	102	2	82-124/14
541-73-1	1,3-Dichlorobenzene	ND	1	125	127	102	125	128	102	1	84-125/14
106-46-7	1,4-Dichlorobenzene	ND	1	125	122	98	125	125	100	2	78-120/15
75-34-3	1,1-Dichloroethane	0.52 J	1	125	141	112	125	143	114	1	81-122/15
107-06-2	1,2-Dichloroethane	ND	1	125	151	121	125	146	117	3	75-125/14
75-35-4	1,1-Dichloroethylene	ND	1	125	222	178*	125	152	122	37*	78-137/18
156-59-2	cis-1,2-Dichloroethylene	ND	1	125	125	100	125	126	101	1	78-120/15
156-60-5	trans-1,2-Dichloroethylene	ND	1	125	176	141*	125	136	109	26*	76-127/17
78-87-5	1,2-Dichloropropane	ND	1	125	116	93	125	119	95	3	76-124/14
10061-01-5	cis-1,3-Dichloropropene	ND	1	125	125	100	125	127	102	2	75-118/23
10061-02-6	trans-1,3-Dichloropropene	ND	1	125	128	102	125	128	102	0	80-120/22
100-41-4	Ethylbenzene	ND	1	125	133	106	125	126	101	5	81-121/14
76-13-1	Freon 113	ND	1	125	219	175*	125	140	112	44*	72-134/20
591-78-6	2-Hexanone	ND		525	628	100	625	642	103	2	61-129/18
98-82-8	Isopropylbenzene	ND	1	125	139	111	125	134	107	4	83-132/15
79-20-9	Methyl Acetate	ND		525	827	132*	625	569	91	37*	65-126/18
74-83-9	Methyl Bromide	ND		125	200	160*	125	186	149*	7	59-143/19
74-87-3	Methyl Chloride	ND		125	199	159	125	185	148	7	50-159/19
108-87-2	Methylcyclohexane	ND		125	128	102	125	133	106	4	76-129/17
75-09-2	Methylene Chloride	ND	1	125	199	159*	125	119	95	50*	69-135/16

* = Outside of Control Limits.

5.3.1

Job Number:	FA88882
Account:	ARCGMSCA ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC

Sample	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
FA89134-1MS	2P81517.D	5	09/24/21	ČV	n/a	n/a	V2P3303
FA89134-1MSD	2P81519.D	5	09/24/21	CV	n/a	n/a	V2P3303
FA89134-1	2P81487.D	1	09/24/21	CV	n/a	n/a	V2P3303

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-9, FA88882-10, FA88882-11

CAS No.	Compound	FA89134-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	625	599	96	625	604	97	1	66-122/16
1634-04-4	Methyl Tert Butyl Ether	ND	125	138	110	125	125	100	10	72-117/14
100-42-5	Styrene	ND	125	138	110	125	123	98	11	78-119/23
79-34-5	1,1,2,2-Tetrachloroethane	ND	125	112	90	125	108	86	4	72-120/14
127-18-4	Tetrachloroethylene	ND	125	120	96	125	121	97	1	76-135/16
108-88-3	Toluene	ND	125	118	94	125	119	95	1	80-120/14
87-61-6	1,2,3-Trichlorobenzene	ND	125	123	98	125	123	98	0	68-131/25
120-82-1	1,2,4-Trichlorobenzene	ND	125	119	95	125	121	97	2	73-129/20
71-55-6	1,1,1-Trichloroethane	ND	125	168	134*	125	159	127	6	75-130/16
79-00-5	1,1,2-Trichloroethane	ND	125	108	86	125	112	90	4	76-119/14
79-01-6	Trichloroethylene	ND	125	137	110	125	136	109	1	81-126/15
75-69-4	Trichlorofluoromethane	ND	125	282	226*	125	256	205*	10	71-156/21
75-01-4	Vinyl Chloride	ND	125	233	186*	125	216	173*	8	69-159/18
	m,p-Xylene	ND	250	264	106	250	274	110	4	79-126/15
95-47-6	o-Xylene	ND	125	143	114	125	129	103	10	80-127/14
CAS No.	Surrogate Recoveries	MS	MSD	F	A89134-1	Limits				
1868-53-7	Dibromofluoromethane	110%	111%	10	03%	83-1189	ó			
	1,2-Dichloroethane-D4	120%	116%		06%	79-125%				

85-112%

83-118%

1868-53-7Dibromofluoromethane110%111%103%17060-07-01,2-Dichloroethane-D4120%116%106%2037-26-5Toluene-D898%96%97%460-00-44-Bromofluorobenzene102%104%103%

* = Outside of Control Limits.

Page 2 of 2

Job Number:	FA88882
Account:	ARCGMSCA ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA88958-3MS	1A38067.D	1	09/27/21	CV	n/a	n/a	V1A1596
FA88958-3MSD	1A38069.D	1	09/27/21	CV	n/a	n/a	V1A1596
FA88958-3	1A38043.D	1	09/27/21	CV	n/a	n/a	V1A1596

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-8

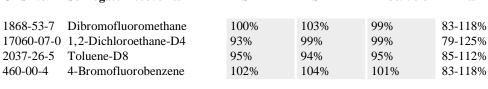
CAS No.	Compound	FA88958 ug/l	8-3 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	25 U		125	89.1	71	125	88.1	70	1	50-147/21
71-43-2	Benzene	1.0 U		25	27.4	110	25	27.5	110	0	81-122/14
74-97-5	Bromochloromethane	1.0 U		25	26.2	105	25	26.5	106	1	76-123/14
75-27-4	Bromodichloromethane	1.0 U		25	25.4	102	25	25.8	103	2	79-123/19
75-25-2	Bromoform	1.0 U		25	21.5	86	25	21.5	86	0	66-123/21
78-93-3	2-Butanone (MEK)	5.0 U		125	112	90	125	112	90	0	56-143/18
75-15-0	Carbon Disulfide	2.0 U		25	21.8	87	25	22.2	89	2	66-148/23
56-23-5	Carbon Tetrachloride	1.0 U		25	25.9	104	25	25.6	102	1	76-136/23
108-90-7	Chlorobenzene	1.0 U		25	25.0	100	25	24.5	98	2	82-124/14
75-00-3	Chloroethane	2.0 U		25	28.0	112	25	35.1	140	23*	62-144/20
67-66-3	Chloroform	1.0 U		25	26.4	106	25	26.3	105	0	80-124/15
110-82-7	Cyclohexane	1.0 U		25	25.5	102	25	25.6	102	0	73-138/18
124-48-1	Dibromochloromethane	1.0 U		25	22.5	90	25	22.2	89	1	78-122/19
96-12-8	1,2-Dibromo-3-chloropropane	5.0 U		25	20.5	82	25	19.7	79	4	64-123/18
106-93-4	1,2-Dibromoethane	2.0 U		25	23.7	95	25	23.6	94	0	75-120/13
75-71-8	Dichlorodifluoromethane	2.0 U		25	19.9	80	25	19.5	78	2	42-167/19
95-50-1	1,2-Dichlorobenzene	1.0 U		25	24.3	97	25	23.8	95	2	82-124/14
541-73-1	1,3-Dichlorobenzene	1.0 U		25	24.9	100	25	24.5	98	2	84-125/14
106-46-7	1,4-Dichlorobenzene	1.0 U		25	24.2	97	25	23.6	94	3	78-120/15
75-34-3	1,1-Dichloroethane	1.0 U		25	28.2	113	25	28.2	113	0	81-122/15
107-06-2	1,2-Dichloroethane	1.0 U		25	24.5	98	25	24.9	100	2	75-125/14
75-35-4	1,1-Dichloroethylene	1.0 U		25	26.7	107	25	27.2	109	2	78-137/18
156-59-2	cis-1,2-Dichloroethylene	1.0 U		25	27.4	110	25	27.4	110	0	78-120/15
156-60-5	trans-1,2-Dichloroethylene	1.0 U		25	26.6	106	25	26.6	106	0	76-127/17
78-87-5	1,2-Dichloropropane	1.0 U		25	26.7	107	25	27.1	108	1	76-124/14
	cis-1,3-Dichloropropene	1.0 U		25	23.8	95	25	24.1	96	1	75-118/23
	trans-1,3-Dichloropropene	1.0 U		25	23.4	94	25	23.7	95	1	80-120/22
100-41-4	Ethylbenzene	1.0 U		25	24.9	100	25	24.4	98	2	81-121/14
76-13-1	Freon 113	1.0 U		25	25.6	102	25	26.4	106	3	72-134/20
591-78-6	2-Hexanone	10 U		125	114	91	125	108	86	5	61-129/18
98-82-8	Isopropylbenzene	1.0 U		25	25.6	102	25	24.9	100	3	83-132/15
79-20-9	Methyl Acetate	20 U		125	115	92	125	115	92	0	65-126/18
74-83-9	Methyl Bromide	5.0 U		25	17.6	70	25	18.8	75	7	59-143/19
74-87-3	Methyl Chloride	2.0 U		25	20.6	82	25	20.4	82	1	50-159/19
108-87-2	Methylcyclohexane	1.0 U		25	26.4	106	25	27.0	108	2	76-129/17
75-09-2	Methylene Chloride	5.0 U		25	22.6	90	25	23.2	93	3	69-135/16

* = Outside of Control Limits.

G

Page 1 of 2

Job Number:	FA88882
Account:	ARCGMSCA ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC


Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA88958-3MS	1A38067.D	1	09/27/21	CV	n/a	n/a	V1A1596
FA88958-3MSD	1A38069.D	1	09/27/21	CV	n/a	n/a	V1A1596
FA88958-3	1A38043.D	1	09/27/21	CV	n/a	n/a	V1A1596

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-8

CAS No.	Compound	FA88958-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0 U	125	120	96	125	117	94	3	66-122/16
1634-04-4	Methyl Tert Butyl Ether	1.0 U	25	23.2	93	25	23.8	95	3	72-117/14
100-42-5	Styrene	1.0 U	25	24.7	99	25	24.2	97	2	78-119/23
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	25	24.2	97	25	23.8	95	2	72-120/14
127-18-4	Tetrachloroethylene	1.0 U	25	22.9	92	25	22.5	90	2	76-135/16
108-88-3	Toluene	1.0 U	25	24.5	98	25	24.0	96	2	80-120/14
87-61-6	1,2,3-Trichlorobenzene	2.0 U	25	22.9	92	25	23.0	92	0	68-131/25
120-82-1	1,2,4-Trichlorobenzene	2.0 U	25	22.6	90	25	22.4	90	1	73-129/20
71-55-6	1,1,1-Trichloroethane	1.0 U	25	26.6	106	25	26.5	106	0	75-130/16
79-00-5	1,1,2-Trichloroethane	1.0 U	25	24.1	96	25	24.4	98	1	76-119/14
79-01-6	Trichloroethylene	1.0 U	25	26.1	104	25	26.1	104	0	81-126/15
75-69-4	Trichlorofluoromethane	2.0 U	25	27.2	109	25	27.1	108	0	71-156/21
75-01-4	Vinyl Chloride	1.0 U	25	24.4	98	25	24.0	96	2	69-159/18
	m,p-Xylene	2.0 U	50	48.9	98	50	48.2	96	1	79-126/15
95-47-6	o-Xylene	1.0 U	25	24.9	100	25	24.4	98	2	80-127/14
CAS No.	Surrogate Recoveries	MS	MSD	FA	8958-3	Limits				
1868-53-7	Dibromofluoromethane	100%	103%	99%)	83-118%	, D			
17060-07-0	1,2-Dichloroethane-D4	93%	99%	99%	,	79-125%	, D			

* = Outside of Control Limits.

Job Number:	FA88882
Account:	ARCGMSCA ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA88882-1MS	1P81594.D	5	09/28/21	CV	n/a	n/a	V1P3302
FA88882-1MSD	1P81596.D	5	09/28/21	CV	n/a	n/a	V1P3302
FA88882-1	1P81500.D	1	09/24/21	CV	n/a	n/a	V1P3302
FA88882-1	1P81500.D	1	09/24/21	CV	n/a	n/a	V1P3302

The QC reported here applies to the following samples:

Method: SW846 8260D

FA88882-1, FA88882-2, FA88882-3, FA88882-4, FA88882-5, FA88882-6, FA88882-7

CAS No.	Compound	FA88882-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND	625	634	101	625	645	103	2	50-147/21
71-43-2	Benzene	ND	125	122	98	125	123	98	1	81-122/14
74-97-5	Bromochloromethane	ND	125	116	93	125	123	97	4	76-123/14
75-27-4	Bromodichloromethane	ND	125	137	110	125	138	110	1	79-123/19
75-25-2	Bromoform	ND	125	122	98	125	123	98	1	66-123/21
78-93-3	2-Butanone (MEK)	ND	625	590	94	625	607	97	3	56-143/18
75-15-0	Carbon Disulfide	ND	125	92.1	74	125	94.7	76	3	66-148/23
56-23-5	Carbon Tetrachloride	ND	125	145	116	125	146	117	1	76-136/23
108-90-7	Chlorobenzene	ND	125	121	97	125	123	98	2	82-124/14
75-00-3	Chloroethane	ND	125	140	112	125	130	104	7	62-144/20
67-66-3	Chloroform	ND	125	134	107	125	132	106	2	80-124/15
110-82-7	Cyclohexane	ND	125	116	93	125	117	94	1	73-138/18
124-48-1	Dibromochloromethane	ND	125	125	100	125	127	102	2	78-122/19
96-12-8	1,2-Dibromo-3-chloropropane	ND	125	119	95	125	119	95	0	64-123/18
106-93-4	1,2-Dibromoethane	ND	125	124	99	125	125	100	1	75-120/13
75-71-8	Dichlorodifluoromethane	ND	125	151	121	125	142	114	6	42-167/19
95-50-1	1,2-Dichlorobenzene	ND	125	123	98	125	118	94	4	82-124/14
541-73-1	1,3-Dichlorobenzene	ND	125	120	96	125	121	97	1	84-125/14
106-46-7	1,4-Dichlorobenzene	ND	125	121	97	125	121	97	0	78-120/15
75-34-3	1,1-Dichloroethane	ND	125	134	107	125	133	106	1	81-122/15
107-06-2	1,2-Dichloroethane	ND	125	137	110	125	137	110	0	75-125/14
75-35-4	1,1-Dichloroethylene	ND	125	121	97	125	118	94	3	78-137/18
156-59-2	cis-1,2-Dichloroethylene	ND	125	128	102	125	128	102	0	78-120/15
156-60-5	trans-1,2-Dichloroethylene	ND	125	132	106	125	131	105	1	76-127/17
78-87-5	1,2-Dichloropropane	ND	125	123	98	125	124	99	1	76-124/14
	cis-1,3-Dichloropropene	ND	125	123	98	125	123	98	0	75-118/23
	trans-1,3-Dichloropropene	ND	125	130	104	125	129	103	1	80-120/22
100-41-4	Ethylbenzene	ND	125	123	98	125	120	96	2	81-121/14
76-13-1	Freon 113	ND	125	119	95	125	117	94	2	72-134/20
591-78-6	2-Hexanone	ND	625	571	91	625	618	99	8	61-129/18
98-82-8	Isopropylbenzene	ND	125	131	105	125	132	106	1	83-132/15
79-20-9	Methyl Acetate	ND	625	571	91	625	587	94	3	65-126/18
74-83-9	Methyl Bromide	ND	125	143	114	125	131	105	9	59-143/19
74-87-3	Methyl Chloride	ND	125	143	114	125	141	113	1	50-159/19
108-87-2	Methylcyclohexane	ND	125	121	97	125	120	96	1	76-129/17
75-09-2	Methylene Chloride	ND	125	136	109	125	138	110	1	69-135/16

* = Outside of Control Limits.

Job Number:	FA88882
Account:	ARCGMSCA ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC

09/28/21	CV	n/a	n/a	V1P3302
00/00/01	011			
09/28/21	CV	n/a	n/a	V1P3302
09/24/21	CV	n/a	n/a	V1P3302
		0)/20/21 01	0)/20/21 CV II/u	

The QC reported here applies to the following samples:

100%

100%

Method: SW846 8260D

FA88882-1, FA88882-2, FA88882-3, FA88882-4, FA88882-5, FA88882-6, FA88882-7

CAS No.	Compound	FA88882-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	625	609	97	625	604	97	1	66-122/16
1634-04-4	Methyl Tert Butyl Ether	ND	125	118	94	125	117	94	1	72-117/14
100-42-5	Styrene	ND	125	127	102	125	127	102	0	78-119/23
79-34-5	1,1,2,2-Tetrachloroethane	ND	125	116	93	125	114	91	2	72-120/14
127-18-4	Tetrachloroethylene	ND	125	119	95	125	118	94	1	76-135/16
108-88-3	Toluene	ND	125	119	95	125	120	96	1	80-120/14
87-61-6	1,2,3-Trichlorobenzene	ND	125	113	90	125	110	88	3	68-131/25
120-82-1	1,2,4-Trichlorobenzene	ND	125	116	93	125	114	91	2	73-129/20
71-55-6	1,1,1-Trichloroethane	ND	125	135	108	125	138	110	2	75-130/16
79-00-5	1,1,2-Trichloroethane	ND	125	123	98	125	122	98	1	76-119/14
79-01-6	Trichloroethylene	ND	125	122	98	125	125	100	2	81-126/15
75-69-4	Trichlorofluoromethane	ND	125	158	126	125	154	123	3	71-156/21
75-01-4	Vinyl Chloride	ND	125	149	119	125	145	116	3	69-159/18
	m,p-Xylene	ND	250	247	99	250	247	99	0	79-126/15
95-47-6	o-Xylene	ND	125	129	103	125	130	104	1	80-127/14
CAS No.	Surrogate Recoveries	MS	MSD	F	A88882-1	Limits				
1868-53-7	Dibromofluoromethane	106%	108%	10)6%	83-118%	ó			
17060-07-0	1,2-Dichloroethane-D4	114%	112%	11	6%	79-125%	ó			

101%

99%

95%

106%

85-112%

83-118%

2037-26-5 Toluene-D8

4-Bromofluorobenzene

460-00-4

Page 2 of 2

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

09/27/21

Technical Report for

ARCADIS Geraghty & Miller

FPE; Edgefield, SC

30067293.2.2

SGS Job Number: FA88901

Sampling Dates: 09/07/21 - 09/10/21

Report to:

ARCADIS Geraghty & Miller

jbeckner@arcadis-us.com

ATTN: Jeff Beckner

Total number of pages in report: 68

Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Evita Martinez 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, UT, VT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 68

1 2 3 4

1	
	-

Section 1: Sample Summary	3
Section 2: Summary of Hits	6
Section 3: Sample Results	10
3.1: FA88901-1: SMMW-1	11
3.2: FA88901-2: RNMW-2	13
3.3: FA88901-3: RNMW-1	15
3.4: FA88901-4: SMMW-13	17
3.5: FA88901-5: SMMW-11	19
3.6: FA88901-6: SMMW-10	21
3.7: FA88901-7: SMMW-3	23
3.8: FA88901-8: SMMW-9	25
3.9: FA88901-9: SMMW-7	27
3.10: FA88901-10: SMMW-12	29
3.11: FA88901-11: SMMW-2	31
3.12: FA88901-12: SFMW-1A	33
3.13: FA88901-13: SMMW-5	35
3.14: FA88901-14: SMMW-4	37
3.15: FA88901-15: DUP-2	39
3.16: FA88901-16: SMMW-6	41
3.17: FA88901-17: SMMW-8	43
3.18: FA88901-18: B2SF	45
3.19: FA88901-19: B1SF	47
3.20: FA88901-20: B4SF	49
3.21: FA88901-21: B3SF	51
3.22: FA88901-22: B5SF	53
3.23: FA88901-23: TMW-1	55
3.24: FA88901-24: TMW-2	57
3.25: FA88901-25: RTB-3	59
3.26: FA88901-26: RTB-4	61
3.27: FA88901-27: TB	63
Section 4: Misc. Forms	
4.1: Chain of Custody	66

Sample Summary

ARCADIS Geraghty & Miller

FPE; Edgefield, SC Project No: 30067293.2.2

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co Organics ND		lts reported as = Not detecte			ected. The following app L	plies:
FA88901-1	09/07/21	09:39 JO	09/14/21	AQ	Ground Water	SMMW-1
FA88901-2	09/07/21	10:43 JO	09/14/21	AQ	Ground Water	RNMW-2
FA88901-3	09/07/21	12:30 JO	09/14/21	AQ	Ground Water	RNMW-1
FA88901-4	09/07/21	13:24 JO	09/14/21	AQ	Ground Water	SMMW-13
FA88901-5	09/07/21	14:21 JO	09/14/21	AQ	Ground Water	SMMW-11
FA88901-6	09/07/21	14:54 JO	09/14/21	AQ	Ground Water	SMMW-10
FA88901-7	09/08/21	08:22 JO	09/14/21	AQ	Ground Water	SMMW-3
FA88901-8	09/08/21	09:00 JO	09/14/21	AQ	Ground Water	SMMW-9
FA88901-9	09/08/21	09:58 JO	09/14/21	AQ	Ground Water	SMMW-7
FA88901-10	09/08/21	10:49 JO	09/14/21	AQ	Ground Water	SMMW-12
FA88901-11	09/08/21	11:59 JO	09/14/21	AQ	Ground Water	SMMW-2
FA88901-12	09/08/21	12:50 JO	09/14/21	AQ	Ground Water	SFMW-1A

Sample Summary (continued)

ARCADIS Geraghty & Miller

FPE; Edgefield, SC Project No: 30067293.2.2

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
FA88901-13	09/08/21	13:45 JO	09/14/21	AQ	Ground Water	SMMW-5
FA88901-14	09/09/21	08:50 JO	09/14/21	AQ	Ground Water	SMMW-4
FA88901-15	09/09/21	00:00 JO	09/14/21	AQ	Ground Water	DUP-2
FA88901-16	09/09/21	09:48 JO	09/14/21	AQ	Ground Water	SMMW-6
FA88901-17	09/09/21	10:36 JO	09/14/21	AQ	Ground Water	SMMW-8
FA88901-18	09/09/21	12:30 JO	09/14/21	AQ	Ground Water	B2SF
FA88901-19	09/09/21	13:20 JO	09/14/21	AQ	Ground Water	B1SF
FA88901-20	09/09/21	14:10 JO	09/14/21	AQ	Ground Water	B4SF
FA88901-21	09/10/21	08:20 JO	09/14/21	AQ	Ground Water	B3SF
FA88901-22	09/10/21	09:05 JO	09/14/21	AQ	Ground Water	B5SF
FA88901-23	09/10/21	10:46 JO	09/14/21	AQ	Ground Water	TMW-1
FA88901-24	09/10/21	12:03 JO	09/14/21	AQ	Ground Water	TMW-2
FA88901-25	09/10/21	12:57 JO	09/14/21	AQ	Ground Water	RTB-3

Sample Summary (continued)

ARCADIS Geraghty & Miller

FA88901 Job No:

FPE; Edgefield, SC Project No: 30067293.2.2

Sample	Collected			Matr	ix	Client
Number	Date	Time By	Received	Code	Туре	Sample ID
FA88901-26	09/10/21	13:33 JO	09/14/21	AQ	Ground Water	RTB-4
FA88901-27	09/07/21	00:00 JO	09/14/21	AQ	Trip Blank Water	TB

Job Number:	FA88901
Account:	ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC
Collected:	09/07/21 thru 09/10/21

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
FA88901-1	SMMW-1					
Chloroform Trichloroethylen	e	1.1 0.94 J	1.0 1.0	0.30 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88901-2	RNMW-2					
Trichloroethylen	e	2.2	1.0	0.35	ug/l	SW846 8260D
FA88901-3	RNMW-1					
Trichloroethylen	e	2.0	1.0	0.35	ug/l	SW846 8260D
FA88901-4	SMMW-13					
1,1-Dichloroetha cis-1,2-Dichloroe Trichloroethylen	ethylene	0.55 J 26.6 1.3	1.0 1.0 1.0	0.34 0.28 0.35	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
FA88901-5	SMMW-11					
cis-1,2-Dichloroe Trichloroethylen	•	20.0 7.3	1.0 1.0	0.28 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88901-6	SMMW-10					
Chloroform cis-1,2-Dichloroo Trichloroethylen		0.47 J 4.0 1.2	1.0 1.0 1.0	0.30 0.28 0.35	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
FA88901-7	SMMW-3					
1,1-Dichloroethy cis-1,2-Dichloroe Trichloroethylen	ethylene	2.0 J 53.5 276	5.0 5.0 5.0	1.6 1.4 1.7	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
FA88901-8	SMMW-9					
cis-1,2-Dichlorod Methylene Chlor Trichloroethylend	ide	2060 456 J 13800	200 1000 200	55 400 69	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
FA88901-9	SMMW-7					
cis-1,2-Dichloroe	ethylene	2180	200	55	ug/l	SW846 8260D

Ν

Job Number:	FA88901
Account:	ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC
Collected:	09/07/21 thru 09/10/21

Lab Sample ID Cl Analyte	ient Sample ID	Result/ Qual	RL	MDL	Units	Method
Trichloroethylene		10100	200	69	ug/l	SW846 8260D
FA88901-10 SN	/MW-12					
cis-1,2-Dichloroethy Trichloroethylene	lene	216 2240	25 25	6.9 8.6	ug/l ug/l	SW846 8260D SW846 8260D
FA88901-11 SN	AMW-2					
cis-1,2-Dichloroethy Trichloroethylene	lene	28.2 629	10 10	2.8 3.5	ug/l ug/l	SW846 8260D SW846 8260D
FA88901-12 SF	MW-1A					
cis-1,2-Dichloroethy Trichloroethylene	lene	20.3 474	10 10	2.8 3.5	ug/l ug/l	SW846 8260D SW846 8260D
FA88901-13 SN	AMW-5					
cis-1,2-Dichloroethylene Trichloroethylene		60.9 187	2.5 2.5	0.69 0.86	ug/l ug/l	SW846 8260D SW846 8260D
FA88901-14 SN	/IMW-4					
cis-1,2-Dichloroethy Trichloroethylene	lene	442 3700	50 50	14 17	ug/l ug/l	SW846 8260D SW846 8260D
FA88901-15 DU	U P-2					
cis-1,2-Dichloroethy Trichloroethylene	rlene	488 3940	50 50	14 17	ug/l ug/l	SW846 8260D SW846 8260D
FA88901-16 SN	AMW-6					
cis-1,2-Dichloroethy Methylene Chloride Trichloroethylene	lene	69.0 61.9 J 1470	25 130 25	6.9 50 8.6	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
FA88901-17 SN	AMW-8					
Chloroform cis-1,2-Dichloroethy Methylene Chloride Tetrachloroethylene Trichloroethylene	lene	5.6 9.3 4.8 J 0.44 J 122	2.0 2.0 10 2.0 2.0	0.60 0.55 4.0 0.43 0.69	ug/l ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D SW846 8260D SW846 8260D

N

Job Number:	FA88901
Account:	ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC
Collected:	09/07/21 thru 09/10/21

Lab Gameria ID	Climat Samuela ID	De suelt/				
Lab Sample ID Analyte	Client Sample ID	Qual	RL	MDL	Units	Method
FA88901-18	B2SF					
Chloroform		8.7	2.5	0.75	ug/l	SW846 8260D
1,1-Dichloroethy	ylene	1.9 J	2.5	0.81	ug/l	SW846 8260D
cis-1,2-Dichloro	ethylene	21.2	2.5	0.69	ug/l	SW846 8260D
Methylene Chlor		22.4	13	5.0	ug/l	SW846 8260D
Tetrachloroethyl		0.80 J	2.5	0.54	ug/l	SW846 8260D
Trichloroethylen	e	192	2.5	0.86	ug/l	SW846 8260D
FA88901-19	B1SF					
cis-1,2-Dichloro	ethylene	773	100	28	ug/l	SW846 8260D
Methylene Chlor		209 J	500	200	ug/l	SW846 8260D
Trichloroethylen	ie	5710	100	35	ug/l	SW846 8260D
FA88901-20	B4SF					
cis-1,2-Dichloro	ethylene	93.6	20	5.5	ug/l	SW846 8260D
Trichloroethylen	•	1580	20	6.9	ug/l	SW846 8260D
FA88901-21	B3SF					
cis-1,2-Dichloro	ethylene	126	10	2.8	ug/l	SW846 8260D
Trichloroethylen		871	10	3.5	ug/l	SW846 8260D
FA88901-22	B5SF					
2-Butanone (ME	K)	96.8	50	20	ug/l	SW846 8260D
cis-1,2-Dichloro		66.9	10	2.8	ug/l	SW846 8260D
Trichloroethylen	ie	838	10	3.5	ug/l	SW846 8260D
FA88901-23	TMW-1					
Bromodichlorom	nethane	0.26 J	1.0	0.24	ug/l	SW846 8260D
Chloroform		0.57 J	1.0	0.30	ug/l	SW846 8260D
FA88901-24	TMW-2					
Chloroform		0.61 J	1.0	0.30	ug/l	SW846 8260D
FA88901-25	RTB-3					
cis-1,2-Dichloro	ethylene	469	25	6.9	ug/l	SW846 8260D
Trichloroethylen		2030	25	8.6	ug/l	SW846 8260D

N

Job Number:	FA88901
Account:	ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC
Collected:	09/07/21 thru 09/10/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
FA88901-26 RTB-4					
cis-1,2-Dichloroethylene Tetrachloroethylene Trichloroethylene	10.6 0.43 J 88.5	1.0 1.0 2.0	0.28 0.22 0.69	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
FA88901-27 TB					
Toluene	0.36 J	1.0	0.30	ug/l	SW846 8260D

Page 4 of 4

Ν

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

Client Sa Lab Samj Matrix: Method: Project:	ple ID: F A S	MMW-1 A88901-1 Q - Ground Wa W846 8260D PE; Edgefield,			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	= -
Run #1 Run #2	File ID 2A37777.	DF D 1	Analyzed 09/20/21 13:48	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V2A1591
Run #1 Run #2	Purge Vo 5.0 ml	lume					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	1.1	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

ω -

11 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

VOA TCL List (Se	OM02.0)	Result	RI.	MDL	Units	0	
Lab Sample ID: Matrix: Method: Project:	FA88901-1 AQ - Ground Water SW846 8260D FPE; Edgefield, SC				Date	Sampled: Received: ent Solids:	
Client Sample ID:	SMMW_1						

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	0.94	1.0	0.35	ug/l	J
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	100%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	101%		79-1	25%	
2037-26-5	Toluene-D8	100%		85-1	12%	
460-00-4	4-Bromofluorobenzene	100%		83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ω -

Client Sa Lab Samj Matrix: Method: Project:	ple ID: FA8 AQ SW8	RNMW-2 FA88901-2 AQ - Ground Water SW846 8260D FPE; Edgefield, SC			Date Sampled:09/07/21Date Received:09/14/21Percent Solids:n/a			
Run #1 Run #2	File ID 2A37779.D	DF 1	Analyzed 09/20/21 14:18	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V2A1591	
Run #1 Run #2	Purge Volur 5.0 ml	ne						

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

3.2

ω

13 of 68 FA88901

SGS

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	RNMW-2		
Lab Sample ID:	FA88901-2	Date Sampled:	09/07/
Matrix:	AQ - Ground Water	Date Received:	09/14/
Method:	SW846 8260D	Percent Solids:	n/a

VOA TCL List (SOM02.0)

Project:

FPE; Edgefield, SC

CAS No.	AS No. Compound		RL	MDL	Units	Q	
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l		
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l		
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l		
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l		
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l		
100-42-5	Styrene	ND	1.0	0.22	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l		
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l		
108-88-3	Toluene	ND	1.0	0.30	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l		
79-01-6	Trichloroethylene	2.2	1.0	0.35	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l		
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l		
	m,p-Xylene	ND	2.0	0.47	ug/l		
95-47-6	o-Xylene	ND	1.0	0.26	ug/l		
CAS No. Surrogate Recoveries		Run# 1	Run# 2 Limits		ts		
1868-53-7	868-53-7 Dibromofluoromethane		83-118%				
17060-07-0	1,2-Dichloroethane-D4	99%	79-125%				
2037-26-5	Toluene-D8	101%	85-112%				
460-00-4	4-Bromofluorobenzene	98%	83-118%				

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.2 Page 2 of 2

ω

//21 1

Date Received:	09/14/21
Percent Solids:	n/a

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		RNMW-1 FA88901-3 AQ - Ground Water SW846 8260D FPE; Edgefield, SC				Date Sampled:09/07/21Date Received:09/14/21Percent Solids:n/a				
Run #1 Run #2	File ID 2A37781		DF 1	Analyzed 09/20/21 14:47	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V2A1591		
Run #1 Run #2	Purge V 5.0 ml	olume								

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

ω

ယ ပ

15 of 68

E = Indicates value exceeds calibration range

Client Sample ID:	RNMW-1		
Lab Sample ID:	FA88901-3	Date Sampled:	09/07/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	2.0	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	100%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-12	25%	
2037-26-5	Toluene-D8	101%		85-1	12%	
460-00-4	4-Bromofluorobenzene	99%		83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ ပ

Client Sa Lab Samj Matrix: Method: Project:	ple ID: FA A(SV	SMMW-13 FA88901-4 AQ - Ground Water SW846 8260D FPE; Edgefield, SC			Date Sampled:09/07/21Date Received:09/14/21Percent Solids:n/a				
Run #1 Run #2	File ID 2A37783.I	DF D 1	Analyzed 09/20/21 15:17	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V2A1591		
Run #1 Run #2	Purge Vol 5.0 ml	ume							

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	0.55	1.0	0.34	ug/l	J
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	26.6	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.4

17 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	SMMW-13		
Lab Sample ID:	FA88901-4 Date San	npled:	09/07/21
Matrix:	AQ - Ground Water Date Rec	eived:	09/14/21
Method:	SW846 8260D Percent S	Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	1.3	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	100%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-12	25%	
2037-26-5	Toluene-D8	99%		85-11	2%	
460-00-4	4-Bromofluorobenzene	99%		83-11	8%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ယ

3.4

18 of 68

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		SMMW-11 FA88901-5 AQ - Ground Water SW846 8260D FPE; Edgefield, SC			Date Sampled:09/07/21Date Received:09/14/21Percent Solids:n/a				
Run #1 Run #2	File ID 2A37785	DI .D 1		Analyzed 09/20/21 15:47	By CV	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2A1591	
Run #1 Run #2	Purge Vo 5.0 ml	olume							

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	20.0	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

ω 5

ω

SGS 19 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	SMMW-11		
Lab Sample ID:	FA88901-5	Date Sampled:	09/07/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No. Compound Result RL MDL	Units	Q
74-83-9 Methyl Bromide ND 5.0 2.0	ug/l	
74-87-3 Methyl Chloride ND 2.0 0.50	ug/l	
108-87-2 Methylcyclohexane ND 1.0 0.44	ug/l	
75-09-2 Methylene Chloride ND 5.0 2.0	ug/l	
108-10-1 4-Methyl-2-pentanone (MIBK) ND 5.0 1.0	ug/l	
1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.23	ug/l	
100-42-5 Styrene ND 1.0 0.22	ug/l	
79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.30	ug/l	
127-18-4 Tetrachloroethylene ND 1.0 0.22	ug/l	
108-88-3 Toluene ND 1.0 0.30	ug/l	
87-61-6 1,2,3-Trichlorobenzene ND 2.0 0.61	ug/l	
120-82-1 1,2,4-Trichlorobenzene ND 2.0 0.50	ug/l	
71-55-6 1,1,1-Trichloroethane ND 1.0 0.25	ug/l	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.47	ug/l	
79-01-6 Trichloroethylene 7.3 1.0 0.35	ug/l	
75-69-4 Trichlorofluoromethane ND 2.0 0.50	ug/l	
75-01-4 Vinyl Chloride ND 1.0 0.41	ug/l	
m,p-Xylene ND 2.0 0.47	ug/l	
95-47-6 o-Xylene ND 1.0 0.26	ug/l	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limit	ts	
1868-53-7 Dibromofluoromethane 99% 83-11	8%	
17060-07-0 1,2-Dichloroethane-D4 98% 79-12	25%	
2037-26-5 Toluene-D8 101% 85-11	2%	
460-00-4 4-Bromofluorobenzene 98% 83-11	8%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

20 of 68 SGS

မ မ မ

ω

Page 2 of 2

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		SMMW-10 FA88901-6 AQ - Ground Water SW846 8260D FPE; Edgefield, SC			Date Sampled:09/07/21Date Received:09/14/21Percent Solids:n/a				
Run #1 Run #2	File ID 2A37787.	DF D 1	Analyzed 09/20/21 16:17	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V2A1591		
Run #1 Run #2	Purge V o 5.0 ml	olume							

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	0.47	1.0	0.30	ug/l	J
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	4.0	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.6

ω

21 of 68 SGS

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	SMMW-10		
Lab Sample ID:	FA88901-6	Date Sampled:	09/07/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

Compound	Result	RL	MDL	Units	Q
Methyl Bromide	ND	5.0	2.0	ug/l	
Methyl Chloride	ND	2.0	0.50	ug/l	
Methylcyclohexane	ND	1.0	0.44	ug/l	
Methylene Chloride	ND	5.0	2.0	ug/l	
4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
Styrene	ND	1.0	0.22	ug/l	
1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
Tetrachloroethylene	ND	1.0	0.22	ug/l	
Toluene	ND	1.0	0.30	ug/l	
1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
Trichloroethylene	1.2	1.0	0.35	ug/l	
Trichlorofluoromethane	ND	2.0	0.50	ug/l	
Vinyl Chloride	ND	1.0	0.41	ug/l	
m,p-Xylene	ND	2.0	0.47	ug/l	
o-Xylene	ND	1.0	0.26	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
Dibromofluoromethane	100%		83-1	18%	
1,2-Dichloroethane-D4	101%		79-12	25%	
Toluene-D8	100%		85-1	12%	
4-Bromofluorobenzene	99%		83-1	18%	
	Methyl Bromide Methyl Chloride Methylcyclohexane Methylene Chloride 4-Methyl-2-pentanone (MIBK) Methyl Tert Butyl Ether Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Vinyl Chloride m,p-Xylene o-Xylene Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Methyl BromideNDMethyl ChlorideNDMethylcyclohexaneNDMethylcyclohexaneNDMethylene ChlorideND4-Methyl-2-pentanone (MIBK)NDMethyl Tert Butyl EtherNDStyreneND1,1,2,2-TetrachloroethaneNDTolueneND1,2,3-TrichlorobenzeneND1,1,2-TrichlorobenzeneND1,1,1-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneNDYinyl ChlorideNDm,p-XyleneNDo-XyleneNDDibromofluoromethane100%1,2-Dichloroethane-D4101%Toluene-D8100%	Methyl BromideND5.0Methyl ChlorideND2.0Methyl ChlorideND1.0MethylcyclohexaneND1.0Methylene ChlorideND5.04-Methyl-2-pentanone (MIBK)ND5.04-Methyl Tert Butyl EtherND1.0StyreneND1.01,1,2,2-TetrachloroethaneND1.0TetrachloroethyleneND1.0TolueneND1.01,2,3-TrichlorobenzeneND2.01,1,1-TrichloroethaneND1.01,1,2-TrichloroethaneND1.0Trichloroethylene1.21.0TrichlorofluoromethaneND2.0Vinyl ChlorideND1.0m,p-XyleneND2.0o-XyleneND1.0Surrogate RecoveriesRun# 1Run# 2Dibromofluoromethane100%1,2-Dichloroethane-D4101%Toluene-D8100%	Methyl Bromide ND 5.0 2.0 Methyl Chloride ND 2.0 0.50 Methyl Chloride ND 1.0 0.44 Methylene Chloride ND 5.0 2.0 4-Methyl-2-pentanone (MIBK) ND 5.0 1.0 Methyl Tert Butyl Ether ND 1.0 0.23 Styrene ND 1.0 0.22 1,1,2,2-Tetrachloroethane ND 1.0 0.22 roluene ND 1.0 0.30 Tetrachloroethylene ND 1.0 0.30 1,2,3-Trichlorobenzene ND 2.0 0.61 1,2,4-Trichlorobenzene ND 1.0 0.25 1,1,1-Trichloroethane ND 1.0 0.47 Trichlorofluoromethane ND 1.0 0.47 Trichlorofluoromethane ND 1.0 0.47 Np-Xylene ND 2.0 0.50 Vinyl Chloride ND 1.0 0.41 m,p-Xylene	Methyl Bromide ND 5.0 2.0 ug/l Methyl Bromide ND 2.0 0.50 ug/l Methyl Chloride ND 1.0 0.44 ug/l Methylcyclohexane ND 1.0 0.44 ug/l Methylene Chloride ND 5.0 2.0 ug/l 4-Methyl-2-pentanone (MIBK) ND 5.0 1.0 ug/l Methyl Tert Butyl Ether ND 1.0 0.23 ug/l Styrene ND 1.0 0.22 ug/l 1,1,2,2-Tetrachloroethane ND 1.0 0.30 ug/l Tetrachloroethylene ND 1.0 0.30 ug/l 1,2,3-Trichlorobenzene ND 2.0 0.61 ug/l 1,2,4-Trichloroethane ND 1.0 0.25 ug/l 1,1,2-Trichloroethane ND 1.0 0.47 ug/l Trichloroethylene 1.2 1.0 0.35 ug/l Vinyl Chloride ND 1.0 </td

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ယ

3.6

22 of 68

Client San Lab Sam Matrix: Method: Project:	ple ID:	SMMW-3 FA88901-7 AQ - Ground Wa SW846 8260D FPE; Edgefield,			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	= -
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	I70989.E) 5	09/21/21 20:28	SO	n/a	n/a	VI2313
	Purge V	olume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	130	50	ug/l	
71-43-2	Benzene	ND	5.0	1.6	ug/l	
74-97-5	Bromochloromethane	ND	5.0	2.3	ug/l	
75-27-4	Bromodichloromethane	ND	5.0	1.2	ug/l	
75-25-2	Bromoform	ND	5.0	2.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	25	10	ug/l	
75-15-0	Carbon Disulfide ^a	ND	10	2.7	ug/l	
56-23-5	Carbon Tetrachloride	ND	5.0	1.8	ug/l	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/l	
75-00-3	Chloroethane	ND	10	3.3	ug/l	
67-66-3	Chloroform	ND	5.0	1.5	ug/l	
110-82-7	Cyclohexane	ND	5.0	2.0	ug/l	
124-48-1	Dibromochloromethane	ND	5.0	1.4	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	25	5.2	ug/l	
106-93-4	1,2-Dibromoethane	ND	10	1.4	ug/l	
75-71-8	Dichlorodifluoromethane	ND	10	2.5	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.6	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.3	ug/l	
75-34-3	1,1-Dichloroethane	ND	5.0	1.7	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	1.6	ug/l	
75-35-4	1,1-Dichloroethylene	2.0	5.0	1.6	ug/l	J
156-59-2	cis-1,2-Dichloroethylene	53.5	5.0	1.4	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.1	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	2.1	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.5	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.1	ug/l	
100-41-4	Ethylbenzene	ND	5.0	1.8	ug/l	
76-13-1	Freon 113	ND	5.0	2.4	ug/l	
591-78-6	2-Hexanone	ND	50	10	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	1.1	ug/l	
79-20-9	Methyl Acetate	ND	100	25	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.7

E = Indicates value exceeds calibration range

Client Sample ID:	SMMW-3	
Lab Sample ID:	FA88901-7 Date Sample	ed: 09/08/21
Matrix:	AQ - Ground Water Date Receive	ed: 09/14/21
Method:	SW846 8260D Percent Solid	ds: n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	25	10	ug/l	
74-87-3	Methyl Chloride	ND	10	2.5	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	2.2	ug/l	
75-09-2	Methylene Chloride	ND	25	10	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	1.1	ug/l	
100-42-5	Styrene	ND	5.0	1.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.5	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	5.0	1.1	ug/l	
108-88-3	Toluene	ND	5.0	1.5	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	10	3.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	10	2.5	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.2	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	2.3	ug/l	
79-01-6	Trichloroethylene	276	5.0	1.7	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	10	2.5	ug/l	
75-01-4	Vinyl Chloride	ND	5.0	2.0	ug/l	
	m,p-Xylene	ND	10	2.3	ug/l	
95-47-6	o-Xylene	ND	5.0	1.3	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	92%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	93%		83-1	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.7

Client Sa Lab Sam Matrix: Method: Project:	-	SW846				Da	ate Sampled: 0 ate Received: 0 ercent Solids: n	
Run #1 Run #2	File ID 170990.		DF 200	Analyzed 09/21/21 20:52	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2313
Run #1	Purge 5.0 ml	Volume						

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5000	2000	ug/l	
71-43-2	Benzene	ND	200	62	ug/l	
74-97-5	Bromochloromethane	ND	200	90	ug/l	
75-27-4	Bromodichloromethane	ND	200	48	ug/l	
75-25-2	Bromoform	ND	200	81	ug/l	
78-93-3	2-Butanone (MEK)	ND	1000	400	ug/l	
75-15-0	Carbon Disulfide ^a	ND	400	110	ug/l	
56-23-5	Carbon Tetrachloride	ND	200	71	ug/l	
108-90-7	Chlorobenzene	ND	200	40	ug/l	
75-00-3	Chloroethane	ND	400	130	ug/l	
67-66-3	Chloroform	ND	200	60	ug/l	
110-82-7	Cyclohexane	ND	200	78	ug/l	
124-48-1	Dibromochloromethane	ND	200	55	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1000	210	ug/l	
106-93-4	1,2-Dibromoethane	ND	400	55	ug/l	
75-71-8	Dichlorodifluoromethane	ND	400	100	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	200	65	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	200	43	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	200	51	ug/l	
75-34-3	1,1-Dichloroethane	ND	200	68	ug/l	
107-06-2	1,2-Dichloroethane	ND	200	62	ug/l	
75-35-4	1,1-Dichloroethylene	ND	200	64	ug/l	
156-59-2	cis-1,2-Dichloroethylene	2060	200	55	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	200	44	ug/l	
78-87-5	1,2-Dichloropropane	ND	200	85	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	200	58	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	200	43	ug/l	
100-41-4	Ethylbenzene	ND	200	71	ug/l	
76-13-1	Freon 113	ND	200	96	ug/l	
591-78-6	2-Hexanone	ND	2000	400	ug/l	
98-82-8	Isopropylbenzene	ND	200	44	ug/l	
79-20-9	Methyl Acetate	ND	4000	1000	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

ယ 8

25 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	SMMW-9		
Lab Sample ID:	FA88901-8	Date Sampled:	09/08/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	1000	400	ug/l	
74-87-3	Methyl Chloride	ND	400	100	ug/l	
108-87-2	Methylcyclohexane	ND	200	87	ug/l	
75-09-2	Methylene Chloride	456	1000	400	ug/l	J
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	1000	200	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	200	46	ug/l	
100-42-5	Styrene	ND	200	44	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	200	60	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	200	43	ug/l	
108-88-3	Toluene	ND	200	60	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	400	120	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	400	100	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	200	50	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	200	93	ug/l	
79-01-6	Trichloroethylene	13800	200	69	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	400	100	ug/l	
75-01-4	Vinyl Chloride	ND	200	82	ug/l	
	m,p-Xylene	ND	400	93	ug/l	
95-47-6	o-Xylene	ND	200	51	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	91%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	96%		79-12	25%	
2037-26-5	Toluene-D8	91%		85-1	12%	
460-00-4	4-Bromofluorobenzene	94%		83-1	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ 8

26 of 68

Client San Lab Samj Matrix: Method: Project:	-	SMMW-7 FA88901-9 AQ - Ground W SW846 8260D FPE; Edgefield,			D	ate Sampled: 09 ate Received: 09 ercent Solids: n/	= -
Run #1 Run #2	File ID 170991.	D D D	Analyzed 09/21/21 21:16	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2313
	Purge	Volume					

Run #2

n #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	5000	2000	ug/l	
71-43-2	Benzene	ND	200	62	ug/l	
74-97-5	Bromochloromethane	ND	200	90	ug/l	
75-27-4	Bromodichloromethane	ND	200	48	ug/l	
75-25-2	Bromoform	ND	200	81	ug/l	
78-93-3	2-Butanone (MEK)	ND	1000	400	ug/l	
75-15-0	Carbon Disulfide ^a	ND	400	110	ug/l	
56-23-5	Carbon Tetrachloride	ND	200	71	ug/l	
108-90-7	Chlorobenzene	ND	200	40	ug/l	
75-00-3	Chloroethane	ND	400	130	ug/l	
67-66-3	Chloroform	ND	200	60	ug/l	
110-82-7	Cyclohexane	ND	200	78	ug/l	
124-48-1	Dibromochloromethane	ND	200	55	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1000	210	ug/l	
106-93-4	1,2-Dibromoethane	ND	400	55	ug/l	
75-71-8	Dichlorodifluoromethane	ND	400	100	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	200	65	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	200	43	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	200	51	ug/l	
75-34-3	1,1-Dichloroethane	ND	200	68	ug/l	
107-06-2	1,2-Dichloroethane	ND	200	62	ug/l	
75-35-4	1,1-Dichloroethylene	ND	200	64	ug/l	
156-59-2	cis-1,2-Dichloroethylene	2180	200	55	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	200	44	ug/l	
78-87-5	1,2-Dichloropropane	ND	200	85	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	200	58	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	200	43	ug/l	
100-41-4	Ethylbenzene	ND	200	71	ug/l	
76-13-1	Freon 113	ND	200	96	ug/l	
591-78-6	2-Hexanone	ND	2000	400	ug/l	
98-82-8	Isopropylbenzene	ND	200	44	ug/l	
79-20-9	Methyl Acetate	ND	4000	1000	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

ა .9

27 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	SMMW-7		
Lab Sample ID:	FA88901-9	Date Sampled:	09/08/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	1000	400	ug/l	
74-87-3	Methyl Chloride	ND	400	100	ug/l	
108-87-2	Methylcyclohexane	ND	200	87	ug/l	
75-09-2	Methylene Chloride	ND	1000	400	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	1000	200	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	200	46	ug/l	
100-42-5	Styrene	ND	200	44	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	200	60	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	200	43	ug/l	
108-88-3	Toluene	ND	200	60	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	400	120	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	400	100	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	200	50	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	200	93	ug/l	
79-01-6	Trichloroethylene	10100	200	69	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	400	100	ug/l	
75-01-4	Vinyl Chloride	ND	200	82	ug/l	
	m,p-Xylene	ND	400	93	ug/l	
95-47-6	o-Xylene	ND	200	51	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	92%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-11	2%	
460-00-4	4-Bromofluorobenzene	94%		83-11	8%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

ა .9

Client San Lab Samp Matrix: Method: Project:	ole ID: F A S	MMW-12 A88901-10 Q - Ground Wa W846 8260D PE; Edgefield,			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	
Run #1	File ID 170992.D	DF 25	Analyzed 09/21/21 21:40	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2313
Run #2 Run #1	Purge Vo 5.0 ml	lume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	630	250	ug/l	
71-43-2	Benzene	ND	25	7.8	ug/l	
74-97-5	Bromochloromethane	ND	25	11	ug/l	
75-27-4	Bromodichloromethane	ND	25	6.1	ug/l	
75-25-2	Bromoform	ND	25	10	ug/l	
78-93-3	2-Butanone (MEK)	ND	130	50	ug/l	
75-15-0	Carbon Disulfide ^a	ND	50	13	ug/l	
56-23-5	Carbon Tetrachloride	ND	25	8.9	ug/l	
108-90-7	Chlorobenzene	ND	25	5.0	ug/l	
75-00-3	Chloroethane	ND	50	17	ug/l	
67-66-3	Chloroform	ND	25	7.5	ug/l	
110-82-7	Cyclohexane	ND	25	9.8	ug/l	
124-48-1	Dibromochloromethane	ND	25	6.9	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	130	26	ug/l	
106-93-4	1,2-Dibromoethane	ND	50	6.9	ug/l	
75-71-8	Dichlorodifluoromethane	ND	50	13	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	25	8.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	25	5.4	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	25	6.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	25	8.5	ug/l	
107-06-2	1,2-Dichloroethane	ND	25	7.8	ug/l	
75-35-4	1,1-Dichloroethylene	ND	25	8.1	ug/l	
156-59-2	cis-1,2-Dichloroethylene	216	25	6.9	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	25	5.5	ug/l	
78-87-5	1,2-Dichloropropane	ND	25	11	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	25	7.3	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	25	5.4	ug/l	
100-41-4	Ethylbenzene	ND	25	8.9	ug/l	
76-13-1	Freon 113	ND	25	12	ug/l	
591-78-6	2-Hexanone	ND	250	50	ug/l	
98-82-8	Isopropylbenzene	ND	25	5.5	ug/l	
79-20-9	Methyl Acetate	ND	500	130	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

29 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

	Report of finalysis	
SMMW-12		

Client Sample ID:	SMMW-12		
Lab Sample ID:	FA88901-10	Date Sampled:	09/08/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	130	50	ug/l	
74-87-3	Methyl Chloride	ND	50	13	ug/l	
108-87-2	Methylcyclohexane	ND	25	11	ug/l	
75-09-2	Methylene Chloride	ND	130	50	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	130	25	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	25	5.7	ug/l	
100-42-5	Styrene	ND	25	5.6	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	7.5	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	25	5.4	ug/l	
108-88-3	Toluene	ND	25	7.5	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	50	15	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	50	13	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	25	6.2	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	25	12	ug/l	
79-01-6	Trichloroethylene	2240	25	8.6	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	50	13	ug/l	
75-01-4	Vinyl Chloride	ND	25	10	ug/l	
	m,p-Xylene	ND	50	12	ug/l	
95-47-6	o-Xylene	ND	25	6.4	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	S	
1868-53-7	Dibromofluoromethane	92%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-12	5%	
2037-26-5	Toluene-D8	93%		85-11	2%	
460-00-4	4-Bromofluorobenzene	93%		83-11	8%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

Page 2 of 2

Client San Lab Samj Matrix: Method: Project:	ple ID: F A S	SMMW-2 FA88901-11 AQ - Ground Wa SW846 8260D FPE; Edgefield,			D	ate Sampled: ate Received: ercent Solids:	
Run #1 Run #2	File ID 170993.D	DF 10	Analyzed 09/21/21 22:04	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2313
Run #1	Purge Vo 5.0 ml	blume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	250	100	ug/l	
71-43-2	Benzene	ND	10	3.1	ug/l	
74-97-5	Bromochloromethane	ND	10	4.5	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.4	ug/l	
75-25-2	Bromoform	ND	10	4.1	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	20	ug/l	
75-15-0	Carbon Disulfide ^a	ND	20	5.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	10	3.6	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	20	6.7	ug/l	
67-66-3	Chloroform	ND	10	3.0	ug/l	
110-82-7	Cyclohexane	ND	10	3.9	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.8	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	50	10	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	2.8	ug/l	
75-71-8	Dichlorodifluoromethane	ND	20	5.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	10	3.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	10	2.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	2.6	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	3.4	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	3.1	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	3.2	ug/l	
156-59-2	cis-1,2-Dichloroethylene	28.2	10	2.8	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.2	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	4.3	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.9	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	2.1	ug/l	
100-41-4	Ethylbenzene	ND	10	3.6	ug/l	
76-13-1	Freon 113	ND	10	4.8	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
98-82-8	Isopropylbenzene	ND	10	2.2	ug/l	
79-20-9	Methyl Acetate	ND	200	50	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

31 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Matrix:AQ - Ground WaterDate Received:09/14/21Method:SW846 8260DPercent Solids:n/a	Client Sample ID:	SMMW-2	
Method: SW846 8260D Percent Solids: n/a	Lab Sample ID:	FA88901-11 Date Sampled	09/08/21
	Matrix:	AQ - Ground Water Date Received	: 09/14/21
	Method:	SW846 8260D Percent Solids	n/a
Project: FPE; Edgeneid, SC	Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	50	20	ug/l	
74-87-3	Methyl Chloride	ND	20	5.0	ug/l	
108-87-2	Methylcyclohexane	ND	10	4.4	ug/l	
75-09-2	Methylene Chloride	ND	50	20	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	50	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.3	ug/l	
100-42-5	Styrene	ND	10	2.2	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	3.0	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	10	2.2	ug/l	
108-88-3	Toluene	ND	10	3.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	6.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.5	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	4.7	ug/l	
79-01-6	Trichloroethylene	629	10	3.5	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	20	5.0	ug/l	
75-01-4	Vinyl Chloride	ND	10	4.1	ug/l	
	m,p-Xylene	ND	20	4.7	ug/l	
95-47-6	o-Xylene	ND	10	2.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	92%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	92%		83-1	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

32 of 68

Client San Lab Samj Matrix: Method: Project:	ple ID: FA8 AQ SW	4W-1A 38901-12 - Ground Wa 846 8260D 5; Edgefield,			Da	ate Sampled: 0 ate Received: 0 ercent Solids: n	,, = ., = -
Due #1	File ID 170994.D	DF	Analyzed 09/21/21 22:29	By	Prep Date	Prep Batch	Analytical Batch VI2313
Run #1 Run #2	170994.D	10	09/21/21 22:29	30	n/a	n/a	V12513
	Purge Volu	me					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	250	100	ug/l	
71-43-2	Benzene	ND	10	3.1	ug/l	
74-97-5	Bromochloromethane	ND	10	4.5	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.4	ug/l	
75-25-2	Bromoform	ND	10	4.1	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	20	ug/l	
75-15-0	Carbon Disulfide ^a	ND	20	5.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	10	3.6	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	20	6.7	ug/l	
67-66-3	Chloroform	ND	10	3.0	ug/l	
110-82-7	Cyclohexane	ND	10	3.9	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.8	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	50	10	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	2.8	ug/l	
75-71-8	Dichlorodifluoromethane	ND	20	5.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	10	3.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	10	2.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	2.6	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	3.4	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	3.1	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	3.2	ug/l	
156-59-2	cis-1,2-Dichloroethylene	20.3	10	2.8	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.2	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	4.3	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.9	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	2.1	ug/l	
100-41-4	Ethylbenzene	ND	10	3.6	ug/l	
76-13-1	Freon 113	ND	10	4.8	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
98-82-8	Isopropylbenzene	ND	10	2.2	ug/l	
79-20-9	Methyl Acetate	ND	200	50	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

33 of 68

E = Indicates value exceeds calibration range

Client Sample ID:	SFMW-1A		
Lab Sample ID:	FA88901-12	Date Sampled:	09/08/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	50	20	ug/l	
74-87-3	Methyl Chloride	ND	20	5.0	ug/l	
108-87-2	Methylcyclohexane	ND	10	4.4	ug/l	
75-09-2	Methylene Chloride	ND	50	20	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	50	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.3	ug/l	
100-42-5	Styrene	ND	10	2.2	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	3.0	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	10	2.2	ug/l	
108-88-3	Toluene	ND	10	3.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	6.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.5	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	4.7	ug/l	
79-01-6	Trichloroethylene	474	10	3.5	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	20	5.0	ug/l	
75-01-4	Vinyl Chloride	ND	10	4.1	ug/l	
	m,p-Xylene	ND	20	4.7	ug/l	
95-47-6	o-Xylene	ND	10	2.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	96%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	93%		83-1	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.12

Client San Lab Samı Matrix: Method: Project:	ple ID: 1	5MMW-5 FA88901-13 AQ - Ground Wa 5W846 8260D FPE; Edgefield,			D	ate Sampled: (ate Received: (ercent Solids: 1	
Run #1 Run #2	File ID 170995.D	DF 2.5	Analyzed 09/21/21 22:53	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2313
Run #1	Purge Vo 5.0 ml	olume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	63	25	ug/l	
71-43-2	Benzene	ND	2.5	0.78	ug/l	
74-97-5	Bromochloromethane	ND	2.5	1.1	ug/l	
75-27-4	Bromodichloromethane	ND	2.5	0.61	ug/l	
75-25-2	Bromoform	ND	2.5	1.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	13	5.0	ug/l	
75-15-0	Carbon Disulfide ^a	ND	5.0	1.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	2.5	0.89	ug/l	
108-90-7	Chlorobenzene	ND	2.5	0.50	ug/l	
75-00-3	Chloroethane	ND	5.0	1.7	ug/l	
67-66-3	Chloroform	ND	2.5	0.75	ug/l	
110-82-7	Cyclohexane	ND	2.5	0.98	ug/l	
124-48-1	Dibromochloromethane	ND	2.5	0.69	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	13	2.6	ug/l	
106-93-4	1,2-Dibromoethane	ND	5.0	0.69	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.3	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.81	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.64	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.5	0.85	ug/l	
107-06-2	1,2-Dichloroethane	ND	2.5	0.78	ug/l	
75-35-4	1,1-Dichloroethylene	ND	2.5	0.81	ug/l	
156-59-2	cis-1,2-Dichloroethylene	60.9	2.5	0.69	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	2.5	0.55	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.5	1.1	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.5	0.73	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	0.54	ug/l	
100-41-4	Ethylbenzene	ND	2.5	0.89	ug/l	
76-13-1	Freon 113	ND	2.5	1.2	ug/l	
591-78-6	2-Hexanone	ND	25	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	2.5	0.55	ug/l	
79-20-9	Methyl Acetate	ND	50	13	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

35 of 68

E = Indicates value exceeds calibration range

Client Sample ID:	SMMW-5		
Lab Sample ID:	FA88901-13	Date Sampled:	09/08/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	13	5.0	ug/l	
74-87-3	Methyl Chloride	ND	5.0	1.3	ug/l	
108-87-2	Methylcyclohexane	ND	2.5	1.1	ug/l	
75-09-2	Methylene Chloride	ND	13	5.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	13	2.5	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	2.5	0.57	ug/l	
100-42-5	Styrene	ND	2.5	0.56	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	0.75	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	2.5	0.54	ug/l	
108-88-3	Toluene	ND	2.5	0.75	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.5	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.3	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.62	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.5	1.2	ug/l	
79-01-6	Trichloroethylene	187	2.5	0.86	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	5.0	1.3	ug/l	
75-01-4	Vinyl Chloride	ND	2.5	1.0	ug/l	
	m,p-Xylene	ND	5.0	1.2	ug/l	
95-47-6	o-Xylene	ND	2.5	0.64	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-12	25%	
2037-26-5	Toluene-D8	91%		85-11	12%	
460-00-4	4-Bromofluorobenzene	94%		83-11	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

3.13

36 of 68

Client San Lab Samp Matrix: Method: Project:	ple ID:	SMMW-4 FA88901-14 AQ - Ground Wa SW846 8260D FPE; Edgefield, S			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	
Run #1 Run #2	File ID I71016.I	DF D 50	Analyzed 09/22/21 12:07	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2314
Run #1	Purge V 5.0 ml	olume					

Run #2

VOA TCL List (SOM02.0)

CAS No. Compound Result RL MDL Units 67-64-1 Acetone ND 1300 500 ug/l 71-43-2 Benzene ND 50 16 ug/l 74-97-5 Bromochloromethane ND 50 23 ug/l 75-27-4 50 Bromodichloromethane ND 12 ug/l 75-25-2 Bromoform 50 20 ND ug/l 250 78-93-3 2-Butanone (MEK) ND 100 ug/l 75-15-0 Carbon Disulfide ND 100 27 ug/l 56-23-5 Carbon Tetrachloride ND 50 18 ug/l 108-90-7 Chlorobenzene ND 50 10 ug/l ug/l 75-00-3 Chloroethane ND 100 33 50 67-66-3 Chloroform ND 15 ug/l 110-82-7 50 20 Cyclohexane ND ug/l 124-48-1 Dibromochloromethane ND 50 14 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 250 52 ug/l 106-93-4 1,2-Dibromoethane ND 100 14 ug/l 75-71-8 Dichlorodifluoromethane ND 100 25 ug/l 95-50-1 1,2-Dichlorobenzene ND 50 16 ug/l 541-73-1 1.3-Dichlorobenzene ND 50 11 ug/l 50 106-46-7 1,4-Dichlorobenzene ND 13 ug/l 75-34-3 1.1-Dichloroethane ND 50 17 ug/l 107-06-2 1,2-Dichloroethane ND 50 16 ug/l 75-35-4 1,1-Dichloroethylene ND 50 16 ug/l 156-59-2 cis-1,2-Dichloroethylene 442 50 14 ug/l 156-60-5 trans-1,2-Dichloroethylene ND 50 11 ug/l 78-87-5 1,2-Dichloropropane ND 50 21 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 50 15 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 50 11 ug/l 100-41-4 Ethylbenzene ND 50 18 ug/l 76-13-1 Freon 113 ND 50 24 ug/l 500 591-78-6 2-Hexanone ND 100 ug/l 98-82-8 Isopropylbenzene ND 50 11 ug/l 79-20-9 250 Methyl Acetate ND 1000 ug/l

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $J = \ Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

0

37 of 68

E = Indicates value exceeds calibration range

Client Sample ID:	SMMW-4	
Lab Sample ID:	FA88901-14 Date Sampled:	09/09/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	250	100	ug/l	
74-87-3	Methyl Chloride	ND	100	25	ug/l	
108-87-2	Methylcyclohexane	ND	50	22	ug/l	
75-09-2	Methylene Chloride	ND	250	100	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	250	50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	50	11	ug/l	
100-42-5	Styrene	ND	50	11	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	50	15	ug/l	
127-18-4	Tetrachloroethylene	ND	50	11	ug/l	
108-88-3	Toluene	ND	50	15	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	100	31	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	100	25	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	50	12	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	50	23	ug/l	
79-01-6	Trichloroethylene	3700	50	17	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	100	25	ug/l	
75-01-4	Vinyl Chloride	ND	50	20	ug/l	
	m,p-Xylene	ND	100	23	ug/l	
95-47-6	o-Xylene	ND	50	13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	91%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	93%		83-1	18%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.14

Lab Sam Matrix: Method: Project:	A S	A88901-15 .Q - Ground Wa W846 8260D PE; Edgefield,			Da	nte Sampled: 09 nte Received: 09 rcent Solids: n/	,
Run #1 Run #2	File ID I71039.D	DF 50	Analyzed 09/23/21 10:07	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2316
	Purge Vo	lume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	1300	500	ug/l	
71-43-2	Benzene	ND	50	16	ug/l	
74-97-5	Bromochloromethane	ND	50	23	ug/l	
75-27-4	Bromodichloromethane	ND	50	12	ug/l	
75-25-2	Bromoform	ND	50	20	ug/l	
78-93-3	2-Butanone (MEK)	ND	250	100	ug/l	
75-15-0	Carbon Disulfide	ND	100	27	ug/l	
56-23-5	Carbon Tetrachloride	ND	50	18	ug/l	
108-90-7	Chlorobenzene	ND	50	10	ug/l	
75-00-3	Chloroethane	ND	100	33	ug/l	
67-66-3	Chloroform	ND	50	15	ug/l	
110-82-7	Cyclohexane	ND	50	20	ug/l	
124-48-1	Dibromochloromethane	ND	50	14	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	250	52	ug/l	
106-93-4	1,2-Dibromoethane	ND	100	14	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	100	25	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	50	16	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	50	11	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	50	13	ug/l	
75-34-3	1,1-Dichloroethane	ND	50	17	ug/l	
107-06-2	1,2-Dichloroethane	ND	50	16	ug/l	
75-35-4	1,1-Dichloroethylene	ND	50	16	ug/l	
156-59-2	cis-1,2-Dichloroethylene	488	50	14	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	50	11	ug/l	
78-87-5	1,2-Dichloropropane	ND	50	21	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	50	15	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	50	11	ug/l	
100-41-4	Ethylbenzene	ND	50	18	ug/l	
76-13-1	Freon 113	ND	50	24	ug/l	
591-78-6	2-Hexanone	ND	500	100	ug/l	
98-82-8	Isopropylbenzene	ND	50	11	ug/l	
79-20-9	Methyl Acetate	ND	1000	250	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	DUP-2	
Lab Sample ID:	FA88901-15 Date Sampled:	09/09/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	250	100	ug/l	
74-87-3	Methyl Chloride	ND	100	25	ug/l	
108-87-2	Methylcyclohexane	ND	50	22	ug/l	
75-09-2	Methylene Chloride	ND	250	100	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	250	50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	50	11	ug/l	
100-42-5	Styrene	ND	50	11	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	50	15	ug/l	
127-18-4	Tetrachloroethylene	ND	50	11	ug/l	
108-88-3	Toluene	ND	50	15	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	100	31	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	100	25	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	50	12	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	50	23	ug/l	
79-01-6	Trichloroethylene	3940	50	17	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	100	25	ug/l	
75-01-4	Vinyl Chloride	ND	50	20	ug/l	
	m,p-Xylene	ND	100	23	ug/l	
95-47-6	o-Xylene	ND	50	13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	92%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-1	25%	
2037-26-5	Toluene-D8	91%		85-1	12%	
460-00-4	4-Bromofluorobenzene	93%		83-1	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV and ECC outside DOD QSM control limits high.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

Page 2 of 2

40 of 68

Lab Sam Matrix: Method: Project:	ple ID: FA A(SV	4MW-6 A88901-16 Q - Ground Wa V846 8260D PE; Edgefield,			Da	ate Sampled: 0 ate Received: 0 rcent Solids: n	,, = ., = =
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	I71018.D	25	09/22/21 12:55	SO	n/a	n/a	VI2314
	Purge Vol	ume					

Run #1

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	630	250	ug/l	
71-43-2	Benzene	ND	25	7.8	ug/l	
74-97-5	Bromochloromethane	ND	25	11	ug/l	
75-27-4	Bromodichloromethane	ND	25	6.1	ug/l	
75-25-2	Bromoform	ND	25	10	ug/l	
78-93-3	2-Butanone (MEK)	ND	130	50	ug/l	
75-15-0	Carbon Disulfide	ND	50	13	ug/l	
56-23-5	Carbon Tetrachloride	ND	25	8.9	ug/l	
108-90-7	Chlorobenzene	ND	25	5.0	ug/l	
75-00-3	Chloroethane	ND	50	17	ug/l	
67-66-3	Chloroform	ND	25	7.5	ug/l	
110-82-7	Cyclohexane	ND	25	9.8	ug/l	
124-48-1	Dibromochloromethane	ND	25	6.9	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	130	26	ug/l	
106-93-4	1,2-Dibromoethane	ND	50	6.9	ug/l	
75-71-8	Dichlorodifluoromethane	ND	50	13	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	25	8.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	25	5.4	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	25	6.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	25	8.5	ug/l	
107-06-2	1,2-Dichloroethane	ND	25	7.8	ug/l	
75-35-4	1,1-Dichloroethylene	ND	25	8.1	ug/l	
156-59-2	cis-1,2-Dichloroethylene	69.0	25	6.9	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	25	5.5	ug/l	
78-87-5	1,2-Dichloropropane	ND	25	11	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	25	7.3	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	25	5.4	ug/l	
100-41-4	Ethylbenzene	ND	25	8.9	ug/l	
76-13-1	Freon 113	ND	25	12	ug/l	
591-78-6	2-Hexanone	ND	250	50	ug/l	
98-82-8	Isopropylbenzene	ND	25	5.5	ug/l	
79-20-9	Methyl Acetate	ND	500	130	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

3.16

ω

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: SM	MMW-6		
Lab Sample ID: FA	A88901-16	Date Sampled:	09/09/21
Matrix: A(Q - Ground Water	Date Received:	09/14/21
Method: SW	W846 8260D	Percent Solids:	n/a
Project: FP	PE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	130	50	ug/l	
74-87-3	Methyl Chloride	ND	50	13	ug/l	
108-87-2	Methylcyclohexane	ND	25	11	ug/l	
75-09-2	Methylene Chloride	61.9	130	50	ug/l	J
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	130	25	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	25	5.7	ug/l	
100-42-5	Styrene	ND	25	5.6	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	7.5	ug/l	
127-18-4	Tetrachloroethylene	ND	25	5.4	ug/l	
108-88-3	Toluene	ND	25	7.5	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	50	15	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	50	13	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	25	6.2	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	25	12	ug/l	
79-01-6	Trichloroethylene	1470	25	8.6	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	50	13	ug/l	
75-01-4	Vinyl Chloride	ND	25	10	ug/l	
	m,p-Xylene	ND	50	12	ug/l	
95-47-6	o-Xylene	ND	25	6.4	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7	Dibromofluoromethane	93%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	.5%	
2037-26-5	Toluene-D8	91%		85-11	2%	
460-00-4	4-Bromofluorobenzene	92%		83-11	8%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.16

Lab Sam Matrix: Method: Project:	ple ID: FA8 AQ SW	MW-8 38901-17 - Ground Wa 846 8260D 5; Edgefield,			Da	ate Sampled: 0 ate Received: 0 ercent Solids: n	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	I71019.D	2	09/22/21 13:19	SO	n/a	n/a	VI2314
	Purge Volu	me					
Run #1	5.0 ml						

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	20	ug/l	
71-43-2	Benzene	ND	2.0	0.62	ug/l	
74-97-5	Bromochloromethane	ND	2.0	0.90	ug/l	
75-27-4	Bromodichloromethane	ND	2.0	0.48	ug/l	
75-25-2	Bromoform	ND	2.0	0.81	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.0	ug/l	
75-15-0	Carbon Disulfide	ND	4.0	1.1	ug/l	
56-23-5	Carbon Tetrachloride	ND	2.0	0.71	ug/l	
108-90-7	Chlorobenzene	ND	2.0	0.40	ug/l	
75-00-3	Chloroethane	ND	4.0	1.3	ug/l	
67-66-3	Chloroform	5.6	2.0	0.60	ug/l	
110-82-7	Cyclohexane	ND	2.0	0.78	ug/l	
124-48-1	Dibromochloromethane	ND	2.0	0.55	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	2.1	ug/l	
106-93-4	1,2-Dibromoethane	ND	4.0	0.55	ug/l	
75-71-8	Dichlorodifluoromethane	ND	4.0	1.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	2.0	0.65	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.0	0.43	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.0	0.51	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	ND	2.0	0.62	ug/l	
75-35-4	1,1-Dichloroethylene	ND	2.0	0.64	ug/l	
156-59-2	cis-1,2-Dichloroethylene	9.3	2.0	0.55	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	2.0	0.44	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.85	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.58	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	2.0	0.71	ug/l	
76-13-1	Freon 113	ND	2.0	0.96	ug/l	
591-78-6	2-Hexanone	ND	20	4.0	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.44	ug/l	
79-20-9	Methyl Acetate	ND	40	10	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	SMMW-8		
Lab Sample ID:	FA88901-17	Date Sampled:	09/09/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	10	4.0	ug/l	
74-87-3	Methyl Chloride	ND	4.0	1.0	ug/l	
108-87-2	Methylcyclohexane	ND	2.0	0.87	ug/l	
75-09-2	Methylene Chloride	4.8	10	4.0	ug/l	J
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	2.0	0.46	ug/l	
100-42-5	Styrene	ND	2.0	0.44	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.60	ug/l	
127-18-4	Tetrachloroethylene	0.44	2.0	0.43	ug/l	J
108-88-3	Toluene	ND	2.0	0.60	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	4.0	1.2	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	4.0	1.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.50	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.93	ug/l	
79-01-6	Trichloroethylene	122	2.0	0.69	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	4.0	1.0	ug/l	
75-01-4	Vinyl Chloride	ND	2.0	0.82	ug/l	
	m,p-Xylene	ND	4.0	0.93	ug/l	
95-47-6	o-Xylene	ND	2.0	0.51	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	92%		83-1	18%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.17

ω

Client San Lab Samj Matrix: Method: Project:	ple ID: F A S	2SF A88901-18 Q - Ground Wa W846 8260D PE; Edgefield, S			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	= -
Run #1 Run #2	File ID I71020.D	DF 2.5	Analyzed 09/22/21 13:43	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2314
Run #1	Purge Vo 5.0 ml	lume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	63	25	ug/l	
71-43-2	Benzene	ND	2.5	0.78	ug/l	
74-97-5	Bromochloromethane	ND	2.5	1.1	ug/l	
75-27-4	Bromodichloromethane	ND	2.5	0.61	ug/l	
75-25-2	Bromoform	ND	2.5	1.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	13	5.0	ug/l	
75-15-0	Carbon Disulfide	ND	5.0	1.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	2.5	0.89	ug/l	
108-90-7	Chlorobenzene	ND	2.5	0.50	ug/l	
75-00-3	Chloroethane	ND	5.0	1.7	ug/l	
67-66-3	Chloroform	8.7	2.5	0.75	ug/l	
110-82-7	Cyclohexane	ND	2.5	0.98	ug/l	
124-48-1	Dibromochloromethane	ND	2.5	0.69	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	13	2.6	ug/l	
106-93-4	1,2-Dibromoethane	ND	5.0	0.69	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.3	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.81	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.64	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.5	0.85	ug/l	
107-06-2	1,2-Dichloroethane	ND	2.5	0.78	ug/l	
75-35-4	1,1-Dichloroethylene	1.9	2.5	0.81	ug/l	J
156-59-2	cis-1,2-Dichloroethylene	21.2	2.5	0.69	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	2.5	0.55	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.5	1.1	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.5	0.73	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	0.54	ug/l	
100-41-4	Ethylbenzene	ND	2.5	0.89	ug/l	
76-13-1	Freon 113	ND	2.5	1.2	ug/l	
591-78-6	2-Hexanone	ND	25	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	2.5	0.55	ug/l	
79-20-9	Methyl Acetate	ND	50	13	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	B2SF		
Lab Sample ID:	FA88901-18	Date Sampled:	09/09/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		
	-		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	13	5.0	ug/l	
74-87-3	Methyl Chloride	ND	5.0	1.3	ug/l	
108-87-2	Methylcyclohexane	ND	2.5	1.1	ug/l	
75-09-2	Methylene Chloride	22.4	13	5.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	13	2.5	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	2.5	0.57	ug/l	
100-42-5	Styrene	ND	2.5	0.56	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	0.75	ug/l	
127-18-4	Tetrachloroethylene	0.80	2.5	0.54	ug/l	J
108-88-3	Toluene	ND	2.5	0.75	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.5	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.3	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.62	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.5	1.2	ug/l	
79-01-6	Trichloroethylene	192	2.5	0.86	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	5.0	1.3	ug/l	
75-01-4	Vinyl Chloride	ND	2.5	1.0	ug/l	
	m,p-Xylene	ND	5.0	1.2	ug/l	
95-47-6	o-Xylene	ND	2.5	0.64	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	91%		85-1	12%	
460-00-4	4-Bromofluorobenzene	93%		83-12	18%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

3.18

Client San Lab Samı Matrix: Method: Project:	ole ID: FA A SV	LSF 488901-19 Q - Ground Wa W846 8260D PE; Edgefield, S			Da	nte Sampled: 09 nte Received: 09 rcent Solids: n/	
Run #1 Run #2	File ID I71021.D	DF 100	Analyzed 09/22/21 14:07	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2314
Run #1	Purge Vol 5.0 ml	ume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	2500	1000	ug/l	
71-43-2	Benzene	ND	100	31	ug/l	
74-97-5	Bromochloromethane	ND	100	45	ug/l	
75-27-4	Bromodichloromethane	ND	100	24	ug/l	
75-25-2	Bromoform	ND	100	41	ug/l	
78-93-3	2-Butanone (MEK)	ND	500	200	ug/l	
75-15-0	Carbon Disulfide	ND	200	53	ug/l	
56-23-5	Carbon Tetrachloride	ND	100	36	ug/l	
108-90-7	Chlorobenzene	ND	100	20	ug/l	
75-00-3	Chloroethane	ND	200	67	ug/l	
67-66-3	Chloroform	ND	100	30	ug/l	
110-82-7	Cyclohexane	ND	100	39	ug/l	
124-48-1	Dibromochloromethane	ND	100	28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	500	100	ug/l	
106-93-4	1,2-Dibromoethane	ND	200	28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	200	50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	100	32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	100	22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	100	26	ug/l	
75-34-3	1,1-Dichloroethane	ND	100	34	ug/l	
107-06-2	1,2-Dichloroethane	ND	100	31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	100	32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	773	100	28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	100	22	ug/l	
78-87-5	1,2-Dichloropropane	ND	100	43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	100	29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	100	21	ug/l	
100-41-4	Ethylbenzene	ND	100	36	ug/l	
76-13-1	Freon 113	ND	100	48	ug/l	
591-78-6	2-Hexanone	ND	1000	200	ug/l	
98-82-8	Isopropylbenzene	ND	100	22	ug/l	
79-20-9	Methyl Acetate	ND	2000	500	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	B1SF		
Lab Sample ID:	FA88901-19	Date Sampled:	09/09/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

Compound	Result	RL	MDL	Units	Q
Methyl Bromide ^a	ND	500	200	ug/l	
Methyl Chloride	ND	200	50	-	
Methylcyclohexane	ND	100	44	-	
Methylene Chloride	209	500	200	ug/l	J
4-Methyl-2-pentanone (MIBK)	ND	500	100	ug/l	
Methyl Tert Butyl Ether	ND	100	23	ug/l	
Styrene	ND	100	22	ug/l	
1,1,2,2-Tetrachloroethane	ND	100	30	ug/l	
Tetrachloroethylene	ND	100	22	ug/l	
Toluene	ND	100	30	ug/l	
1,2,3-Trichlorobenzene	ND	200	61	ug/l	
1,2,4-Trichlorobenzene	ND	200	50	ug/l	
1,1,1-Trichloroethane	ND	100	25	ug/l	
1,1,2-Trichloroethane	ND	100	47	ug/l	
Trichloroethylene	5710	100	35	ug/l	
Trichlorofluoromethane ^a	ND	200	50	ug/l	
Vinyl Chloride	ND	100	41	ug/l	
m,p-Xylene	ND	200	47	ug/l	
o-Xylene	ND	100	26	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
Dibromofluoromethane	93%		83-1	18%	
1,2-Dichloroethane-D4	97%		79-12	25%	
Toluene-D8	91%		85-1	12%	
4-Bromofluorobenzene	91%		83-1	18%	
	Methyl Bromide ^a Methyl Chloride Methylcyclohexane Methylene Chloride 4-Methyl-2-pentanone (MIBK) Methyl Tert Butyl Ether Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane ^a Vinyl Chloride m,p-Xylene o-Xylene Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Methyl Bromide aNDMethyl ChlorideNDMethyl ChlorideNDMethylcyclohexaneNDMethylene Chloride2094-Methyl-2-pentanone (MIBK)NDMethyl Tert Butyl EtherNDStyreneND1,1,2,2-TetrachloroethaneNDTolueneND1,2,3-TrichlorobenzeneND1,2,4-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneNDYinyl ChlorideNDm,p-XyleneNDo-XyleneNDDibromofluoromethane93%1,2-Dichloroethane-D497%Yoluene-D891%	Methyl Bromide ^a ND 500 Methyl Chloride ND 200 Methyl Chloride ND 100 Methylcyclohexane ND 100 Methylene Chloride 209 500 4-Methyl-2-pentanone (MIBK) ND 500 Methyl Tert Butyl Ether ND 100 Styrene ND 100 1,1,2,2-Tetrachloroethane ND 100 Tetrachloroethylene ND 100 1,2,3-Trichlorobenzene ND 200 1,2,4-Trichlorobenzene ND 100 1,1,2-Trichloroethane ND 100 1,1,2-Trichloroethane ND 100 1,1,2-Trichloroethane ND 100 Trichlorofluoromethane ^a ND 200 Vinyl Chloride ND 100 m,p-Xylene ND 200 o-Xylene ND 200 o-Xylene ND 100 Surrogate Recoveries Rum#1 Rum#2 Dibromofluoromethane 93% 1,2-Dichloroethane-D4 91%	Methyl Bromide ^a ND 500 200 Methyl Chloride ND 200 50 Methyl Chloride ND 100 44 Methylene Chloride 209 500 200 4-Methyl-2-pentanone (MIBK) ND 500 100 Methyl Tert Butyl Ether ND 100 23 Styrene ND 100 22 1,1,2,2-Tetrachloroethane ND 100 22 Toluene ND 100 30 1,2,3-Trichlorobenzene ND 200 61 1,2,4-Trichlorobenzene ND 100 25 1,1,2-Trichloroethane ND 100 25 1,1,2-Trichloroethane ND 100 47 Trichlorofluoromethane ^a ND 200 50 Vinyl Chloride ND 100 41 m,p-Xylene ND 200 50 Vinyl Chloride ND 100 41 m,p-Xylene ND	Methyl Bromide ^a ND 500 200 ug/l Methyl Chloride ND 200 50 ug/l Methyl Chloride ND 100 44 ug/l Methylcyclohexane ND 100 44 ug/l Methylene Chloride 209 500 200 ug/l 4-Methyl-2-pentanone (MIBK) ND 500 100 ug/l Methyl Tert Butyl Ether ND 100 23 ug/l Styrene ND 100 22 ug/l 1,1,2,2-Tetrachloroethane ND 100 22 ug/l Toluene ND 100 30 ug/l 1,2,3-Trichlorobenzene ND 200 61 ug/l 1,2,4-Trichlorobenzene ND 200 50 ug/l 1,1,1.Trichloroethane ND 100 25 ug/l 1,1,2-Trichloroethane ND 100 47 ug/l Trichlorofluoromethane ^a ND 200 50 ug/l Vinyl Chloride ND 100 41

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

3.19

48 of 68

Client Sar Lab Samj Matrix: Method: Project:	mple ID: ple ID:	B4SF FA88901-20 AQ - Ground W SW846 8260D FPE; Edgefield			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	
Run #1 Run #2	File ID 171022.	D D D	Analyzed 09/22/21 14:31	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2314
Run #1	Purge V 5.0 ml	olume					

Run #2

VOA TCL List (SOM02.0)

CAS No. Compound Result RL MDL Units 0 500 67-64-1 Acetone ND 200 ug/l 71-43-2 Benzene ND 20 6.2 ug/l 74-97-5 Bromochloromethane ND 20 9.0 ug/l 75-27-4 Bromodichloromethane ND 20 4.8 ug/l 75-25-2 Bromoform 20 8.1 ND ug/l 78-93-3 2-Butanone (MEK) ND 100 40 ug/l 75-15-0 Carbon Disulfide ND 40 11 ug/l 56-23-5 Carbon Tetrachloride ND 20 7.1 ug/l 108-90-7 Chlorobenzene ND 20 4.0ug/l 40 75-00-3 Chloroethane ND 13 ug/l 20 67-66-3 Chloroform ND 6.0 ug/l 110-82-7 20 Cyclohexane ND 7.8ug/l 124-48-1 Dibromochloromethane ND 20 5.5 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 100 21 ug/l 106-93-4 1,2-Dibromoethane ND 40 5.5 ug/l 75-71-8 Dichlorodifluoromethane ND 40 10 ug/l 95-50-1 1,2-Dichlorobenzene ND 20 6.5 ug/l 541-73-1 1.3-Dichlorobenzene ND 20 4.3 ug/l 20 5.1 ug/l 106-46-7 1,4-Dichlorobenzene ND 75-34-3 1.1-Dichloroethane ND 20 6.8 ug/l 107-06-2 1,2-Dichloroethane ND 20 6.2 ug/l 75-35-4 1,1-Dichloroethylene ND 20 6.4 ug/l 156-59-2 cis-1,2-Dichloroethylene 93.6 20 5.5 ug/l 156-60-5 trans-1,2-Dichloroethylene ND 20 4.4 ug/l 78-87-5 1,2-Dichloropropane ND 20 8.5 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 20 5.8 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 20 4.3 ug/l 100-41-4 Ethylbenzene ND 20 7.1 ug/l 76-13-1 Freon 113 ND 20 9.6 ug/l 200 591-78-6 2-Hexanone ND 40 ug/l 98-82-8 Isopropylbenzene ND 20 4.4 ug/l 79-20-9 Methyl Acetate ND 400 100 ug/l

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

49 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	B4SF		
Lab Sample ID:	FA88901-20	Date Sampled:	09/09/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	100	40	ug/l	
74-87-3	Methyl Chloride	ND	40	10	ug/l	
108-87-2	Methylcyclohexane	ND	20	8.7	ug/l	
75-09-2	Methylene Chloride	ND	100	40	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	100	20	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	20	4.6	ug/l	
100-42-5	Styrene	ND	20	4.4	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	20	6.0	ug/l	
127-18-4	Tetrachloroethylene	ND	20	4.3	ug/l	
108-88-3	Toluene	ND	20	6.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	40	12	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	40	10	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	20	5.0	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	20	9.3	ug/l	
79-01-6	Trichloroethylene	1580	20	6.9	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	40	10	ug/l	
75-01-4	Vinyl Chloride	ND	20	8.2	ug/l	
	m,p-Xylene	ND	40	9.3	ug/l	
95-47-6	o-Xylene	ND	20	5.1	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	91%		85-1	12%	
460-00-4	4-Bromofluorobenzene	94%		83-1	18%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.20

Client Sa Lab Samj Matrix: Method: Project:	ple ID: 1	B3SF FA88901-21 AQ - Ground Wa SW846 8260D FPE; Edgefield, S			D	ate Sampled: (ate Received: (ercent Solids: 1	
Run #1 Run #2	File ID I71066.D	DF 10	Analyzed 09/24/21 10:28	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2319
Run #1	Purge Vo 5.0 ml	olume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	250	100	ug/l	
71-43-2	Benzene	ND	10	3.1	ug/l	
74-97-5	Bromochloromethane	ND	10	4.5	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.4	ug/l	
75-25-2	Bromoform	ND	10	4.1	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	20	ug/l	
75-15-0	Carbon Disulfide	ND	20	5.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	10	3.6	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	20	6.7	ug/l	
67-66-3	Chloroform	ND	10	3.0	ug/l	
110-82-7	Cyclohexane	ND	10	3.9	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.8	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	50	10	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	2.8	ug/l	
75-71-8	Dichlorodifluoromethane	ND	20	5.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	10	3.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	10	2.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	2.6	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	3.4	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	3.1	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	3.2	ug/l	
156-59-2	cis-1,2-Dichloroethylene	126	10	2.8	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.2	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	4.3	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.9	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	2.1	ug/l	
100-41-4	Ethylbenzene	ND	10	3.6	ug/l	
76-13-1	Freon 113	ND	10	4.8	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
98-82-8	Isopropylbenzene	ND	10	2.2	ug/l	
79-20-9	Methyl Acetate	ND	200	50	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	B3SF		
Lab Sample ID:	FA88901-21	Date Sampled:	09/10/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	50	20	ug/l	
74-87-3	Methyl Chloride	ND	20	5.0	ug/l	
108-87-2	Methylcyclohexane	ND	10	4.4	ug/l	
75-09-2	Methylene Chloride	ND	50	20	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	50	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.3	ug/l	
100-42-5	Styrene	ND	10	2.2	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	3.0	ug/l	
127-18-4	Tetrachloroethylene	ND	10	2.2	ug/l	
108-88-3	Toluene	ND	10	3.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	6.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.5	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	4.7	ug/l	
79-01-6	Trichloroethylene	871	10	3.5	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	20	5.0	ug/l	
75-01-4	Vinyl Chloride	ND	10	4.1	ug/l	
	m,p-Xylene	ND	20	4.7	ug/l	
95-47-6	o-Xylene	ND	10	2.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	91%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-11	12%	
460-00-4	4-Bromofluorobenzene	92%		83-11	18%	

(a) Associated CCV outside of control limits high.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

3.21

Client Sa Lab Samj Matrix: Method: Project:	ple ID:	B5SF FA88901-22 AQ - Ground Wa SW846 8260D FPE; Edgefield, 3			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n.	
Run #1 Run #2	File ID I71049.I	DF D 10	Analyzed 09/23/21 14:07	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2316
Run #1	Purge V 5.0 ml	olume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	250	100	ug/l	
71-43-2	Benzene	ND	10	3.1	ug/l	
74-97-5	Bromochloromethane	ND	10	4.5	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.4	ug/l	
75-25-2	Bromoform	ND	10	4.1	ug/l	
78-93-3	2-Butanone (MEK)	96.8	50	20	ug/l	
75-15-0	Carbon Disulfide	ND	20	5.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	10	3.6	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane	ND	20	6.7	ug/l	
67-66-3	Chloroform	ND	10	3.0	ug/l	
110-82-7	Cyclohexane	ND	10	3.9	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.8	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	50	10	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	2.8	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	20	5.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	10	3.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	10	2.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	2.6	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	3.4	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	3.1	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	3.2	ug/l	
156-59-2	cis-1,2-Dichloroethylene	66.9	10	2.8	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.2	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	4.3	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.9	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	2.1	ug/l	
100-41-4	Ethylbenzene	ND	10	3.6	ug/l	
76-13-1	Freon 113	ND	10	4.8	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
98-82-8	Isopropylbenzene	ND	10	2.2	ug/l	
79-20-9	Methyl Acetate	ND	200	50	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

3.22

53 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	B5SF	
Lab Sample ID:	FA88901-22 Date Sample	ed: 09/10/21
Matrix:	AQ - Ground Water Date Receive	ed: 09/14/21
Method:	SW846 8260D Percent Soli	ds: n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	50	20	ug/l	
74-87-3	Methyl Chloride	ND	20	5.0	ug/l	
108-87-2	Methylcyclohexane	ND	10	4.4	ug/l	
75-09-2	Methylene Chloride	ND	50	20	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	50	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.3	ug/l	
100-42-5	Styrene	ND	10	2.2	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	3.0	ug/l	
127-18-4	Tetrachloroethylene	ND	10	2.2	ug/l	
108-88-3	Toluene	ND	10	3.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	6.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.5	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	4.7	ug/l	
79-01-6	Trichloroethylene	838	10	3.5	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	20	5.0	ug/l	
75-01-4	Vinyl Chloride	ND	10	4.1	ug/l	
	m,p-Xylene	ND	20	4.7	ug/l	
95-47-6	o-Xylene	ND	10	2.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	91%		85-1	12%	
460-00-4	4-Bromofluorobenzene	92%		83-12	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV and ECC outside DOD QSM control limits high.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Sam Matrix: Method: Project:	ple ID: FA				Date Sampled:09/10/21Date Received:09/14/21Percent Solids:n/a		
Run #1 Run #2	File ID 171050.D	DF 1	Analyzed 09/23/21 14:31	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2316
Run #1 Run #2	Purge Vol 5.0 ml	ume					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	0.26	1.0	0.24	ug/l	J
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	0.57	1.0	0.30	ug/l	J
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

55 of 68

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	TMW-1	
Lab Sample ID:	FA88901-23 Date Sample	d: 09/10/21
Matrix:	AQ - Ground Water Date Receive	d: 09/14/21
Method:	SW846 8260D Percent Solid	ls: n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	95%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	99%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	92%		83-1	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV and ECC outside DOD QSM control limits high.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

56 of 68

Client Sample ID: Lab Sample ID: Matrix: Method: Project:					Date Sampled:09/10/21Date Received:09/14/21Percent Solids:n/a		
Run #1 Run #2	File ID I71051.D	DF 1	Analyzed 09/23/21 14:56	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2316
Run #1 Run #2	Purge Vo 5.0 ml	olume					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	0.61	1.0	0.30	ug/l	J
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	TMW-2		
Lab Sample ID:	FA88901-24 Date Sample	ed:	09/10/21
Matrix:	AQ - Ground Water Date Receiv	ved:	09/14/21
Method:	SW846 8260D Percent Soli	ids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	95%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-12	5%	
2037-26-5	Toluene-D8	92%		85-11	2%	
460-00-4	4-Bromofluorobenzene	91%		83-11	8%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV and ECC outside DOD QSM control limits high.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

SGS

58 of 68

Client San Lab Samj Matrix: Method: Project:	ole ID:	RTB-3 FA88901-25 AQ - Ground Wa SW846 8260D FPE; Edgefield,			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	= -
Run #1 Run #2	File ID 171052.1	DF 25	Analyzed 09/23/21 15:20	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2316
Run #1	Purge V 5.0 ml	olume					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	630	250	ug/l	
71-43-2	Benzene	ND	25	7.8	ug/l	
74-97-5	Bromochloromethane	ND	25	11	ug/l	
75-27-4	Bromodichloromethane	ND	25	6.1	ug/l	
75-25-2	Bromoform	ND	25	10	ug/l	
78-93-3	2-Butanone (MEK)	ND	130	50	ug/l	
75-15-0	Carbon Disulfide	ND	50	13	ug/l	
56-23-5	Carbon Tetrachloride	ND	25	8.9	ug/l	
108-90-7	Chlorobenzene	ND	25	5.0	ug/l	
75-00-3	Chloroethane	ND	50	17	ug/l	
67-66-3	Chloroform	ND	25	7.5	ug/l	
110-82-7	Cyclohexane	ND	25	9.8	ug/l	
124-48-1	Dibromochloromethane	ND	25	6.9	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	130	26	ug/l	
106-93-4	1,2-Dibromoethane	ND	50	6.9	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	50	13	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	25	8.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	25	5.4	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	25	6.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	25	8.5	ug/l	
107-06-2	1,2-Dichloroethane	ND	25	7.8	ug/l	
75-35-4	1,1-Dichloroethylene	ND	25	8.1	ug/l	
156-59-2	cis-1,2-Dichloroethylene	469	25	6.9	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	25	5.5	ug/l	
78-87-5	1,2-Dichloropropane	ND	25	11	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	25	7.3	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	25	5.4	ug/l	
100-41-4	Ethylbenzene	ND	25	8.9	ug/l	
76-13-1	Freon 113	ND	25	12	ug/l	
591-78-6	2-Hexanone	ND	250	50	ug/l	
98-82-8	Isopropylbenzene	ND	25	5.5	ug/l	
79-20-9	Methyl Acetate	ND	500	130	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	RTB-3	
Lab Sample ID:	FA88901-25 Date Sampled:	09/10/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	130	50	ug/l	
74-87-3	Methyl Chloride	ND	50	13	ug/l	
108-87-2	Methylcyclohexane	ND	25	11	ug/l	
75-09-2	Methylene Chloride	ND	130	50	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	130	25	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	25	5.7	ug/l	
100-42-5	Styrene	ND	25	5.6	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	7.5	ug/l	
127-18-4	Tetrachloroethylene	ND	25	5.4	ug/l	
108-88-3	Toluene	ND	25	7.5	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	50	15	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	50	13	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	25	6.2	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	25	12	ug/l	
79-01-6	Trichloroethylene	2030	25	8.6	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	50	13	ug/l	
75-01-4	Vinyl Chloride	ND	25	10	ug/l	
	m,p-Xylene	ND	50	12	ug/l	
95-47-6	o-Xylene	ND	25	6.4	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	99%		79-12	25%	
2037-26-5	Toluene-D8	91%		85-11	12%	
460-00-4	4-Bromofluorobenzene	92%		83-11	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV and ECC outside DOD QSM control limits high.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

3.25

60 of 68

Lab Sam Matrix: Method: Project:	AQ - SW8	8901-26 Ground Wa 46 8260D ; Edgefield,			Da	nte Sampled: 09 nte Received: 09 rcent Solids: n/			
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
Run #1	I71067.D	1	09/24/21 10:52	SO	n/a	n/a	VI2319		
Run #2	I71053.D	2	09/23/21 15:43	SO	n/a	n/a	VI2316		
Dun #1	Purge Volun	ne							

Run #1 5.0 ml

Run #2 5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	10.6	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.26

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	RTB-4	
Lab Sample ID:	FA88901-26 Date Sampled:	09/10/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	0.43	1.0	0.22	ug/l	J
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	88.5 ^a	2.0	0.69	ug/l	
75-69-4	Trichlorofluoromethane ^b	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%	94%	83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	97%	99%	79-12	25%	
2037-26-5	Toluene-D8	92%	91%	85-1	12%	
460-00-4	4-Bromofluorobenzene	92%	90%	83-1	18%	

(a) Result is from Run# 2

(b) Associated CCV outside of control limits high.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

Page 2 of 2

f 2

ω

62 of 68

SGS

Client San Lab Samj Matrix: Method: Project:	AQ - SW8	3901-27 Trip Blank 46 8260D Edgefield,			Da	nte Sampled: 09 nte Received: 09 prcent Solids: n/	
Run #1 Run #2	File ID 2A37775.D	DF 1	Analyzed 09/20/21 13:18	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V2A1591
Run #1 Run #2	Purge Volum 5.0 ml	ie					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	ТВ		
Lab Sample ID:	FA88901-27	Date Sampled:	09/07/21
Matrix:	AQ - Trip Blank Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	0.36	1.0	0.30	ug/l	J
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	99%		79-12	25%	
2037-26-5	Toluene-D8	100%		85-11	2%	
460-00-4	4-Bromofluorobenzene	99%		83-11	8%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ

3.27

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

ARCADIS	D#: (N OF CUS					Page _	_ of		rder# 8901
Contact & Company Name: 30 Seff DECKNER 14150 CAEENEST, 14150 CAEENEST, Swite 770	Telephone: 706,828,4 Fax: E-mail Address:	1421	Preservative Filtered (<) # of Containers Container Information	ß 3 1						Preservation Key: A. H ₂ SO ₄ B. HCL C. HNO ₃ D. NaOH E. None	Keys Container Information K 1. 40 ml Vial 2. 1 L Amber 3. 250 ml Plastic 4. 500 ml Plastic 5. Encore
Point Vanda Carlo) Mat								W - Water S T - Tissue A	6. 2 oz. Glass 7. 4 oz. Glass 9. Other: 10. Other: E - Sediment NL - NAPL/OII L - Sludge SW - Sample V - Air Other:
SMMW-1	0.7 - 0.0	irab	3		(1	<u> </u>	/	((REMARKS	
RNMW-2	9-7 1043	VU		÷.							
RNMW-1	9.7 1230 1	Vie									
SMMW-13	9-7 324 1	14	23								
SMMW-11	9.71421 1	u									
SMMW-10	9-7 1454 1	/u	15								
SMMW-3	9.8 082	V U									
SMMW-9	9-8 0900 1	/ U	1 -								
SMMW-7	9-80049	/ U / W									
SMMW-12	9-9-1159 1	1									
SFMID-1A		VU									/
SMMW-5 SMMW-4	9-9-250	V U V U						INITIA	L ASSESS	MENT	W
Special Instructions/Comments:					Special QA	2.18	ions(~): IR	10	VERIFIC	/	A_
Laboratory Inform	Cooler Custody Seal (1)	P	Relinquis	1	Printed Name:	Received By		R Printed Name:	inquished i	By Printed N	Laboratory Received By
Cooler packed with ice (</td <td> Intact Not Int</td> <td>tact s</td> <td>D-ODIC</td> <td>EN</td> <td>Signature:</td> <td><u>_x</u></td> <td></td> <td>Signature:</td> <td>-×</td> <td>Signature</td> <td>Peter H.</td>	Intact Not Int	tact s	D-ODIC	EN	Signature:	<u>_x</u>		Signature:	-×	Signature	Peter H.
F Specify Turnaround Requirements:	Sample Receipt:	F	A RAAT		Firm/Courier:			Firm/Courier:		Firm:	CCC (
Shipping Tracking #:	Condition/Cooler Temp:	2	HILL A	$\frac{1}{100}$	Date/Time:			Date/Time:		Date/Time	565
0730826 CofC AR Form 08.27.2015	Distribution:		TE - Laboratory re	14W				Lab copy			- Retained by Arcadis

FA88901: Chain of Custody Page 1 of 3

SGS

44

4

ARCADIS	ID#:	СНА		F CUSTODY &	LABORATORY	Page _	of	Lab Work Order #
Contact & Congary Name address. Address. City State 210 City State 210 Ci	Fax:	3.4421	, .	Preservative B Filtered (*) For Containere 3 Containere 1 Information (Keys Preservation Key: Container Information Ke A. H ₂ SO ₄ 1. 40 ml Viai B. HCL 2. 1L Amber C. HNO ₃ 3. 250 ml Plastic D. NaOH 4. 500 ml Plastic E. None 5. Encore
Bampiere Protost Harry Status Bampiere Protost Harry Status Sample ID	01	Тура (√)	- fatrix /	PARAME	TER ANALYSIS & MET			F. Other:6. 2.oz. Gless G. Other:8. 8. 6.oz. Gless H. Other:9. Other: Matrix Key: 50 - Soil SE - Sediment NL - NAPL/Oil W: Valarr SL - Siludge SW - Sample V.
DUP-2	Date Time Co	omp Grab	N I	2			(F	REMARKS
SMMW-6	9.90948	VI	لرز	3				
SMMW-B BISE	9-91036		ω .	3		-		
BISE	9. 9 120		\mathcal{W}	3				
BYSE	9-91410	V		3		_		
BESE	9-10-0820	V	ω	3				
Tmw-1	9-10 1046	V	W	3				
RTR-2	9-10 1203		W	3				
RTB-4	9-10 333	V	w.	3				
K TB				3		_		
Special Instructions/Comments:					☐ Special QA/QC Instructions(✓):			
Laboratory Inf	ormation and Receipt	~	Drinted	Relinquished By	Received By Printed Name:	R. Printed Name:	elinquished B	
Cooler packed with ice (<)	Cooler Custody Seal (~)] Not Intact	Signaturo:	OBREAM	Signature:	Signature:	FX	Printed Name: PC+Cr H Signature: 2 (
Specify Turnaround Requirements:	Sample Receipt:		Firm	ALLOIS	Firm/Courier:	Firm/Courier:		Firm: C.F.I
Shipping Tracking #:	Condition/Cooler Temp:		Date/Time:	7.7.1/1400	Date/Time:	Date/Time:		Date/Time: 011417 100
20730826 CofC AR Form 08.27.2015	Distribu	ition: W	HITE – La	aboratory returns with resu	lts YELLOV	V – Lab copy		PINK – Retained by Arcadis

FA88901: Chain of Custody Page 2 of 3

SGS

4

SGS Sample Receipt Summary

Job Number: FA889	Number: FA88901 Client: ARCADIS				Project: FPE.EDGE	Project: FPE.EDGEFIELD				
Date / Time Received: 9/14/2021 10:00:00 AM Delivery Method: FX				FX	Airbill #'s: 5061 4510 5406					
Therm ID: IR 1;				Therm CF: 0.2;			# of Coole	rs: 1		
Cooler Temps (Raw Measu	red) °C:	Cooler	1: (2.6);						
Cooler Temps (Correc	ted) °C:	Cooler	1: (2.8);						
Cooler Information	Y	or	N_			Sample Information		Y	or N	N/A
1. Custody Seals Present	\checkmark	[1. Sample labels preser	nt on bottles			
2. Custody Seals Intact	\checkmark	[2. Samples preserved p	roperly			
3. Temp criteria achieved	\checkmark	[3. Sufficient volume/cor	ntainers recvd for analysis:			
4. Cooler temp verification	<u>IR G</u>	<u>un</u>				4. Condition of sample		Intact		
5. Cooler media	<u>lce (</u>	Bag)				5. Sample recvd within	HT	\checkmark		
						6. Dates/Times/IDs on	COC match Sample Label	\checkmark		
Frip Blank Information	Y	or l	<u>v </u>	N/A		7. VOCs have headspa	ce		\checkmark	
1. Trip Blank present / cooler	\checkmark	[8. Bottles received for u	inspecified tests		\checkmark	
2. Trip Blank listed on COC	\checkmark	[9. Compositing instructi	ons clear			
	w	or	e	N/A		10. Voa Soil Kits/Jars re	eceived past 48hrs?			\checkmark
						11. % Solids Jar receive	ed?			\checkmark
3. Type Of TB Received	\checkmark					12. Residual Chlorine P	Present?			\checkmark
Misc. Information										
Number of Encores: 25-Gr	am	5	-Gram		Num	ber of 5035 Field Kits:	Number of La	ab Filtered	d Metals:	
Test Strip Lot #s:	pH 0-3					H 10-12 219813A				
Residual Chlorine Test Strip I					·					
Comments										
SM001 Technic	ian: PET	FRH		Date	0/14/2021	10:00:00 A	Reviewer:		Date:	
Rev. Date 05/24/17				_ Date.	0/14/2021	10.00.00 A			Date.	

FA88901: Chain of Custody Page 3 of 3

4.1 **4**

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

10/06/21

Technical Report for

ARCADIS Geraghty & Miller

FPE; Edgefield, SC

30067293.2.2

SGS Job Number: FA88902

Sampling Dates: 09/07/21 - 09/10/21

Report to:

ARCADIS Geraghty & Miller

jbeckner@arcadis-us.com

ATTN: Jeff Beckner

Total number of pages in report: 50

Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Evita Martinez 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, UT, VT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 50

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	5
Section 3: Sample Results	8
3.1: FA88902-1: LBMW-101	9
3.2: FA88902-2: LBMW-102	11
3.3: FA88902-3: LBMW-103	13
3.4: FA88902-4: LBMW-104	15
3.5: FA88902-5: MW-8	17
3.6: FA88902-6: MW-17	19
3.7: FA88902-7: MW-20	21
3.8: FA88902-8: MW-25	23
3.9: FA88902-9: MW-26	25
3.10: FA88902-10: MW-27	27
3.11: FA88902-11: MW-28	29
3.12: FA88902-12: MW-32	31
3.13: FA88902-13: MW-33	33
3.14: FA88902-14: MW-42	35
3.15: FA88902-15: MW-45	37
3.16: FA88902-16: MW-52	39
3.17: FA88902-17: MW-53	41
3.18: FA88902-18: MW-54	43
3.19: FA88902-19: DUP-03	45
Section 4: Misc. Forms	47
4.1: Chain of Custody	48

Sample Summary

ARCADIS Geraghty & Miller

FPE; Edgefield, SC Project No: 30067293.2.2

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
This report co Organics ND		lts reported as Not detecte			cted. The following app	plies:
FA88902-1	09/07/21	11:45 AB	09/14/21	AQ	Ground Water	LBMW-101
FA88902-2	09/07/21	13:30 AB	09/14/21	AQ	Ground Water	LBMW-102
FA88902-3	09/08/21	09:55 AB	09/14/21	AQ	Ground Water	LBMW-103
FA88902-4	09/07/21	15:30 AB	09/14/21	AQ	Ground Water	LBMW-104
FA88902-5	09/09/21	09:04 AB	09/14/21	AQ	Ground Water	MW-8
FA88902-6	09/10/21	09:45 AB	09/14/21	AQ	Ground Water	MW-17
FA88902-7	09/09/21	13:40 AB	09/14/21	AQ	Ground Water	MW-20
FA88902-8	09/08/21	14:30 AB	09/14/21	AQ	Ground Water	MW-25
FA88902-9	09/09/21	12:30 AB	09/14/21	AQ	Ground Water	MW-26
FA88902-10	09/09/21	11:38 AB	09/14/21	AQ	Ground Water	MW-27
FA88902-11	09/10/21	08:50 AB	09/14/21	AQ	Ground Water	MW-28
FA88902-12	09/09/21	10:23 AB	09/14/21	AQ	Ground Water	MW-32

Sample Summary (continued)

ARCADIS Geraghty & Miller

FPE; Edgefield, SC Project No: 30067293.2.2

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA88902-13	09/08/21	13:32 AB	09/14/21	AQ	Ground Water	MW-33
FA88902-14	09/08/21	12:18 AB	09/14/21	AQ	Ground Water	MW-42
FA88902-15	09/08/21	11:04 AB	09/14/21	AQ	Ground Water	MW-45
FA88902-16	09/10/21	11:32 AB	09/14/21	AQ	Ground Water	MW-52
FA88902-17	09/10/21	14:05 AB	09/14/21	AQ	Ground Water	MW-53
FA88902-18	09/10/21	10:36 AB	09/14/21	AQ	Ground Water	MW-54
FA88902-19	09/10/21	00:00 AB	09/14/21	AQ	Ground Water	DUP-03

FA88902

Job No:

Summary of Hits

Job Number:	FA88902
Account:	ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC
Collected:	09/07/21 thru 09/10/21

Lah Gamala ID	Climat Samuela ID	D14/				
Analyte	Client Sample ID	Qual	RL	MDL	Units	Method
FA88902-1	LBMW-101					
2-Butanone (ME	K)	2.9 J	5.0	2.0	ug/l	SW846 8260D
FA88902-2	LBMW-102					
Acetone 2-Butanone (ME cis-1,2-Dichlorod 2-Hexanone Vinyl Chloride	,	45.2 66.2 1.7 5.7 J 1.2	25 5.0 1.0 10 1.0	10 2.0 0.28 2.0 0.41	ug/l ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D SW846 8260D
FA88902-3	LBMW-103					
2-Butanone (ME Carbon Disulfide	· · · · · · · · · · · · · · · · · · ·	8.6 1.1 J	5.0 2.0	2.0 0.53	ug/l ug/l	SW846 8260D SW846 8260D
FA88902-4	LBMW-104					
2-Butanone (ME	K)	2.4 J	5.0	2.0	ug/l	SW846 8260D
FA88902-5	MW-8					
Chloroform 1,1-Dichloroethy Tetrachloroethyle Trichloroethylen	ene	3.3 0.72 J 0.45 J 2.6	1.0 1.0 1.0 1.0	0.30 0.32 0.22 0.35	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
FA88902-6	MW-17					
1,1-Dichloroethy cis-1,2-Dichloroe Tetrachloroethyle Trichloroethyle	ethylene ene	14.8 9.3 J 31.2 788	10 10 10 10	3.2 2.8 2.2 3.5	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
FA88902-7	MW-20					
Chloroform cis-1,2-Dichlorod trans-1,2-Dichlor Trichloroethylen	roethylene	3.4 11.8 0.38 J 70.9	1.0 1.0 1.0 1.0	0.30 0.28 0.22 0.35	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
FA88902-8	MW-25					
cis-1,2-Dichloroe	ethylene	2030	50	14	ug/l	SW846 8260D

Ν

Summary of Hits

Job Number:	FA88902
Account:	ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC
Collected:	09/07/21 thru 09/10/21

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Trichloroethylen	e	5590	100	35	ug/l	SW846 8260D
FA88902-9	MW-26					
cis-1,2-Dichloro Trichloroethylen		0.31 J 3.7	1.0 1.0	0.28 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88902-10	MW-27					
cis-1,2-Dichloro Trichloroethylen		1.7 5.9	1.0 1.0	0.28 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88902-11	MW-28					
1,1-Dichloroethy cis-1,2-Dichloro Methylene Chlor Tetrachloroethyl Trichloroethylen	ethylene ⁻ ide ene	10.6 4.1 J 41.8 J 26.0 525	5.0 5.0 50 5.0 10	1.6 1.4 20 1.1 3.5	ug/l ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D SW846 8260D
FA88902-12	MW-32					
1,1-Dichloroethy cis-1,2-Dichloro Trichloroethylen Vinyl Chloride	ethylene	0.67 J 108 123 2.8	2.0 2.0 2.0 2.0	0.64 0.55 0.69 0.82	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
FA88902-13	MW-33					
cis-1,2-Dichloro	ethylene	1.2	1.0	0.28	ug/l	SW846 8260D
FA88902-14	MW-42					
Trichloroethylen	e	4.1	1.0	0.35	ug/l	SW846 8260D
FA88902-15	MW-45					
1,1-Dichloroethy	lene	1.3	1.0	0.32	ug/l	SW846 8260D
FA88902-16	MW-52					
cis-1,2-Dichloro Tetrachloroethyl Trichloroethylen	ene	52.7 7.1 268	5.0 5.0 5.0	1.4 1.1 1.7	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D

N

Summary of Hits

Job Number:	FA88902
Account:	ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC
Collected:	09/07/21 thru 09/10/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method		
FA88902-17 MW-53							
1,1-Dichloroethylene Trichloroethylene	9.4 3.7	1.0 1.0	0.32 0.35	ug/l ug/l	SW846 8260D SW846 8260D		
FA88902-18 MW-54							
1,1-Dichloroethylene cis-1,2-Dichloroethylene Tetrachloroethylene Trichloroethylene	22.7 J 162 66.9 1610	25 25 25 25	8.1 6.9 5.4 8.6	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D		
FA88902-19 DUP-03	FA88902-19 DUP-03						
1,1-Dichloroethylene cis-1,2-Dichloroethylene Tetrachloroethylene Trichloroethylene	22.3 158 70.0 1590	20 20 20 20	6.4 5.5 4.3 6.9	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D		

Page 3 of 3

Ν

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

Report of Analysis								Page 1 of 2
Client San Lab Samp Matrix: Method: Project:	-	SW846					Date Sampled: Date Received: Percent Solids:	*** = ** = = =
Run #1 Run #2	File ID 2A3778	9.D	DF 1	Analyzed 09/20/21 16:43	By 3 CV	Prep Date n/a	Prep Bato n/a	h Analytical Batch V2A1591
Run #1 Run #2	Purge 5.0 ml	olume						

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	2.9	5.0	2.0	ug/l	J
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω -

ω

9 of 50 SGS

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Styrene

Г

100-42-5

Client Samp Lab Sample Matrix: Method: Project:					Date	Sampled: Received: ent Solids:	09/07/21 09/14/21 n/a
VOA TCL I	List (SOM02.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
74-83-9 74-87-3 108-87-2 75-09-2 108-10-1 1634-04-4	Methyl Bromide Methyl Chloride Methylcyclohexane Methylene Chloride 4-Methyl-2-pentanone (MIBK Methyl Tert Butyl Ether	ND ND ND ND) ND ND	5.0 2.0 1.0 5.0 5.0 1.0	2.0 0.50 0.44 2.0 1.0 0.23	ug/l ug/l ug/l ug/l ug/l ug/l		

1.0

0.22

ug/l

ND

Report of Analysis

79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l
	m,p-Xylene	ND	2.0	0.47	ug/l
95-47-6	o-Xylene	ND	1.0	0.26	ug/l
	8 11 j 10 110	TTD .			
		nD			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
	2			Limi	ts
	2			Limi 83-11	
CAS No.	Surrogate Recoveries	Run# 1			18%
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1 99%		83-1	18% 25%
CAS No. 1868-53-7 17060-07-0	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4	Run# 1 99% 102%		83-11 79-12	18% 25% 12%

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

<u>ω</u>

10 of 50

Report of Analysis Pa							
Client San Lab Samp Matrix: Method: Project:	- r	LBMW-102 FA88902-2 AQ - Ground W SW846 8260D FPE; Edgefield				Date Sampled: Date Received: Percent Solids:	***
Run #1 Run #2	File ID 2A3779	DF 1.D 1	Analyzed 09/20/21 17:18	By CV	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2A1591
Run #1 Run #2	Purge 5.0 ml	/olume					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	45.2	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	66.2	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	1.7	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	5.7	10	2.0	ug/l	J
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sam Lab Sampl Matrix: Method: Project:	L	LBMW-102 FA88902-2 AQ - Ground Wate SW846 8260D FPE; Edgefield, So				Date	Sampled: Received: ent Solids:	*** *** = *
VOA TCL	List (SO	DM02.0)						
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
74-83-9 74-87-3 108-87-2	Methy Methy	l Bromide l Chloride lcyclohexane	ND ND ND	5.0 2.0 1.0	2.0 0.50 0.44	ug/l ug/l ug/l		

Page 2 of 2

ω

3.2

CAD INU.	Compound	Kesun	KL	MDL	Onts	`
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	1.2	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	98%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-12	5%	
2037-26-5	Toluene-D8	100%		85-11		
460-00-4	4-Bromofluorobenzene	98%		83-11		

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis							
Client Sam Lab Sampl Matrix: Method: Project:		LBMW-103 FA88902-3 AQ - Ground Water SW846 8260D FPE; Edgefield, SC				Date Sampled: Date Received: Percent Solids:	• • • • • = •
Run #1	File ID 171011.		Analyzed 09/22/21 10:07	By SO	Prep Date n/a	Prep Batc n/a	h Analytical Batch VI2314
Run #2 Run #1 Run #2	Purge 5.0 ml	Volume					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	8.6	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	1.1	2.0	0.53	ug/l	J
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ ပ

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	LBMW-103		
Lab Sample ID:	FA88902-3	Date Sampled:	09/08/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		
Ĵ			

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	93%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	97%	79-125%		25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	93%		83-1	18%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ ပ

Report of Analysis									
Client San Lab Samp Matrix: Method: Project:	-	LBMW- FA88902 AQ - Gro SW846 8 FPE; Ed	2-4 ound Wa 3260D				Date Sampled: Date Received: Percent Solids:	• • • • = • • = =	
Run #1 Run #2	File ID 2A3779	93.D	DF 1	Analyzed 09/20/21 17:48	By CV	Prep Date n/a	Prep Bato n/a	h Analytical Batch V2A1591	
Run #1 Run #2	Purge 5.0 ml	Volume							

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	2.4	5.0	2.0	ug/l	J
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.4

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Г

108-10-1

1634-04-4

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		LBMW-104 FA88902-4 AQ - Ground Water SW846 8260D FPE; Edgefield, SC				Date	Sampled: Received: ent Solids:	09/07/21 09/14/21 n/a
VOA TCL List (SOM02.0)								
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
74-83-9	Methy	1 Bromide	ND	5.0	2.0	ug/l		
74-87-3	Methy	l Chloride	ND	2.0	0.50	ug/l		
108-87-2	Methy	lcyclohexane	ND	1.0	0.44	ug/l		
75-09-2	Methy	lene Chloride	ND	5.0	2.0	ug/l		

ND

5.0

1.0

1.0

0.23

ug/l

ug/l

Report of Analysis

Page 2 of 2

ω

3.4

100-42-5	Styrene	ND	1.0	0.22	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l
	m,p-Xylene	ND	2.0	0.47	ug/l
95-47-6	o-Xylene	ND	1.0	0.26	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	98%		83-11	18%
17060-07-0	1,2-Dichloroethane-D4	102%		79-12	25%
2037-26-5	Toluene-D8	99%		85-11	12%
460-00-4	4-Bromofluorobenzene	98%		83-11	18%

4-Methyl-2-pentanone (MIBK) ND

Methyl Tert Butyl Ether

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis								
Client San Lab Samp Matrix: Method: Project:	-	MW-8 FA88902-5 AQ - Ground Water SW846 8260D FPE; Edgefield, SC				Date Sampled: Date Received: Percent Solids:	• • • • • • • • • • • • • • • • • • • •	
Run #1 Run #2	File ID I71023.	DF D 1	Analyzed 09/22/21 14:56	By SO	Prep Date n/a	Prep Batc n/a	h Analytical Batch VI2314	
Run #1 Run #2	Purge 5.0 ml	Volume						

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	3.3	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	0.72	1.0	0.32	ug/l	J
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

E = Indicates value exceeds calibration range

Client Sample ID:	MW-8		
Lab Sample ID:	FA88902-5	Date Sampled:	09/09/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	0.45	1.0	0.22	ug/l	J
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	2.6	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	94%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-12	25%	
2037-26-5	Toluene-D8	90%		85-1	12%	
460-00-4	4-Bromofluorobenzene	93%		83-1	18%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Report of Analysis Page 1 of								
Client San Lab Sam Matrix: Method: Project:	-	SW84]	Date Sampled: Date Received: Percent Solids:	***
Run #1 Run #2	File ID 1A3794		DF 10	Analyzed 09/23/21 14:03	By CV	Prep Date n/a	Prep Batcl n/a	n Analytical Batch V1A1594
Run #1	Purge 5.0 ml	Volume	:					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	250	100	ug/l	
71-43-2	Benzene	ND	10	3.1	ug/l	
74-97-5	Bromochloromethane	ND	10	4.5	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.4	ug/l	
75-25-2	Bromoform	ND	10	4.1	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	20	ug/l	
75-15-0	Carbon Disulfide	ND	20	5.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	10	3.6	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane ^a	ND	20	6.7	ug/l	
67-66-3	Chloroform	ND	10	3.0	ug/l	
110-82-7	Cyclohexane	ND	10	3.9	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.8	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	50	10	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	2.8	ug/l	
75-71-8	Dichlorodifluoromethane	ND	20	5.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	10	3.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	10	2.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	2.6	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	3.4	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	3.1	ug/l	
75-35-4	1,1-Dichloroethylene	14.8	10	3.2	ug/l	
156-59-2	cis-1,2-Dichloroethylene	9.3	10	2.8	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.2	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	4.3	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.9	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	2.1	ug/l	
100-41-4	Ethylbenzene	ND	10	3.6	ug/l	
76-13-1	Freon 113	ND	10	4.8	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
98-82-8	Isopropylbenzene	ND	10	2.2	ug/l	
79-20-9	Methyl Acetate	ND	200	50	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis	Report	of	Analysis
---------------------------	--------	----	----------

Client Sample ID:	MW-17		
Lab Sample ID:	FA88902-6	Date Sampled:	09/10/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	50	20	ug/l	
74-87-3	Methyl Chloride	ND	20	5.0	ug/l	
108-87-2	Methylcyclohexane	ND	10	4.4	ug/l	
75-09-2	Methylene Chloride	ND	50	20	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	50	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.3	ug/l	
100-42-5	Styrene	ND	10	2.2	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	3.0	ug/l	
127-18-4	Tetrachloroethylene	31.2	10	2.2	ug/l	
108-88-3	Toluene	ND	10	3.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	6.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.5	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	4.7	ug/l	
79-01-6	Trichloroethylene	788	10	3.5	ug/l	
75-69-4	Trichlorofluoromethane	ND	20	5.0	ug/l	
75-01-4	Vinyl Chloride	ND	10	4.1	ug/l	
	m,p-Xylene	ND	20	4.7	ug/l	
95-47-6	o-Xylene	ND	10	2.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	101%		79-12	25%	
2037-26-5	Toluene-D8	97%		85-1	12%	
460-00-4	4-Bromofluorobenzene	99%		83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

3.6

Report of Analysis							
Client San Lab Samp Matrix: Method: Project:	-	MW-20 FA88902-7 AQ - Ground Wate SW846 8260D FPE; Edgefield, SO				Date Sampled: Date Received: Percent Solids:	• > · = · · = =
Run #1 Run #2	File ID I71024.		Analyzed 09/22/21 15:20	By SO	Prep Date n/a	Prep Batc n/a	h Analytical Batch VI2314
Run #1 Run #2	Purge 5.0 ml	Volume					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	3.4	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	11.8	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.38	1.0	0.22	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.7

ω

21 of 50 SGS

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	MW-20	
Lab Sample ID:	FA88902-7 Date Sampled	1: 09/09/21
Matrix:	AQ - Ground Water Date Received	d: 09/14/21
Method:	SW846 8260D Percent Solid	s: n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	70.9	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	99%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	92%		83-11	18%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

3.7

22 of 50

FA88902

Lab Samj Matrix: Method: Project:	ple ID:	MW-25 FA88902-8 AQ - Ground W SW846 8260D FPE; Edgefield,			Da	te Sampled: 09 te Received: 09 rcent Solids: n/	,, = ., = =
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	I70997.I	b 50	09/21/21 23:41	SO	n/a	n/a	VI2313
Run #2	I71015.I	D 100	09/22/21 11:43	SO	n/a	n/a	VI2314
	Purge V	olume					

Run #1 5.0 ml

Run #2 5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	1300	500	ug/l	
71-43-2	Benzene	ND	50	16	ug/l	
74-97-5	Bromochloromethane	ND	50	23	ug/l	
75-27-4	Bromodichloromethane	ND	50	12	ug/l	
75-25-2	Bromoform	ND	50	20	ug/l	
78-93-3	2-Butanone (MEK)	ND	250	100	ug/l	
75-15-0	Carbon Disulfide ^a	ND	100	27	ug/l	
56-23-5	Carbon Tetrachloride	ND	50	18	ug/l	
108-90-7	Chlorobenzene	ND	50	10	ug/l	
75-00-3	Chloroethane	ND	100	33	ug/l	
67-66-3	Chloroform	ND	50	15	ug/l	
110-82-7	Cyclohexane	ND	50	20	ug/l	
124-48-1	Dibromochloromethane	ND	50	14	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	250	52	ug/l	
106-93-4	1,2-Dibromoethane	ND	100	14	ug/l	
75-71-8	Dichlorodifluoromethane	ND	100	25	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	50	16	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	50	11	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	50	13	ug/l	
75-34-3	1,1-Dichloroethane	ND	50	17	ug/l	
107-06-2	1,2-Dichloroethane	ND	50	16	ug/l	
75-35-4	1,1-Dichloroethylene	ND	50	16	ug/l	
156-59-2	cis-1,2-Dichloroethylene	2030	50	14	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	50	11	ug/l	
78-87-5	1,2-Dichloropropane	ND	50	21	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	50	15	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	50	11	ug/l	
100-41-4	Ethylbenzene	ND	50	18	ug/l	
76-13-1	Freon 113	ND	50	24	ug/l	
591-78-6	2-Hexanone	ND	500	100	ug/l	
98-82-8	Isopropylbenzene	ND	50	11	ug/l	
79-20-9	Methyl Acetate	ND	1000	250	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ယ 8

ω

Client Sample ID:	MW-25	
Lab Sample ID:	FA88902-8 Date Sampled:	09/08/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	250	100	ug/l	
74-87-3	Methyl Chloride	ND	100	25	ug/l	
108-87-2	Methylcyclohexane	ND	50	22	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	250	50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	50	11	ug/l	
100-42-5	Styrene	ND	50	11	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	50	15	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	50	11	ug/l	
108-88-3	Toluene	ND	50	15	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	100	31	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	100	25	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	50	12	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	50	23	ug/l	
79-01-6	Trichloroethylene	5590 °	100	35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	100	25	ug/l	
75-01-4	Vinyl Chloride	ND	50	20	ug/l	
	m,p-Xylene	ND	100	23	ug/l	
95-47-6	o-Xylene	ND	50	13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	93%	93%	83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	97%	97%	79-1	25%	
2037-26-5	Toluene-D8	92%	91%	85-1	12%	
460-00-4	4-Bromofluorobenzene	92%	91%	83-1	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

(c) Result is from Run# 2

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

ယ 8

24 of 50

FA88902

Report of Analysis								
Client San Lab Samp Matrix: Method: Project:	ole ID:	MW-26 FA88902-9 AQ - Ground Water SW846 8260D FPE; Edgefield, SC				Date Sampled: Date Received: Percent Solids:	• • • • • = •	
Run #1 Run #2	File ID I71025.1	DF D 1	Analyzed 09/22/21 15:44	By SO	Prep Date n/a	Prep Batc n/a	h Analytical Batch VI2314	
Run #1 Run #2	Purge V 5.0 ml	7olume						

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.31	1.0	0.28	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.9 Page 1 of 2

ω

25 of 50 SGS

E = Indicates value exceeds calibration range

Client Sample ID:	MW-26	
Lab Sample ID:	FA88902-9 Date Sampled:	09/09/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	3.7	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-12	25%	
2037-26-5	Toluene-D8	91%		85-11	2%	
460-00-4	4-Bromofluorobenzene	91%		83-11	8%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.9

Client Sa Lab Sam Matrix: Method: Project:	ple ID: FA A(SV	MW-27 FA88902-10 AQ - Ground Water SW846 8260D FPE; Edgefield, SC		Date Sampled:09/09/21Date Received:09/14/21Percent Solids:n/a				
Run #1 Run #2	File ID 171026.D	DF 1	Analyzed 09/22/21 16:08	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2314	
Run #1 Run #2	Purge Vol 5.0 ml	ume						

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	1.7	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	MW-27	
Lab Sample ID:	FA88902-10 Date Sampled	1: 09/09/21
Matrix:	AQ - Ground Water Date Received	d: 09/14/21
Method:	SW846 8260D Percent Solid	s: n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide ^a	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	5.9	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	94%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-12	25%	
2037-26-5	Toluene-D8	91%		85-1	12%	
460-00-4	4-Bromofluorobenzene	92%		83-1	18%	

(a) Associated CCV outside of control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

3.10

Client Sat Lab Samj Matrix: Method: Project:	AQ - SW8	28 8902-11 Ground Wa 46 8260D Edgefield,			Da	nte Sampled: 09 nte Received: 09 rcent Solids: n/	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1A37946.D	5	09/23/21 14:33	CV	n/a	n/a	V1A1594
Run #2	1P81482.D	10	09/24/21 12:25	CV	n/a	n/a	V1P3302
Run #1	Purge Volum 5.0 ml	e					

Run #2 5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	130	50	ug/l	
71-43-2	Benzene	ND	5.0	1.6	ug/l	
74-97-5	Bromochloromethane	ND	5.0	2.3	ug/l	
75-27-4	Bromodichloromethane	ND	5.0	1.2	ug/l	
75-25-2	Bromoform	ND	5.0	2.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	25	10	ug/l	
75-15-0	Carbon Disulfide	ND	10	2.7	ug/l	
56-23-5	Carbon Tetrachloride	ND	5.0	1.8	ug/l	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/l	
75-00-3	Chloroethane ^a	ND	10	3.3	ug/l	
67-66-3	Chloroform	ND	5.0	1.5	ug/l	
110-82-7	Cyclohexane	ND	5.0	2.0	ug/l	
124-48-1	Dibromochloromethane	ND	5.0	1.4	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	25	5.2	ug/l	
106-93-4	1,2-Dibromoethane	ND	10	1.4	ug/l	
75-71-8	Dichlorodifluoromethane	ND	10	2.5	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.6	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.3	ug/l	
75-34-3	1,1-Dichloroethane	ND	5.0	1.7	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	1.6	ug/l	
75-35-4	1,1-Dichloroethylene	10.6	5.0	1.6	ug/l	
156-59-2	cis-1,2-Dichloroethylene	4.1	5.0	1.4	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.1	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	2.1	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.5	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.1	ug/l	
100-41-4	Ethylbenzene	ND	5.0	1.8	ug/l	
76-13-1	Freon 113	ND	5.0	2.4	ug/l	
591-78-6	2-Hexanone	ND	50	10	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	1.1	ug/l	
79-20-9	Methyl Acetate	ND	100	25	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

FA88902

Report of Analysis

Client Sample ID: Lab Sample ID: Matrix: Method:	MW-28FA88902-11Date Sampled:AQ - Ground WaterDate Received:SW846 8260DPercent Solids:	09/14/21
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	25	10	ug/l	
74-87-3	Methyl Chloride	ND	10	2.5	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	2.2	ug/l	
75-09-2	Methylene Chloride	41.8 ^b	50	20	ug/l	J
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	1.1	ug/l	
100-42-5	Styrene	ND	5.0	1.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.5	ug/l	
127-18-4	Tetrachloroethylene	26.0	5.0	1.1	ug/l	
108-88-3	Toluene	ND	5.0	1.5	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	10	3.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	10	2.5	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.2	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	2.3	ug/l	
79-01-6	Trichloroethylene	525 ^b	10	3.5	ug/l	
75-69-4	Trichlorofluoromethane	ND	10	2.5	ug/l	
75-01-4	Vinyl Chloride	ND	5.0	2.0	ug/l	
	m,p-Xylene	ND	10	2.3	ug/l	
95-47-6	o-Xylene	ND	5.0	1.3	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	96%	102%	83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	100%	109%	79-12	25%	
2037-26-5	Toluene-D8	97%	96%	85-1	12%	
460-00-4	4-Bromofluorobenzene	97%	104%	83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.
(b) Result is from Run# 2

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

3.11

30 of 50

FA88902

Client Sar Lab Samp Matrix: Method: Project:	A S'	IW-32 A88902-12 Q - Ground Wa W846 8260D PE; Edgefield, S			Da	ate Sampled: 0 ate Received: 0 ercent Solids: n	,, = ., = -
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Y58497.D	2	09/23/21 17:28	LV	n/a	n/a	VY2429
Run #2 ^a	Y58469.D	2	09/22/21 20:05	LV	n/a	n/a	VY2428
	Purge Vo						

Run #2 5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	20	ug/l	
71-43-2	Benzene	ND	2.0	0.62	ug/l	
74-97-5	Bromochloromethane ^b	ND	2.0	0.90	ug/l	
75-27-4	Bromodichloromethane	ND	2.0	0.48	ug/l	
75-25-2	Bromoform	ND	2.0	0.81	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	4.0	ug/l	
75-15-0	Carbon Disulfide	ND	4.0	1.1	ug/l	
56-23-5	Carbon Tetrachloride	ND	2.0	0.71	ug/l	
108-90-7	Chlorobenzene	ND	2.0	0.40	ug/l	
75-00-3	Chloroethane	ND	4.0	1.3	ug/l	
67-66-3	Chloroform	ND	2.0	0.60	ug/l	
110-82-7	Cyclohexane	ND	2.0	0.78	ug/l	
124-48-1	Dibromochloromethane	ND	2.0	0.55	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	2.1	ug/l	
106-93-4	1,2-Dibromoethane	ND	4.0	0.55	ug/l	
75-71-8	Dichlorodifluoromethane	ND	4.0	1.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	2.0	0.65	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.0	0.43	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.0	0.51	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.0	0.68	ug/l	
107-06-2	1,2-Dichloroethane	ND	2.0	0.62	ug/l	
75-35-4	1,1-Dichloroethylene	0.67	2.0	0.64	ug/l	J
156-59-2	cis-1,2-Dichloroethylene	108	2.0	0.55	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	2.0	0.44	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.85	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.58	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	2.0	0.71	ug/l	
76-13-1	Freon 113	ND	2.0	0.96	ug/l	
591-78-6	2-Hexanone	ND	20	4.0	ug/l	
98-82-8	Isopropylbenzene	ND	2.0	0.44	ug/l	
79-20-9	Methyl Acetate	ND	40	10	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.12

ω

E = Indicates value exceeds calibration range

Client Sample ID:	MW-32	
Lab Sample ID:	FA88902-12 Date Sampled:	09/09/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	10	4.0	ug/l	
74-87-3	Methyl Chloride	ND	4.0	1.0	ug/l	
108-87-2	Methylcyclohexane	ND	2.0	0.87	ug/l	
75-09-2	Methylene Chloride	ND	10	4.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	2.0	0.46	ug/l	
100-42-5	Styrene	ND	2.0	0.44	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.60	ug/l	
127-18-4	Tetrachloroethylene	ND	2.0	0.43	ug/l	
108-88-3	Toluene	ND	2.0	0.60	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	4.0	1.2	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	4.0	1.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.50	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.93	ug/l	
79-01-6	Trichloroethylene	123	2.0	0.69	ug/l	
75-69-4	Trichlorofluoromethane	ND	4.0	1.0	ug/l	
75-01-4	Vinyl Chloride	2.8	2.0	0.82	ug/l	
	m,p-Xylene	ND	4.0	0.93	ug/l	
95-47-6	o-Xylene	ND	2.0	0.51	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	112%	110%	83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	130% c	132% c	79-12	5%	
2037-26-5	Toluene-D8	99%	103%	85-11	2%	
460-00-4	4-Bromofluorobenzene	102%	101%	83-11	8%	

(a) Confirmation run for surrogate recoveries.

(b) Associated BS recovery outside control limits low.

(c) Outside control limits. Confirmed by reanalysis.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sa Lab Samj Matrix: Method: Project:	AQ SW	W-33 88902-13) - Ground Wa /846 8260D E; Edgefield,			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	= -
Run #1 Run #2	File ID I70998.D	DF 1	Analyzed 09/22/21 00:05	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2313
Run #1 Run #2	Purge Volu 5.0 ml	ime					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide ^a	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	1.2	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	MW-33		
Lab Sample ID:	FA88902-13 Date Samp	led:	09/08/21
Matrix:	AQ - Ground Water Date Recei	ved:	09/14/21
Method:	SW846 8260D Percent So	lids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	93%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	93%		85-1	12%	
460-00-4	4-Bromofluorobenzene	92%		83-1	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

34 of 50

SGS

3.13

Client Sa Lab Sam Matrix: Method: Project:	A S				Date Sampled:09/08/21Date Received:09/14/21Percent Solids:n/a			
Run #1 Run #2	File ID 170999.D	DF 1	Analyzed 09/22/21 00:29	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2313	
Run #1 Run #2	Purge Vo 5.0 ml	lume						

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide ^a	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

Client Sample ID:	MW-42	
Lab Sample ID:	FA88902-14 Date Sample	d: 09/08/21
Matrix:	AQ - Ground Water Date Receive	d: 09/14/21
Method:	SW846 8260D Percent Solid	ls: n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	4.1	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	92%		83-1	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sa Lab Samj Matrix: Method: Project:	A S'				Date Sampled:09/08/21Date Received:09/14/21Percent Solids:n/a			
Run #1 Run #2	File ID 171000.D	DF 1	Analyzed 09/22/21 00:52	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2313	
Run #1 Run #2	Purge Vol 5.0 ml	lume						

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide ^a	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	1.3	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	MW-45	
Lab Sample ID:	FA88902-15 Date Sampled:	09/08/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene ^b	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	99%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-11	12%	
460-00-4	4-Bromofluorobenzene	92%		83-11	18%	

(a) Associated CCV outside of control limits low.

(b) Associated CCV outside of control limits high, sample was ND.

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

SGS

Lab Samj Matrix: Method: Project:	AQ SW8	8902-16 - Ground W 46 8260D ; Edgefield,			Da	ate Sampled: 09 ate Received: 09 arcent Solids: n/	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	1A37948.D	5	09/23/21 15:03	CV	n/a	n/a	V1A1594
	Purge Volur	ne					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	130	50	ug/l	
71-43-2	Benzene	ND	5.0	1.6	ug/l	
74-97-5	Bromochloromethane	ND	5.0	2.3	ug/l	
75-27-4	Bromodichloromethane	ND	5.0	1.2	ug/l	
75-25-2	Bromoform	ND	5.0	2.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	25	10	ug/l	
75-15-0	Carbon Disulfide	ND	10	2.7	ug/l	
56-23-5	Carbon Tetrachloride	ND	5.0	1.8	ug/l	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/l	
75-00-3	Chloroethane ^a	ND	10	3.3	ug/l	
67-66-3	Chloroform	ND	5.0	1.5	ug/l	
110-82-7	Cyclohexane	ND	5.0	2.0	ug/l	
124-48-1	Dibromochloromethane	ND	5.0	1.4	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	25	5.2	ug/l	
106-93-4	1,2-Dibromoethane	ND	10	1.4	ug/l	
75-71-8	Dichlorodifluoromethane	ND	10	2.5	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.0	1.6	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	1.1	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	1.3	ug/l	
75-34-3	1,1-Dichloroethane	ND	5.0	1.7	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	1.6	ug/l	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.6	ug/l	
156-59-2	cis-1,2-Dichloroethylene	52.7	5.0	1.4	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.1	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	2.1	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.5	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.1	ug/l	
100-41-4	Ethylbenzene	ND	5.0	1.8	ug/l	
76-13-1	Freon 113	ND	5.0	2.4	ug/l	
591-78-6	2-Hexanone	ND	50	10	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	1.1	ug/l	
79-20-9	Methyl Acetate	ND	100	25	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

ω

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	MW-52		
Lab Sample ID:	FA88902-16	Date Sampled:	09/10/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	25	10	ug/l	
74-87-3	Methyl Chloride	ND	10	2.5	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	2.2	ug/l	
75-09-2	Methylene Chloride	ND	25	10	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	1.1	ug/l	
100-42-5	Styrene	ND	5.0	1.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.5	ug/l	
127-18-4	Tetrachloroethylene	7.1	5.0	1.1	ug/l	
108-88-3	Toluene	ND	5.0	1.5	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	10	3.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	10	2.5	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.2	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	2.3	ug/l	
79-01-6	Trichloroethylene	268	5.0	1.7	ug/l	
75-69-4	Trichlorofluoromethane	ND	10	2.5	ug/l	
75-01-4	Vinyl Chloride	ND	5.0	2.0	ug/l	
	m,p-Xylene	ND	10	2.3	ug/l	
95-47-6	o-Xylene	ND	5.0	1.3	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	99%		79-12	25%	
2037-26-5	Toluene-D8	97%		85-1	12%	
460-00-4	4-Bromofluorobenzene	99%		83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ

3.16

40 of 50

FA88902

Client Sa Lab Samj Matrix: Method: Project:	ple ID: FA A SV	W-53 488902-17 Q - Ground Wa W846 8260D PE; Edgefield,			Da	nte Sampled: 09 nte Received: 09 rcent Solids: n/	
Run #1 Run #2	File ID 1A37950.1	DF D 1	Analyzed 09/23/21 15:33	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A1594
Run #1 Run #2	Purge Vol 5.0 ml	ume					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	9.4	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

E = Indicates value exceeds calibration range

	MW-53		
Lab Sample ID:	FA88902-17 Date Sam	pled:	09/10/21
Matrix:	AQ - Ground Water Date Rece	eived:	09/14/21
Method:	SW846 8260D Percent Sector	olids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	3.7	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	96%		85-1	12%	
460-00-4	4-Bromofluorobenzene	98%		83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

AQ - SW84	902-18 Ground Wa 6 8260D			Da	te Received: 09	
File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
1A37952.D	25	09/23/21 16:03	CV	n/a	n/a	V1A1594
Purge Volum	e					
	le ID: FA88 AQ - SW84 FPE; File ID 1A37952.D	A Pier ID: FA88902-18 AQ - Ground Wa SW846 8260D FPE; Edgefield, File ID DF	File ID: FA88902-18 AQ - Ground Water SW846 8260D FPE; Edgefield, SC File ID DF Analyzed 1A37952.D 25 09/23/21 16:03	FA88902-18 AQ - Ground Water SW846 8260D FPE; Edgefield, SC File ID DF Analyzed By 1A37952.D 25 09/23/21 16:03 CV	Ide ID:FA88902-18DaAQ - Ground WaterDaSW846 8260DPeFPE; Edgefield, SCPeFile IDDFAnalyzedByPrep Date1A37952.D2509/23/21 16:03CVn/a	Ide ID: FA88902-18 AQ - Ground Water SW846 8260D FPE; Edgefield, SC Date Sampled: 09 Date Received: 09 Percent Solids: n/ File ID DF Analyzed By Prep Date Prep Batch 1A37952.D 25 09/23/21 16:03 CV n/a n/a

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	630	250	ug/l	
71-43-2	Benzene	ND	25	7.8	ug/l	
74-97-5	Bromochloromethane	ND	25	11	ug/l	
75-27-4	Bromodichloromethane	ND	25	6.1	ug/l	
75-25-2	Bromoform	ND	25	10	ug/l	
78-93-3	2-Butanone (MEK)	ND	130	50	ug/l	
75-15-0	Carbon Disulfide	ND	50	13	ug/l	
56-23-5	Carbon Tetrachloride	ND	25	8.9	ug/l	
108-90-7	Chlorobenzene	ND	25	5.0	ug/l	
75-00-3	Chloroethane ^a	ND	50	17	ug/l	
67-66-3	Chloroform	ND	25	7.5	ug/l	
110-82-7	Cyclohexane	ND	25	9.8	ug/l	
124-48-1	Dibromochloromethane	ND	25	6.9	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	130	26	ug/l	
106-93-4	1,2-Dibromoethane	ND	50	6.9	ug/l	
75-71-8	Dichlorodifluoromethane	ND	50	13	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	25	8.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	25	5.4	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	25	6.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	25	8.5	ug/l	
107-06-2	1,2-Dichloroethane	ND	25	7.8	ug/l	
75-35-4	1,1-Dichloroethylene	22.7	25	8.1	ug/l	J
156-59-2	cis-1,2-Dichloroethylene	162	25	6.9	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	25	5.5	ug/l	
78-87-5	1,2-Dichloropropane	ND	25	11	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	25	7.3	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	25	5.4	ug/l	
100-41-4	Ethylbenzene	ND	25	8.9	ug/l	
76-13-1	Freon 113	ND	25	12	ug/l	
591-78-6	2-Hexanone	ND	250	50	ug/l	
98-82-8	Isopropylbenzene	ND	25	5.5	ug/l	
79-20-9	Methyl Acetate	ND	500	130	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

Lab Sample ID:FA88902-18Matrix:AQ - Ground WaterMatrix:AQ - Ground Water	Date Sampled:	09/10/21
		07/10/21
	Date Received:	09/14/21
Method: SW846 8260D	Percent Solids:	n/a
Project: FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q			
74-83-9	Methyl Bromide	ND	130	50	ug/l				
74-87-3	Methyl Chloride	ND	50	13	ug/l				
108-87-2	Methylcyclohexane	ND	25	11	ug/l				
75-09-2	Methylene Chloride	ND	130	50	ug/l				
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	130	25	ug/l				
1634-04-4	Methyl Tert Butyl Ether	ND	25	5.7	ug/l				
100-42-5	Styrene	ND	25	5.6	ug/l				
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	7.5	ug/l				
127-18-4	Tetrachloroethylene	66.9	25	5.4	ug/l				
108-88-3	Toluene	ND	25	7.5	ug/l				
87-61-6	1,2,3-Trichlorobenzene	ND	50	15	ug/l				
120-82-1	1,2,4-Trichlorobenzene	ND	50	13	ug/l				
71-55-6	1,1,1-Trichloroethane	ND	25	6.2	ug/l				
79-00-5	1,1,2-Trichloroethane	ND	25	12	ug/l				
79-01-6	Trichloroethylene	1610	25	8.6	ug/l				
75-69-4	Trichlorofluoromethane	ND	50	13	ug/l				
75-01-4	Vinyl Chloride	ND	25	10	ug/l				
	m,p-Xylene	ND	50	12	ug/l				
95-47-6	o-Xylene	ND	25	6.4	ug/l				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its				
1868-53-7	Dibromofluoromethane	98%		83-1	18%				
17060-07-0	1,2-Dichloroethane-D4	102%	79-125%						
2037-26-5	Toluene-D8	97%	85-112%						
460-00-4	4-Bromofluorobenzene	100%	83-1	18%					

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Client San Lab Samj Matrix: Method: Project:	AQ SW3	P-03 38902-19 - Ground W 846 8260D 2; Edgefield,			Da	ate Sampled: 0 ate Received: 0 ercent Solids: n	,, = ., = =
Run #1 Run #2	File ID 1A37954.D	DF 20	Analyzed 09/23/21 16:33	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A1594
	Purge Volu	ne					

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	500	200	ug/l	
71-43-2	Benzene	ND	20	6.2	ug/l	
74-97-5	Bromochloromethane	ND	20	9.0	ug/l	
75-27-4	Bromodichloromethane	ND	20	4.8	ug/l	
75-25-2	Bromoform	ND	20	8.1	ug/l	
78-93-3	2-Butanone (MEK)	ND	100	40	ug/l	
75-15-0	Carbon Disulfide	ND	40	11	ug/l	
56-23-5	Carbon Tetrachloride	ND	20	7.1	ug/l	
108-90-7	Chlorobenzene	ND	20	4.0	ug/l	
75-00-3	Chloroethane ^a	ND	40	13	ug/l	
67-66-3	Chloroform	ND	20	6.0	ug/l	
110-82-7	Cyclohexane	ND	20	7.8	ug/l	
124-48-1	Dibromochloromethane	ND	20	5.5	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	100	21	ug/l	
106-93-4	1,2-Dibromoethane	ND	40	5.5	ug/l	
75-71-8	Dichlorodifluoromethane	ND	40	10	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	20	6.5	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	20	4.3	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	20	5.1	ug/l	
75-34-3	1,1-Dichloroethane	ND	20	6.8	ug/l	
107-06-2	1,2-Dichloroethane	ND	20	6.2	ug/l	
75-35-4	1,1-Dichloroethylene	22.3	20	6.4	ug/l	
156-59-2	cis-1,2-Dichloroethylene	158	20	5.5	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	20	4.4	ug/l	
78-87-5	1,2-Dichloropropane	ND	20	8.5	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	20	5.8	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	20	4.3	ug/l	
100-41-4	Ethylbenzene	ND	20	7.1	ug/l	
76-13-1	Freon 113	ND	20	9.6	ug/l	
591-78-6	2-Hexanone	ND	200	40	ug/l	
98-82-8	Isopropylbenzene	ND	20	4.4	ug/l	
79-20-9	Methyl Acetate	ND	400	100	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	DUP-03	
Lab Sample ID:	FA88902-19 Date Sampled:	09/10/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q			
74-83-9	Methyl Bromide	ND	100	40	ug/l				
74-87-3	Methyl Chloride	ND	40	10	ug/l				
108-87-2	Methylcyclohexane	ND	20	8.7	ug/l				
75-09-2	Methylene Chloride	ND	100	40	ug/l				
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	100	20	ug/l				
1634-04-4	Methyl Tert Butyl Ether	ND	20	4.6	ug/l				
100-42-5	Styrene	ND	20	4.4	ug/l				
79-34-5	1,1,2,2-Tetrachloroethane	ND	20	6.0	ug/l				
127-18-4	Tetrachloroethylene	70.0	20	4.3	ug/l				
108-88-3	Toluene	ND	20	6.0	ug/l				
87-61-6	1,2,3-Trichlorobenzene	ND	40	12	ug/l				
120-82-1	1,2,4-Trichlorobenzene	ND	40	10	ug/l				
71-55-6	1,1,1-Trichloroethane	ND	20	5.0	ug/l				
79-00-5	1,1,2-Trichloroethane	ND	20	9.3	ug/l				
79-01-6	Trichloroethylene	1590	20	6.9	ug/l				
75-69-4	Trichlorofluoromethane	ND	40	10	ug/l				
75-01-4	Vinyl Chloride	ND	20	8.2	ug/l				
	m,p-Xylene	ND	40	9.3	ug/l				
95-47-6	o-Xylene	ND	20	5.1	ug/l				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts				
1868-53-7	Dibromofluoromethane	97%		83-1	18%				
17060-07-0	1,2-Dichloroethane-D4	98%	79-125%						
2037-26-5	Toluene-D8	98%	85-112%						
460-00-4	4-Bromofluorobenzene	99%		83-1	18%				

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.19

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

						.55	67 - C						~ ~			-			
		SG	S No						rla	ndo		1	A	88	'9 C)Z			7
SGS						of C					S	GS - OR	LANDO	JOB #	# ::		PAGE		of 2
			4		7-425-6	Suite C-15 700 FAX: ww.sgs.con	407-425-0				S	GS - OR	LANDC	Quote	e #	SK	IFF #		
Client / Reporting	Information				Proj	ect Infor		i, iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii						Analy	tical I	Inform	nation		Matrix Codes
Company Name: Arcadis			Project N	^{ame:} F	PE-	Edge	Field	SC	2								TT		DW - Drinking Water
Company Name: Accadis Address: 1450 Greene State: City: Augusta State: Project Orthant:	ste 220		Street				1.0.01		2			10							GW - Ground Water
City: Augusta State:	GA Zip: 30	904	City E	sheF.	eld			State	50	2	d						1 1		WW - Water
Project Contact: Jeff Beckner	Email:		Project #	ger	0.01						15	Elé							SW - Surface Water
Phone #:			Fax #								-1	1171						· .	SO - Soil SL- Sludge
											_ 0								OI - Oil
Sampler(s) Name(s) (Printed) Sampler 1: A. Burgess Sample	r 2:		Client Pu	rchase C	order #														LIQ - Other Liquid AIR - Air
			COLLECTION	r	-			INFORMAT	ION	121-1	Ξ,	7							SOL - Other Solid
SGS Orlando						TOTAL #	<u>د</u>			AOH+ZN	EOH	31							
Sample # Field ID / Point	of Collection	DATE	TIME	SAMPLED BY:	MATRIX		OTHER	NaOF	H2SO4	NACH+	2								LAB USE ONLY
LBMW-101			11:45	AB	GW	3		×			12	S I							
2 LBMW-102		9-7-21	13:30	1	1	3		XII			1	5							
3 LBMW-103			Q:55			3		XII			3								
4 LBMW-104		9-7-21	15:30			3		X			3								
\$ MW-8		9-9-21	09:04			3		X			NV NY								
6 MW-17		9-10-21	09.45			3		X	1		3	,							
7 MW-20	9-9-2	1 4-9-21				3		X			3								
8 MW-25		9-9-21	14:30	-		3		2 T			3				_	+			
a MW-26			12:30			3					1					-		-	
10 MW-27		9-9-21				3					3	5			_	+			
11 MW-28			08:50			3		2 T			3								
12 MW-32		9-9-21		V	1	3	- l') + †	+		1					1	+	_	1
Turnaround Time	(Business days)	11-121			Da	ata Deliv	/erable	Inform	ation	1	1-				C	omme	ents / Re	emarks	1
10 Day (Business)	Approve	d By: / Date:		Co		IAL "A" (_				95 ver					16	
7 Day				Col	MERC	IAL "B" (RESULT	S PLUS	QC)				INIT	AL AS	0753N	德國公	Julia Manaka a	U.S.	to the second
5 Day					0T1 (E	PA LEVEL	_ 3)												X
3 Day RUSH				FUL	LT1 (E	PA LEVEI	L 4)						AR	I VC.	454.55				1/
2 Day RUSH)'S								der i Hi	ale Viert.	हैं। भ	11 8 1 4	and a	Courses	
1 Day RUSH	<u>.</u>															_/		{	2
Other Bush T/A Data Avai	lable VIA Email or Lab	link														~		-	
	Sar	nple Custod	y must be	documer	nted be	low each	time san	ples ch	ange	possessi	ion, in	cluding c	ourier de	livery.		-			57
Relinquished by Sampler/Affiliation		ceived By/Af	filiation	IX			F	telinquis	shed E	By/Affiliat	tion			Paté Ti	me: 1	Rece	eiged By	Affiliation	1
1 Relinquished by/Affiliation	9-13-21 2		W111 - 41 -	M			3			H	-					4	EM.	<u>t</u>	
semiquisned by/Amiliation	Date Time: ' Re	ceived By/Af	milation				F	terinquis	shed E	By/Affiliat	tion			Date Ti	nhe: // ()	Rece	eived By/	Affiliation	1
	6	. 17 4 -	-01				7							100		8			
Lab Use Only : Cooler Temperature	(s) Celsius (corrected	$\eta: 0 \cdot y \neq 1$		ORU	SMT	0001-03-F	ORM	C (4) 21	Rev	131318	_					http://w	ww.sgs.c	om/en/ter	ms-and-conditions
				UNLL	01VI 1 -1	5001-03-F	UCKIVI-CU	(4).XIS	intev (51510									

FA88902: Chain of Custody Page 1 of 3

SGS

4.1 **4**

SGS			S	AIN GS Nor 2235 Ro 732-329 W	th Am ute 130	nerica), Dayl FAX:	Inc	Dayto 08810	'n	L			FED-E.	F X Tracking uote #		89			er Control #	of	
Client / Reporting Information			Proje	ct Inforn	ation											Reques	ted Ana	alysis			Matrix Codes
Company Nerre: Arcadis Street Address	Project Nam Street	FPE	- Ec	Υ	-		SC erent from	2					- C								DW - Drinking Water GW - Ground Water WW - Water SW - Surface Water
City State	Zip City		State	Company	/ Name	on (n air	erent froi	п керо	110)				0								SO - Soll SL- Sludge SED-Sediment OI - Oil
Jeff Beckner	Protect #			Street Ac	ldross								2		- E -						LIQ - Other Liquid AIR - Air
Phone #	Client Purch			City					State		Z	ip.	-00	1							SOL - Other Solid WP - Wipe FB - Field Blank
A. Burgess	Phone # Project Man	iger	Collection	Altention					Blooks		irved Bott].«								EB-Equipment Blank RB - Rinse Blank TB - Trip Blank
Sus Sempte // Field ID / Point of Collection	MEOH/DI Vial	V Date	Time	Sampled by	Grati (G) Comp (C)	Matrix	8 of bottles	HG	HNO,	L	lä .	2	N N								LAB USE ONLY
13 MW-33			13:32		G	GW	3	X					3								
15 MW-45			12:18	++-	++-	+	3	X	-	++	++	++	3	-				_	_		
16 MW-52		9-10-21	_		+	+	3	X		++	++	++	a	-		-		-	-		_
17 MW-53	+	9-10-21					3	X		Ħ		T	3				-				
18 MW-54		9-10-21					3	X		Ħ			3								
19 DUP-03		9-10-21		¥	V	V	3	X					3								
													1				-	-			
Turn Around Tir	ne (Business Days								D	elivera				_				C	omments	/ Special I	Instructions
10 Business Days 5 Business Days	Approved By (3GS PM): / Date:			Comr		4" (Level 6" (Level 2 evel 3)	·] NYA	SP Cate SP Cate ACP Crl	gory B			DOD-QSM5						
3 Business Days" 2 Business Days"					Full Ti	er I (Lev nercial "C	el 4)] ст я	CP Crl	iteria	_								
1 Business Day*						QP		AU - 17		EDD	Format										
Alf data available via Lablink	* Approval needed for		ay TAT Custody n	ust be de	cument	0	ommercl	ai "C" =	Results	+ QC S	ummary	+ Partial	sults + QC Raw data					http:/	/www.sg	s.com/en/te	erms-and-conditions
Relinquished by:	9-13-21	Received By:	F	×					ished By		puads	P	(Suner	Date/1	17/21	Re 2	icelved B	PPUU	4	
Relinquished by: 3	ate / Time:	Received By: 3		/				Relings 4	ilshed By	r.		11			Dale / 1	1000	~	celved B			
Refinquiahed by: D	ate / Time:	Received By:						Custod	y Seal #				Intacl		Preserved where	applicable			On I		ooler Yemp, "C

EHSA-QAC-0023-02-FORM-Dayton - Standard COC,xlsx

FA88902: Chain of Custody Page 2 of 3

SGS Sample Receipt Summary

Job Number: FA8890)2	Client	ARCAD	S	Project: FPE-EDGE	FIELD					
Date / Time Received: 9/14/20	21 10:00:0	00 AM	Deliver	y Method: FX	Airbill #'s: 5061 4510 5417						
Therm ID: IR 1;			Therm (CF: 0.2;	# of Coole	rs: 1					
Cooler Temps (Raw Measure	ed)°C: C	Cooler 1: (0.	6);								
Cooler Temps (Correct	ed) °C: C	Cooler 1: (0.	B);								
Cooler Information	<u>Y</u> (or N		Sample Information		Yo	r N	N/A			
1. Custody Seals Present	\checkmark			1. Sample labels present	on bottles	\checkmark					
2. Custody Seals Intact	\checkmark			2. Samples preserved pro	operly	\checkmark					
3. Temp criteria achieved	\checkmark			3. Sufficient volume/conta	ainers recvd for analysis:	\checkmark					
4. Cooler temp verification	IR Gur	<u>1</u>		4. Condition of sample		Intact					
5. Cooler media	Ice (Ba	ag)		5. Sample recvd within H	т	\checkmark					
				6. Dates/Times/IDs on Co	OC match Sample Label	\checkmark					
Trip Blank Information	Yo	or N	N/A	7. VOCs have headspace	e		\checkmark				
1. Trip Blank present / cooler	\checkmark			8. Bottles received for un	specified tests		\checkmark				
2. Trip Blank listed on COC	\checkmark			9. Compositing instruction	ns clear			\checkmark			
	w	or S	N/A	10. Voa Soil Kits/Jars rec	eived past 48hrs?			\checkmark			
				11. % Solids Jar received	1?			\checkmark			
3. Type Of TB Received	\checkmark			12. Residual Chlorine Pre	esent?						
Misc. Information											
Number of Encores: 25-Gra	m	5-Gram		Number of 5035 Field Kits:	Number of L	ab Filtered	Metals:				
Test Strip Lot #s:	pH 0-3	2303	15	pH 10-12219813A	Other: (Spe	cify)					
Residual Chlorine Test Strip Lo	ot #:										
Comments											
SM001 Technicia	an: PETEF	RH	Date	9/14/2021 10:00:00 A	Reviewer:		Date:				
Rev. Date 05/24/17				<u> </u>							

FA88902: Chain of Custody Page 3 of 3

4.1 **4**

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

10/07/21

Technical Report for

ARCADIS Geraghty & Miller

FPE; Edgefield, SC

30067293.2.2

SGS Job Number: FA88903

Sampling Dates: 09/07/21 - 09/10/21

Report to:

ARCADIS Geraghty & Miller

jbeckner@arcadis-us.com

ATTN: Jeff Beckner

Total number of pages in report: 44

Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Evita Martinez 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, UT, VT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 44

FA88903

Table of Contents

N
ယ
4

	1	
_		_
	л.	

Section 1: Sample Summary	3
Section 2: Summary of Hits	5
Section 3: Sample Results	
3.1: FA88903-1: PSMW-6	8
3.2: FA88903-2: PSMW-7	10
3.3: FA88903-3: PSMW-2	12
3.4: FA88903-4: PMW-2	14
3.5: FA88903-5: PSMW-3	15
3.6: FA88903-6: DUP-1	17
3.7: FA88903-7: PSMW-4	19
3.8: FA88903-8: PMW-4	21
3.9: FA88903-9: PMW-5	23
3.10: FA88903-10: PMW-3	25
3.11: FA88903-11: AMW-5	27
3.12: FA88903-12: RTB-6	29
3.13: FA88903-13: PSMW-5	31
3.14: FA88903-14: AMW-1	33
3.15: FA88903-15: AMW-2	35
3.16: FA88903-16: AMW-3	37
3.17: FA88903-17: TRIP BLANK	39
Section 4: Misc. Forms	41
4.1: Chain of Custody	42

Sample Summary

ARCADIS Geraghty & Miller

FPE; Edgefield, SC Project No: 30067293.2.2

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID		
This report contains results reported as ND = Not detected. The following applies: Organics ND = Not detected above the MDL								
FA88903-1	09/07/21	11:15 RR	09/14/21	AQ	Ground Water	PSMW-6		
FA88903-2	09/07/21	14:10 RR	09/14/21	AQ	Ground Water	PSMW-7		
FA88903-3	09/07/21	14:50 RR	09/14/21	AQ	Ground Water	PSMW-2		
FA88903-4	09/09/21	08:25 RR	09/14/21	AQ	Ground Water	PMW-2		
FA88903-5	09/09/21	09:10 RR	09/14/21	AQ	Ground Water	PSMW-3		
FA88903-6	09/09/21	00:00 RR	09/14/21	AQ	Ground Water	DUP-1		
FA88903-7	09/09/21	10:55 RR	09/14/21	AQ	Ground Water	PSMW-4		
FA88903-8	09/09/21	12:35 RR	09/14/21	AQ	Ground Water	PMW-4		
FA88903-9	09/09/21	14:50 RR	09/14/21	AQ	Ground Water	PMW-5		
FA88903-10	09/09/21	16:25 RR	09/14/21	AQ	Ground Water	PMW-3		
FA88903-11	09/10/21	08:10 RR	09/14/21	AQ	Ground Water	AMW-5		
FA88903-12	09/10/21	10:05 RR	09/14/21	AQ	Ground Water	RTB-6		

FA88903

Sample Summary (continued)

ARCADIS Geraghty & Miller

FPE; Edgefield, SC Project No: 30067293.2.2

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA88903-13	09/10/21	10:35 RR	09/14/21	AQ	Ground Water	PSMW-5
FA88903-14	09/10/21	12:25 RR	09/14/21	AQ	Ground Water	AMW-1
FA88903-15	09/10/21	13:05 RR	09/14/21	AQ	Ground Water	AMW-2
FA88903-16	09/10/21	14:00 RR	09/14/21	AQ	Ground Water	AMW-3
FA88903-17	09/10/21	00:00 RR	09/14/21	AQ	Trip Blank Water	TRIP BLANK

Job No:

Summary of Hits

Job Number:	FA88903
Account:	ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC
Collected:	09/07/21 thru 09/10/21

Lab Sample ID	Client Sample ID	Result/				
Analyte		Qual	RL	MDL	Units	Method
FA88903-1	PSMW-6					
No hits reported	in this sample.					
FA88903-2	PSMW-7					
No hits reported	in this sample.					
FA88903-3	PSMW-2					
No hits reported	in this sample.					
FA88903-4	PMW-2					
No hits reported	in this sample.					
FA88903-5	PSMW-3					
cis-1,2-Dichloroe Trichloroethylen		0.64 J 4.6	1.0 1.0	0.28 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88903-6	DUP-1					
cis-1,2-Dichlorod Trichloroethylen		0.95 J 5.3	$\begin{array}{c} 1.0 \\ 1.0 \end{array}$	0.28 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88903-7	PSMW-4					
Chloroform cis-1,2-Dichloroo Trichloroethylen		0.41 J 0.45 J 7.8	1.0 1.0 1.0	0.30 0.28 0.35	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
FA88903-8	PMW-4					
cis-1,2-Dichloroe Trichloroethylen	•	23.3 78.1	1.0 1.0	0.28 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88903-9	PMW-5					
cis-1,2-Dichloroe Trichloroethylen		0.50 J 2.5	1.0 1.0	0.28 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88903-10 PMW-3						
cis-1,2-Dichloroe	ethylene	0.53 J	1.0	0.28	ug/l	SW846 8260D

Ν

SGS

Summary of Hits

Job Number:	FA88903
Account:	ARCADIS Geraghty & Miller
Project:	FPE; Edgefield, SC
Collected:	09/07/21 thru 09/10/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Trichloroethylene	24.3	1.0	0.35	ug/l	SW846 8260D
FA88903-11 AMW-5					
1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene Trichloroethylene Vinyl Chloride	4.1 7.2 7.1 63.0 0.56 J	1.0 1.0 1.0 1.0 1.0	0.34 0.32 0.28 0.35 0.41	ug/l ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D SW846 8260D
FA88903-12 RTB-6					
1,1-Dichloroethylene cis-1,2-Dichloroethylene Trichloroethylene Vinyl Chloride	11.4 J 219 1730 29.6	25 25 25 25	8.1 6.9 8.6 10	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
FA88903-13 PSMW-5					
cis-1,2-Dichloroethylene Trichloroethylene	122 729	10 10	2.8 3.5	ug/l ug/l	SW846 8260D SW846 8260D
FA88903-14 AMW-1					
cis-1,2-Dichloroethylene Trichloroethylene	7.3 23.4	1.0 1.0	0.28 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88903-15 AMW-2					
cis-1,2-Dichloroethylene Trichloroethylene	6.5 18.0	1.0 1.0	0.28 0.35	ug/l ug/l	SW846 8260D SW846 8260D
FA88903-16 AMW-3					
1,1-Dichloroethylene cis-1,2-Dichloroethylene Trichloroethylene	1.2 J 35.5 196	2.5 2.5 2.5	0.81 0.69 0.86	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D

FA88903-17 TRIP BLANK

No hits reported in this sample.

N

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

				Report	of Aı	nalysis		Page 1 of 2
Client San Lab Samp Matrix: Method: Project:	1	PSMW-6 FA88903 AQ - Gro SW846 8 FPE; Ed	8-1 ound Wa 3260D				Date Sampled: Date Received: Percent Solids:	• • • • = • • = =
Run #1 Run #2	File ID 2A3779	5.D	DF 1	Analyzed 09/20/21 18:18	By CV	Prep Date n/a	Prep Bato n/a	h Analytical Batch V2A1591
Run #1 Run #2	Purge 5.0 ml	olume						

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

ω -

E = Indicates value exceeds calibration range

Client Sample ID:	PSMW-6		
Lab Sample ID:	FA88903-1	Date Sampled:	09/07/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	101%		85-11	2%	
460-00-4	4-Bromofluorobenzene	98%		83-11	8%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ω -

			Report	of A	nalysis		Page 1 of 2
Client San Lab Samp Matrix: Method: Project:	le ID:	PSMW-7 FA88903-2 AQ - Ground Water SW846 8260D FPE; Edgefield, SC				Date Sampled: Date Received: Percent Solids:	• • • • • = •
Run #1 Run #2	File ID 2A37797	DF 7.D 1	Analyzed 09/20/21 18:48	By CV	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2A1591
Run #1 Run #2	Purge V 5.0 ml	olume					

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

3.2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PSMW-7		
Lab Sample ID:	FA88903-2	Date Sampled:	09/07/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	100%	79-125%			
2037-26-5	Toluene-D8	100%		85-1	12%	
460-00-4	4-Bromofluorobenzene	98%	83-118%			

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Report	of A	nalysis		Page 1 of 2
Client San Lab Samp Matrix: Method: Project:	-	SW846	- 3-3 round Wa				Date Sampled: Date Received: Percent Solids:	• • • • = • • = =
Run #1 Run #2	File ID 2A3779	9.D	DF 1	Analyzed 09/20/21 19:18	By CV	Prep Date n/a	Prep Bato n/a	h Analytical Batch V2A1591
Run #1 Run #2	Purge 5.0 ml	olume						

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

ယ အ

12 of 44

E = Indicates value exceeds calibration range

Client Sample ID:	PSMW-2		
Lab Sample ID:	FA88903-3 Da	te Sampled:	09/07/21
Matrix:	AQ - Ground Water Da	te Received:	09/14/21
Method:	SW846 8260D Per	rcent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	101%		85-1	12%	
460-00-4	4-Bromofluorobenzene	99%		83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ ပ

SGS LabLink@11:12 07-Oct-2021

			Report	of An	alysis		Page 1 of 1
Client Samj Lab Sample Matrix: Method: Project:	e ID: FA88 AQ - SW8	7-2 3903-4 Ground Water 46 8260D Edgefield, SC				Date Sampled: Date Received: Percent Solids:	00/11/21
Run #1 ^a Run #2	File ID Y58462.D	DF 1	Analyzed 09/22/21 17:10	By LV	Prep Date n/a	e Prep Bate n/a	ch Analytical Batch VY2428
Run #1 Run #2	Purge Volum 5.0 ml	e					
VOA TCL	List (SOM02.	0)					
CAS No.	Compound		Result	RL	Units	Q	
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Limits	:	
1868-53-7 17060-07-0	Dibromofluc 1,2-Dichloro		108% 127% ^b		83-118 79-125		

85-112%

83-118%

102%

101%

(a) Confirmation run.

2037-26-5

460-00-4

(b) Outside control limits.

Toluene-D8

4-Bromofluorobenzene

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

	Report of Analysis Page 1									
Client San Lab Samp Matrix: Method: Project:		SW846	-				Date Sampled: Date Received: Percent Solids:	• > · = · · = =		
Run #1 Run #2	File ID Y58491	.D	DF 1	Analyzed 09/23/21 14	By :59 LV	Prep Date n/a	Prep Batc n/a	h Analytical Batch VY2429		
Run #1 Run #2	Purge 5.0 ml	olume								

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane ^a	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.64	1.0	0.28	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis	

Client Sample ID: Lab Sample ID:	FA88903-5 Date	e Sampled:	
Matrix:	AQ - Ground Water Date	e Received:	09/14/21
Method:	SW846 8260D Perc	cent Solids:	n/a
Project:	FPE; Edgefield, SC		

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	4.6	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	101%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	107%		79-12	25%	
2037-26-5	Toluene-D8	102%		85-11	12%	
460-00-4	4-Bromofluorobenzene	103%		83-11	18%	

(a) Associated BS recovery outside control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Client Sa Lab Sam Matrix: Method: Project:	- - - -	DUP-1 FA88903-6 AQ - Ground W SW846 8260D FPE; Edgefield,			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	= -
Run #1 Run #2	File ID Y58492.1	DF D 1	Analyzed 09/23/21 15:24	By LV	Prep Date n/a	Prep Batch n/a	Analytical Batch VY2429
Run #1 Run #2	Purge Vo 5.0 ml	olume					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane ^a	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.95	1.0	0.28	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.6

E = Indicates value exceeds calibration range

Client Sample ID:	DUP-1	
Lab Sample ID:	FA88903-6 Date Sampled:	09/09/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	5.3	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	111%		79-12	25%	
2037-26-5	Toluene-D8	102%		85-1	12%	
460-00-4	4-Bromofluorobenzene	104%		83-1	18%	

(a) Associated BS recovery outside control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

	Report of Analysis Pag							
Client San Lab Samp Matrix: Method: Project:		PSMW-4 FA88903-7 AQ - Ground V SW846 8260D FPE; Edgefield				Date Sampled: Date Received: Percent Solids:	• • • • • • = •	
Run #1 Run #2	File ID Y58493	DF .D 1	Analyzed 09/23/21 15:49	By LV	Prep Date n/a	Prep Batc n/a	h Analytical Batch VY2429	
Run #1 Run #2	Purge 5.0 ml	Volume						

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane ^a	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	0.41	1.0	0.30	ug/l	J
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.45	1.0	0.28	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

E = Indicates value exceeds calibration range

I (p)() () () () () () () () () () () () ()	Report	of	Ana	lysis
--	--------	----	-----	-------

Client Sample ID:	PSMW-4		
Lab Sample ID:	FA88903-7 Date Sa	mpled:	09/09/21
Matrix:	AQ - Ground Water Date Re	ceived:	09/14/21
Method:	SW846 8260D Percent	Solids:	n/a
Project:	FPE; Edgefield, SC		

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	7.8	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	116%		79-12	25%	
2037-26-5	Toluene-D8	102%		85-11	2%	
460-00-4	4-Bromofluorobenzene	104%		83-11	8%	

(a) Associated BS recovery outside control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Client Sa Lab Sam Matrix: Method: Project:	ple ID: F A S	MW-4 A88903-8 Q - Ground Wa W846 8260D PE; Edgefield,			Da	ate Sampled: 09/09/21 Pate Received: 09/14/21 ercent Solids: n/a		
Run #1 Run #2	File ID Y58494.D	DF 1	Analyzed 09/23/21 16:14	By LV	Prep Date n/a	Prep Batch n/a	Analytical Batch VY2429	
Run #1 Run #2	Purge Vo 5.0 ml	lume						

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane ^a	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	23.3	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

ω 8

E = Indicates value exceeds calibration range

Client Sample ID:	PMW-4		
Lab Sample ID:	FA88903-8	Date Sampled:	09/09/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	78.1	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	105%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	121%		79-12	25%	
2037-26-5	Toluene-D8	101%		85-1	12%	
460-00-4	4-Bromofluorobenzene	103%		83-1	18%	

(a) Associated BS recovery outside control limits low.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ယ 8

22 of 44

Client Sar Lab Samp Matrix: Method: Project:	ole ID: FA8 AQ - SW8	PMW-5 FA88903-9 AQ - Ground Water SW846 8260D FPE; Edgefield, SC			Date Sampled:09/09/21Date Received:09/14/21Percent Solids:n/a			
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	Y58495.D	1	09/23/21 16:38	LV	n/a	n/a	VY2429	
Run #2 ^a	Y58467.D	1	09/22/21 19:15	LV	n/a	n/a	VY2428	
	Purge Volun	ne						
Run #1	5.0 ml							
Run #2	5.0 ml							

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane ^b	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.50	1.0	0.28	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω_

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PMW-5		
Lab Sample ID:	FA88903-9	Date Sampled:	09/09/21
Matrix:	AQ - Ground Water I	Date Received:	09/14/21
Method:	SW846 8260D F	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	2.5	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	109%	113%	83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	127% ^c	132% c	79-12	5%	
2037-26-5	Toluene-D8	102%	101%	85-11	2%	
460-00-4	4-Bromofluorobenzene	101%	103%	83-11	8%	

(a) Confirmation run for surrogate recoveries.

(b) Associated BS recovery outside control limits low.

(c) Outside control limits. Confirmed by reanalysis.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

ა .9

Client Sar Lab Samp Matrix: Method: Project:	le ID: FA AQ SW	W-3 88903-10 - Ground Wa 846 8260D E; Edgefield, 3			Da	nte Sampled: 09 nte Received: 09 prcent Solids: n/	= -
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Y58496.D	1	09/23/21 17:03	LV	n/a	n/a	VY2429
Run #2 ^a	Y58468.D	1	09/22/21 19:40	LV	n/a	n/a	VY2428
Run #1 Run #2	Purge Volu 5.0 ml 5.0 ml	me					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane ^b	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.53	1.0	0.28	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

Client Sample ID:	PMW-3		
Lab Sample ID:	FA88903-10	Date Sampled:	09/09/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	24.3	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	S	
1868-53-7	Dibromofluoromethane	108%	109%	83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	130% c	132% c	79-12	5%	
2037-26-5	Toluene-D8	100%	102%	85-11	2%	
460-00-4	4-Bromofluorobenzene	105%	102%	83-11	8%	

(a) Confirmation run for surrogate recoveries.

(b) Associated BS recovery outside control limits low.

(c) Outside control limits. Confirmed by reanalysis.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sa Lab Sam Matrix: Method: Project:	AQ - SW8	V-5 8903-11 Ground Wa 46 8260D Edgefield,			Da	nte Sampled: 09 nte Received: 09 rcent Solids: n/	= -
Run #1 Run #2	File ID 1A37956.D	DF 1	Analyzed 09/23/21 17:03	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A1594
Run #1 Run #2	Purge Volun 5.0 ml	ne					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	4.1	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	7.2	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	7.1	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report	of	Analysis
πορυτι		

Lab Sample ID:FA88903-11Date Sampled:09/10/21Matrix:AQ - Ground WaterDate Received:09/14/21Method:SW846 8260DPercent Solids:n/aProject:FPE: Edgefield, SCFPE:SC	Client Sample ID:	AMW-5		
Method: SW846 8260D Percent Solids: n/a	Lab Sample ID:	FA88903-11 Date 5	Sampled:	09/10/21
	Matrix:	AQ - Ground Water Date J	Received:	09/14/21
Project: FPE: Edgefield, SC	Method:	SW846 8260D Perce	nt Solids:	n/a
,,,~-	Project:	FPE; Edgefield, SC		

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	63.0	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	0.56	1.0	0.41	ug/l	J
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	98%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-12	25%	
2037-26-5	Toluene-D8	97%		85-11	12%	
460-00-4	4-Bromofluorobenzene	99%		83-11	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ

Lab Sam Matrix: Method: Project:	AQ - SW8	6 3903-12 Ground Wa 46 8260D Edgefield,			Da	I I	0/10/21 0/14/21 a
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1A37958.D	25	09/23/21 17:33	CV	n/a	n/a	V1A1594
Run #2							
	Purge Volum	e					
Run #1	5.0 ml						

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	630	250	ug/l	
71-43-2	Benzene	ND	25	7.8	ug/l	
74-97-5	Bromochloromethane	ND	25	11	ug/l	
75-27-4	Bromodichloromethane	ND	25	6.1	ug/l	
75-25-2	Bromoform	ND	25	10	ug/l	
78-93-3	2-Butanone (MEK)	ND	130	50	ug/l	
75-15-0	Carbon Disulfide	ND	50	13	ug/l	
56-23-5	Carbon Tetrachloride	ND	25	8.9	ug/l	
108-90-7	Chlorobenzene	ND	25	5.0	ug/l	
75-00-3	Chloroethane ^a	ND	50	17	ug/l	
67-66-3	Chloroform	ND	25	7.5	ug/l	
110-82-7	Cyclohexane	ND	25	9.8	ug/l	
124-48-1	Dibromochloromethane	ND	25	6.9	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	130	26	ug/l	
106-93-4	1,2-Dibromoethane	ND	50	6.9	ug/l	
75-71-8	Dichlorodifluoromethane	ND	50	13	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	25	8.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	25	5.4	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	25	6.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	25	8.5	ug/l	
107-06-2	1,2-Dichloroethane	ND	25	7.8	ug/l	
75-35-4	1,1-Dichloroethylene	11.4	25	8.1	ug/l	J
156-59-2	cis-1,2-Dichloroethylene	219	25	6.9	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	25	5.5	ug/l	
78-87-5	1,2-Dichloropropane	ND	25	11	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	25	7.3	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	25	5.4	ug/l	
100-41-4	Ethylbenzene	ND	25	8.9	ug/l	
76-13-1	Freon 113	ND	25	12	ug/l	
591-78-6	2-Hexanone	ND	250	50	ug/l	
98-82-8	Isopropylbenzene	ND	25	5.5	ug/l	
79-20-9	Methyl Acetate	ND	500	130	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	RTB-6	
Lab Sample ID:	FA88903-12 Date Sampled:	09/10/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	130	50	ug/l	
74-87-3	Methyl Chloride	ND	50	13	ug/l	
108-87-2	Methylcyclohexane	ND	25	11	ug/l	
75-09-2	Methylene Chloride	ND	130	50	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	130	25	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	25	5.7	ug/l	
100-42-5	Styrene	ND	25	5.6	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	7.5	ug/l	
127-18-4	Tetrachloroethylene	ND	25	5.4	ug/l	
108-88-3	Toluene	ND	25	7.5	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	50	15	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	50	13	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	25	6.2	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	25	12	ug/l	
79-01-6	Trichloroethylene	1730	25	8.6	ug/l	
75-69-4	Trichlorofluoromethane	ND	50	13	ug/l	
75-01-4	Vinyl Chloride	29.6	25	10	ug/l	
	m,p-Xylene	ND	50	12	ug/l	
95-47-6	o-Xylene	ND	25	6.4	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	97%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	99%		79-12	25%	
2037-26-5	Toluene-D8	97%		85-1	12%	
460-00-4	4-Bromofluorobenzene	98%		83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Page 2 of 2

SGS

Client Sam Lab Sam Matrix: Method: Project:	AQ - SW8	W-5 3903-13 Ground Wa 46 8260D Edgefield,			Da	ate Sampled: 09 ate Received: 09 arcent Solids: n/	= -
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1A37960.D	10	09/23/21 18:02	CV	n/a	n/a	V1A1594
Run #2							
	Purge Volun	e					
Run #1	5.0 ml						

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	250	100	ug/l	
71-43-2	Benzene	ND	10	3.1	ug/l	
74-97-5	Bromochloromethane	ND	10	4.5	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.4	ug/l	
75-25-2	Bromoform	ND	10	4.1	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	20	ug/l	
75-15-0	Carbon Disulfide	ND	20	5.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	10	3.6	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
75-00-3	Chloroethane ^a	ND	20	6.7	ug/l	
67-66-3	Chloroform	ND	10	3.0	ug/l	
110-82-7	Cyclohexane	ND	10	3.9	ug/l	
124-48-1	Dibromochloromethane	ND	10	2.8	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	50	10	ug/l	
106-93-4	1,2-Dibromoethane	ND	20	2.8	ug/l	
75-71-8	Dichlorodifluoromethane	ND	20	5.0	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	10	3.2	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	10	2.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	2.6	ug/l	
75-34-3	1,1-Dichloroethane	ND	10	3.4	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	3.1	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	3.2	ug/l	
156-59-2	cis-1,2-Dichloroethylene	122	10	2.8	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	10	2.2	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	4.3	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.9	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	2.1	ug/l	
100-41-4	Ethylbenzene	ND	10	3.6	ug/l	
76-13-1	Freon 113	ND	10	4.8	ug/l	
591-78-6	2-Hexanone	ND	100	20	ug/l	
98-82-8	Isopropylbenzene	ND	10	2.2	ug/l	
79-20-9	Methyl Acetate	ND	200	50	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

3.13

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PSMW-5	
Lab Sample ID:	FA88903-13 Date Sample	ed: 09/10/21
Matrix:	AQ - Ground Water Date Received	ed: 09/14/21
Method:	SW846 8260D Percent Solie	ds: n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	50	20	ug/l	
74-87-3	Methyl Chloride	ND	20	5.0	ug/l	
108-87-2	Methylcyclohexane	ND	10	4.4	ug/l	
75-09-2	Methylene Chloride	ND	50	20	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	50	10	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	2.3	ug/l	
100-42-5	Styrene	ND	10	2.2	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	3.0	ug/l	
127-18-4	Tetrachloroethylene	ND	10	2.2	ug/l	
108-88-3	Toluene	ND	10	3.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	20	6.1	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	20	5.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.5	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	10	4.7	ug/l	
79-01-6	Trichloroethylene	729	10	3.5	ug/l	
75-69-4	Trichlorofluoromethane	ND	20	5.0	ug/l	
75-01-4	Vinyl Chloride	ND	10	4.1	ug/l	
	m,p-Xylene	ND	20	4.7	ug/l	
95-47-6	o-Xylene	ND	10	2.6	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-12	25%	
2037-26-5	Toluene-D8	96%		85-1	12%	
460-00-4	4-Bromofluorobenzene	98%		83-1	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

Client Sa Lab Samj Matrix: Method: Project:	AQ - SW8	V-1 3903-14 Ground Wa 46 8260D Edgefield,			Da	nte Sampled: 09 nte Received: 09 rcent Solids: n/	
Run #1 Run #2	File ID 1A37962.D	DF 1	Analyzed 09/23/21 18:32	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A1594
Run #1 Run #2	Purge Volun 5.0 ml	ie					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	7.3	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID:	AMW-1	
Lab Sample ID:	FA88903-14 Date Sampled:	09/10/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	23.4	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	97%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	100%		79-12	25%	
2037-26-5	Toluene-D8	97%		85-1	12%	
460-00-4	4-Bromofluorobenzene	99%		83-11	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.14

34 of 44

Client Sa Lab Sam Matrix: Method: Project:	AQ - SW8	V-2 903-15 Ground Wa 46 8260D Edgefield,			Da	nte Sampled: 09 nte Received: 09 rcent Solids: n/	
Run #1 Run #2	File ID 1A37964.D	DF 1	Analyzed 09/23/21 19:02	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A1594
Run #1 Run #2	Purge Volum 5.0 ml	e					

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane ^a	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	6.5	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

ω

SGS

35 of 44

E = Indicates value exceeds calibration range

Client Sample ID:	AMW-2		
Lab Sample ID:	FA88903-15	Date Sampled:	09/10/21
Matrix:	AQ - Ground Water	Date Received:	09/14/21
Method:	SW846 8260D	Percent Solids:	n/a
Project:	FPE; Edgefield, SC		

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l	
100-42-5	Styrene	ND	1.0	0.22	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l	
108-88-3	Toluene	ND	1.0	0.30	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	18.0	1.0	0.35	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l	
	m,p-Xylene	ND	2.0	0.47	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	96%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	97%		79-12	25%	
2037-26-5	Toluene-D8	98%		85-1	12%	
460-00-4	4-Bromofluorobenzene	101%		83-11	18%	

(a) Associated Initial Calibration outside control limits (% RSD > 15%); however sample is ND.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.15

SGS

Client San Lab Samj Matrix: Method: Project:	AQ SW	4W-3 88903-16) - Ground Wa /846 8260D E; Edgefield,			Da	ate Sampled: 09 ate Received: 09 ercent Solids: n/	
Run #1 Run #2	File ID I71068.D	DF 2.5	Analyzed 09/24/21 11:16	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2319
Run #1	Purge Volu	ime					

Run #1 Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	63	25	ug/l	
71-43-2	Benzene	ND	2.5	0.78	ug/l	
74-97-5	Bromochloromethane	ND	2.5	1.1	ug/l	
75-27-4	Bromodichloromethane	ND	2.5	0.61	ug/l	
75-25-2	Bromoform	ND	2.5	1.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	13	5.0	ug/l	
75-15-0	Carbon Disulfide	ND	5.0	1.3	ug/l	
56-23-5	Carbon Tetrachloride	ND	2.5	0.89	ug/l	
108-90-7	Chlorobenzene	ND	2.5	0.50	ug/l	
75-00-3	Chloroethane	ND	5.0	1.7	ug/l	
67-66-3	Chloroform	ND	2.5	0.75	ug/l	
110-82-7	Cyclohexane	ND	2.5	0.98	ug/l	
124-48-1	Dibromochloromethane	ND	2.5	0.69	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	13	2.6	ug/l	
106-93-4	1,2-Dibromoethane	ND	5.0	0.69	ug/l	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.3	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.81	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.64	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.5	0.85	ug/l	
107-06-2	1,2-Dichloroethane	ND	2.5	0.78	ug/l	
75-35-4	1,1-Dichloroethylene	1.2	2.5	0.81	ug/l	J
156-59-2	cis-1,2-Dichloroethylene	35.5	2.5	0.69	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	2.5	0.55	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.5	1.1	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.5	0.73	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	0.54	ug/l	
100-41-4	Ethylbenzene	ND	2.5	0.89	ug/l	
76-13-1	Freon 113	ND	2.5	1.2	ug/l	
591-78-6	2-Hexanone	ND	25	5.0	ug/l	
98-82-8	Isopropylbenzene	ND	2.5	0.55	ug/l	
79-20-9	Methyl Acetate	ND	50	13	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

37 of 44

Client Sample ID:	AMW-3	
Lab Sample ID:	FA88903-16 Date Sampled:	09/10/21
Matrix:	AQ - Ground Water Date Received:	09/14/21
Method:	SW846 8260D Percent Solids:	n/a
Project:	FPE; Edgefield, SC	

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
74-83-9	Methyl Bromide	ND	13	5.0	ug/l	
74-87-3	Methyl Chloride	ND	5.0	1.3	ug/l	
108-87-2	Methylcyclohexane	ND	2.5	1.1	ug/l	
75-09-2	Methylene Chloride	ND	13	5.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	13	2.5	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	2.5	0.57	ug/l	
100-42-5	Styrene	ND	2.5	0.56	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	0.75	ug/l	
127-18-4	Tetrachloroethylene	ND	2.5	0.54	ug/l	
108-88-3	Toluene	ND	2.5	0.75	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.5	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.3	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.62	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.5	1.2	ug/l	
79-01-6	Trichloroethylene	196	2.5	0.86	ug/l	
75-69-4	Trichlorofluoromethane ^a	ND	5.0	1.3	ug/l	
75-01-4	Vinyl Chloride	ND	2.5	1.0	ug/l	
	m,p-Xylene	ND	5.0	1.2	ug/l	
95-47-6	o-Xylene	ND	2.5	0.64	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	98%		79-12	25%	
2037-26-5	Toluene-D8	92%		85-1	12%	
460-00-4	4-Bromofluorobenzene	92%		83-1	18%	

(a) Associated CCV outside of control limits high.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.16

38 of 44

Client Sa Lab Samj Matrix: Method: Project:	ple ID: FA A(SV	RIP BLANK A88903-17 Q - Trip Blank V846 8260D E; Edgefield,			Date Sampled:09/10/21Date Received:09/14/21Percent Solids:n/a				
Run #1 Run #2	File ID I71064.D	DF 1	Analyzed 09/24/21 09:40	By SO	Prep Date n/a	Prep Batch n/a	Analytical Batch VI2319		
Run #1 Run #2	Purge Vol 5.0 ml	ume							

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.31	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.45	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l	
75-25-2	Bromoform	ND	1.0	0.41	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	2.0	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.53	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.67	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
110-82-7	Cyclohexane	ND	1.0	0.39	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/l	
106-93-4	1,2-Dibromoethane	ND	2.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l	
76-13-1	Freon 113	ND	1.0	0.48	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.22	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: TRIP BLANK

FA88903-17

Lab Sample ID:

Matrix: Method: Project:	AQ - Trip Blank Water SW846 8260D FPE; Edgefield, SC				Date	Received: ent Solids:	
VOA TCL	List (SOM02.0)						
CAS No.	Compound	Result	RL	MDL	Units	Q	
74-83-9	Methyl Bromide	ND	5.0	2.0	ug/l		
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l		
108-87-2	Methylcyclohexane	ND	1.0	0.44	ug/l		
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l		
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l		
100-42-5	Styrene	ND	1.0	0.22	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l		
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l		
108-88-3	Toluene	ND	1.0	0.30	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.61	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l		
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l		
75-69-4	Trichlorofluoromethane ^a	ND	2.0	0.50	ug/l		
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l		
	m,p-Xylene	ND	2.0	0.47	ug/l		
95-47-6	o-Xylene	ND	1.0	0.26	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	93%		83-1	18%		

97%

91%

93%

Report of Analysis

Page 2 of 2

Date Sampled: 09/10/21

3.17 3

hit J = Indicates an estimated value B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

79-125%

85-112%

83-118%

ND = Not detected MDL = Method Detection LimitRL = Reporting LimitE = Indicates value exceeds calibration range

1,2-Dichloroethane-D4

4-Bromofluorobenzene

(a) Associated CCV outside of control limits high.

Toluene-D8

17060-07-0

2037-26-5

460-00-4

FA88903

40 of 44

SGS

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	D#:		OF CUSTO			Page	of
Contact & Company Name: 3 JEAF Brokhorr/Afrachet Address 1450 (roteine St. Ste.22 0 State 200 0 Address 1450 (roteine St. Ste.22 200 0 Address 200 200 200 200 200 200 200 2	Fax:	(Preservative B Filtered (~) # of Containers 3 Container 1				Keys Preservation Key: Container Information Key A. H,SO, 1. 40 ml Vial B. HCL 2. 11 Amber C. HNO, 3. 250 ml Plastic D. NaOH 4. 500 ml Plastic E. None 5. Encore
B Augusta GA 30901 Price Name Leaten (Chy, Sur) 5 C Samburgerine Ruma. Keggie Record Sample ID	Project #: Sampler's Signature: Collection Type (~	Matrix	PAI PAI PAI PAI PAI	RAMETER ANA			F. Other: 6. 2 or. Glass G. Other: 7. 4 oz. Glass H. Other: 9. Other: 10. Other: 10. Other: Watrix Key: 10. Other: SO- Soli SE - Sediment V. Vater SL - Sludge W. Vater SL - Sludge W. Vater SL - Sludge REMARKS REMARKS
PSMW-6 PSMW-7		Srab Y W X W	X				REMARKS
PSMW-2 PMW-2	9-9-21 1450	XW	X				
PSMW-3 FLUD-1	9-9-1 010 9-9-1 010 9-9-1 010	XW	X				
RGMW-24 RMW-4	9-9-21 1055	XW	×				
PMM-5 PMW-3	9-9-21/4520	Xu	X.				
AMW-5	9-10-21 1005	XW	X				
RTB-6 PSMW-5 AMW-1	9-1021 1035	XW	X			N T	AL ASTRONOMINY
Special Instructions/Comments:				C Special Q	A/QC Instructions(0.8IR		VERMICANS S
Laboratory Inform	ation and Receipt Cooler Custody Seal (✓)	Printer		and Printed Name:	Received By	Rel Printed Name:	Inquished By Laboratory Received By
Cooler packed with ice (~)	Intact Not In Sample Receipt:	tact Signat	2350 Pin	Signature:	11	Signature:	Firm: 2 CS
Shipping Tracking #:	Condition/Cooler Temp:	- A Date/T 9-	RCARTS 18-21 / 1400	Date/Time:		Date/Time:	Firm: 965 Date/Time: 91192(1000
0730826 CofC AR Form 08,27.2015	Distribution:	WHITE -	- Laboratory returns w	ith reculte	YELLO	W - Lab copy	PINK – Retained by Arcadis

FA88903: Chain of Custody Page 1 of 3

SGS

<u>4</u>

4

ARCADIS	ID#: CH		OF CUSTO IALYSIS R					age	_of		88903
Contact & Company Name:	Telephone:		Preservative B								Keys
address: Address: El 1450 broene 54. Stez Cay State Zo	DE 706-828-44KI		Filtered (*)							Preservation Key: A. H.SO,	Container Information Key: 1. 40 ml Vial
Address:	Fax:		# of Containers 3							B. HCL C. HNO	2. 1 L Amber 3. 250 ml Plastic
# 1450 Greene St. Stez	20		Container Information							D. NaOH E. None	4. 500 ml Plastic 5. Encore
City State Zip	E-mail Address:		PA	RAMET	ER ANA	LYSIS &	METHO	D		F. Other:	6. 2 oz. Glass
Hugusta GH 30			0		/ /	/	/	/	/	G. Other:	7. 4 oz. Glass 8. 8 oz. Glass
FPE/Edgefield, SC	Project #:			/	/	/	/	/	/	H. Other:	9. Other: 10. Other:
Sampler's Printed Name	Sampler's Signature		/ × /	/		/	/	/		Matrix Key: SO - Soil	
Keygre Ricard	Region	1	10 /	/	/	/	-/	/		W - Water	SL - Sludge SW - Sample Wip
Sample ID	Collection Type (✓) Date Time Comp Grab	Matrix	and a second				/ /	/	/ '	REMARKS	A - Air Other:
AMW-2	9-1021 1305 X	w	X								
AMW-3	8-10-21 1400 X	Ŵ	X								
To' O Bleak	9-10-21 - 1	W									
Special Instructional/commute:									INITIAL /	ASSESSMENT	*
Special Instructions/Comments:					Special Q	A/QC Instruction	ons(√):				
Laboratory Info	ormation and Receipt		Relinguished By	8		Received By	1	Re	LABEL	VERIFICATION	Laboratory Received By
Lab Name:	Cooler Custody Seal (✓)	Printed	Name	Card	Printed Name:	FF		rinted Name:	FX	Printed	Name Petter H
Cooler packed with ice (*)	Intact Not Intact	Signah	man D !	D	Signature:	1	S	ignature:	15	Signatu	boutt
Specify Turnaround Requirements:	Sample Receipt:	Firm	iggy pri		Firm/Courier:		Fi	irm/Courier:		Firm:	Tump
		LA	PCAULS					F.			565
Shipping Tracking #:	Condition/Cooler Temp:	Date/Ti	1-21/1400		Dale/Time:		D	ate/Time:		Date/Tin	··· 9 (1/2/ 1000
20730826 CofC AR Form 08.27.2015	Distribution:	WHITE -	Laboratory returns	with results		YE	ELLOW - La	ab copy		PIN	K – Retained by Arcadis

FA88903: Chain of Custody Page 2 of 3

SGS

SGS Sample Receipt Summary

Job Number: FA88903			Client	ARCADIS			Project: FPE/EDGEFIELD			
Date / Time Received: 9/14/2021 10:00:00 AM				Delivery Method: FX			Airbill #'s: 5061 4510 5417			
Therm ID: IR 1;				Therm	CF: 0.2;		# of Coole	rs: 1		
Cooler Temps (Raw Measu	red) °C:	Cool	er 1: (0.6	5);						
Cooler Temps (Correc	ted) °C:	Cool	er 1: (0.8	3);						
Cooler Information	Y	or	N		1	Sample Information		Y	or N	<u>N/A</u>
1. Custody Seals Present	\checkmark					1. Sample labels presen	t on bottles			
2. Custody Seals Intact	\checkmark					2. Samples preserved pr	operly			
3. Temp criteria achieved	\checkmark					3. Sufficient volume/cont	tainers recvd for analysis:			
4. Cooler temp verification	<u>IR G</u>	<u>un</u>			4. Condition of sample					
5. Cooler media	lce (Bag)				5. Sample recvd within H	IT	✓		
						6. Dates/Times/IDs on C	OC match Sample Label	\checkmark		
Trip Blank Information	Y	or	<u>N</u>	N/A		7. VOCs have headspace	æ		\checkmark	
1. Trip Blank present / cooler	\checkmark					8. Bottles received for ur	nspecified tests		\checkmark	
2. Trip Blank listed on COC	\checkmark					9. Compositing instruction	ons clear			
			~	N//A		10. Voa Soil Kits/Jars re	ceived past 48hrs?			\checkmark
	W	or	S	<u>N/A</u>		11. % Solids Jar receive	d?			\checkmark
3. Type Of TB Received	\checkmark					12. Residual Chlorine Pr	resent?			
Misc. Information										
Number of Encores: 25-Gram 5-Gram Number of 5035 Field Kits: Number of Lab Filtered Metals:										
Test Strip Lot #s: pH 0-323031				5				cify)	_	
Residual Chlorine Test Strip L										
Comments										
SM001 Technici	ian: PET	EBH		Date	· 0/14/2021	10:00:00 A	Reviewer:		Date:	
Rev. Date 05/24/17	<u></u>					10.00.0071				

FA88903: Chain of Custody Page 3 of 3

4.1 **4**

SGS

Arcadis U.S., Inc.

1450 Greene Street Suite 220 Augusta, Georgia 30901-5201 Tel 706 828 4421 Fax 706 828 4722

www.arcadis.com