三® II

Initial Phase - Erosion \& Sediment Control Plan
Fairfield I-77 Development Site Fairfield County, South Carolina S\&ME Project No. 210730C

PREPARED FOR:
Luck Stone Corporation 515 Stone Mill Drive (PO Box 29682) Richmond, VA 23242

PREPARED BY:
S\&ME, Inc.

Appendices

Appendices
Appendix I - Drawings
Appendix II - Sediment Basin Calculations

Appendices

Appendix I - Drawings

FAIRFIELD I-77 DEVELOPMENT SITE, E\&SC PLAN - INITIAL PHASE LUCK STONE CORPORATION

FAIRFIELD COUNTY, SOUTH CAROLINA

MARCH 22, 2021

 S. Mng

7. манитenance

(Accoss Splluwatand obown inioe (N) (N) \quad (O) Top of bermbl

Semment basin construction specirications
$\frac{\text { Eleationvew }}{\text { Nis }}$

manterance

 Mezzng weather can result in ce formmg in the basiv. prevent ce from clogging the scimmer.

sectionvew

(6) TRASHRACK

3. Max of

 Cold

OUTLET PIPE OPENINGS CAST INTO PRECAST (AS REQUIRED) UTUITY LIFTERS		CONCRITE RISER SUMMARY TABLE			
					(oncticsize
		Pr.se-1	557	${ }^{2}$	8^{8}
		W.S6.1	${ }_{5}^{500}$	$0 \cdot$ (Nor USED)	
			${ }_{481}{ }_{480}$	${ }^{2}$	(28
TYP. PRECAST RISER SECTION FOR SINGLE SKIMMER SETUP		P.58-3	490	${ }^{2}$	${ }^{8}$
		NE:S8-1	${ }_{427}^{427}$		${ }^{8 \prime}$
		NE:S8.3	412	${ }_{2}$	$6^{\prime \prime}$
		NESEP4	479	0° Mot USED)	8°

(7 (${ }_{4}$ SONCRERETERISER

III

Appendix II - Sediment Basin Calculations

COMPUTATIONS BY: Signature	2ustin C. Condon	
	Name	Justin C. Condon
	Title	Staff Professional

ASSUMPTIONS
AND PROCEDURES
Signature

Date 3/19/2021

CHECKED BY:
Title Staff Professional \qquad

COMPUTATIONS

CHECKED BY:
Name \qquad Matthew H. Kunkle, P.E.
Title
Project Engineer

REVIEWED BY:
Signature
Date 3/19/2021

Name Christopher J.L. Stahl, P.E.

Title Principal Engineer

REVIEW NOTES / COMMENTS: \qquad
\qquad
\& Comprehensive Stormwater Pollution Prevention Plan (C-SWPPP) Luck Stone Corporation | Fairfield Quarry - Initial Phase Sediment Basin and Plunge Pool Calculation

S\&ME Project No. 210730C

OBJECTIVE

This Sediment Basin Calculation package (package) was developed to evaluate the hydrologic and hydraulic characteristics of proposed development areas at the Luck Stone Corporation - Fairfield I-77 Quarry (Site) to design proposed sediment basins intended to manage stormwater and sediment. Each sediment basin at the Site was designed in accordance with the design criteria presented in the South Carolina Department of Health and Environmental Control (SC DHEC) Stormwater Best Management Practice (BMP) Handbook. Meanwhile, plunge pools at each sediment basin outlet were designed based on guidance provided by the Natural Resources Conservation Service (NRCS) guidance to dissipate flows and resist erosion from each sediment basin.

* SUMMARY

Site development activities were anticipated to disturb large surface areas; as such, sediment basins were designed to manage sediment and peak stormwater flows during anticipated construction conditions for the 10-year (yr), 25-yr, and 100-yr, 24-hour (hr) storm events. Proposed sediment basins were designed in general accordance with the SC DHEC Stormwater BMP Handbook and the selected design criteria were summarized subsequently within this package. Plunge pools were designed to dissipate flows from each sediment basin and each plunge pool was designed in accordance with the NRCS "Riprap Lined Plunge Pool for Cantilever Outlet" spreadsheet, which was developed by the United States Department of Agriculture (USDA) Soil Conservation Service (SCS) as described within Design Note No. 6.

REFERENCES

The following references were utilized during the development of this calculation package.

1. NOAA Atlas 14, Volume 2, Version 3, Bonnin, G.M., Martin, D., Lin, B., Parzybok, T., Yekta, M., \& Riley, D., April 21, 2017.
2. TR-55 Urban Hydrology for Small Watersheds, USDA-NRCS, June 1986.
3. NRCS Soil Figures, S\&ME Inc., February 2021.
4. Drainage Area Figures, S\&ME Inc., March 2021.
5. Compiled HydroCAD Report, S\&ME Inc., March 2021.
6. Compiled SEDIMOT IV Report, S\&ME Inc., March 2021.
7. SC DHEC Stormwater BMP Handbook, Sediment Control BMPs - Sediment Basins, SC DHEC, Revised March 2014.
8. Design Hydrology and Sedimentology for Small Catchments, Haan, C.T., Barfield, and Hayes, 1994. Pg. 147-148.
9. Determining the Skimmer Size and the Required Orifice, Faircloth Skimmer, November 2007.
10. SC DHEC Stormwater BMP Handbook, Appendix E - South Carolina Soils, SC DHEC, Revised July 2005.
11. SC DHEC Stormwater BMP Handbook, Appendix K - Figures, SC DHEC, Revised July 2005.
12. ENG - Riprap Lined Plunge Pool for Cantilever Outlet, USDA SCS Design Note. No. 6, $2^{\text {nd }}$ Ed. March 5, 1986.
13. Riprap Lined Plunge Pool for Cantilever Outlet, NRCS Plunge Pool Sheets, March 2021.

DEFINITION OF VARIABLES

The following variables are defined or used as a part of this calculation package.
$\mathrm{Q}=$ flow rate (cfs)
CN = curve number (unitless)
i = rainfall intensity (in./hr)
A = drainage area (acres)
$\mathrm{T}_{\mathrm{c}}=$ time of concentration (min)
$\mathrm{T}_{\mathrm{x}}=\mathrm{T}_{\mathrm{c}}$ component number (min)
$\mathrm{L}=$ spillway length, length of pipe (ft)
$\mathrm{a}=$ cross-sectional area of the pipe $\left(\mathrm{ft}^{2}\right)$
$\mathrm{g}=$ gravity ($\mathrm{ft} / \mathrm{s}^{2}$)
$W_{A B}=$ weight of anti-flotation block (lbs)
$\mathrm{L}_{\mathrm{AB}}=$ length of anti-flotation block (ft)
$\mathrm{H}_{\mathrm{AB}}=$ height of anti-flotation block (ft)
$\mathrm{R}=$ hydraulic radius (ft)
$\mathrm{d}=$ depth (ft) or orifice diameter (in.)
$S=$ max. retention after rainfall begins (in.)
$K_{e}=$ entrance head loss coefficient $K_{c}=$ frictional head loss coefficient (unitless) (unitless)
$K_{b}=$ bend head loss coefficient (unitless)

KNOWN AND ASSUMED VARIABLES

$$
\begin{aligned}
& \mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2} \\
& \mathrm{P}_{2}=3.54 \mathrm{in.} . \mathrm{P}_{10}=5.14 \mathrm{in} ., \mathrm{P}_{25}=6.22 \mathrm{in} ., \mathrm{P}_{100}=8.09 \mathrm{in} . \\
& y_{\mathrm{w}}=62.4 \mathrm{lb} / \mathrm{ft}^{3} \\
& \mathrm{y}_{\mathrm{c}}=150 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

[assumed]
[Reference 1]
[assumed] [assumed]

DESIGN CRITERIA

Each sediment basin was designed in accordance with the SC DHEC Stormwater BMP Handbook with the following criteria:

- Total Suspended Solids (TSS) removal efficiency is greater than or equal to 80% or peak settable solids concentration is less than 0.5 milliliters per liter;
- Maximum drainage area is limited to 30 acres unless alternate sediment capture methodology is utilized (i.e., SEDIMOT IV software);
- Principal spillway discharge capacity developed for the 10-yr, 24-hr storm event;
- Emergency spillway capacity developed for the 100-yr, 24-hour storm event;
- Top of embankment elevation crest selected to be at least 2 ft height above the principal spillway crest and 1 ft above the emergency spillway crest;
- Maintain 0.5 ft of freeboard within the emergency spillway during 100-yr storm;
- Minimum sediment storage capacity of 3,600 cubic feet (ft^{3}) per drainage area acre;
- Dewatering time is maintained between 48 and 120 hours;
- Sediment basin designed with a bottom slope of at least 0.5%;
- Sediment basin length is at least two times the basin width;
- Sediment basin side slopes are constructed at 2 horizontal to 1 vertical ($2 \mathrm{H}: 1 \mathrm{~V}$) or flatter;
- 20 percent of the basin volume is maintained within the basin forebay; and
- Basin maintains a geometry that is accessible by maintenance equipment.

1.0 SEDIMENT BASIN DESIGN CALCULATIONS

1.1 Compute flow into point of interest for 10-yr, 25-yr, and 100-yr, 24-hr design storms

Each sediment basin was located based on existing topographic features and the proposed Site development plan for the facility. Drainage areas that contribute stormwater runoff to each proposed sediment basin were delineated considering development or construction conditions during initial site clearing. From the existing and proposed drainage features on site, a point of interest (POI) was selected at the inlet to each proposed sediment basin. A point of interest was considered to be the analysis point of a contributing watershed or group of sub-catchments to which the disturbed areas route stormwater. Reference 4 presents the proposed sediment basin locations and the contributing drainage areas.

Runoff volumes for the 10-yr, 24-hr and 100-yr, 24-hr design storms were calculated using the Soil Conservation Service (SCS) Curve Number (CN) Method, presented as follows:

$$
Q=\frac{(P-0.2 S)^{2}}{(P+0.8 S)} \quad S=\frac{1000}{C N}
$$

[Reference 2]

The curve number " CN " is an empirical parameter used to predict direct runoff (Q , in inches) from rainfall of a drainage area and was developed based on the surface cover type of a drainage area. Drainage areas at the Site consisted of multiple soil and cover types. NRCS Web Soil Survey (Reference 3) was queried to identify the hydrologic soil groups on site and the preliminary site development plan was referenced to select cover types during construction conditions. As summarized in Table 1 shown below, S\&ME assumed that each drainage area consisted entirely of bare soil during construction conditions and curve numbers were selected accordingly.

Table 1: Curve Number Summary Table			
Drainage Area	Total Area		Combined Curve Number
	(sq.ft.)	(acres)	
	$1,012,355$	23.2	94
W-SB-1	599,872	13.8	94
P-SB-1	$1,936,998$	44.5	94
P-SB-2	603,049	13.8	94
P-SB-3	884,859	20.3	94
NE-SB-1	906,076	20.8	94
NE-SB-2	334,011	7.7	94
NE-SB-3	441,198	10.1	94
NE-SB-4	679,173	15.6	94

The time of concentration $\left(T_{c}\right)$ is the time for stormwater flow to travel from the most hydrologically remote point in a drainage area to leave the watershed or to reach the point of interest. The time of concentration was estimated using the Technical Release 55 (TR-55) method (Reference 2). TR-55 provides guidance to compute the T_{c} for sheet flow, shallow concentrated flow, and open channel flow components of a drainage area or watershed. The first component of stormwater runoff is sheet flow, which can be estimated by the following equation for drainage lengths less than or equal to 300 ft :

$$
T_{t}=\frac{0.007(n L)^{0.8}}{\left(P_{2}\right)^{0.5} s^{0.4}}
$$

[Reference 2]

The estimated sheet flow travel time to each basin was calculated, as shown in Table 2 below:

Table 2: Drainage Area Sheet Flow Summary					
Location ID	Manning's Roughness Coefficient $\{\boldsymbol{n}\}$	Length $\{\mathrm{L}\}$ $(\mathbf{f t})$	Slope $\{s\}$ $(\mathbf{f t} / \mathrm{ft})$	2-Yr, 24-Hr Rainfall (in) [Ref. 1]	Travel Time $\left\{\mathrm{T}_{\mathbf{t} 1}\right\}$ (min)
PT-SB-1	0.050	300	0.0546	3.54	6.2
W-SB-1	0.050	300	0.0707	3.54	5.6
P-SB-1	0.050	300	0.0838	3.54	5.3
P-SB-2	0.050	300	0.0842	3.54	5.2
P-SB-3	0.050	300	0.1095	3.54	4.7
NE-SB-1	0.050	300	0.0464	3.54	6.7
NE-SB-2	0.050	300	0.0812	3.54	5.3
NE-SB-3	0.050	300	0.1075	3.54	4.8
NE-SB-4	0.050	300	0.0719	3.54	5.6

The second component of the estimated time of concentration for each drainage area was shallow concentrated flow. Shallow concentrated flow was computed using the following equations:

$$
\begin{aligned}
& V_{\text {unpaved }}=K_{v} *(s)^{0.5} \\
& T_{t}=\frac{L}{V^{*} 60}(\mathrm{~min})
\end{aligned}
$$

[Reference 2]
[Reference 2]

For disturbed/construction conditions, the ground surface condition of "Nearly Bare and Untilled" was considered and a K_{v} of $10 \mathrm{ft} / \mathrm{sec}$ was selected. The estimated shallow concentrated flow travel time to each sediment basin was calculated, as shown in Table $\mathbf{3}$ below.

Table 3: Drainage Area Shallow Concentrated Flow Summary					
Location ID	Surface Description	Length $\{\mathrm{L}\}$ (ft)	Slope \{s\} (ft/ft)	Average Velocity \{V \} (ft/s)	$\begin{aligned} & \text { Travel Time } \\ & \left\{\mathrm{T}_{12}\right\} \\ & (\min) \end{aligned}$
PT-SB-1	Nearly Bare \& Untilled	804	0.0630	2.5	5.3
W-SB-1	Nearly Bare \& Untilled	334	0.1196	3.5	1.6
P-SB-1	Nearly Bare \& Untilled	1294	0.0737	2.7	7.9
P-SB-2	Nearly Bare \& Untilled	582	0.1023	3.2	3.0
P-SB-3	Nearly Bare \& Untilled	699	0.0738	2.7	4.3
NE-SB-1	Nearly Bare \& Untilled	690	0.1262	3.6	3.2
NE-SB-2	Nearly Bare \& Untilled	340	0.2754	5.2	1.1
NE-SB-3	Nearly Bare \& Untilled	540	0.1570	4.0	2.3
NE-SB-4	Nearly Bare \& Untilled	290	0.0706	2.7	1.8

Once the stormwater runoff reaches a channel, swale or ditch, the estimated flow velocity to each sedimentation basin was calculated by Manning's equation and utilized to compute flow velocity and subsequently the time of concentration.

$$
V=\frac{1.49\left(R^{\frac{2}{3}} \times s^{\frac{1}{2}}\right)}{n}
$$

[Reference 2]

Table 4, below, summarizes the open channel flow calculations.

Table 4: Drainage Area Open Channel Flow Summary						
Location ID	Slope $\{\mathrm{s}\}$ $(\mathrm{ft} / \mathrm{ft})$	Manning's Roughness Coefficient $\{n\}$	Length $\{\mathrm{L}\}$ (ft)	Travel Time $\left\{\mathrm{T}_{\mathrm{t}\}}\right\}$ (min)		
PT-SB-1	-	-	-	-		
W-SB-1	0.0190	0.022	559	0.7		
P-SB-1	0.0045	0.022	341	0.9		
P-SB-2	0.0240	0.022	300	0.3		
P-SB-3	0.0088	0.022	113	0.2		
NE-SB-1	-	-	-	-		
NE-SB-2	-	-	-	-		
NE-SB-3	-	-	-	-		
NE-SB-4	0.0328	0.022	1188	1.1		

The total time of concentration is computed by summing each travel time component of a drainage area and the results are summarized in Table 5 below.

Table 5: Estimated Time of Concentration Summary					
Location ID	Sheet Flow Travel Time (min) [Ref.2]	Shallow Concentrated Flow Travel Time (min) [Ref.2]	Channel Flow Travel Time (min) [Ref.2]	Pipe Flow Travel Time (min)	Time of Concentration (min) [Ref.2]
PT-SB-1	6.2	5.3	-	-	11.5
W-SB-1	5.6	1.6	0.7	-	7.9
P-SB-1	5.3	7.9	0.9	-	14.1
P-SB-2	5.2	3.0	0.3	-	8.5
P-SB-3	4.7	4.3	0.2	-	9.2
NE-SB-1	6.7	3.2	-	-	9.9
NE-SB-2	5.3	1.1	-	-	6.4
NE-SB-3	4.8	2.3	-	-	7.1
NE-SB-4	5.6	1.8	1.1	-	8.5

S\&ME Project No. 210730C

Runoff peak flow rates were computed for the $10-\mathrm{yr}, 25-\mathrm{yr}$, and $100-\mathrm{yr}$ design storms for initial construction conditions and a Type II rainfall distribution using HydroCAD ${ }^{\circledR}$, the output file is provided as Attachment I. Table 6 summarizes each of the flow rates for each design storm below.

Table 6: Stormwater Flow Rate Summary (Construction Conditions)						
Sediment Basin ID	Drainage Area \{A\} (acres)	Curve Number $\{\mathrm{CN}\}$	Time of Concentration $\left\{\mathrm{T}_{\mathrm{c}}\right.$ \}	10-Year Storm Runoff $\left\{Q_{10}\right\}$ (cfs)	25-Year Storm Runoff $\left\{Q_{25}\right\}$ (cfs)	100-Year Storm Runoff \{Q100\} (cfs)
PT-SB-1	23.2	94.0	11.5	135.91	166.47	218.38
W-SB-1	13.8	94.0	7.9	90.38	110.63	145.49
P-SB-1	44.5	94.0	14.1	241.19	295.54	389.04
P-SB-2	13.8	94.0	8.5	89.23	109.25	143.69
P-SB-3	20.3	94.0	9.2	127.96	156.69	206.12
NE-SB-1	20.8	94.0	9.9	127.97	156.73	206.20
NE-SB-2	7.7	94.0	6.4	51.88	63.51	83.52
NE-SB-3	10.1	94.0	7.1	67.89	83.09	109.26
NE-SB-4	15.6	94.0	8.5	100.49	123.04	161.83

1.2 Confirm basin length-to-width ratio

As stated within the Design Criteria section, SC DHEC requires that sediment basins be designed with a minimum length-to-width ratio of 2:1 (Reference 7). As shown in Reference 4, sedimentation basin footprints were positioned and evaluated to confirm that the minimum length to width ratios are sufficient. Table 7, below, summarizes the dimensions of each sediment basin proposed for the Site.

Table 7: Sediment Basin Geometry Summary				
Sediment Basin ID	Basin Length (ft)	Basin Width (ft)	Ratio Provided (L:W)	Ratio Provided > Ratio Required
PT-SB-1	535	147	$4: 1$	YES
W-SB-1	308	148	$2: 1$	YES
P-SB-1	670	170	$4: 1$	YES
P-SB-2	324	136	$2: 1$	YES
P-SB-3	414	126	$3: 1$	YES
NE-SB-1	479	129	$4: 1$	YES
NE-SB-2	284	114	$2: 1$	YES
NE-SB-3	350	175	$2: 1$	YES
NE-SB-4	342	155	$2: 1$	YES

1.3 Estimate Sediment Storage Volume

SCDHEC requires the minimum sediment storage volume for a sediment basin to be equal to 3,600 cubic feet of sediment storage volume per acre of drainage area (Reference 7). Furthermore, twenty percent (20\%) of the sediment storage volume is to be provided within the sediment forebay(s). Stage-storage volumes for each sediment basin were developed from the bottom of basin to the crest perimeter berm or dike. Stage-storage volumes were estimated using the prismatic stage-storage volume calculation method developed from preliminary design surfaces developed within AutoCAD ${ }^{\circledR}$ Civil 3D ${ }^{\circledR}$. Stagestorage information was input into HydroCAD ${ }^{\circledR}$ at one-foot contour intervals to model each sediment basin as a pond. The estimated required sediment storage volume using the disturbed area and the total storage volume are shown below within Table 8.

Table 8: Sediment Basin Volume Summary				
Sediment Basin ID	Drainage Area \{A\} (acres)	Volume Required $\left(\mathbf{f t}^{3}\right)$	Volume Provided $\left(\mathbf{f t}^{3}\right)$	Volume Provided > Volume Required
PT-SB-1	23.24	83666	385437	YES
W-SB-1	13.77	49576	231602	YES
P-SB-1	44.47	160082	728747	YES
P-SB-2	13.84	49839	226191	YES
P-SB-3	20.31	73129	332353	YES
NE-SB-1	20.80	74882	339759	YES
NE-SB-2	7.67	27604	143441	YES
NE-SB-3	10.13	36463	180679	YES
NE-SB-4	15.59	56130	253995	YES

1.4 Principal Spillway Design

Stormwater runoff for the $10-\mathrm{yr}$ and $25-\mathrm{yr}$ design storms were calculated within Section 1.1 of this calculation package. To compute, the full culvert pipe flow from the principal riser, the following equation was used:

$$
Q=a(2 g H)^{\frac{1}{2}} /\left(1+K_{e}+K_{b}+K_{c} L\right)^{\frac{1}{2}}
$$

[Reference 8]
Stormwater flow through the top of the principal riser or spillway was modeled as a weir and was calculated using the weir equation where $\mathrm{Q}=\mathrm{CLH}^{3 / 2}$, as implemented within HydroCAD®. The estimated water surface elevations for the $10-\mathrm{yr}$ and 25 -yr design storms for each basin were calculated and summarized in Table 9 below.

Table 9: Sediment Basin Principal Spillway Design								
Sediment Basin ID	Top Botto Ris Elev (f	and m of er tion t)	Top of Dam Elevation (ft)	Riser Dimensions (ft)	Culvert Pipe Diameter (in.)	10-Year Water Surface Elevation (ft)	25-Year Water Surface Elevation (ft)	Freeboard* (ft)
PT-SB-1	562.7	557.0	565.0	3×3	24	562.68	562.96	2.04
W-SB-1	505.4	500.0	508.0	3×3	24	505.39	505.62	2.38
P-SB-1	457.4	450.0	460.0	3×3	24	457.36	457.78	2.22
P-SB-2	487.4	481.0	490.0	3×3	24	487.37	487.62	2.38
P-SB-3	497.3	490.0	500.0	3×3	24	497.29	497.57	2.43
NE-SB-1	434.4	427.0	437.0	3×3	24	434.36	434.66	2.34
NE-SB-2	416.8	412.0	420.0	3×3	24	416.75	416.97	3.03
NE-SB-3	418.0	412.0	421.0	3×3	24	417.98	418.19	2.81
NE-SB-4	484.5	479.0	487.0	3×3	24	484.40	484.73	2.27
*Freeboard measured from 25-year water surface elevation to the top of dam elevation								

As shown above, each sediment basin contains the 10-year design storm without activating the principal spillway riser. Comprehensive Stormwater Pollution Prevention Plan (C-SWPPP) Luck Stone Corporation | Fairfield Quarry - Initial Phase Sediment Basin and Plunge Pool Calculation

S\&ME Project No. 210730C

1.5 Emergency Spillway Design for a 100-Year Design Storm.

Weir flow through the emergency spillway was calculated using the weir equation $\mathrm{Q}=\mathrm{CLH}^{3 / 2}$ as implemented within HydroCAD®. The discharge to each sediment basin during the 100-year design storm was calculated in HydroCAD ${ }^{\circledR}$ as recorded in Table 6. North American Green EroNet P300 matting (Manning's number of 0.034) was proposed to line the emergency spillway and down slope area to resist erosive forces, if the emergency spillway were to be activated. Although the 100-yr storm does not activate the emergency spillways of each sediment basin except for P-SB-1, this sediment basin was designed to maintain a minimum 0.5 foot freeboard during the $100-\mathrm{yr}$ storm (Reference 7). The emergency spillway of P-SB-1 is activated during the 100-year storm and continues to maintain a minimum 0.5 ft freeboard. The emergency spillway design is shown below in Table 10.

Table 10: Emergency Spillway Design									
Sediment Basin ID	Top of Riser Elevation (ft)	Emergency Spillway Crest Elevation (ft)	Top of Dam Elevation (ft)	Emergency Spillway Slope (ft/ft)	Emergency Spillway Length (ft)	Emergency Spillway Breadth (ft)	Emergency Spillway Depth (ft)	100 Year Storm Water Elevation (ft)	Emergency Spillway Freeboard (ft)
PT-SB-1	562.7	563.7	565.0	0.02	20	12.0	1.3	563.6	1.4
W-SB-1	505.4	506.4	508.0	0.02	20	12.0	1.6	506.2	1.8
P-SB-1	457.4	458.4	460.0	0.02	20	12.0	1.6	458.7	1.3
P-SB-2	487.4	488.4	490.0	0.02	20	12.0	1.6	488.3	1.8
P-SB-3	497.3	498.3	500.0	0.02	20	12.0	1.7	498.3	1.7
NE-SB-1	434.4	435.4	437.0	0.02	20	12.0	1.6	435.4	1.6
NE-SB-2	416.8	417.8	420.0	0.02	20	12.0	2.2	417.5	2.5
NE-SB-3	418.0	419.0	421.0	0.02	20	12.0	2.0	418.8	2.2
NE-SB-4	484.5	485.5	487.0	0.02	20	12.0	1.5	485.4	1.6

S\&ME Project No. 210730C

1.6 Size Anti-Flotation Block

An anti-flotation block was designed for each sediment basin such that the weight of the anti-flotation block (including the riser concrete walls) was at least 10% more than the weight of the water displaced (Reference 7) (or uplift force on the riser). The anti-flotation block was estimated based on a rectangular base and thickness as shown below:

$$
W_{A B}=L_{A B 1} x L_{A B 2} x H_{A B} x \gamma_{c}
$$

The uplift pressure was computed as:

$$
U_{r i s e r}=\left[\begin{array}{lllll}
H & x & A_{r} & x & \gamma_{w}
\end{array}\right]+\left[\begin{array}{llll}
L_{A B} & x & L_{A B 1} & x
\end{array} H_{A B 2} x<\gamma_{w}\right]
$$

The anti-flotation block sizing was designed as shown in Table 11 below. For construction purposes, each anti-floatation block was considered equivalent to a $3-\mathrm{ft} \times 3-\mathrm{ft}$ precast concrete riser with a 6 -in. thick concrete floor.

Table 11: Anti-Flotation Block Design											
Sediment Basin ID	Bottom of Basin Elevation (ft)	Top of Riser Elevation (ft)	Riser Height \{H\} (ft)	Riser Area \{Ar\} (ft²)	Uplift Force on Riser \{U $\mathrm{U}_{\text {riser }}$ \} (lb)	Height of AntiFlotation Block $\left\{\mathrm{H}_{\mathrm{Ab}}\right\}$ (ft)	AntiFlotation Block Area \{Ar\} (ft²)	Weight of AntiFlotation Block $\left\{W_{A B}\right\}$ (lb)	Weight of Concrete Walls (lb)	Weight of Concrete Total (lb)	Safety Factor Against Uplift
PT-SB-1	557.0	562.7	5.7	9.00	3,201	0.50	9.00	675	5,985	6,660	2.08
W-SB-1	500.0	505.4	5.4	9.00	3,033	0.50	9.00	675	5,670	6,345	2.09
P-SB-1	450.0	457.4	7.4	9.00	4,156	0.50	9.00	675	7,770	8,445	2.03
P-SB-2	481.0	487.4	6.4	9.00	3,594	0.50	9.00	675	6,720	7,395	2.06
P-SB-3	490.0	497.3	7.3	9.00	4,100	0.50	9.00	675	7,665	8,340	2.03
NE-SB-1	427.0	434.4	7.4	9.00	4,156	0.50	9.00	675	7,770	8,445	2.03
NE-SB-2	412.0	416.8	4.8	9.00	2,696	0.50	9.00	675	5,040	5,715	2.12
NE-SB-3	412.0	418.0	6.0	9.00	3,370	0.50	9.00	675	6,300	6,975	2.07
NE-SB-4	479.0	484.5	5.5	9.00	3,089	0.50	9.00	675	5,775	6,450	2.09

1.7 Estimate Skimmer Sizes

Skimmers were designed to drain the storage volume of water contained during a $10-\mathrm{yr}, 24-\mathrm{hr}$ storm event within two to five days (48-120 hours) (Reference 7). Sediment basin volumes are provided in Table 8.

To select the orifice sizes required to drain the proposed sediment storage volume in two to five days, the following equations were applied:

$$
A_{o}=\frac{V_{\text {required }}}{\text { Factor }}
$$

[Reference 9]

With the known orifice area required, the orifice diameter is calculated using the follow equation:

$$
d=\sqrt{\frac{A_{o}}{\pi}} * 2
$$

[Reference 9]

The estimated skimmer sizes, orifice diameters, and drain times were calculated as shown in Table 12 below.

Table 12: Skimmer Size and Orifice Diameter Summary								
Sediment Basin ID	Volume Below Principal Crest \{ $V_{\text {necessary }}$ \} (ft ${ }^{3}$)	Skimmer Size [Ref. 9] (in.)	Factor [Ref.]	Required Orifice Area \{A.\} (in. ${ }^{2}$)	Orifice Diameter* (in.)	Number of Skimmers	Orifice flow (cfs)	Drain Time (hr)
PT-SB-1	375,090	8.0	5,961	62.92	8.00	1.00	1.168	89.2
W-SB-1	222,260	8.0	5,961	37.29	7.00	1.00	0.894	69.0
P-SB-1	717,681	8.0	5,961	120.40	8.00	2.00	2.336	85.3
P-SB-2	223,437	8.0	5,961	37.48	7.00	1.00	0.894	69.4
P-SB-3	327,851	8.0	5,442	60.24	8.00	1.00	1.168	78.0
NE-SB-1	335,712	8.0	5,961	56.32	8.00	1.00	1.168	79.8
NE-SB-2	123,755	6.0	5,442	22.74	6.00	1.00	0.600	57.3
NE-SB-3	163,469	8.0	5,961	27.42	6.00	1.00	0.657	69.1
NE-SB-4	251,642	8.0	5,961	42.21	8.00	1.00	1.168	59.8
*Orifice diameter has been rounded up to the nearest inch.								

HydroCAD® was utilized to compute the drawdown time for the 10 -year, 24 -hour storm scenario. As such, different diameter skimmers with different orifice diameters will be installed in each sediment basin with an invert of the basin floor. Comprehensive Stormwater Pollution Prevention Plan (C-SWPPP) Luck Stone Corporation | Fairfield Quarry - Initial Phase Sediment Basin and Plunge Pool Calculation

S\&ME Project No. 210730C

1.8 Determine Trapping Efficiency.

SCDHEC requires that each sediment basin must have an 80% trapping efficiency of Total Suspended Solids (TSS) (Reference 7). Since each basin except P-SB-1 receive less than the drainage area limitation of 30 acres, the eroded particle size, settling velocity, surface area of the basin at riser, and the 10-year, 24 -hour design storm peak outflow from the basin were utilized to calculate a Basin Ratio. The trapping efficiencies were calculated using information obtained from SC DHEC Appendix E (Reference 10) and the Basin Ratio to compute the trapping efficiency from SC DHEC Appendix K (Reference 11). Calculated findings for each of the sediment basins are summarized in Table 13 below.

Table 13. Trapping Efficiency of a Sediment Basin (<30 Acres)								
Sediment Basin ID	Watershed Area (acres)	Peak Outflow Rate \{Q10\} (cfs)	Surface Area at Riser Crest (acres)	Soil Classification	Soil Characteristic Diameter $\left\{\mathrm{D}_{15}\right\}$ (mm)	Soil Characteristic Settling Velocity \{ $\left.\mathrm{V}_{15}\right\}$ (fps)	Basin Ratio	Trapping Efficiency Acceptable?
PT-SB-1	23.2	1.168	1.44	Cecil	0.0066	$1.22 \mathrm{E}-04$	6644	>80\% - GOOD
W-SB-1	13.8	0.894	0.85	Cecil	0.0066	$1.22 \mathrm{E}-04$	8556	>80\% - GOOD
P-SB-1	44.5	-	-	Pacolet	-	-	-	-
P-SB-2	13.8	0.894	0.77	Pacolet	0.0053	7.89E-05	14702	>80\% - GOOD
P-SB-3	20.3	1.168	1.01	Cecil	0.0066	$1.22 \mathrm{E}-04$	9442	>80\% - GOOD
NE-SB-1	20.8	1.168	1.06	Pacolet	0.0053	7.89E-05	14013	>80\% - GOOD
NE-SB-2	7.7	0.600	0.52	Pacolet	0.0053	7.89E-05	14539	>80\% - GOOD
NE-SB-3	10.1	0.657	0.61	Pacolet	0.0053	$7.89 \mathrm{E}-05$	13752	>80\% - GOOD
NE-SB-4	15.6	1.168	0.94	Pacolet	0.0053	7.89E-05	15669	>80\% - GOOD

Since P-SB-1 contained a larger watershed (>30 acres) the computer model SEDIMOT IV was used to calculate the corresponding trapping efficiency. Reference $\mathbf{6}$ contains the output from the computer model. Table $\mathbf{1 4}$ below summarizes the trapping efficiencies.

Table 14: Trapping Efficiency of a Sediment Basin (Drainage Area >30 acres)								
Sediment Basin ID	Watershed Area (acres)	Sediment Trapping Efficiency $(\%)$	Clay Trapping Efficiency $(\%)$	Silt Trapping Efficiency $(\%)$	Sand Trapping Efficiency $(\%)$	Average Trapping Efficiency $(\%)$	Trapping Efficiency Acceptable?	
P-SB-1	44.5	99.2%	76.4%	96.0%	100.0%	92.9%	$>80 \%-$ GOOD	

1.9 Determine Anti-Seep Collar Size.

An anti-seep collar will be installed along the principal spillway culvert downstream of the sediment basin (Reference 7). The anti-seep collar size was calculated to project at least 1.5 feet from the culvert pipe as shown in Table 15 below.

Table 15: Anti-Seep Collar Design		
Sediment Basin ID	Outlet Pipe Diameter (in)	Anti-Seep Collar Size (ft)
PT-SB-1	24	5
W-SB-1	24	5
P-SB-1	24	5
P-SB-2	24	5
P-SB-3	24	5
NE-SB-1	24	5
NE-SB-2	24	5
NE-SB-3	24	5
NE-SB-4	24	5

Comprehensive Stormwater Pollution Prevention Plan (C-SWPPP)
Luck Stone Corporation | Fairfield Quarry - Initial Phase
Sediment Basin and Plunge Pool Calculation
S\&ME Project No. 210730C

1.10 Compute Peak Water Elevations during design storms.

For each design storm, HydroCAD® was used to calculate the peak inflow, outflow, and peak stage elevations, these are summarized in Tables 16A and 16B, below.

Table 16A: Sediment Basin Design			
Storm Elevations			
Design			
Storm			

(cfs)\end{array} $$
\begin{array}{c}\text { Peak } \\
\text { Outflow } \\
\text { (cfs) }\end{array}
$$ $$
\begin{array}{c}\text { Peak } \\
\text { Water } \\
\text { Elevation } \\
\text { (ft) }\end{array}
$$\right\}\)

Table 16B: Sediment Basin Design Storm Elevations					
Design Storm	Peak Inflow (cfs)	Peak Outflow (cfs)	Peak Water Elevation (ft)		
NE-SB-1					
$2-\mathrm{yr}$	84.97	1.17	431.93		
$10-\mathrm{yr}$	127.97	1.17	434.36		
$25-\mathrm{yr}$	156.73	6.55	434.66		
$100-\mathrm{yr}$	206.20	38.40	435.36		
NE-SB-2					
$2-\mathrm{yr}$	34.49	0.66	415.11		
$10-\mathrm{yr}$	51.88	0.66	416.75		
$25-\mathrm{yr}$	63.51	3.52	416.97		
$100-\mathrm{yr}$	83.52	24.17	417.51		
NE-SB-3					
$2-\mathrm{yr}$	45.15	0.66	415.98		
$10-\mathrm{yr}$	67.89	0.66	417.98		
$25-\mathrm{yr}$	83.09	3.87	418.19		
$100-\mathrm{yr}$	109.26	26.41	418.76		
	NE-SB-4				
$2-\mathrm{yr}$	66.78	1.17	482.49		
$10-\mathrm{yr}$	100.49	1.17	484.40		
$25-\mathrm{yr}$	123.04	5.51	484.73		
$100-\mathrm{yr}$	161.83	31.74	485.35		

2.0 PLUNGE POOL SIZING

The riprap plunge pool design was developed using NRCS's "Riprap Lined Plunge Pool for Cantilever Outlet" excel spreadsheet (Reference 12). The plunge pools were designed based on the peak outflow during the $25-\mathrm{yr}, 24-\mathrm{hr}$ storm event and the calculation spreadsheets are provided in Reference 13.

* DISCUSSION

As a result of the proposed grading and construction on the project site, nine (9) separate drainage areas were delineated for 'during construction' conditions. Subsequently, nine (9) sediment basins were designed and will be implemented as a means to control peak stormwater flows from the 10-yr, 25-yr, and 100-yr, $24-\mathrm{hr}$ storm event. Sediment basin designs were found to meet the requirements outlined in Reference 7.

References

Reference 1

NOAA Atlas 14, Volume 2, Version 3, Bonnin, G.M., Martin, D., Lin, B., Parzybok, T., Yekta, M., \& Riley, D., April 21, 2017

NOAA Atlas 14, Volume 2, Version 3
Location name: Ridgeway, South Carolina, USA* Latitude: 34.3147°, Longitude: -81.0197°

Elevation: 505.7 ft**

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF_graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	$\begin{gathered} 0.429 \\ (0.395-0.469) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 5 0 1} \\ (0.460-0.548) \end{gathered}$	$\begin{gathered} 0.577 \\ (0.530-0.631) \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 6 4 3} \\ (0.588-0.701) \\ \hline \end{gathered}$	$\begin{gathered} 0.719 \\ (0.656-0.783) \end{gathered}$	$\begin{gathered} 0.778 \\ (0.706-0.847) \end{gathered}$	$\begin{gathered} 0.834 \\ (0.754-0.907) \end{gathered}$	$\begin{gathered} \hline 0.888 \\ (0.797-0.968) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{0 . 9 5 4} \\ (0.850-1.04) \\ \hline \end{array}$	$\begin{gathered} 1.01 \\ (0.890-1.10) \end{gathered}$
10-min	$\begin{gathered} \mathbf{0 . 6 8 6} \\ (0.631-0.748) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 8 0 1} \\ (0.735-0.876) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 9 2 4} \\ (0.848-1.01) \\ \hline \end{array}$	$\begin{gathered} \hline 1.03 \\ (0.941-1.12) \\ \hline \end{gathered}$	$\begin{gathered} 1.15 \\ (1.05-1.25) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.24 \\ (1.12-1.35) \\ \hline \end{gathered}$	$\begin{gathered} 1.33 \\ (1.20-1.44) \\ \hline \end{gathered}$	$\begin{gathered} 1.41 \\ (1.26-1.53) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.51 \\ (1.35-1.65) \\ \hline \end{array}$	$\begin{gathered} 1.59 \\ (1.40-1.73) \\ \hline \end{gathered}$
15-min	$\begin{gathered} \mathbf{0 . 8 5 7} \\ (0.789-0.935) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.01 \\ (0.924-1.10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.17 \\ (1.07-1.28) \\ \hline \end{gathered}$	$\begin{gathered} 1.30 \\ (1.19-1.42) \\ \hline \end{gathered}$	$\begin{gathered} 1.45 \\ (1.33-1.58) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.57 \\ (1.42-1.71) \\ \hline \end{gathered}$	$\begin{gathered} 1.68 \\ (1.51-1.82) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (1.59-1.94) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.90 \\ (1.69-2.07) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 1.99 \\ (1.76-2.17) \\ \hline \end{array}$
30-min	$\begin{gathered} 1.18 \\ (1.08-1.28) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 1.39 \\ (1.28-1.52) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.66 \\ (1.53-1.82) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.88 \\ (1.73-2.06) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 1 5} \\ (1.96-2.34) \\ \hline \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 3 6} \\ (2.14-2.57) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 5 7} \\ (2.32-2.79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.77 \\ (2.48-3.01) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.02 \\ (2.69-3.30) \\ \hline \hline \end{array}$	$\begin{gathered} \hline 3.22 \\ (2.85-3.52) \\ \hline \end{gathered}$
60-min	$\begin{gathered} \hline 1.47 \\ (1.35-1.60) \end{gathered}$	$\begin{gathered} 1.75 \\ (1.60-1.91) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 1 3} \\ (1.96-2.33) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 4 5} \\ (2.25-2.68) \end{gathered}$	$\begin{gathered} \hline 2.87 \\ (2.61-3.12) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.20 \\ (2.90-3.49) \end{gathered}$	$\begin{gathered} \hline 3.54 \\ (3.19-3.85) \end{gathered}$	$\begin{gathered} \hline 3.88 \\ (3.48-4.22) \end{gathered}$	$\begin{gathered} 4.34 \\ (3.86-4.73) \end{gathered}$	$\begin{gathered} \hline 4.70 \\ (4.16-5.14) \end{gathered}$
2-hr	$\begin{gathered} \hline 1.67 \\ (1.53-1.83) \end{gathered}$	$\begin{gathered} 1.99 \\ (1.83-2.18) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 5} \\ (2.24-2.68) \end{gathered}$	$\begin{gathered} 2.85 \\ (2.60-3.11) \end{gathered}$	$\begin{gathered} \hline 3.37 \\ (3.06-3.67) \\ \hline \end{gathered}$	$\begin{gathered} 3.81 \\ (3.45-4.15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.27 \\ (3.84-4.64) \end{gathered}$	$\begin{gathered} 4.75 \\ (4.25-5.16) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5 . 4 1} \\ (4.78-5.88) \\ \hline \end{gathered}$	$\begin{gathered} 5.96 \\ (5.23-6.50) \\ \hline \end{gathered}$
3-hr	$\begin{gathered} \hline 1.76 \\ (1.61-1.94) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 1 0} \\ (1.92-2.31) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 6 0} \\ (2.37-2.86) \\ \hline \end{gathered}$	$\begin{gathered} 3.03 \\ (2.76-3.33) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.63 \\ (3.29-3.98) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.15 \\ (3.73-4.53) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.69 \\ (4.19-5.13) \\ \hline \end{gathered}$	$\begin{gathered} 5.28 \\ (4.68-5.77) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{6 . 1 2} \\ (5.36-6.69) \\ \hline \end{array}$	$\begin{gathered} 6.84 \\ (5.92-7.47) \\ \hline \end{gathered}$
6-hr	$\begin{gathered} \mathbf{2 . 0 9} \\ (1.91-2.32) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.50 \\ (2.28-2.77) \\ \hline \end{gathered}$	$\begin{gathered} 3.09 \\ (2.81-3.42) \end{gathered}$	$\begin{gathered} 3.61 \\ (3.28-3.99) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.35 \\ (3.92-4.79) \\ \hline \end{gathered}$	$\begin{gathered} 4.98 \\ (4.46-5.47) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5 . 6 5} \\ (5.03-6.20) \\ \hline \end{gathered}$	$\begin{gathered} 6.38 \\ (5.63-6.98) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 7.43 \\ (6.46-8.12) \\ \hline \end{array}$	$\begin{gathered} 8.34 \\ (7.16-9.13) \\ \hline \end{gathered}$
12-hr	$\begin{gathered} \hline \mathbf{2 . 4 7} \\ (2.24-2.76) \end{gathered}$	$\begin{gathered} \hline 2.95 \\ (2.67-3.29) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.66 \\ (3.31-4.08) \end{gathered}$	$\begin{gathered} 4.30 \\ (3.87-4.77) \end{gathered}$	$\begin{gathered} 5.21 \\ (4.67-5.76) \end{gathered}$	$\begin{gathered} \hline 6.00 \\ (5.33-6.63) \end{gathered}$	$\begin{gathered} \hline 6.84 \\ (6.03-7.56) \end{gathered}$	$\begin{gathered} \hline 7.78 \\ (6.79-8.58) \end{gathered}$	$\begin{gathered} \mathbf{9 . 1 4} \\ (7.84-10.1) \end{gathered}$	$\begin{gathered} 10.3 \\ (8.74-11.4) \end{gathered}$
24-hr	$\begin{gathered} \hline \mathbf{2 . 9 4} \\ (2.75-3.16) \end{gathered}$	$\begin{gathered} \hline 3.54 \\ (3.30-3.80) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.41 \\ (4.11-4.73) \end{gathered}$	$\begin{gathered} \hline 5.14 \\ (4.78-5.51) \end{gathered}$	$\begin{gathered} 6.22 \\ (5.74-6.66) \end{gathered}$	$\begin{gathered} \hline 7.12 \\ (6.54-7.62) \end{gathered}$	$\begin{gathered} \hline 8.09 \\ (7.38-8.68) \end{gathered}$	$\begin{gathered} 9.15 \\ (8.27-9.83) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (9.55-11.5) \end{gathered}$	$\begin{gathered} 12.0 \\ (10.6-12.9) \end{gathered}$
2-day	$\begin{gathered} 3.47 \\ (3.24-3.72) \end{gathered}$	$\begin{gathered} \hline 4.16 \\ (3.89-4.46) \\ \hline \end{gathered}$	$\begin{gathered} 5.16 \\ (4.81-5.53) \end{gathered}$	$\begin{gathered} 5.98 \\ (5.58-6.41) \end{gathered}$	$\begin{gathered} \hline 7.17 \\ (6.64-7.67) \end{gathered}$	$\begin{gathered} 8.15 \\ (7.51-8.74) \end{gathered}$	$\begin{gathered} 9.20 \\ (8.42-9.87) \end{gathered}$	$\begin{gathered} 10.3 \\ (9.39-11.1) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 11.9 \\ (10.7-12.9) \\ \hline \end{array}$	$\begin{gathered} 13.2 \\ (11.8-14.4) \end{gathered}$
3-day	$\begin{gathered} 3.69 \\ (3.45-3.94) \end{gathered}$	$\begin{gathered} 4.42 \\ (4.13-4.72) \end{gathered}$	$\begin{gathered} 5.46 \\ (5.09-5.83) \end{gathered}$	$\begin{gathered} \mathbf{6 . 3 1} \\ (5.88-6.74) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.52 \\ (6.97-8.03) \\ \hline \end{gathered}$	$\begin{gathered} 8.52 \\ (7.86-9.11) \\ \hline \end{gathered}$	$\begin{gathered} 9.58 \\ (8.79-10.3) \end{gathered}$	$\begin{gathered} 10.7 \\ (9.76-11.5) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12.3 \\ (11.1-13.3) \\ \hline \end{array}$	$\begin{gathered} 13.6 \\ (12.2-14.7) \end{gathered}$
4-day	$\begin{gathered} 3.90 \\ (3.65-4.17) \end{gathered}$	$\begin{gathered} 4.68 \\ (4.38-4.99) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.75 \\ (5.38-6.13) \\ \hline \end{gathered}$	$\begin{gathered} 6.63 \\ (6.19-7.06) \end{gathered}$	$\begin{gathered} 7.87 \\ (7.31-8.39) \end{gathered}$	$\begin{gathered} 8.88 \\ (8.22-9.48) \end{gathered}$	$\begin{gathered} 9.96 \\ (9.16-10.6) \end{gathered}$	$\begin{gathered} 11.1 \\ (10.1-11.9) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12.7 \\ (11.5-13.7) \\ \hline \end{array}$	$\begin{gathered} 14.0 \\ (12.6-15.1) \end{gathered}$
7-day	$\begin{gathered} 4.53 \\ (4.27-4.81) \end{gathered}$	$\begin{gathered} 5.40 \\ (5.09-5.73) \\ \hline \end{gathered}$	$\begin{gathered} 6.57 \\ (6.18-6.97) \end{gathered}$	$\begin{gathered} 7.54 \\ (7.07-7.99) \\ \hline \end{gathered}$	$\begin{gathered} 8.89 \\ (8.32-9.43) \\ \hline \end{gathered}$	$\begin{gathered} 10.0 \\ (9.32-10.6) \end{gathered}$	$\begin{gathered} 11.2 \\ (10.3-11.9) \\ \hline \end{gathered}$	$\begin{gathered} 12.4 \\ (11.4-13.2) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 14.2 \\ (12.9-15.2) \\ \hline \end{array}$	$\begin{gathered} 15.6 \\ (14.0-16.8) \end{gathered}$
10-day	$\begin{gathered} \hline 5.15 \\ (4.87-5.45) \end{gathered}$	$\begin{gathered} \hline 6.12 \\ (5.78-6.48) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.38 \\ (6.96-7.80) \end{gathered}$	$\begin{gathered} \hline 8.40 \\ (7.91-8.87) \\ \hline \end{gathered}$	$\begin{gathered} 9.84 \\ (9.23-10.4) \end{gathered}$	$\begin{gathered} \hline 11.0 \\ (10.3-11.6) \end{gathered}$	$\begin{gathered} \hline 12.2 \\ (11.4-12.9) \end{gathered}$	$\begin{gathered} \hline \mathbf{1 3 . 5} \\ (12.4-14.3) \\ \hline \end{gathered}$	$\begin{gathered} 15.3 \\ (14.0-16.3) \end{gathered}$	$\begin{gathered} 16.7 \\ (15.2-18.0) \end{gathered}$
20-day	$\begin{gathered} 6.89 \\ (6.53-7.26) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.14 \\ (7.72-8.57) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 9.61 \\ (9.11-10.1) \\ \hline \hline \end{array}$	$\begin{gathered} 10.8 \\ (10.2-11.4) \\ \hline \end{gathered}$	$\begin{gathered} 12.4 \\ (11.7-13.1) \\ \hline \end{gathered}$	$\begin{gathered} 13.7 \\ (12.8-14.4) \\ \hline \hline \end{gathered}$	$\begin{gathered} 14.9 \\ (14.0-15.8) \\ \hline \end{gathered}$	$\begin{gathered} 16.2 \\ (15.1-17.2) \\ \hline \hline \end{gathered}$	$\begin{gathered} 18.0 \\ (16.7-19.1) \\ \hline \end{gathered}$	$\begin{gathered} 19.3 \\ (17.8-20.6) \\ \hline \end{gathered}$
30-day	$\begin{gathered} \hline 8.47 \\ (8.05-8.89) \\ \hline \end{gathered}$	$\begin{gathered} 9.97 \\ (9.48-10.5) \\ \hline \end{gathered}$	$\begin{gathered} 11.6 \\ (11.0-12.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.9 \\ (12.3-13.6) \\ \hline \end{gathered}$	$\begin{gathered} 14.7 \\ (13.9-15.4) \\ \hline \end{gathered}$	$\begin{gathered} 16.0 \\ (15.1-16.8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17.3 \\ (16.3-18.2) \\ \hline \end{gathered}$	$\begin{gathered} 18.6 \\ (17.4-19.6) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{2 0 . 2} \\ (18.9-21.4) \\ \hline \end{array}$	$\begin{gathered} \mathbf{2 1 . 5} \\ (20.0-22.8) \\ \hline \end{gathered}$
45-day	$\begin{gathered} \hline \mathbf{1 0 . 5} \\ (10.0-11.0) \end{gathered}$	$\begin{gathered} \hline 12.3 \\ (11.8-12.9) \\ \hline \end{gathered}$	$\begin{gathered} 14.2 \\ (13.5-14.9) \end{gathered}$	$\begin{gathered} \hline 15.6 \\ (14.9-16.4) \end{gathered}$	$\begin{gathered} \hline 17.5 \\ (16.6-18.3) \end{gathered}$	$\begin{gathered} \hline \mathbf{1 8 . 9} \\ (17.9-19.8) \end{gathered}$	$\begin{gathered} \mathbf{2 0 . 3} \\ (19.2-21.3) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 1 . 6} \\ (20.4-22.7) \end{gathered}$	$\begin{gathered} \mathbf{2 3 . 3} \\ (21.9-24.6) \end{gathered}$	$\begin{gathered} \mathbf{2 4 . 6} \\ (23.0-26.0) \end{gathered}$
60-day	$\begin{gathered} \hline 12.5 \\ (12.0-13.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14.7 \\ (14.1-15.3) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 16.7 \\ (16.0-17.5) \\ \hline \hline \end{array}$	$\begin{gathered} \hline 18.3 \\ (17.5-19.1) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 20.3 \\ (19.3-21.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 1 . 7} \\ (20.7-22.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 23.1 \\ (21.9-24.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 4 . 3} \\ (23.1-25.5) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{2 5 . 9} \\ (24.5-27.2) \\ \hline \end{array}$	$\begin{gathered} \mathbf{2 7 . 0} \\ (25.5-28.4) \\ \hline \end{gathered}$

[^0]PDS-based depth-duration-frequency (DDF) curves Latitude: 34.3147°, Longitude: -81.0197°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
— 100
— 200
— 500
-1000

Duration	
$-5-\mathrm{min}$ $-\quad 10-\mathrm{min}$ $-15-\mathrm{min}$ $-30-\mathrm{min}$ $-60-\mathrm{min}$ - $-3-\mathrm{hr}$ - $-\quad 6 \mathrm{hr}$ - $-\quad 12-\mathrm{hr}$ -	$\begin{aligned} & \text { - 2-day } \\ & \text { - 3-day } \\ & - \text { 4-day } \\ & \text { - 7-day } \\ & \text { - 10-day } \\ & \text { - 20-day } \\ & \text { - 30-day } \\ & \text { - } 45 \text {-day } \\ & \text { 60-day } \end{aligned}$

NOAA Atlas 14, Volume 2, Version 3
Created (GMT): Thu Feb 25 14:30:25 2021
Back to Top

Maps \& aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov
Disclaimer

Reference 2

TR-55 Urban Hydrology for Small Watersheds, USDA-NRCS, June 1986.

SCS runoff curve number method

The SCS Runoff Curve Number (CN) method is described in detail in NEH-4 (SCS 1985). The SCS runoff equation is

$$
\begin{equation*}
\mathrm{Q}=\frac{\left(\mathrm{P}-\mathrm{I}_{\mathrm{a}}\right)^{2}}{\left(\mathrm{P}-\mathrm{I}_{\mathrm{a}}\right)+\mathrm{S}} \tag{eq.2-1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathrm{Q} & =\operatorname{runoff~(in)~} \\
\mathrm{P} & =\operatorname{rainfall~(in)~} \\
\mathrm{S} & =\text { potential maximum retention after runoff } \\
& \text { begins (in) and } \\
\mathrm{I}_{\mathrm{a}} & =\text { initial abstraction (in) }
\end{array}
$$

Initial abstraction $\left(\mathrm{I}_{\mathrm{a}}\right)$ is all losses before runoff begins. It includes water retained in surface depressions, water intercepted by vegetation, evaporation, and infiltration. I_{a} is highly variable but generally is correlated with soil and cover parameters. Through studies of many small agricultural watersheds, I_{a} was found to be approximated by the following empirical equation:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{a}}=0.2 \mathrm{~S} \tag{eq.2-2}
\end{equation*}
$$

By removing I_{a} as an independent parameter, this approximation allows use of a combination of S and P to produce a unique runoff amount. Substituting equation 2-2 into equation 2-1 gives:

$$
\begin{equation*}
\mathrm{Q}=\frac{(\mathrm{P}-0.2 \mathrm{~S})^{2}}{(\mathrm{P}+0.8 \mathrm{~S})} \tag{eq.2-3}
\end{equation*}
$$

S is related to the soil and cover conditions of the watershed through the CN. CN has a range of 0 to 100 , and S is related to CN by:

$$
\begin{equation*}
\mathrm{S}=\frac{1000}{\mathrm{CN}}-10 \tag{eq.2-4}
\end{equation*}
$$

Figure 2-1 and table 2-1 solve equations 2-3 and 2-4 for a range of CN's and rainfall.

Factors considered in determining runoff curve numbers

The major factors that determine CN are the hydrologic soil group (HSG), cover type, treatment, hydrologic condition, and antecedent runoff condition (ARC). Another factor considered is whether impervious areas outlet directly to the drainage system (connected) or whether the flow spreads over pervious areas before entering the drainage system (unconnected). Figure 2-2 is provided to aid in selecting the appropriate figure or table for determining curve numbers.

CN's in table 2-2 (a to d) represent average antecedent runoff condition for urban, cultivated agricultural, other agricultural, and arid and semiarid rangeland uses. Table 2-2 assumes impervious areas are directly connected. The following sections explain how to determine CN's and how to modify them for urban conditions.

Hydrologic soil groups

Infiltration rates of soils vary widely and are affected by subsurface permeability as well as surface intake rates. Soils are classified into four HSG's (A, B, C, and D) according to their minimum infiltration rate, which is obtained for bare soil after prolonged wetting. Appendix A defines the four groups and provides a list of most of the soils in the United States and their group classification. The soils in the area of interest may be identified from a soil survey report, which can be obtained from local SCS offices or soil and water conservation district offices.

Most urban areas are only partially covered by impervious surfaces: the soil remains an important factor in runoff estimates. Urbanization has a greater effect on runoff in watersheds with soils having high infiltration rates (sands and gravels) than in watersheds predominantly of silts and clays, which generally have low infiltration rates.

Any disturbance of a soil profile can significantly change its infiltration characteristics. With urbanization, native soil profiles may be mixed or removed or fill material from other areas may be introduced. Therefore, a method based on soil texture is given in appendix A for determining the HSG classification for disturbed soils.

Chapter 2

Technical Release 55
Urban Hydrology for Small Watersheds

Figure 2-1 Solution of runoff equation.

Cover type

Table 2-2 addresses most cover types, such as vegetation, bare soil, and impervious surfaces. There are a number of methods for determining cover type. The most common are field reconnaissance, aerial photographs, and land use maps.

Treatment

Treatment is a cover type modifier (used only in table $2-2 b)$ to describe the management of cultivated agricultural lands. It includes mechanical practices, such as contouring and terracing, and management practices, such as crop rotations and reduced or no tillage.

Hydrologic condition

Hydrologic condition indicates the effects of cover type and treatment on infiltration and runoff and is generally estimated from density of plant and residue cover on sample areas. Good hydrologic condition indicates that the soil usually has a low runoff potential for that specific hydrologic soil group, cover type, and treatment. Some factors to consider in estimating the effect of cover on infiltration and runoff are (a) canopy or density of lawns, crops, or other vegetative areas; (b) amount of year-round cover; (c) amount of grass or close-seeded legumes in rotations; (d) percent of residue cover; and (e) degree of surface roughness.

Table 2-1 Runoff depth for selected CN's and rainfall amounts $\underline{1 /}$

Rainfall	Runoff depth for curve number of-												
	40	45	50	55	60	65	70	75	80	85	90	95	98
							ches						
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	. 00	. 00	. 00	. 00	. 00	. 00	. 03	. 07	. 15	. 27	. 46	. 74	. 99
1.4	. 00	. 00	. 00	. 00	. 00	. 02	. 06	. 13	. 24	. 39	. 61	. 92	1.18
1.6	. 00	. 00	. 00	. 00	. 01	. 05	. 11	. 20	. 34	. 52	. 76	1.11	1.38
1.8	. 00	. 00	. 00	. 00	. 03	. 09	. 17	. 29	. 44	. 65	. 93	1.29	1.58
2.0	. 00	. 00	. 00	. 02	. 06	. 14	. 24	. 38	. 56	. 80	1.09	1.48	1.77
2.5	. 00	. 00	. 02	. 08	. 17	. 30	. 46	. 65	. 89	1.18	1.53	1.96	2.27
3.0	. 00	. 02	. 09	. 19	. 33	. 51	. 71	. 96	1.25	1.59	1.98	2.45	2.77
3.5	. 02	. 08	. 20	. 35	. 53	. 75	1.01	1.30	1.64	2.02	2.45	2.94	3.27
4.0	. 06	. 18	. 33	. 53	. 76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.77
4.5	. 14	. 30	. 50	. 74	1.02	1.33	1.67	2.05	2.46	2.91	3.40	3.92	4.26
5.0	. 24	. 44	. 69	. 98	1.30	1.65	2.04	2.45	2.89	3.37	3.88	4.42	4.76
6.0	. 50	. 80	1.14	1.52	1.92	2.35	2.81	3.28	3.78	4.30	4.85	5.41	5.76
7.0	. 84	1.24	1.68	2.12	2.60	3.10	3.62	4.15	4.69	5.25	5.82	6.41	6.76
8.0	1.25	1.74	2.25	2.78	3.33	3.89	4.46	5.04	5.63	6.21	6.81	7.40	7.76
9.0	1.71	2.29	2.88	3.49	4.10	4.72	5.33	5.95	6.57	7.18	7.79	8.40	8.76
10.0	2.23	2.89	3.56	4.23	4.90	5.56	6.22	6.88	7.52	8.16	8.78	9.40	9.76
11.0	2.78	3.52	4.26	5.00	5.72	6.43	7.13	7.81	8.48	9.13	9.77	10.39	10.76
12.0	3.38	4.19	5.00	5.79	6.56	7.32	8.05	8.76	9.45	10.11	10.76	11.39	11.76
13.0	4.00	4.89	5.76	6.61	7.42	8.21	8.98	9.71	10.42	11.10	11.76	12.39	12.76
14.0	4.65	5.62	6.55	7.44	8.30	9.12	9.91	10.67	11.39	12.08	12.75	13.39	13.76
15.0	5.33	6.36	7.35	8.29	9.19	10.04	10.85	11.63	12.37	13.07	13.74	14.39	14.76

1/ Interpolate the values shown to obtain runoff depths for CN's or rainfall amounts not shown.

Technical Release 55
Urban Hydrology for Small Watersheds

Figure 2-2 Flow chart for selecting the appropriate figure or table for determining runoff curve numbers.

Chapter 2

Estimating Runoff

Technical Release 55
Urban Hydrology for Small Watersheds

Table 2-2a
Runoff curve numbers for urban areas $1 /$

Chapter 2

Technical Release 55
Urban Hydrology for Small Watersheds

Table 2-2b Runoff curve numbers for cultivated agricultural lands $1 /$

Cover description			Curve numbers for hydrologic soil group			
Cover type	Treatment $\underline{2}$	Hydrologic condition ${ }^{3 /}$	A	B	C	D
Fallow	Bare soil	-	77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
		Good	67	78	85	89
	SR + CR	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured (C)	Poor	70	79	84	88
		Good	65	75	82	86
	$\mathrm{C}+\mathrm{CR}$	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured \& terraced (C\&T)	Poor	66	74	80	82
		Good	62	71	78	81
	C\&T+ CR	Poor	65	73	79	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	88
		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	C	Poor	63	74	82	85
		Good	61	73	81	84
	C + CR	Poor	62	73	81	84
		Good	60	72	80	83
	C\&T	Poor	61	72	79	82
		Good	59	70	78	81
	C\&T+ CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded or broadcast legumes or rotation meadow	SR	Poor	66	77	85	89
		Good	58	72	81	85
	C	Poor	64	75	83	85
		Good	55	69	78	83
	C\&T	Poor	63	73	80	83
		Good	51	67	76	80

1 Average runoff condition, and $\mathrm{I}_{\mathrm{a}}=0.2 \mathrm{~S}$
2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.
${ }^{3}$ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good $\geq 20 \%$), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Chapter 2

Estimating Runoff

Technical Release 55
Urban Hydrology for Small Watersheds

Table 2-2c
Runoff curve numbers for other agricultural lands $1 /$

Cover type	Hydrologic condition	Curve numbers for hydrologic soil group				
		A	B	C	D	
Pasture, grassland, or range-continuous forage for grazing. ${ }^{2 /}$	Poor	68	79	86	89	
	Fair	49	69	79	84	
	Good	39	61	74	80	
Meadow-continuous grass, protected from grazing and generally mowed for hay.	-	30	58	71	78	
Brush—brush-weed-grass mixture with brush the major element. ${ }^{3 /}$	Poor	48	67	77	83	
	Fair	35	56	70	77	
	Good	$30{ }^{4}$	48	65	73	
Woods-grass combination (orchard or tree farm). 5	Poor	57	73	82	86	
	Fair	43	65	76	82	
	Good	32	58	72	79	
Woods. ${ }^{6}$	Poor	45	66	77	83	
	Fair	36	60	73	79	
	Good	$30{ }^{4}$	55	70	77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	-	59	74	82	86	
1 Average runoff condition, and $\mathrm{I}_{\mathrm{a}}=0.2 \mathrm{~S}$.						
2 Poor: <50\%) ground cover or heavily grazed with						
Fair: 50 to 75% ground cover and not heavily graz						
Good: > 75\% ground cover and lightly or only occa						
3 Poor: <50\% ground cover.						
Fair: 50 to 75\% ground cover.						
Good: >75\% ground cover.						
4 Actual curve number is less than 30 ; use $\mathrm{CN}=30$ for runoff computations.						
5 CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combin from the CN's for woods and pasture.						
6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular buFair: Woods are grazed but not burned, and some forest litter covers the soil.Good: Woods are protected from grazing, and litter and brush adequately cover the soil						

Table 2-2d Runoff curve numbers for arid and semiarid rangelands $1 /$

Cover description		Curve numbers for hydrologic soil group			
Cover type	Hydrologic condition ${ }^{2 /}$	A 3 /	B	C	D
Herbaceous-mixture of grass, weeds, and low-growing brush, with brush the minor element.	Poor		80	87	93
	Fair		71	81	89
	Good		62	74	85
Oak-aspen-mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush.	Poor		66	74	79
	Fair		48	57	63
	Good		30	41	48
Pinyon-juniper-pinyon, juniper, or both; grass understory.	Poor		75	85	89
	Fair		58	73	80
	Good		41	61	71
Sagebrush with grass understory.	Poor		67	80	85
	Fair		51	63	70
	Good		35	47	55
Desert shrub-major plants include saltbush, greasewood, creosotebush, blackbrush, bursage, palo verde, mesquite, and cactus.	Poor	63	77	85	88
	Fair	55	72	81	86
	Good	49	68	79	84

1 Average runoff condition, and $\mathrm{I}_{\mathrm{a}},=0.2 \mathrm{~S}$. For range in humid regions, use table 2-2c.
2 Poor: <30\% ground cover (litter, grass, and brush overstory).
Fair: 30 to 70% ground cover.
Good: > 70\% ground cover.
3 Curve numbers for group A have been developed only for desert shrub.

Technical Release 55
Urban Hydrology for Small Watersheds

Antecedent runoff condition

The index of runoff potential before a storm event is the antecedent runoff condition (ARC). ARC is an attempt to account for the variation in CN at a site from storm to storm. CN for the average ARC at a site is the median value as taken from sample rainfall and runoff data. The CN's in table 2-2 are for the average ARC, which is used primarily for design applications. See NEH-4 (SCS 1985) and Rallison and Miller (1981) for more detailed discussion of storm-to-storm variation and a demonstration of upper and lower enveloping curves.

Urban impervious area modifications

Several factors, such as the percentage of impervious area and the means of conveying runoff from impervious areas to the drainage system, should be considered in computing CN for urban areas (Rawls et al., 1981). For example, do the impervious areas connect directly to the drainage system, or do they outlet onto lawns or other pervious areas where infiltration can occur?

Connected impervious areas - An impervious area is considered connected if runoff from it flows directly into the drainage system. It is also considered connected if runoff from it occurs as concentrated shallow flow that runs over a pervious area and then into the drainage system.

Urban CN's (table 2-2a) were developed for typical land use relationships based on specific assumed percentages of impervious area. These CN vales were developed on the assumptions that (a) pervious urban areas are equivalent to pasture in good hydrologic condition and (b) impervious areas have a CN of 98 and are directly connected to the drainage system. Some assumed percentages of impervious area are shown in table 2-2a

If all of the impervious area is directly connected to the drainage system, but the impervious area percentages or the pervious land use assumptions in table 2-2a are not applicable, use figure 2-3 to compute a composite CN. For example, table 2-2a gives a CN of 70 for a 1/2-acre lot in HSG B, with assumed impervious area
of 25 percent. However, if the lot has 20 percent impervious area and a pervious area CN of 61 , the composite CN obtained from figure 2-3 is 68 . The CN difference between 70 and 68 reflects the difference in percent impervious area.

Unconnected impervious areas - Runoff from these areas is spread over a pervious area as sheet flow. To determine CN when all or part of the impervious area is not directly connected to the drainage system, (1) use figure 2-4 if total impervious area is less than 30 percent or (2) use figure 2-3 if the total impervious area is equal to or greater than 30 percent, because the absorptive capacity of the remaining pervious areas will not significantly affect runoff.

When impervious area is less than 30 percent, obtain the composite CN by entering the right half of figure 2-4 with the percentage of total impervious area and the ratio of total unconnected impervious area to total impervious area. Then move left to the appropriate pervious CN and read down to find the composite CN . For example, for a 1/2-acre lot with 20 percent total impervious area (75 percent of which is unconnected) and pervious CN of 61 , the composite CN from figure $2-4$ is 66 . If all of the impervious area is connected, the resulting CN (from figure 2-3) would be 68 .

Chapter 2

Technical Release 55
Urban Hydrology for Small Watersheds

Figure 2-3 Composite CN with connected impervious area.

Figure 2-4 Composite CN with unconnected impervious areas and total impervious area less than 30\%

Reference 3

NRCS Soil Figures, S\&ME Inc., February 2021.

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils	\square	D
Soil Rating Polygons		
A	\square	Not rated or not available
A/D	Water Fe	ures
	\sim	Streams and Canals
B		
	Transportation	
B/D	H+	Rails
C	\sim	Interstate Highways
C/D	(2)	US Routes
D	\approx	Major Roads
Not rated or not available	\cdots	Local Roads
Soil Rating Lines	Background	
\cdots A		Aerial Photography
\cdots A/D		
$\cdots \mathrm{B}$		
\cdots B/D		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
- B/D		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Fairfield County, South Carolina Survey Area Data: Version 15, Jun 3, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 23, 2014-Oct 2, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
ApC	Appling loamy sand, 6 to 10 percent slopes	B	52.5	3.2\%
CeB	Cecil sandy loam, 2 to 6 percent slopes	B	639.7	39.4\%
CnC2	Cecil sandy clay loam, 6 to 10 percent slopes, moderately eroded	B	257.5	15.8\%
Cw	Chewacla loam, 0 to 2 percent slopes, frequently flooded	B/D	75.4	4.6\%
GeC	Georgeville loam, 6 to 10 percent slopes	B	0.4	0.0\%
HsB	Hiwassee sandy loam, 2 to 6 percent slopes	B	23.0	1.4\%
IdB	Iredell fine sandy loam, 1 to 6 percent slopes	D	0.3	0.0\%
MdC2	Madison sandy clay loam, 6 to 10 percent slopes, eroded	B	19.9	1.2\%
MdE2	Madison sandy clay loam, 10 to 25 percent slopes, eroded	B	43.8	2.7\%
PaE	Pacolet sandy loam, 10 to 25 percent slopes	B	325.8	20.1\%
RnF	Rion loamy sand, 15 to 40 percent slopes	B	12.1	0.7\%
To	Toccoa loam	A	1.8	0.1\%
W	Water		2.7	0.2\%
WaD	Wateree-Rion complex, 6 to 15 percent slopes	B	18.4	1.1\%
WaF	Wateree-Rion complex, 15 to 40 percent slopes	B	57.3	3.5\%
WkD	Wilkes sandy loam, 6 to 15 percent slopes	C	2.9	0.2\%
WnB	Winnsboro sandy loam, 2 to 6 percent slopes	C	62.0	3.8\%
WnC	Winnsboro sandy loam, 6 to 10 percent slopes	C	29.2	1.8\%
Totals for Area of Interest			1,624.7	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Reference 4

Drainage Area Figures, S\&ME Inc., March 2021.

Reference 5

Compiled HydroCAD Report, S\&ME Inc., March 2021.

P-PT-SB-1

P-P-SB-1

P-NE-SB-1

P-W-SB-1

P-P-SB-2

P-NE-SB-2

P-P-SB-3

P-NE-SB-3

P-NE-SB-4

210730C_177_SEDIMENT_BASINS

Prepared by S\&ME, Inc.
HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Project Notes

Defined 10 rainfall events from NOAA_I77_LUCKSTONE IDF

210730C_177_SEDIMENT_BASINS

Prepared by S\&ME, Inc.
Printed 3/18/2021
HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
169.825	94	Newly graded area, HSG D (NE1, NE2, NE3, NE4, P1, P2, P3, PT1, W1)
169.825	$\mathbf{9 4}$	TOTAL AREA

210730C_177_SEDIMENT_BASINS

Prepared by S\&ME, Inc.
HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
169.825	HSG D	NE1, NE2, NE3, NE4, P1, P2, P3, PT1, W1
0.000	Other	
169.825		TOTAL AREA

210730C_177_SEDIMENT_BASINS

Prepared by S\&ME, Inc.
HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Ground Covers (all nodes)

HSG-A $($ acres $)$	HSG-B $($ acres $)$	HSG-C $($ acres $)$	HSG-D $($ acres $)$	Other $($ acres $)$	Total $($ acres $)$	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	169.825	0.000	169.825	Newly graded area NE1, NE2,	
							NE3, NE4, P1,
							P2, P3, PT1,
0.000	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$	$\mathbf{1 6 9 . 8 2 5}$	$\mathbf{0 . 0 0 0}$	$\mathbf{1 6 9 . 8 2 5}$	TOTAL AREA	W1

210730C 177 _SEDIMENT_BASINS

Pipe Listing (all nodes)

Line\#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1P	557.00	556.00	100.0	0.0100	0.012	24.0	0.0	0.0
2	2 P	500.00	499.00	100.0	0.0100	0.012	24.0	0.0	0.0
3	3 P	450.00	449.00	100.0	0.0100	0.012	24.0	0.0	0.0
4	4 P	481.00	480.00	100.0	0.0100	0.012	24.0	0.0	0.0
5	5P	490.00	489.00	100.0	0.0100	0.012	24.0	0.0	0.0
6	6 P	427.00	426.00	100.0	0.0100	0.012	24.0	0.0	0.0
7	7P	412.00	411.00	100.0	0.0100	0.012	24.0	0.0	0.0
8	8P	412.00	411.00	100.0	0.0100	0.012	24.0	0.0	0.0
9	9P	479.00	478.00	100.0	0.0100	0.012	24.0	0.0	0.0

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment NE1: NE-SB-1

Subcatchment NE2: NE-SB-2

Subcatchment NE3: NE-SB-3

Subcatchment NE4: NE-SB-4

Subcatchment P1: P-SB-1

Subcatchment P2: P-SB-2

Subcatchment P3: P-SB-3

Subcatchment PT1: PT-SB-1

Subcatchment W1: W-SB-1

Pond 1P: P-PT-SB-1

Pond 2P: P-W-SB-1

Pond 3P: P-P-SB-1

Pond 4P: P-P-SB-2

Pond 5P: P-P-SB-3

Pond 6P: P-NE-SB-1

Pond 7P: P-NE-SB-2

Runoff Area $=906,076$ sf 0.00% Impervious Runoff Depth >2.69 " Flow Length=990' $\mathrm{Tc}=9.9 \mathrm{~min} \mathrm{CN}=94$ Runoff=84.97 cfs 4.668 af

Runoff Area=334,011 sf 0.00% Impervious Runoff Depth>2.70" Flow Length=640' Tc=6.4 min CN=94 Runoff=34.49 cfs 1.722 af

Runoff Area=441,198 sf 0.00% Impervious Runoff Depth>2.69" Flow Length=840' Tc=7.1 min CN=94 Runoff=45.15 cfs 2.274 af

Runoff Area=679,173 sf 0.00% Impervious Runoff Depth>2.69" Flow Length=1,778' Tc=8.5 min CN=94 Runoff=66.78 cfs 3.500 af

Runoff Area $=1,936,988$ sf 0.00% Impervious Runoff Depth >2.69 " Flow Length=1,935' TC=14.1 $\mathrm{min} \quad \mathrm{CN}=94$ Runoff=159.90 cfs 9.971 af

Runoff Area $=603,049$ sf 0.00% Impervious Runoff Depth $>2.69 "$ Flow Length $=1,182^{\prime} \quad \mathrm{Tc}=8.5 \mathrm{~min} \mathrm{CN}=94$ Runoff= 59.30 cfs 3.108 af

Runoff Area=884,859 sf 0.00% Impervious Runoff Depth>2.69" Flow Length=1,112' Tc=9.2 $\mathrm{min} \mathrm{CN}=94$ Runoff=85.00 cfs 4.560 af

Runoff Area $=1,012,355$ sf 0.00% Impervious Runoff Depth>2.69" Flow Length=1,104' Tc=11.5 min CN=94 Runoff=90.21 cfs 5.214 af

Runoff Area=599,872 sf 0.00% Impervious Runoff Depth>2.69" Flow Length=1,193' $\mathrm{Tc}=7.9 \mathrm{~min} \quad \mathrm{CN}=94$ Runoff=60.08 cfs 3.092 af

Peak Elev=560.71' Storage=183,037 cf Inflow=90.21 cfs 5.214 af Primary $=1.17$ cfs 1.014 af Secondary $=0.00$ cfs 0.000 af Outflow=1.17 cfs 1.014 af

Peak Elev=503.48' Storage=101,288 cf Inflow=60.08 cfs 3.092 af Primary $=0.89$ cfs 0.790 af Secondary $=0.00$ cfs 0.000 af Outflow $=0.89$ cfs 0.790 af

Peak Elev=454.83' Storage=347,855 cf Inflow=159.90 cfs 9.971 af Primary $=2.34$ cfs 1.993 af Secondary $=0.00$ cfs 0.000 af Outflow=2.34 cfs 1.993 af

Peak Elev=485.21' Storage=100,616 cf Inflow=59.30 cfs 3.108 af Primary $=0.89$ cfs 0.821 af Secondary $=0.00$ cfs 0.000 af Outflow= 0.89 cfs 0.821 af

Peak Elev=494.84' Storage=152,378 cf Inflow=85.00 cfs 4.560 af Primary $=1.17$ cfs 1.074 af Secondary $=0.00$ cfs 0.000 af Outflow=1.17 cfs 1.074 af

Peak Elev=431.93' Storage=156,699 cf Inflow=84.97 cfs 4.668 af Primary $=1.17$ cfs 1.081 af Secondary $=0.00$ cfs 0.000 af Outflow $=1.17$ cfs 1.081 af

Peak Elev=415.11' Storage=51,963 cf Inflow=34.49 cfs 1.722 af Primary $=0.66$ cfs 0.587 af Secondary $=0.00$ cfs 0.000 af Outflow $=0.66$ cfs 0.587 af

210730C_177_SEDIMENT_BASINS

Peak Elev=482.49' Storage=111,255 cf Inflow=66.78 cfs 3.500 af Primary $=1.17$ cfs 1.008 af Secondary $=0.00$ cfs 0.000 af Outflow $=1.17$ cfs 1.008 af

Total Runoff Area $=169.825$ ac Runoff Volume $=38.110$ af Average Runoff Depth $=2.69 "$ 100.00% Pervious $=169.825$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment NE1: NE-SB-1

Runoff $=84.97$ cfs @ 12.01 hrs, Volume $=\quad 4.668$ af, Depth> 2.69"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.54"

Area (sf)	CN	Description			
906,076	94	Newly graded area, HSG D			
906,076		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Capacity
---:					
(cfs)	\quad	Description			
:---					

Subcatchment NE1: NE-SB-1

Summary for Subcatchment NE2: NE-SB-2

No Channel Flow
Runoff $=34.49$ cfs @ 11.97 hrs, Volume $=1.722$ af, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 2-yr Rainfall=3.54"

Area (sf)		CN	Description		
334,011		94	Newly graded area, HSG D		
	34,011		0.00\% P	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
5.3	300	0.0812	0.94		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
1.1	340	0.2754	5.25		Shallow Concentrated Flow, Nearly Bare \& Untilled $\mathrm{Kv}=10.0 \mathrm{fps}$

Subcatchment NE2: NE-SB-2

Summary for Subcatchment NE3: NE-SB-3

No Channel Flow
Runoff $=45.15$ cfs @ 11.98 hrs, Volume $=\quad 2.274$ af, Depth> 2.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 2-yr Rainfall=3.54"

Area (sf)		CN	Description		
441,198		94 Newly graded area, HSG D			
441,198		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.8	300	0.1075	1.05		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
2.3	540	0.1570	3.96		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
7.1	840	Total			

Subcatchment NE3: NE-SB-3

Summary for Subcatchment NE4: NE-SB-4

No Channel Flow
Runoff $=66.78$ cfs @ 11.99 hrs, Volume $=\quad 3.500$ af, Depth> 2.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 2-yr Rainfall=3.54"

Area (sf)		CN	Description		
679,173		94	Newly graded area, HSG D		
	79,173		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.6	300	0.0719	0.90		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
1.8	290	0.0706	2.66		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
1.1	1,188	0.0328	17.76	621.77	Channel Flow, Area= 35.0 sf Perim=20.0'r=1.75' $n=0.022$ Earth, clean \& straight

8.5 1,778 Total

Subcatchment NE4: NE-SB-4

Summary for Subcatchment P1: P-SB-1

No Channel Flow
Runoff $=159.90$ cfs @ 12.05 hrs, Volume $=9.971$ af, Depth> 2.69"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 2-yr Rainfall=3.54"

Area (sf)		CN	Description		
1,936,988		94 Newly graded area, HSG D			
	36,988		0.00\% P	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	300	0.0838	0.95		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
7.9	1,294	0.0737	2.71		Shallow Concentrated Flow, Nearly Bare \& Untilled $\mathrm{Kv}=10.0 \mathrm{fps}$
0.9	341	0.0045	6.58	230.30	Channel Flow, Area $=35.0$ sf Perim=20.0'r=1.75' $\mathrm{n}=0.022$ Earth, clean \& straight

```
14.1 1,935 Total
```

Subcatchment P1: P-SB-1

Summary for Subcatchment P2: P-SB-2

No Channel Flow
Runoff $=59.30$ cfs @ 11.99 hrs, Volume $=3.108$ af, Depth> 2.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 2-yr Rainfall=3.54"

Area (sf)		CN	Description		
603,049		94 Newly graded area, HSG D			
	03,049		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.2	300	0.0842	0.95		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
3.0	582	0.1023	3.20		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.3	300	0.0240	15.20	531.86	Channel Flow, Area= 35.0 sf Perim=20.0'r=1.75' $n=0.022$ Earth, clean \& straight

8.5 1,182 Total

Subcatchment P2: P-SB-2

Summary for Subcatchment P3: P-SB-3

Runoff $=85.00$ cfs @ 12.00 hrs , Volume $=$
4.560 af, Depth> 2.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.54"

Area (sf) CN Description					
884,859			Newly graded area, HSG D		
	4,859		0.00\% Pe	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
4.7	300	0.1095	1.06		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
4.3	699	0.0738	2.72		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.2	113	0.0088	9.20	322.06	Channel Flow, Area= 35.0 sf Perim=20.0' $r=1.75^{\prime}$ $\mathrm{n}=0.022$ Earth, clean \& straight

9.2 1,112 Total

Subcatchment P3: P-SB-3

Summary for Subcatchment PT1: PT-SB-1

No Channel Flow
Runoff $=90.21$ cfs @ 12.03 hrs , Volume $=\quad 5.214$ af, Depth> 2.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 2-yr Rainfall=3.54"

Area (sf)		CN	Description		
1,012,355		94	Newly graded area, HSG D		
	12,355		0.00\% P	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.2	300	0.0546	0.80		Sheet Flow, Fallow $n=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
5.3	804	0.0630	2.51		Shallow Concentrated Flow, Nearly Bare \& Untilled $\mathrm{Kv}=10.0 \mathrm{fps}$

11.5 1,104 Total

Subcatchment PT1: PT-SB-1

Summary for Subcatchment W1: W-SB-1

Runoff $=\quad 60.08$ cfs @ 11.99 hrs, Volume $=\quad 3.092$ af, Depth> 2.69"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.54"

Area (sf)		CN	Description		
599,872		94	Newly graded area, HSG D		
	99,872		00.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.6	300	0.0707	0.89		Sheet Flow, Fallow $n=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
1.6	334	0.1196	3.46		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.7	559	0.0190	13.52	473.22	Channel Flow, Area= 35.0 sf Perim=20.0' $r=1.75^{\prime}$ $\mathrm{n}=0.022$ Earth, clean \& straight

7.9 1,193 Total

Subcatchment W1: W-SB-1

Summary for Pond 1P: P-PT-SB-1

[82] Warning: Early inflow requires earlier time span

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=560.71' @ 19.59 hrs Surf.Area=55,901 sf Storage= 183,037 cf
Plug-Flow detention time= 284.3 min calculated for 1.013 af (19% of inflow)
Center-of-Mass det. time $=129.5 \mathrm{~min}$ (882.6-753.1)

Primary OutFlow Max=1.17 cfs @ 11.00 hrs HW=557.49' (Free Discharge)
$L_{2}=$ Culvert (Passes 1.17 cfs of 1.42 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$\square_{3=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ $5.00 \mathrm{hrs} \mathrm{HW}=557.00$ (Free Discharge)
$\leftarrow_{4=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \text { cfs) }}$

Pond 1P: P-PT-SB-1

\square Inflow \square Outflow \square Primary \square Secondary

Summary for Pond 2P: P-W-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	13.771 ac,	0.00\% Impervious, Inflow Depth > 2.69" for 2-yr event		
Inflow	60.08 cfs @	11.99 hrs , Volume=	3.092 af	
Outflow	0.89 cfs @	10.80 hrs , Volume=	0.790 af ,	Atten $=99 \%, L a g=0.0 \mathrm{~min}$
Primary	0.89 cfs @	10.80 hrs , Volume=	0.790 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=503.48' @ 17.83 hrs Surf.Area= 33,139 sf Storage $=101,288$ cf
Plug-Flow detention time $=254.1 \mathrm{~min}$ calculated for 0.787 af (25% of inflow)
Center-of-Mass det. time $=126.3 \mathrm{~min}(876.7-750.3$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$500.00 '$	274,756 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
500.00	25,066	0	0
508.00	43,623	274,756	274,756

Device	Routing	Invert	Outlet Devices
\#1	Device 2	500.00'	0.894 cfs Constant Flow/Skimmer
\#2	Primary	500.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 500.00' / 499.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	505.40'	$36.0^{\prime \prime} \times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	506.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=0.89 cfs @ 10.80 hrs HW=500.41' (Free Discharge)
L2=Culvert (Passes 0.89 cfs of 0.99 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.89 cfs)
$-3=$ Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=500.00' (Free Discharge)
$\leftarrow_{4=}$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: P-W-SB-1

Summary for Pond 3P: P-P-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	44.467 ac,	0.00\% Impervious, Inflow Depth > 2.69" for 2-yr event		
Inflow	159.90 cfs @	12.05 hrs , Volume=	9.971 af	
Outflow	2.34 cfs @	11.20 hrs , Volume=	1.993 af ,	Atten $=99 \%, L a g=0.0 \mathrm{~min}$
Primary	2.34 cfs @	11.20 hrs , Volume=	1.993 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=454.83' @ 19.36 hrs Surf.Area= 82,510 sf Storage= 347,855 cf
Plug-Flow detention time= 284.1 min calculated for 1.985 af (20% of inflow)
Center-of-Mass det. time $=132.8 \mathrm{~min}(887.9-755.1)$

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 450.00 | $832,615 \mathrm{cf}$ | Custom Stage Data (Prismatic) Listed below (Recalc) |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 450.00 | 61,641 | 0 | 0 |
| 460.00 | 104,882 | 832,615 | 832,615 |

Device	Routing	Invert	Outlet Devices
\#1	Device 2	450.00'	1.168 cfs Constant Flow/Skimmer X 2.00
\#2	Primary	450.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 450.00' / 449.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	457.40'	36.0 " $\times 36.0$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	458.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=2.34 cfs @ 11.20 hrs HW=450.71' (Free Discharge)
$亡_{2}=$ Culvert (Passes 2.34 cfs of 2.90 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 2.34 cfs)
$-3=$ Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=450.00' (Free Discharge)
$\leftarrow_{4=}$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: P-P-SB-1

Summary for Pond 4P: P-P-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	13.844 ac,	0.00\% Impervious, Inflow Depth > 2.69" for 2-yr event		
Inflow	59.30 cfs @	11.99 hrs , Volume=	3.108 af	
Outflow	0.89 cfs @	10.75 hrs , Volume=	0.821 af,	Atten $=98 \%, L a g=0.0 \mathrm{~min}$
Primary	0.89 cfs @	10.75 hrs , Volume=	0.821 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=485.21' @ 17.88 hrs Surf.Area= 28,872 sf Storage= 100,616 cf
Plug-Flow detention time $=238.5$ min calculated for 0.818 af (26% of inflow)
Center-of-Mass det. time= 113.5 min (864.3-750.8)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	481.00	266,076 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
481.00	18,972	0	0
490.00	40,156	266,076	266,076

Device	Routing	Invert	Outlet Devices
\#1	Device 2	481.00'	0.894 cfs Constant Flow/Skimmer
\#2	Primary	481.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 481.00' / 480.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	487.40'	36.0 " $\times 36.0$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	488.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=0.89 cfs @ 10.75 hrs HW=481.45' (Free Discharge)
$廿_{2}=$ Culvert (Passes 0.89 cfs of 1.23 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.89 cfs)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=481.00' (Free Discharge)
${ }^{4}$-Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 4P: P-P-SB-2

Summary for Pond 5P: P-P-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.314 ac,	0.00\% Impervious, Inflow Depth > 2.69" for 2-yr event		
Inflow	85.00 cfs @	12.00 hrs , Volume=	4.560 af	
Outflow	1.17 cfs @	10.60 hrs , Volume=	1.074 af,	Atten $=99 \%, L a g=0.0 \mathrm{~min}$
Primary	1.17 cfs @	10.60 hrs , Volume=	1.074 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=494.84' @ 18.71 hrs Surf.Area= 37,975 sf Storage= 152,378 cf
Plug-Flow detention time $=248.5$ min calculated for 1.073 af (24% of inflow)
Center-of-Mass det. time= 112.6 min (863.9-751.3)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$490.00 '$	$383,995 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
490.00	24,964	0	0
500.00	51,835	383,995	383,995

Device	Routing	Invert	Outlet Devices
\#1	Device 2	490.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	490.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 490.00' / 489.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area=3.14 sf
\#3	Device 2	497.30'	$36.0^{\prime \prime} \times 36.0$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	498.30'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=1.17 cfs @ 10.60 hrs HW=490.50' (Free Discharge)
$L_{2}=$ Culvert (Passes 1.17 cfs of 1.48 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$-3=$ Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=490.00' (Free Discharge)
$\leftarrow_{4=}$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 5P: P-P-SB-3

Summary for Pond 6P: P-NE-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.801 ac,	0.00\% Impervious, Inflow Depth > 2.69" for 2-yr event		
Inflow	84.97 cfs @	12.01 hrs , Volume=	4.668 af	
Outflow	1.17 cfs @	10.55 hrs , Volume=	1.081 af,	Atten $=99 \%, L a g=0.0 \mathrm{~min}$
Primary	1.17 cfs @	10.55 hrs , Volume=	1.081 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=431.93' @ 18.88 hrs Surf.Area= 39,158 sf Storage= 156,699 cf
Plug-Flow detention time $=246.7$ min calculated for 1.077 af (23% of inflow)
Center-of-Mass det. time $=110.0 \mathrm{~min}(861.9-751.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$427.00 '$	393,720 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
427.00	24,435	0	0
437.00	54,309	393,720	393,720

Device	Routing	Invert	Outlet Devices
\#1	Device 2	427.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	427.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 427.00' / 426.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area=3.14 sf
\#3	Device 2	434.40'	$36.0^{\prime \prime} \times 36.0$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	435.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=1.17 cfs @ 10.55 hrs HW=427.50' (Free Discharge)
$L_{2}=$ Culvert (Passes 1.17 cfs of 1.49 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$-3=$ Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=427.00' (Free Discharge)
$\leftarrow_{4=}$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 6P: P-NE-SB-1

\square Inflow \square Outflow \square Primary \square Secondary

Summary for Pond 7P: P-NE-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area	7.668 ac,	0.00\% Impervious, Inflow Depth > 2.70" for 2-yr event		
Inflow	34.49 cfs @	11.97 hrs, Volume=	1.722 af	
Outflow	0.66 cfs @	11.15 hrs , Volume=	0.587 af,	Atten $=98 \%, L a g=0.0 \mathrm{~min}$
Primary	0.66 cfs @	11.15 hrs , Volume=	0.587 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=415.11' @ 15.84 hrs Surf.Area= 19,816 sf Storage= 51,963 cf
Plug-Flow detention time $=229.7$ min calculated for 0.587 af (34% of inflow)
Center-of-Mass det. time= 123.6 min (872.8-749.2)

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 412.00 | 172,776 cf | Custom Stage Data (Prismatic) Listed below (Recalc) |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 412.00 | 13,554 | 0 | 0 |
| 420.00 | 29,640 | 172,776 | 172,776 |

Device	Routing	Invert	Outlet Devices
\#1	Device 2	412.00'	0.657 cfs Constant Flow/Skimmer
\#2	Primary	412.00^{\prime}	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 412.00' / 411.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	416.80'	$36.0^{\prime \prime} \times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	417.80'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=0.66 cfs @ 11.15 hrs HW=412.41' (Free Discharge)
L2=Culvert (Passes 0.66 cfs of 1.01 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.66 cfs)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=412.00' (Free Discharge)
$\leftarrow_{4=}$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 7P: P-NE-SB-2

\square Inflow \square Outflow \square Primary \square Secondary

Summary for Pond 8P: P-NE-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.	0.00\% Impervious, Inflow Depth > 2.69" for 2-yr event		
Inflow	45.15 cfs @	11.98 hrs, Volume=	2.274 af	
Outflow	0.66 cfs @	10.40 hrs , Volume=	0.615 af,	Atten $=99 \%, L a g=0.0 \mathrm{~min}$
Primary	0.66 cfs @	10.40 hrs , Volume=	0.615 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=415.98' @ 17.82 hrs Surf.Area=22,709 sf Storage= $73,062 \mathrm{cf}$
Plug-Flow detention time $=231.2$ min calculated for 0.612 af (27% of inflow)
Center-of-Mass det. time $=108.2 \mathrm{~min}(857.9-749.7)$

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 412.00^{\prime} | 214,574 cf | Custom Stage Data (Prismatic) Listed below (Recalc) |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 412.00 | 13,973 | 0 | 0 |
| 421.00 | 33,710 | 214,574 | 214,574 |

Device	Routing	Invert	Outlet Devices
\#1	Device 2	412.00'	0.657 cfs Constant Flow/Skimmer
\#2	Primary	412.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 412.00' / 411.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	418.00'	$36.0^{\prime \prime} \times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	419.00'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=0.66 cfs @ 10.40 hrs HW=412.36' (Free Discharge)
L2=Culvert (Passes 0.66 cfs of 0.79 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.66 cfs)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=412.00' (Free Discharge)
$\leftarrow_{4=}$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 8P: P-NE-SB-3

\square Inflow \square Outflow \square Primary \square Secondary

Summary for Pond 9P: P-NE-SB-4

[82] Warning: Early inflow requires earlier time span

Inflow Area =	15.592 ac,	0.00\% Impervious, Inflow Depth > 2.69" for 2-yr event		
Inflow	66.78 cfs @	11.99 hrs , Volume=	3.500 af	
Outflow	1.17 cfs @	11.10 hrs , Volume=	1.008 af ,	Atten $=98 \%, L a g=0.0 \mathrm{~min}$
Primary	1.17 cfs @	11.10 hrs , Volume=	1.008 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=482.49' @ 16.67 hrs Surf.Area= 36,360 sf Storage= 111,255 cf
Plug-Flow detention time= 251.0 min calculated for 1.005 af (29% of inflow)
Center-of-Mass det. time $=133.1 \mathrm{~min}(883.9-750.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	479.00^{\prime}	301,356 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
479.00	27,386	0	0
487.00	47,953	301,356	301,356

Device	Routing	Invert	Outlet Devices
\#1	Device 2	479.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	479.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 479.00' / 478.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	484.50'	36.0 " $\times 36.0$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	485.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=1.17 cfs @ 11.10 hrs HW=479.49' (Free Discharge)
$\left\llcorner_{2}=\right.$ Culvert (Passes 1.17 cfs of 1.40 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$-3=$ Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=479.00' (Free Discharge)
$\leftarrow_{4=}$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 9P: P-NE-SB-4

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment NE1: NE-SB-1

Subcatchment NE2: NE-SB-2

Subcatchment NE3: NE-SB-3

Subcatchment NE4: NE-SB-4

Subcatchment P1: P-SB-1

Subcatchment P2: P-SB-2

Subcatchment P3: P-SB-3

Subcatchment PT1: PT-SB-1

Subcatchment W1: W-SB-1

Pond 1P: P-PT-SB-1

Pond 2P: P-W-SB-1

Pond 3P: P-P-SB-1

Pond 4P: P-P-SB-2

Pond 5P: P-P-SB-3

Pond 6P: P-NE-SB-1

Pond 7P: P-NE-SB-2

Runoff Area $=906,076$ sf 0.00% Impervious Runoff Depth >4.15 " Flow Length=990' $\mathrm{Tc}=9.9 \mathrm{~min} \mathrm{CN}=94$ Runoff=127.97 cfs 7.200 af

Runoff Area=334,011 sf 0.00% Impervious Runoff Depth>4.16" Flow Length=640' Tc=6.4 min CN=94 Runoff=51.88 cfs 2.655 af

Runoff Area=441,198 sf 0.00% Impervious Runoff Depth >4.16 " Flow Length=840' Tc=7.1 min CN=94 Runoff=67.89 cfs 3.507 af

Runoff Area=679,173 sf 0.00% Impervious Runoff Depth >4.15 " Flow Length=1,778' Tc=8.5 min CN=94 Runoff=100.49 cfs 5.398 af

Runoff Area $=1,936,988$ sf 0.00% Impervious Runoff Depth >4.15 " Flow Length $=1,935^{\prime} \quad \mathrm{Tc}=14.1 \mathrm{~min} \quad \mathrm{CN}=94$ Runoff=241.19 cfs 15.383 af

Runoff Area $=603,049$ sf 0.00% Impervious Runoff Depth $>4.15^{\prime \prime}$ Flow Length $=1,182^{\prime} \quad \mathrm{Tc}=8.5 \mathrm{~min} \mathrm{CN}=94$ Runoff=89.23 cfs 4.793 af

Runoff Area=884,859 sf 0.00% Impervious Runoff Depth >4.15 " Flow Length=1,112' Tc=9.2 min CN=94 Runoff=127.96 cfs 7.032 af

Runoff Area $=1,012,355$ sf $\quad 0.00 \%$ Impervious Runoff Depth>4.15" Flow Length=1,104' Tc=11.5 min CN=94 Runoff=135.91 cfs 8.043 af

Runoff Area=599,872 sf 0.00% Impervious Runoff Depth >4.15 " Flow Length=1,193' $\mathrm{Tc}=7.9 \mathrm{~min} \mathrm{CN}=94$ Runoff=90.38 cfs 4.768 af

Peak Elev=562.68' Storage=300,166 cf Inflow=135.91 cfs 8.043 af Primary $=1.17$ cfs 1.151 af Secondary $=0.00$ cfs 0.000 af Outflow=1.17 cfs 1.151 af

Peak Elev=505.39' Storage=168,705 cf Inflow=90.38 cfs 4.768 af Primary $=0.89$ cfs 0.895 af Secondary $=0.00$ cfs 0.000 af Outflow= 0.89 cfs 0.895 af

Peak Elev=457.36' Storage=571,220 cf Inflow=241.19 cfs 15.383 af Primary $=2.34$ cfs 2.268 af Secondary $=0.00$ cfs 0.000 af Outflow=2.34 cfs 2.268 af

Peak Elev=487.37' Storage=168,475 cf Inflow=89.23 cfs 4.793 af Primary $=0.89$ cfs 0.925 af Secondary $=0.00$ cfs 0.000 af Outflow $=0.89$ cfs 0.925 af

Peak Elev=497.29' Storage=253,602 cf Inflow=127.96 cfs 7.032 af Primary $=1.17$ cfs 1.210 af Secondary $=0.00$ cfs 0.000 af Outflow=1.17 cfs 1.210 af

Peak Elev=434.36' Storage=260,626 cf Inflow=127.97 cfs 7.200 af Primary $=1.17$ cfs 1.216 af Secondary $=0.00$ cfs 0.000 af Outflow=1.17 cfs 1.216 af

Peak Elev=416.75' Storage=87,108 cf Inflow=51.88 cfs 2.655 af Primary $=0.66$ cfs 0.664 af Secondary $=0.00$ cfs 0.000 af Outflow $=0.66$ cfs 0.664 af

Pond 8P: P-NE-SB-3

Pond 9P: P-NE-SB-4

Peak Elev=417.98' Storage=122,681 cf Inflow=67.89 cfs 3.507 af Primary $=0.66$ cfs 0.691 af Secondary $=0.00$ cfs 0.000 af Outflow= 0.66 cfs 0.691 af

Peak Elev=484.40' Storage=185,391 cf Inflow=100.49 cfs 5.398 af Primary $=1.17$ cfs 1.145 af Secondary $=0.00$ cfs 0.000 af Outflow=1.17 cfs 1.145 af

Total Runoff Area $=169.825$ ac Runoff Volume $=58.781$ af Average Runoff Depth $=4.15^{\prime \prime}$ 100.00% Pervious $=169.825$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment NE1: NE-SB-1

Runoff $=127.97$ cfs @ 12.01 hrs, Volume $=\quad 7.200$ af, Depth> 4.15"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.14"

Area (sf)	CN	Description			
906,076	94	Newly graded area, HSG D			
906,076		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Capacity
---:					
(cfs)	\quad	Description			
:---					

Subcatchment NE1: NE-SB-1

Summary for Subcatchment NE2: NE-SB-2

No Channel Flow
Runoff $=51.88$ cfs @ 11.97 hrs, Volume $=\quad 2.655$ af, Depth> 4.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 10-yr Rainfall=5.14"

Area (sf)		CN	Description		
334,011		94	Newly graded area, HSG D		
	34,011		0.00\% P	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
5.3	300	0.0812	0.94		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
1.1	340	0.2754	5.25		Shallow Concentrated Flow, Nearly Bare \& Untilled $\mathrm{Kv}=10.0 \mathrm{fps}$

Subcatchment NE2: NE-SB-2

Summary for Subcatchment NE3: NE-SB-3

No Channel Flow
Runoff $=67.89$ cfs @ 11.98 hrs, Volume $=\quad 3.507$ af, Depth> 4.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 10-yr Rainfall=5.14"

Area (sf)		CN	Description		
441,198		94 Newly graded area, HSG D			
441,198		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.8	300	0.1075	1.05		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
2.3	540	0.1570	3.96		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
7.1	840	Total			

Subcatchment NE3: NE-SB-3

Summary for Subcatchment NE4: NE-SB-4

No Channel Flow
Runoff $=100.49$ cfs @ 11.99 hrs, Volume $=\quad 5.398$ af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.14"

Area (sf)		CN	Description		
679,173		94	Newly graded area, HSG D		
	79,173		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.6	300	0.0719	0.90		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
1.8	290	0.0706	2.66		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
1.1	1,188	0.0328	17.76	621.77	Channel Flow, Area= 35.0 sf Perim=20.0'r=1.75' $n=0.022$ Earth, clean \& straight

8.5 1,778 Total

Subcatchment NE4: NE-SB-4

Summary for Subcatchment P1: P-SB-1

No Channel Flow
Runoff $=241.19$ cfs @ 12.05 hrs, Volume $=15.383$ af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.14"

Area (sf)		CN	Description		
1,936,988		94	Newly graded area, HSG D		
	36,988		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	300	0.0838	0.95		Sheet Flow, Fallow $\mathrm{n}=0.050 \mathrm{P} 2=3.54^{\prime \prime}$
7.9	1,294	0.0737	2.71		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.9	341	0.0045	6.58	230.30	Channel Flow, Area= 35.0 sf Perim=20.0'r=1.75' $n=0.022$ Earth, clean \& straight

```
14.1 1,935 Total
```

Subcatchment P1: P-SB-1

\square Runoff

Summary for Subcatchment P2: P-SB-2

No Channel Flow
Runoff $=89.23$ cfs @ 11.99 hrs , Volume $=\quad 4.793$ af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.14"

Area (sf)		CN	Description		
603,049		94 Newly graded area, HSG D			
	03,049		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
5.2	300	0.0842	0.95		Sheet Flow, Fallow $n=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
3.0	582	0.1023	3.20		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv= 10.0 fps
0.3	300	0.0240	15.20	531.86	Channel Flow, Area $=35.0$ sf Perim=20.0' $r=1.75^{\prime}$ $\mathrm{n}=0.022$ Earth, clean \& straight

8.5 1,182 Total

Subcatchment P2: P-SB-2

Summary for Subcatchment P3: P-SB-3

Runoff $=127.96$ cfs @ 12.00 hrs, Volume $=7.032$ af, Depth> 4.15"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.14"

Subcatchment P3: P-SB-3

Summary for Subcatchment PT1: PT-SB-1

No Channel Flow
Runoff $=135.91$ cfs @ 12.03 hrs, Volume $=8.043$ af, Depth> 4.15"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 10-yr Rainfall=5.14"

Area (sf)		CN	Description		
1,012,355		94	Newly graded area, HSG D		
	12,355		0.00\% P	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.2	300	0.0546	0.80		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
5.3	804	0.0630	2.51		Shallow Concentrated Flow, Nearly Bare \& Untilled $\mathrm{Kv}=10.0 \mathrm{fps}$

11.5 1,104 Total

Subcatchment PT1: PT-SB-1

Summary for Subcatchment W1: W-SB-1

Runoff $=90.38$ cfs @ 11.99 hrs , Volume $=$
4.768 af, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.14"

Area (sf)		CN	Description		
599,872		94	Newly graded area, HSG D		
	99,872		00.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.6	300	0.0707	0.89		Sheet Flow, Fallow $n=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
1.6	334	0.1196	3.46		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.7	559	0.0190	13.52	473.22	Channel Flow, Area= 35.0 sf Perim=20.0' $r=1.75^{\prime}$ $\mathrm{n}=0.022$ Earth, clean \& straight

7.9 1,193 Total

Subcatchment W1: W-SB-1

Summary for Pond 1P: P-PT-SB-1

[82] Warning: Early inflow requires earlier time span

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=562.68' @ 20.00 hrs Surf.Area=62,870 sf Storage=300,166 cf
Plug-Flow detention time= 301.8 min calculated for 1.146 af (14% of inflow)
Center-of-Mass det. time $=95.3 \mathrm{~min}(841.1-745.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	557.00^{\prime}	455,428 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
557.00	42,794	0	0
565.00	71,063	455,428	455,428

Device	Routing	Invert	Outlet Devices
\#1	Device 2	557.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	$557.00{ }^{\prime}$	24.0" Round Culvert
			$\mathrm{L}=100.0$ ' CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 557.00' / 556.00' S=0.0100'/l' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	562.70'	36.0 " $\times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	563.70'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=1.17 cfs @ 9.60 hrs HW=557.48' (Free Discharge)
L2=Culvert (Passes 1.17 cfs of 1.38 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$\square_{3=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ $5.00 \mathrm{hrs} \mathrm{HW}=557.00^{\prime} \quad$ (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 1P: P-PT-SB-1

Summary for Pond 2P: P-W-SB-1

[82] Warning: Early inflow requires earlier time span

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=505.39' @ 20.00 hrs Surf.Area=37,563 sf Storage= 168,705 cf
Plug-Flow detention time= 265.3 min calculated for 0.891 af (19% of inflow)
Center-of-Mass det. time $=92.4 \mathrm{~min}(835.4-743.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$500.00 '$	274,756 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
500.00	25,066	0	0
508.00	43,623	274,756	274,756

Device	Routing	Invert	Outlet Devices
\#1	Device 2	500.00'	0.894 cfs Constant Flow/Skimmer
\#2	Primary	500.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 500.00' / 499.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	505.40'	36.0 " x 36.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	506.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=0.89 cfs @ 9.35 hrs HW=500.40' (Free Discharge)
L-2=Culvert (Passes 0.89 cfs of 0.97 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.89 cfs)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=500.00' (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00$ cfs)

Pond 2P: P-W-SB-1

\square Inflow \square Outflow \square Primary \square Secondary

Summary for Pond 3P: P-P-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	44.467 ac,	0.00\% Impervious,	Depth > 4.15	nt
Inflow	241.19 cfs @	12.05 hrs , Volume=	15.383 af	
Outflow	2.34 cfs @	9.90 hrs , Volume=	2.268 af,	Atten $=99 \%, L a g=0.0 \mathrm{~min}$
Primary	2.34 cfs @	9.90 hrs, Volume=	2.268 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=457.36' @ 20.00 hrs Surf.Area= 93,486 sf Storage $=571,220$ cf
Plug-Flow detention time= 301.6 min calculated for 2.258 af (15% of inflow)
Center-of-Mass det. time $=98.4 \min (846.2-747.8)$

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 450.00 ' | 832,615 cf | Custom Stage Data (Prismatic) Listed below (Recalc) |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 450.00 | 61,641 | 0 | 0 |
| 460.00 | 104,882 | 832,615 | 832,615 |

Device	Routing	Invert	Outlet Devices
\#1	Device 2	450.00'	1.168 cfs Constant Flow/Skimmer X 2.00
\#2	Primary	450.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 450.00' / 449.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	457.40'	36.0 " $\times 36.0$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	458.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) $\begin{array}{lllllllllllll} \\ 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60\end{array}$
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=2.34 cfs @ 9.90 hrs HW=450.71' (Free Discharge)
L-2=Culvert (Passes 2.34 cfs of 2.83 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 2.34 cfs)
$\square_{3=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ $5.00 \mathrm{hrs} \mathrm{HW}=450.00^{\prime} \quad$ (Free Discharge)
${ }^{-}$4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: P-P-SB-1

Summary for Pond 4P: P-P-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	13.844	0.00\% Impervious, Inflow Depth > 4.15" for 10-yr event		
Inflow	89.23 cfs @	11.99 hrs, Volume=	4.793 af	
Outflow	0.89 cfs @	9.30 hrs , Volume=	0.925 af,	Atten $=99 \%, L a g=0.0 \mathrm{~min}$
Primary	0.89 cfs @	9.30 hrs , Volume=	0.925 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=487.37' @ 20.00 hrs Surf.Area=33,956 sf Storage= 168,475 cf
Plug-Flow detention time $=250.4$ min calculated for 0.924 af (19% of inflow)
Center-of-Mass det. time $=79.9 \mathrm{~min}(823.5-743.5)$

Primary OutFlow Max=0.89 cfs @ 9.30 hrs HW=481.45' (Free Discharge)
L2=Culvert (Passes 0.89 cfs of 1.23 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.89 cfs)
$\square_{3=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=481.00' (Free Discharge)
\&4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 4P: P-P-SB-2

Summary for Pond 5P: P-P-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.314 ac,	0.00\% Impervious, Inflow Depth > 4.15" for 10-yr event		
Inflow	127.96 cfs @	12.00 hrs , Volume=	7.032 af	
Outflow	1.17 cfs @	9.10 hrs , Volume=	1.210 af ,	Atten= 99\%, Lag= 0.0 min
Primary	1.17 cfs @	9.10 hrs , Volume=	1.210 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=497.29' @ 20.00 hrs Surf.Area= 44,566 sf Storage= 253,602 cf
Plug-Flow detention time= 263.6 min calculated for 1.209 af (17% of inflow)
Center-of-Mass det. time $=79.2 \min (823.3-744.1)$

Primary OutFlow Max=1.17 cfs @ 9.10 hrs HW=490.50' (Free Discharge)
$廿_{2}=$ Culvert (Passes 1.17 cfs of 1.48 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$\square_{3=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=490.00' (Free Discharge)
-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 5P: P-P-SB-3

Summary for Pond 6P: P-NE-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.801 ac,	0.00\% Impervious, Inflow Depth > 4.15" for 10-yr event		
Inflow	127.97 cfs @	12.01 hrs, Volume=	7.200 af	
Outflow	1.17 cfs @	9.05 hrs , Volume=	1.216 af,	Atten $=99 \%, L a g=0.0 \mathrm{~min}$
Primary	1.17 cfs @	9.05 hrs , Volume=	1.216 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume $=$	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=434.36' @ 20.00 hrs Surf.Area= 46,414 sf Storage= 260,626 cf
Plug-Flow detention time= 263.4 min calculated for 1.215 af (17% of inflow)
Center-of-Mass det. time $=76.7 \mathrm{~min}(821.3-744.6)$

Primary OutFlow Max=1.17 cfs @ 9.05 hrs HW=427.50' (Free Discharge)
$廿_{2}=$ Culvert (Passes 1.17 cfs of 1.50 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$\square_{3=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=427.00' (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00$ cfs)

Pond 6P: P-NE-SB-1

Summary for Pond 7P: P-NE-SB-2

[82] Warning: Early inflow requires earlier time span

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=416.75' @ 18.59 hrs Surf.Area= 23,109 sf Storage= $87,108 \mathrm{cf}$
Plug-Flow detention time $=231.0$ min calculated for 0.664 af (25% of inflow)
Center-of-Mass det. time $=89.7 \mathrm{~min}(831.6-741.9)$

Volume	Invert Avail.Storage Storage Description		
\#1	412.00 ' 172,776 cf Custom Stage Data (Prismatic) Listed below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
412.00	13,554	- 0	0
420.00	29,640	172,776	172,776

Device	Routing	Invert	Outlet Devices
\#1	Device 2	412.00'	0.657 cfs Constant Flow/Skimmer
\#2	Primary	412.00'	24.0" Round Culvert
			$\mathrm{L}=100.0$ ' CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 412.00' / 411.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	416.80'	36.0 " $\times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	417.80'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=0.66 cfs @ 10.00 hrs HW=412.40' (Free Discharge)
$L_{2}=$ Culvert (Passes 0.66 cfs of 0.98 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.66 cfs)
-3=Orifice/Grate (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=412.00' (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00$ cfs)

Pond 7P: P-NE-SB-2

\square Inflow \square Outflow \square Primary \square Secondary

Summary for Pond 8P: P-NE-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.129	0.00\% Impervious, Inflow Depth > 4.16" for 10-yr event		
Inflow	67.89 cfs @	11.98 hrs, Volume=	3.507 af	
Outflow	0.66 cfs @	8.90 hrs , Volume=	0.691 af,	Atten= 99\%, Lag= 0.0 min
Primary	0.66 cfs @	8.90 hrs , Volume=	0.691 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=417.98' @ 20.00 hrs Surf.Area=27,080 sf Storage=122,681 cf
Plug-Flow detention time $=243.1 \mathrm{~min}$ calculated for 0.690 af (20% of inflow)
Center-of-Mass det. time $=75.1 \mathrm{~min}(817.6-742.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$412.00 '$	214,574 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
412.00	13,973	0	0
421.00	33,710	214,574	214,574

Device	Routing	Invert	Outlet Devices
\#1	Device 2	412.00'	0.657 cfs Constant Flow/Skimmer
\#2	Primary	412.00'	24.0" Round Culvert
			$\mathrm{L}=100.0$ ' CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 412.00' / 411.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	418.00'	36.0 " $\times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	419.00'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=0.66 cfs @ 8.90 hrs HW=412.36' (Free Discharge)
$廿_{2}=$ Culvert (Passes 0.66 cfs of 0.80 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.66 cfs)
$\square_{3=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ $5.00 \mathrm{hrs} \mathrm{HW}=412.00^{\prime} \quad$ (Free Discharge)
-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 8P: P-NE-SB-3

Summary for Pond 9P: P-NE-SB-4

[82] Warning: Early inflow requires earlier time span

Inflow Area =	15.592 ac ,	0.00\% Impervious, Inflow Depth > 4.15" for 10-yr event		
Inflow	100.49 cfs @	11.99 hrs, Volume=	5.398 af	
Outfow	1.17 cfs @	9.85 hrs , Volume=	1.145 af , A	Atten $=99 \%, L a g=0.0 \mathrm{~min}$
Primary	1.17 cfs @	9.85 hrs , Volume=	1.145 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=484.40' @ 19.47 hrs Surf.Area= 41,270 sf Storage $=185,391 \mathrm{cf}$
Plug-Flow detention time= 257.9 min calculated for 1.140 af (21% of inflow)
Center-of-Mass det. time $=99.2 \min (842.7-743.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$479.00 '$	301,356 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
479.00	27,386	0	0
487.00	47,953	301,356	301,356

Device	Routing	Invert	Outlet Devices
\#1	Device 2	479.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	479.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 479.00' / 478.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	484.50'	36.0 " $\times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	485.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) $\begin{array}{lllllllllllll} \\ 0.20 & 0.40 & 0.60 & 0.80 & 1.00 & 1.20 & 1.40 & 1.60\end{array}$
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=1.17 cfs @ 9.85 hrs HW=479.48' (Free Discharge)
$L_{2}=$ Culvert (Passes 1.17 cfs of 1.37 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$\square_{3=O r i f i c e / G r a t e ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)
Secondary OutFlow Max=0.00 cfs @ $5.00 \mathrm{hrs} \mathrm{HW}=479.00^{\prime} \quad$ (Free Discharge)
${ }^{-}$4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 9P: P-NE-SB-4

\square Inflow \square Outflow Primary \square Secondary

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment NE1: NE-SB-1

Subcatchment NE2: NE-SB-2

Subcatchment NE3: NE-SB-3

Subcatchment NE4: NE-SB-4

Subcatchment P1: P-SB-1

Subcatchment P2: P-SB-2

Subcatchment P3: P-SB-3

Subcatchment PT1: PT-SB-1

Subcatchment W1: W-SB-1

Pond 1P: P-PT-SB-1

Pond 2P: P-W-SB-1

Pond 3P: P-P-SB-1

Pond 4P: P-P-SB-2

Pond 5P: P-P-SB-3

Pond 6P: P-NE-SB-1

Pond 7P: P-NE-SB-2

Runoff Area $=906,076$ sf 0.00% Impervious Runoff Depth >5.14 " Flow Length=990' $\mathrm{Tc}=9.9 \mathrm{~min} \mathrm{CN}=94$ Runoff $=156.73 \mathrm{cfs} 8.909$ af

Runoff Area=334,011 sf 0.00% Impervious Runoff Depth >5.14 " Flow Length=640' Tc=6.4 min CN=94 Runoff=63.51 cfs 3.285 af

Runoff Area=441,198 sf 0.00% Impervious Runoff Depth >5.14 " Flow Length=840' Tc=7.1 min CN=94 Runoff=83.09 cfs 4.339 af

Runoff Area=679,173 sf 0.00% Impervious Runoff Depth >5.14 " Flow Length=1,778' Tc=8.5 min CN=94 Runoff=123.04 cfs 6.679 af

Runoff Area $=1,936,988$ sf 0.00% Impervious Runoff Depth >5.14 " Flow Length=1,935' Tc=14.1 min CN=94 Runoff=295.54 cfs 19.036 af

Runoff Area $=603,049$ sf 0.00% Impervious Runoff Depth >5.14 " Flow Length $=1,182^{\prime} \quad \mathrm{Tc}=8.5 \mathrm{~min} \mathrm{CN}=94$ Runoff=109.25 cfs 5.930 af

Runoff Area=884,859 sf 0.00% Impervious Runoff Depth >5.14 " Flow Length=1,112' Tc=9.2 min CN=94 Runoff=156.69 cfs 8.701 af

Runoff Area $=1,012,355$ sf 0.00% Impervious Runoff Depth>5.14" Flow Length=1,104' Tc=11.5 min CN=94 Runoff=166.47 cfs 9.952 af

Runoff Area=599,872 sf 0.00% Impervious Runoff Depth >5.14 " Flow Length=1,193' Tc=7.9 min CN=94 Runoff=110.63 cfs 5.899 af

Peak Elev=562.96' Storage=317,790 cf Inflow=166.47 cfs 9.952 af Primary $=6.41$ cfs 2.906 af Secondary $=0.00$ cfs 0.000 af Outflow $=6.41$ cfs 2.906 af

Peak Elev=505.62' Storage=177,440 cf Inflow=110.63 cfs 5.899 af Primary $=4.93$ cfs 1.978 af Secondary $=0.00$ cfs 0.000 af Outflow= 4.93 cfs 1.978 af

Peak Elev=457.78' Storage=610,361 cf Inflow=295.54 cfs 19.036 af Primary= 11.54 cfs 5.542 af Secondary= 0.00 cfs 0.000 af Outlow=11.54 cfs 5.542 af

Peak Elev=487.62' Storage=177,201 cf Inflow=109.25 cfs 5.930 af Primary $=5.03$ cfs 2.006 af Secondary $=0.00$ cfs 0.000 af Outflow=5.03 cfs 2.006 af

Peak Elev=497.57' Storage=266,002 cf Inflow=156.69 cfs 8.701 af Primary $=6.76$ cfs 2.808 af Secondary $=0.00$ cfs 0.000 af Outflow $=6.76$ cfs 2.808 af

Peak Elev=434.66' Storage=275,000 cf Inflow=156.73 cfs 8.909 af Primary $=6.55$ cfs 2.806 af Secondary $=0.00$ cfs 0.000 af Outflow= 6.55 cfs 2.806 af

Peak Elev=416.97' Storage=92,273 cf Inflow=63.51 cfs 3.285 af Primary $=3.52$ cfs 1.258 af Secondary $=0.00$ cfs 0.000 af Outflow=3.52 cfs 1.258 af

Pond 8P: P-NE-SB-3

Pond 9P: P-NE-SB-4

Peak Elev=418.19' Storage=128,405 cf Inflow=83.09 cfs 4.339 af Primary $=3.87$ cfs 1.488 af Secondary $=0.00$ cfs 0.000 af Outflow=3.87 cfs 1.488 af

Peak Elev=484.73' Storage=199,073 cf Inflow=123.04 cfs 6.679 af Primary $=5.51$ cfs 2.296 af Secondary $=0.00$ cfs 0.000 af Outflow $=5.51$ cfs 2.296 af

Total Runoff Area $=169.825$ ac \quad Runoff Volume $=72.732$ af Average Runoff Depth $=5.14$ " 100.00% Pervious $=169.825$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment NE1: NE-SB-1

Runoff $=156.73$ cfs @ 12.01 hrs, Volume $=8.909$ af, Depth> 5.14"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.22"

Area (sf)		CN	Description		
906,076		94 Newly graded area, HSG D			
906,076		100.00\% Pervious Are			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.7	300	0.0464	0.75		Sheet Flow, Fallow $\mathrm{n}=0.050 \mathrm{P} 2=3.54{ }^{\prime \prime}$
3.2	690	0.1262	3.55		Shallow Concentrated Flow, Nearly Bare \& Untilled $\mathrm{Kv}=10.0 \mathrm{fps}$
9.9	990	Total			

Subcatchment NE1: NE-SB-1

Summary for Subcatchment NE2: NE-SB-2

No Channel Flow
Runoff $=63.51$ cfs @ 11.97 hrs, Volume $=\quad 3.285$ af, Depth> 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 25-yr Rainfall=6.22"

Area (sf)	CN	Description			
334,011	94	Newly graded area, HSG D			
334,011		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Capacity
---:					
(cfs)	\quad	Description			
:---					

Subcatchment NE2: NE-SB-2

Summary for Subcatchment NE3: NE-SB-3

No Channel Flow
Runoff $=83.09$ cfs @ 11.98 hrs, Volume $=\quad 4.339$ af, Depth> 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 25-yr Rainfall=6.22"

Area (sf)		CN	Description		
441,198		94 Newly graded area, HSG D			
441,198		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.8	300	0.1075	1.05		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
2.3	540	0.1570	3.96		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
7.1	840	Total			

Subcatchment NE3: NE-SB-3

Summary for Subcatchment NE4: NE-SB-4

No Channel Flow
Runoff $=123.04$ cfs @ 11.99 hrs, Volume $=6.679$ af, Depth> 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 25-yr Rainfall=6.22"

Area (sf)		CN	Description		
679,173		94	Newly graded area, HSG D		
	79,173		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.6	300	0.0719	0.90		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
1.8	290	0.0706	2.66		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
1.1	1,188	0.0328	17.76	621.77	Channel Flow, Area= 35.0 sf Perim=20.0'r=1.75' $n=0.022$ Earth, clean \& straight

8.5 1,778 Total

Subcatchment NE4: NE-SB-4

Summary for Subcatchment P1: P-SB-1

No Channel Flow
Runoff $=295.54$ cfs @ 12.05 hrs, Volume $=19.036$ af, Depth> 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.22"

Area (sf)	CN	Description			
$1,936,988$	94	Newly graded area, HSG D			
$1,936,988$	100.00% Pervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$		Capacity
---:					
(cfs)	\quad	Description			
:---					

Subcatchment P1: P-SB-1

 25-yr Rainfall=6.22" Runoff Area=1,936,988 sf Runoff Volume $=19.036$ af Runoff Depth>5.14" Flow Length=1,935'

Tc=14.1 min CN=94

Summary for Subcatchment P2: P-SB-2

No Channel Flow
Runoff $=109.25$ cfs @ 11.99 hrs, Volume $=\quad 5.930$ af, Depth> 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 25-yr Rainfall=6.22"

Area (sf)		CN	Description		
603,049		94 Newly graded area, HSG D			
	03,049		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.2	300	0.0842	0.95		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
3.0	582	0.1023	3.20		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.3	300	0.0240	15.20	531.86	Channel Flow, Area= 35.0 sf Perim=20.0'r=1.75' $n=0.022$ Earth, clean \& straight

8.5 1,182 Total

Subcatchment P2: P-SB-2

Summary for Subcatchment P3: P-SB-3

Runoff $=\quad 156.69$ cfs $@$
12.00 hrs , Volume=
8.701 af, Depth> 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.22"

Area (sf)		CN	Description		
884,859		94	Newly graded area, HSG D		
	84,859		0.00\% Pe	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
4.7	300	0.1095	1.06		Sheet Flow, Fallow $n=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
4.3	699	0.0738	2.72		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv= 10.0 fps
0.2	113	0.0088	9.20	322.06	Channel Flow, Area $=35.0$ sf Perim=20.0' $r=1.75^{\prime}$ $\mathrm{n}=0.022$ Earth, clean \& straight

```
9.2 1,112 Total
```


Subcatchment P3: P-SB-3

Summary for Subcatchment PT1: PT-SB-1

No Channel Flow
Runoff $=166.47$ cfs @ 12.03 hrs, Volume $=\quad 9.952$ af, Depth> 5.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 25-yr Rainfall=6.22"

Area (sf)		CN	Description		
1,012,355		94	Newly graded area, HSG D		
	12,355		0.00\% P	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.2	300	0.0546	0.80		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
5.3	804	0.0630	2.51		Shallow Concentrated Flow, Nearly Bare \& Untilled $\mathrm{Kv}=10.0 \mathrm{fps}$

Subcatchment PT1: PT-SB-1

Summary for Subcatchment W1: W-SB-1

Runoff = 110.63 cfs @
11.99 hrs, Volume=
5.899 af, Depth> $5.14{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.22"

Area (sf)		CN	Description		
599,872		94	Newly graded area, HSG D		
	99,872		00.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.6	300	0.0707	0.89		Sheet Flow, Fallow $n=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
1.6	334	0.1196	3.46		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.7	559	0.0190	13.52	473.22	Channel Flow, Area= 35.0 sf Perim=20.0' $r=1.75^{\prime}$ $\mathrm{n}=0.022$ Earth, clean \& straight

7.9 1,193 Total

Subcatchment W1: W-SB-1

Summary for Pond 1P: P-PT-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	23.240 a	0.00\% Impervious, Inflow Depth > 5.14" for 25-yr event		
Inflow	166.47 cfs @	12.03 hrs , Volume=	9.952 af	
Outflow	6.41 cfs @	13.80 hrs , Volume=	2.906 af ,	Atten= 96\%, Lag= 106.8 min
Primary	6.41 cfs @	13.80 hrs , Volume=	2.906 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=562.96' @ 13.80 hrs Surf.Area=63,853 sf Storage=317,790 cf
Plug-Flow detention time= 276.1 min calculated for 2.894 af (29% of inflow)
Center-of-Mass det. time $=146.5 \mathrm{~min}(889.3-742.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$557.00 '$	$455,428 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
557.00	42,794	0	0
565.00	71,063	455,428	455,428

Device	Routing	Invert	Outlet Devices
\#1	Device 2	557.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	$557.00{ }^{\prime}$	24.0" Round Culvert
			$\mathrm{L}=100.0$ ' CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 557.00' / 556.00' S=0.0100'/l' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	562.70'	36.0 " $\times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	563.70'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=6.36 cfs @ 13.80 hrs HW=562.96' (Free Discharge)
L2=Culvert (Passes 6.36 cfs of 33.69 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$\square_{3=O r i f i c e / G r a t e ~(W e i r ~ C o n t r o l s ~} 5.19$ cfs @ 1.67 fps)
Secondary OutFlow Max=0.00 cfs @ $5.00 \mathrm{hrs} \mathrm{HW}=557.00^{\prime} \quad$ (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 1P: P-PT-SB-1

Summary for Pond 2P: P-W-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	13.771	0.00\% Impervious, Inflow Depth > 5.14" for 25-yr event		
Inflow	110.63 cfs @	11.99 hrs, Volume=	5.899 af	
Outflow	4.93 cfs @	13.24 hrs , Volume=	1.978 af,	Atten= 96\%, Lag= 75.0 min
Primary	4.93 cfs @	13.24 hrs , Volume=	1.978 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=505.62' @ 13.24 hrs Surf.Area= 38,098 sf Storage= 177,440 cf
Plug-Flow detention time= 237.8 min calculated for 1.977 af (34% of inflow)
Center-of-Mass det. time $=120.8 \mathrm{~min}(860.9-740.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$500.00 '$	274,756 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
500.00	25,066	0	0
508.00	43,623	274,756	274,756

Device	Routing	Invert	Outlet Devices
\#1	Device 2	500.00'	0.894 cfs Constant Flow/Skimmer
\#2	Primary	500.00'	24.0" Round Culvert
			$\mathrm{L}=100.0$ ' CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 500.00' / 499.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	505.40'	$36.0^{\prime \prime} \times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	506.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=4.90 cfs @ 13.24 hrs HW=505.62' (Free Discharge)
L-2=Culvert (Passes 4.90 cfs of 32.51 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.89 cfs)
$-3=$ Orifice/Grate (Weir Controls 4.00 cfs @ 1.53 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=500.00' (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00$ cfs)

Pond 2P: P-W-SB-1

Summary for Pond 3P: P-P-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	44.467 ac,	0.00\% Impervious,	Depth > 5.1	25-yr event
Inflow	295.54 cfs @	12.05 hrs , Volume=	19.036 af	
Outflow	11.54 cfs @	13.97 hrs , Volume=	5.542 af ,	Atten= 96\%, Lag= 115.2 min
Primary	11.54 cfs @	13.97 hrs, Volume=	5.542 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=457.78' @ 13.97 hrs Surf.Area= 95,279 sf Storage= 610,361 cf
Plug-Flow detention time $=278.7 \mathrm{~min}$ calculated for 5.520 af (29% of inflow)
Center-of-Mass det. time $=148.5 \mathrm{~min}(893.3-744.8)$

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 450.00 | $832,615 \mathrm{cf}$ | Custom Stage Data (Prismatic) Listed below (Recalc) |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 450.00 | 61,641 | 0 | 0 |
| 460.00 | 104,882 | 832,615 | 832,615 |

Device	Routing	Invert	Outlet Devices
\#1	Device 2	450.00'	1.168 cfs Constant Flow/Skimmer X 2.00
\#2	Primary	450.00'	24.0" Round Culvert
			$\mathrm{L}=100.0$ ' CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 450.00' / 449.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	457.40'	36.0 " $36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	458.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=11.50 cfs @ 13.97 hrs HW=457.78' (Free Discharge)
L-2=Culvert (Passes 11.50 cfs of 39.39 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 2.34 cfs)
3=Orifice/Grate (Weir Controls 9.16 cfs @ 2.01 fps)
Secondary OutFlow Max=0.00 cfs @ $5.00 \mathrm{hrs} \mathrm{HW}=450.00^{\prime} \quad$ (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 3P: P-P-SB-1

Summary for Pond 4P: P-P-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	13.844 a	0.00\% Impervious, Inflow Depth > 5.14" for 25-yr event		
Inflow	109.25 cfs @	11.99 hrs, Volume=	5.930 af	
Outflow	5.03 cfs @	13.22 hrs , Volume=	2.006 af ,	Atten= 95\%, Lag= 73.5 min
Primary	5.03 cfs @	13.22 hrs , Volume=	2.006 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=487.62' @ 13.22 hrs Surf.Area=34,556 sf Storage= 177,201 cf
Plug-Flow detention time= 230.2 min calculated for 1.998 af (34% of inflow)
Center-of-Mass det. time $=114.7 \mathrm{~min}(855.3-740.6$)

Primary OutFlow Max=4.97 cfs @ 13.22 hrs HW=487.62' (Free Discharge)
L2=Culvert (Passes 4.97 cfs of 35.86 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.89 cfs)
3=Orifice/Grate (Weir Controls 4.07 cfs @ 1.54 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=481.00' (Free Discharge)

Pond 4P: P-P-SB-2
Hydrograph

Summary for Pond 5P: P-P-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	. 314 ac,	0.00\% Impervious, Inflow Depth > 5.14" for 25-yr event		
Inflow	156.69 cfs @	12.00 hrs , Volume=	8.701 af	
Outflow	6.76 cfs @	13.40 hrs , Volume=	2.808 af,	Atten= 96\%, Lag= 84.2 min
Primary	6.76 cfs @	13.40 hrs , Volume=	2.808 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=497.57' @ 13.40 hrs Surf.Area= 45,307 sf Storage= 266,002 cf
Plug-Flow detention time= 243.8 min calculated for 2.796 af (32% of inflow)
Center-of-Mass det. time $=123.9 \mathrm{~min}$ (865.0-741.1)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$490.00 '$	$383,995 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
490.00	24,964	0	0
500.00	51,835	383,995	383,995

Device	Routing	Invert	Outlet Devices
\#1	Device 2	490.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	490.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime} \quad \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 490.00' / 489.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	497.30'	36.0 " $36.0^{\prime \prime}$ Horiz. Orifice/Grate $\mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	498.30'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=6.70 cfs @ 13.40 hrs HW=497.57' (Free Discharge)
L2=Culvert (Passes 6.70 cfs of 38.77 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
-3=Orifice/Grate (Weir Controls 5.53 cfs @ 1.70 fps)
Secondary OutFlow Max=0.00 cfs @ $5.00 \mathrm{hrs} \mathrm{HW}=490.00^{\prime} \quad$ (Free Discharge)

Pond 5P: P-P-SB-3

Summary for Pond 6P: P-NE-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.801 ac,	0.00\% Impervious,	epth > 5.	nt
Inflow	156.73 cfs @	12.01 hrs , Volume=	8.909 af	
Outflow	6.55 cfs @	13.51 hrs , Volume=	2.806 af ,	Atten $=96 \%, L a g=90.4$ min
Primary	6.55 cfs @	13.51 hrs , Volume=	2.806 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=434.66' @ 13.51 hrs Surf.Area= 47,330 sf Storage= 275,000 cf
Plug-Flow detention time= 248.1 min calculated for 2.795 af (31% of inflow)
Center-of-Mass det. time $=126.0 \mathrm{~min}$ (867.6-741.6)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	427.00^{\prime}	393,720 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
427.00	24,435	0	0
437.00	54,309	393,720	393,720

Device	Routing	Invert	Outlet Devices
\#1	Device 2	427.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	427.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 427.00' / 426.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area=3.14 sf
\#3	Device 2	434.40'	$36.0^{\prime \prime} \times 36.0$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	435.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=6.49 cfs @ 13.51 hrs HW=434.66' (Free Discharge)
L-2 =Culvert (Passes 6.49 cfs of 39.05 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
$-3=$ Orifice/Grate (Weir Controls 5.32 cfs @ 1.68 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=427.00' (Free Discharge)
$L_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 6P: P-NE-SB-1

\square Inflow \square Outflow \square Primary \square Secondary

Summary for Pond 7P: P-NE-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area	7.668 ac	0.00\% Impervious, Inflow Depth > 5.14" for 25-yr event		
Inflow	63.51 cfs @	11.97 hrs, Volume=	3.285 af	
Outflow	3.52 cfs @	12.85 hrs , Volume=	1.258 af,	Atten $=94 \%, L a g=52.7 \mathrm{~min}$
Primary	3.52 cfs @	12.85 hrs , Volume=	1.258 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=416.97' @ 12.85 hrs Surf.Area=23,554 sf Storage= 92,273 cf
Plug-Flow detention time= 202.4 min calculated for 1.257 af (38% of inflow)
Center-of-Mass det. time $=96.7 \mathrm{~min}(835.6-739.0)$

Device	Routing	Invert	Outlet Devices
\#1	Device 2	412.00'	0.657 cfs Constant Flow/Skimmer
\#2	Primary	412.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime} \quad \mathrm{CMP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 412.00' / 411.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	416.80'	36.0 " x 36.0" Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	417.80'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=3.49 cfs @ 12.85 hrs HW=416.97' (Free Discharge)
L2 =Culvert (Passes 3.49 cfs of 30.15 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.66 cfs)
3=Orifice/Grate (Weir Controls 2.83 cfs @ 1.36 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=412.00' (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00$ cfs)

Pond 7P: P-NE-SB-2

\square Inflow \square Outflow \square Primary \square Secondary

Summary for Pond 8P: P-NE-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.129 ac ,	0.00\% Impervious, Inflow Depth > 5.14" for 25-yr event		
Inflow	83.09 cfs @	11.98 hrs, Volume=	4.339 af	
Outflow	3.87 cfs @	13.11 hrs , Volume=	1.488 af ,	Atten $=95 \%, L a g=67.7 \mathrm{~min}$
Primary	3.87 cfs @	13.11 hrs , Volume=	1.488 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=418.19' @ 13.11 hrs Surf.Area= 27,540 sf Storage= 128,405 cf
Plug-Flow detention time= 223.4 min calculated for 1.482 af (34% of inflow)
Center-of-Mass det. time $=109.3$ min (848.8-739.5)

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 412.00 | 214,574 cf | Custom Stage Data (Prismatic) Listed below (Recalc) |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 412.00 | 13,973 | 0 | 0 |
| 421.00 | 33,710 | 214,574 | 214,574 |

Device	Routing	Invert	Outlet Devices
\#1	Device 2	412.00'	0.657 cfs Constant Flow/Skimmer
\#2	Primary	412.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 412.00' / 411.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	418.00'	$36.0^{\prime \prime} \times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	419.00'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=3.81 cfs @ 13.11 hrs HW=418.19' (Free Discharge)
—2=Culvert (Passes 3.81 cfs of 34.45 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.66 cfs)
-3=Orifice/Grate (Weir Controls 3.15 cfs @ 1.41 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=412.00' (Free Discharge)
$4_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 8P: P-NE-SB-3

Summary for Pond 9P: P-NE-SB-4

[82] Warning: Early inflow requires earlier time span

Inflow Area =	5.592 ac ,	0.00\% Impervious, Inflow Depth > 5.14" for 25-yr event		
Inflow	123.04 cfs @	11.99 hrs, Volume=	6.679 af	
Outflow	5.51 cfs @	13.27 hrs, Volume=	2.296 af ,	Atten $=96 \%, L a g=76.8$ min
Primary	5.51 cfs @	13.27 hrs, Volume=	2.296 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=484.73' @ 13.27 hrs Surf.Area= 42,114 sf Storage= 199,073 cf
Plug-Flow detention time= 232.0 min calculated for 2.286 af (34% of inflow)
Center-of-Mass det. time $=117.9 \mathrm{~min}(858.4-740.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$479.00 '$	301,356 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
479.00	27,386	0	0
487.00	47,953	301,356	301,356

Device	Routing	Invert	Outlet Devices
\#1	Device 2	479.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	479.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 479.00' / 478.00' S=0.0100'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area=3.14 sf
\#3	Device 2	484.50'	$36.0^{\prime \prime} \times 36.0$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	485.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=5.46 cfs @ 13.27 hrs HW=484.73' (Free Discharge)
L2=Culvert (Passes 5.46 cfs of 32.89 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
3=Orifice/Grate (Weir Controls 4.29 cfs @ 1.56 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=479.00' (Free Discharge)
$4_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 9P: P-NE-SB-4

Prepared by S\&ME, Inc.
HydroCAD® $10.00-26 \mathrm{~s} / \mathrm{n} 06707$
Reach routing by
Rund
Subcatchment NE1: NE-SB-1
Subcatchment NE2: NE-SB-2

Subcatchment NE3: NE-SB-3

Subcatchment NE4: NE-SB-4

Subcatchment P1: P-SB-1

Subcatchment P2: P-SB-2

Subcatchment P3: P-SB-3

Subcatchment PT1: PT-SB-1

Subcatchment W1: W-SB-1

Runoff Area=906,076 sf 0.00\% Impervious Runoff Depth>6.84" Flow Length=990' Tc=9.9 min $\mathrm{CN}=94$ Runoff=206.20 cfs 11.860 af

Runoff Area=334,011 sf 0.00\% Impervious Runoff Depth>6.84" Flow Length=640' Tc=6.4 min $\mathrm{CN}=94$ Runoff=83.52 cfs 4.373 af

Runoff Area $=441,198$ sf 0.00% Impervious Runoff Depth >6.84 " Flow Length=840' $\mathrm{Tc}=7.1 \mathrm{~min} \quad \mathrm{CN}=94$ Runoff=109.26 cfs 5.776 af

Runoff Area=679,173 sf 0.00\% Impervious Runoff Depth>6.84" Flow Length=1,778' $\mathrm{Tc}=8.5 \mathrm{~min} \quad \mathrm{CN}=94$ Runoff=161.83 cfs 8.891 af

Runoff Area=1,936,988 sf 0.00% Impervious Runoff Depth >6.84 " Flow Length=1,935' Tc=14.1 min $\mathrm{CN}=94$ Runoff=389.04 cfs 25.346 af

Runoff Area=603,049 sf 0.00% Impervious Runoff Depth >6.84 " Flow Length=1,182' $\mathrm{Tc}=8.5 \mathrm{~min} \mathrm{CN}=94$ Runoff=143.69 cfs 7.895 af

Runoff Area=884,859 sf 0.00\% Impervious Runoff Depth>6.84" Flow Length=1,112' Tc=9.2 min CN=94 Runoff=206.12 cfs 11.583 af

Runoff Area=1,012,355 sf 0.00\% Impervious Runoff Depth>6.84" Flow Length=1,104' $\mathrm{Tc}=11.5 \mathrm{~min} \quad \mathrm{CN}=94$ Runoff=218.38 cfs 13.250 af

Runoff Area=599,872 sf 0.00\% Impervious Runoff Depth>6.84" Flow Length=1,193' $\mathrm{Tc}=7.9 \mathrm{~min} \mathrm{CN}=94$ Runoff=145.49 cfs 7.853 af

Peak Elev=563.58' Storage=358,130 cf Inflow=218.38 cfs 13.250 af Primary $=33.36$ cfs 6.153 af Secondary $=0.00$ cfs 0.000 af Outflow=33.36 cfs 6.153 af

Pond 2P: P-W-SB-1
Peak Elev=506.21' Storage=200,363 cf Inflow=145.49 cfs 7.853 af Primary $=29.49$ cfs 3.911 af Secondary=0.00 cfs 0.000 af Outflow=29.49 cfs 3.911 af

Pond 3P: P-P-SB-1 Peak Elev=458.69' Storage=698,442 cf Inflow=389.04 cfs 25.346 af Primary $=41.93$ cfs 11.435 af Secondary=7.94 cfs 0.302 af Outflow= 49.88 cfs 11.737 af

Pond 4P: P-P-SB-2
Peak Elev=488.25' Storage=199,432 cf Inflow=143.69 cfs 7.895 af Primary $=31.71$ cfs 3.946 af Secondary $=0.00$ cfs 0.000 af Outflow=31.71 cfs 3.946 af

Pond 5P: P-P-SB-3 Peak Elev=498.29' Storage=299,411 cf Inflow=206.12 cfs 11.583 af Primary $=39.99$ cfs 5.653 af Secondary=0.00 cfs 0.000 af Outflow=39.99 cfs 5.653 af

Pond 6P: P-NE-SB-1
Peak Elev=435.36' Storage=308,915 cf Inflow=206.20 cfs 11.860 af Primary $=38.40$ cfs 5.721 af Secondary $=0.00$ cfs 0.000 af Outflow=38.40 cfs 5.721 af

Pond 7P: P-NE-SB-2
Peak Elev=417.51' Storage=105,234 cf Inflow=83.52 cfs 4.373 af Primary $=24.17$ cfs 2.336 af Secondary=0.00 cfs 0.000 af Outflow=24.17 cfs 2.336 af

Total Runoff Area $=169.825$ ac Runoff Volume $=96.829$ af \quad Average Runoff Depth $=6.84 "$ 100.00% Pervious $=169.825$ ac 0.00% Impervious $=0.000$ ac

Summary for Subcatchment NE1: NE-SB-1

Runoff $=206.20$ cfs @ 12.01 hrs, Volume $=$
11.860 af, Depth> 6.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=8.09"

Area (sf)	CN	Description			
906,076	94	Newly graded area, HSG D			
906,076		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Capacity
---:					
(cfs)	\quad	Description			
:---					

Subcatchment NE1: NE-SB-1

Summary for Subcatchment NE2: NE-SB-2

No Channel Flow
Runoff $=83.52$ cfs @ 11.97 hrs , Volume $=\quad 4.373 \mathrm{af}$, Depth> 6.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 100-yr Rainfall=8.09"

Area (sf)	CN	Description			
334,011	94	Newly graded area, HSG D			
334,011		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Capacity
---:					
(cfs)	\quad	Description			
:---					

Subcatchment NE2: NE-SB-2

Summary for Subcatchment NE3: NE-SB-3

No Channel Flow
Runoff $=109.26$ cfs @ 11.98 hrs, Volume $=\quad 5.776$ af, Depth> 6.84"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 100-yr Rainfall=8.09"

Area (sf)	CN	Description			
441,198	94	Newly graded area, HSG D			
441,198		100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Capacity
---:					
(cfs)	\quad	Description			
:---					

Subcatchment NE3: NE-SB-3

Summary for Subcatchment NE4: NE-SB-4

No Channel Flow
Runoff $=161.83$ cfs @ 11.99 hrs, Volume $=8.891$ af, Depth> 6.84"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 100-yr Rainfall=8.09"

Area (sf)		CN	Description		
679,173		94	Newly graded area, HSG D		
	79,173		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.6	300	0.0719	0.90		Sheet Flow, Fallow $\mathrm{n}=0.050 \quad \mathrm{P} 2=3.54{ }^{\prime \prime}$
1.8	290	0.0706	2.66		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
1.1	1,188	0.0328	17.76	621.77	Channel Flow, Area= 35.0 sf Perim=20.0'r=1.75' $n=0.022$ Earth, clean \& straight

8.5 1,778 Total

Subcatchment NE4: NE-SB-4

Summary for Subcatchment P1: P-SB-1

No Channel Flow
Runoff $=389.04$ cfs @ 12.05 hrs, Volume $=25.346$ af, Depth> 6.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=8.09"

Area (sf)		CN	Description		
1,936,988		94	Newly graded area, HSG D		
	36,988		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	300	0.0838	0.95		Sheet Flow, Fallow $\mathrm{n}=0.050 \mathrm{P} 2=3.54^{\prime \prime}$
7.9	1,294	0.0737	2.71		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.9	341	0.0045	6.58	230.30	Channel Flow, Area= 35.0 sf Perim=20.0'r=1.75' $n=0.022$ Earth, clean \& straight

```
14.1 1,935 Total
```


Subcatchment P1: P-SB-1

Summary for Subcatchment P2: P-SB-2

No Channel Flow
Runoff $=143.69$ cfs @ 11.99 hrs, Volume $=\quad 7.895$ af, Depth> 6.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 100-yr Rainfall=8.09"

Area (sf)		CN	Description		
603,049		94 Newly graded area, HSG D			
	03,049		0.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
5.2	300	0.0842	0.95		Sheet Flow, Fallow $n=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
3.0	582	0.1023	3.20		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv= 10.0 fps
0.3	300	0.0240	15.20	531.86	Channel Flow, Area $=35.0$ sf Perim=20.0' $r=1.75^{\prime}$ $\mathrm{n}=0.022$ Earth, clean \& straight

8.5 1,182 Total

Subcatchment P2: P-SB-2

Summary for Subcatchment P3: P-SB-3

Runoff $=206.12$ cfs @ 12.00 hrs , Volume $=11.583 \mathrm{af}$, Depth> 6.84"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=8.09"

Area (sf)		CN	Description		
884,859		94 Newly graded area, HSG D			
	84,859		00.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
4.7	300	0.1095	1.06		Sheet Flow, Fallow $n=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
4.3	699	0.0738	2.72		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.2	113	0.0088	9.20	322.06	Channel Flow, Area $=35.0$ sf Perim=20.0'r=1.75' $\mathrm{n}=0.022$ Earth, clean \& straight

9.2 1,112 Total

Subcatchment P3: P-SB-3

Summary for Subcatchment PT1: PT-SB-1

No Channel Flow
Runoff $=218.38$ cfs @ 12.02 hrs, Volume $=13.250$ af, Depth> 6.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 100-yr Rainfall=8.09"

Area (sf)		CN	Description		
1,012,355			Newly graded area, HSG D		
	12,355		00.00\% P	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
6.2	300	0.0546	0.80		Sheet Flow, Fallow $\mathrm{n}=0.050 \mathrm{P} 2=3.54^{\prime \prime}$
5.3	804	0.0630	2.51		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps

Subcatchment PT1: PT-SB-1

Summary for Subcatchment W1: W-SB-1

Runoff $=145.49$ cfs @ 11.99 hrs, Volume $=7.853$ af, Depth> 6.84"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=8.09"

Area (sf)		CN	Description		
599,872		94	Newly graded area, HSG D		
	99,872		00.00\% P	rvious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.6	300	0.0707	0.89		Sheet Flow, Fallow $n=0.050 \quad \mathrm{P} 2=3.54^{\prime \prime}$
1.6	334	0.1196	3.46		Shallow Concentrated Flow, Nearly Bare \& Untilled Kv=10.0 fps
0.7	559	0.0190	13.52	473.22	Channel Flow, Area= 35.0 sf Perim=20.0' $r=1.75^{\prime}$ $\mathrm{n}=0.022$ Earth, clean \& straight

7.9 1,193 Total

Subcatchment W1: W-SB-1

Summary for Pond 1P: P-PT-SB-1

[82] Warning: Early inflow requires earlier time span

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=563.58' @ 12.38 hrs Surf.Area= 66,048 sf Storage= 358,130 cf
Plug-Flow detention time $=195.4$ min calculated for 6.149 af (46% of inflow)
Center-of-Mass det. time= 102.1 min (841.5-739.4)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$557.00 '$	$455,428 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
557.00	42,794	0	0
565.00	71,063	455,428	455,428

Device	Routing	Invert	Outlet Devices
\#1	Device 2	557.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	$557.00{ }^{\prime}$	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 557.00' / 556.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	562.70'	36.0 " x 36.0" Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	563.70'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=33.53 cfs @ 12.38 hrs HW=563.58' (Free Discharge)
$\left\llcorner_{2}=\right.$ Culvert (Passes 33.53 cfs of 35.73 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
-3=Orifice/Grate (Weir Controls 32.36 cfs @ 3.07 fps)
Secondary OutFlow Max=0.00 cfs @ $5.00 \mathrm{hrs} \mathrm{HW}=557.00^{\prime} \quad$ (Free Discharge)
44=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: P-PT-SB-1

Summary for Pond 2P: P-W-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area	13.771 ac	0.00\% Impervious, Inflow Depth > 6.84" for 100-yr event		
Inflow	145.49 cfs @	11.99 hrs , Volume=	7.853 af	
Outflow	29.49 cfs @	12.20 hrs , Volume=	3.911 af,	Atten $=80 \%, L a g=12.8$ min
Primary	29.49 cfs @	12.20 hrs , Volume=	3.911 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=506.21' @ 12.20 hrs Surf.Area=39,469 sf Storage= 200,363 cf
Plug-Flow detention time= 173.6 min calculated for 3.909 af (50% of inflow)
Center-of-Mass det. time $=85.6 \mathrm{~min}(822.3-736.7)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	500.00^{\prime}	274,756 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
500.00	25,066	0	0
508.00	43,623	274,756	274,756

Device	Routing	Invert	Outlet Devices
\#1	Device 2	500.00'	0.894 cfs Constant Flow/Skimmer
\#2	Primary	500.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 500.00' / 499.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	505.40'	36.0 " $\times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	506.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=29.45 cfs @ 12.20 hrs HW=506.21' (Free Discharge)
-2=Culvert (Passes 29.45 cfs of 34.52 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.89 cfs)
3=Orifice/Grate (Weir Controls 28.56 cfs @ 2.94 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=500.00' (Free Discharge)
$\complement_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 2P: P-W-SB-1
Hydrograph

Summary for Pond 3P: P-P-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area	44.467 ac,	0.00\% Impervious, Inflow Depth > 6.84" for 100-yr event		
Inflow	389.04 cfs @	12.05 hrs , Volume=	25.346 af	
Outflow	49.88 cfs @	12.54 hrs , Volume=	11.737 af,	Atten= 87\%, Lag $=29.3 \mathrm{~min}$
Primary	41.93 cfs @	12.54 hrs , Volume=	11.435 af	
Secondary =	7.94 cfs @	12.54 hrs , Volume=	0.302 af	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=458.69' @ 12.54 hrs Surf.Area= 99,196 sf Storage= 698,442 cf
Plug-Flow detention time= 201.1 min calculated for 11.730 af (46% of inflow $)$
Center-of-Mass det. time= 107.3 min (848.7-741.3)

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 450.00 | $832,615 \mathrm{cf}$ | Custom Stage Data (Prismatic) Listed below (Recalc) |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 450.00 | 61,641 | 0 | 0 |
| 460.00 | 104,882 | 832,615 | 832,615 |

Device	Routing	Invert	Outlet Devices
\#1	Device 2	450.00'	1.168 cfs Constant Flow/Skimmer X 2.00
\#2	Primary	450.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 450.00' / 449.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	457.40'	36.0 " $\times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	458.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=41.93 cfs @ 12.54 hrs HW=458.68' (Free Discharge)
—2=Culvert (Inlet Controls 41.93 cfs @ 13.35 fps)
-1=Constant Flow/Skimmer (Passes < 2.34 cfs potential flow)
3=Orifice/Grate (Passes < 49.11 cfs potential flow)
Secondary OutFlow Max=7.85 cfs @ 12.54 hrs HW=458.68' (Free Discharge)
-4=Broad-Crested Rectangular Weir (Weir Controls $7.85 \mathrm{cfs} @ 1.38 \mathrm{fps}$)

Pond 3P: P-P-SB-1

Summary for Pond 4P: P-P-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area	13.844 ac,	0.00\% Impervious, Inflow Depth > 6.84" for 100-yr event		
Inflow	143.69 cfs @	11.99 hrs , Volume=	7.895 af	
Outflow	31.71 cfs @	12.20 hrs , Volume=	3.946 af,	Atten $=78 \%, L a g=12.7 \mathrm{~min}$
Primary	31.71 cfs @	12.20 hrs , Volume=	3.946 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=488.25' @ 12.20 hrs Surf.Area= 36,039 sf Storage= 199,432 cf
Plug-Flow detention time $=168.5 \mathrm{~min}$ calculated for 3.930 af (50% of inflow)
Center-of-Mass det. time $=81.6 \mathrm{~min}(818.8-737.2)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	481.00	266,076 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
481.00	18,972	0	0
490.00	40,156	266,076	266,076

Device	Routing	Invert	Outlet Devices
\#1	Device 2	481.00'	0.894 cfs Constant Flow/Skimmer
\#2	Primary	481.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 481.00' / 480.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	487.40'	$36.0^{\prime \prime} \times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	488.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=31.58 cfs @ 12.20 hrs HW=488.25' (Free Discharge)
-2=Culvert (Passes 31.58 cfs of 37.81 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.89 cfs)
-3=Orifice/Grate (Weir Controls 30.69 cfs @ 3.01 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=481.00' (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00$ cfs)

Pond 4P: P-P-SB-2

Summary for Pond 5P: P-P-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.314 ac ,	0.00\% Impervious,	Depth > 6.8	nt
Inflow	206.12 cfs @	12.00 hrs , Volume=	11.583 af	
Outflow	39.99 cfs @	12.24 hrs , Volume=	5.653 af ,	Atten $=81 \%, L a g=14.7 \mathrm{~min}$
Primary	39.99 cfs @	12.24 hrs , Volume=	5.653 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=498.29' @ 12.24 hrs Surf.Area= 47,247 sf Storage= 299,411 cf
Plug-Flow detention time= 176.4 min calculated for 5.631 af (49% of inflow)
Center-of-Mass det. time $=87.8 \mathrm{~min}(825.5-737.7)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	$490.00 '$	$383,995 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
490.00	24,964	0	0
500.00	51,835	383,995	383,995

Device	Routing	Invert	Outlet Devices
\#1	Device 2	490.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	490.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 490.00' / 489.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	497.30'	36.0 " $\times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	498.30'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=39.87 cfs @ 12.24 hrs HW=498.29' (Free Discharge)
L-2=Culvert (Passes 39.87 cfs of 40.84 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
—3=Orifice/Grate (Weir Controls 38.71 cfs @ 3.26 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=490.01' (Free Discharge)
$L_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 5P: P-P-SB-3

Summary for Pond 6P: P-NE-SB-1

[82] Warning: Early inflow requires earlier time span

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=435.36' @ 12.27 hrs Surf.Area= 49,424 sf Storage= 308,915 cf
Plug-Flow detention time $=179.0$ min calculated for 5.698 af (48% of inflow)
Center-of-Mass det. time $=89.5 \mathrm{~min}(827.8-738.2$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	427.00	393,720 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
427.00	24,435	0	0
437.00	54,309	393,720	393,720

Device	Routing	Invert	Outlet Devices
\#1	Device 2	427.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	427.00	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 427.00' / 426.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	434.40'	$36.0^{\prime \prime} \times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	435.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=38.04 cfs @ 12.27 hrs HW=435.36' (Free Discharge)
L-2=Culvert (Passes 38.04 cfs of 41.04 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
3=Orifice/Grate (Weir Controls 36.88 cfs @ 3.20 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=427.01' (Free Discharge)
$L_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 6P: P-NE-SB-1

Summary for Pond 7P: P-NE-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	7.668	0.00\% Impervious, Inflow Depth > 6.84" for 100-yr event		
Inflow	83.52 cfs @	11.97 hrs, Volume=	4.373 af	
Outflow	24.17 cfs @	12.12 hrs , Volume=	2.336 af , A	Atten= $71 \%, L a g=9.2 \mathrm{~min}$
Primary	24.17 cfs @	12.12 hrs , Volume=	2.336 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=417.51' @ 12.12 hrs Surf.Area= 24,636 sf Storage= 105,234 cf
Plug-Flow detention time= 152.8 min calculated for 2.327 af (53% of inflow)
Center-of-Mass det. time $=70.6 \mathrm{~min}(806.2-735.6)$

Volume	Invert Av	Avail.Storage Storage Description	
\#1		172,776 cf Custo	tage Data (Prismatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
412.00	13,554	0	0
420.00	29,640	172,776	172,776

Device	Routing	Invert	Outlet Devices
\#1	Device 2	412.00'	0.657 cfs Constant Flow/Skimmer
\#2	Primary	412.00^{\prime}	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 412.00' / 411.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	416.80'	$36.0^{\prime \prime} \times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	417.80'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=23.27 cfs @ 12.12 hrs HW=417.49' (Free Discharge)
-2=Culvert (Passes 23.27 cfs of 32.06 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.66 cfs)
-3=Orifice/Grate (Weir Controls 22.61 cfs @ 2.72 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=412.00' (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00$ cfs)

Pond 7P: P-NE-SB-2

Summary for Pond 8P: P-NE-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.129 ac ,	0.00\% Impervious,	S	for 100-yr event
Inflow	109.26 cfs @	11.98 hrs, Volume=	5.776 af	
Outflow	26.41 cfs @	12.16 hrs , Volume=	2.914 af,	Atten $=76 \%, L a g=10.8$ min
Primary	26.41 cfs @	12.16 hrs , Volume=	2.914 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume $=$	0.000 af	

Routing by Stor-Ind method, Time Span=5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=418.76' @ 12.16 hrs Surf.Area= 28,787 sf Storage= 144,425 cf
Plug-Flow detention time $=164.9 \mathrm{~min}$ calculated for 2.903 af (50% of inflow)
Center-of-Mass det. time $=78.8 \mathrm{~min}(815.0-736.2)$

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 412.00 | 214,574 cf | Custom Stage Data (Prismatic) Listed below (Recalc) |
| Elevation
 (feet) | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 412.00 | 13,973 | 0 | 0 |
| 421.00 | 33,710 | 214,574 | 214,574 |

Device	Routing	Invert	Outlet Devices
\#1	Device 2	412.00'	0.657 cfs Constant Flow/Skimmer
\#2	Primary	412.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 412.00' / 411.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	418.00'	36.0 " $\times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	419.00'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=26.16 cfs @ 12.16 hrs HW=418.75' (Free Discharge)
-2=Culvert (Passes 26.16 cfs of 36.27 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 0.66 cfs)
$-3=$ Orifice/Grate (Weir Controls 25.50 cfs @ 2.83 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=412.00' (Free Discharge)
$4_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond 8P: P-NE-SB-3

Summary for Pond 9P: P-NE-SB-4

[82] Warning: Early inflow requires earlier time span

Inflow Area =	15.592	0.00\% Impervious, Inflow Depth > 6.84" for 100-yr event		
Inflow	161.83 cfs @	11.99 hrs , Volume=	8.891 af	
Outflow	31.74 cfs @	12.22 hrs , Volume=	4.478 af,	Atten= 80\%, Lag= 13.6 min
Primary	31.74 cfs @	12.22 hrs , Volume=	4.478 af	
Secondary =	0.00 cfs @	5.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Elev=485.35' @ 12.22 hrs Surf.Area=43,702 sf Storage= 225,574 cf
Plug-Flow detention time= 170.4 min calculated for 4.460 af (50% of inflow)
Center-of-Mass det. time= $84.1 \mathrm{~min}(821.3-737.2)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	479.00^{\prime}	301,356 cf	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
479.00	27,386	0	0
487.00	47,953	301,356	301,356

Device	Routing	Invert	Outlet Devices
\#1	Device 2	479.00'	1.168 cfs Constant Flow/Skimmer
\#2	Primary	479.00'	24.0" Round Culvert
			$\mathrm{L}=100.0^{\prime}$ CMP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 479.00' 478.00 ' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area= 3.14 sf
\#3	Device 2	484.50'	$36.0^{\prime \prime} \times 36.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$
			Limited to weir flow at low heads
\#4	Secondary	485.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.572 .622 .702 .672 .662 .672 .662 .64

Primary OutFlow Max=31.38 cfs @ 12.22 hrs HW=485.34' (Free Discharge)
-2=Culvert (Passes 31.38 cfs of 34.96 cfs potential flow)
-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)
-3=Orifice/Grate (Weir Controls 30.21 cfs @ 3.00 fps)
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=479.00' (Free Discharge)
$\leftarrow_{4=B r o a d-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(C o n t r o l s ~} 0.00$ cfs)

Pond 9P: P-NE-SB-4

Reference 6

Compiled SEDIMOT IV Report, S\&ME Inc., March 2021.

Basin: P-SB-1

Inputs

Name	Value
Location	Northern Greenville County, SC
Region	Greenville Spartanburg
Design Storm Text Results	
Inputs	
Name	Value
Return Period (yr)Typ	10
e	Type II
Precipitation (in.)	5.1
Duration (hrs.)	24.0

P-SB-1 Text Results

Hydrology

Name Peak Flow Total Runo Sediment

Name	Value
Total Sediment Yield (lb)	2400953.8
Average Sediment Discharge Concentration $(\mathrm{mg} / \mathrm{l})$	57810.0
Peak Sediment Discharge Concentration $(\mathrm{mg} / \mathrm{l})$	158472.3
Average Sediment Discharge Turbidity (NTU)	15535.6
Peak Sediment Discharge Turbidity (NTU)	42587.2

P-SB-1 Text Results

Hydrology

Name	Value
Total Inflow Volume $\left(\mathrm{ft}^{\wedge} 3\right)$	665215.3
Total Outflow Volume $\left(\mathrm{ft}^{\wedge} 3\right)$	244300.5
Total Infiltration Volume $\left(\mathrm{ft}^{\wedge} 3\right)$	420926.8
Peak Outflow (cfs)	6.3
Drain Time (Hours)	2.25
Peak Stage Elevation (ft)	3.96
Sediment	

Total Sediment Mass Inflow (lb) 2400953.8
Clay Mass Inflow (lb) 74909.8
Silt Mass Inflow (lb) 38618.1
Sand Mass Inflow (lb) 836259.6
SmAgg Mass Inflow (lb) 489591.7
LgAgg Mass Inflow (lb) 961574.6
Total Sediment Mass Trapped (lb) 2381695.3
Total Sediment Mass Discharged (lb) 19258.5
Clay Mass Discharged (lb) 17704.2
Silt Mass Discharged (lb) 1554.3Sand Mass Discharged (lb)SmAgg Mass Discharged (lb)00
LgAgg Mass Discharged (lb) 0
Sediment Trapping Efficiency (\%) 99.2
Clay Trapping Efficiency (\%) 76.4Silt Trapping Efficiency (\%)Sand Trapping Efficiency (\%)96
100
SmAg Trapping Efficiency (\%)
SmAgg Trapping Efficiency (\%) 100
LgAgg Trapping Efficiency (\%) 100
Average Sediment Discharge Concentration (mg/l) 1262.6
Peak Sediment Discharge Concentration (mg/l) 10066
Average Sediment Discharge Turbidity (NTU) 499.3
Peak Sediment Discharge Turbidity (NTU) 10838.3

Reference 7

SC DHEC Stormwater BMP Handbook, Sediment Control BMPs - Sediment Basins, SC DHEC, Revised March 2014.

Sediment Basins

Introduction

Sediment Basins are a Best Management Practice (BMP) used to collect and impound stormwater runoff from disturbed areas (typically 5 acres or more) at construction sites to restrict sediments and other pollutants from being discharged off-site. These basins may also be used to control the volume and velocity of the runoff through a timed release by utilizing multiple spillways. It is through this attenuation of runoff that sediment basins may be capable of meeting South Carolina's Design Requirements, specifically the Total Suspended Solids (TSS) removal efficiency of 80%.

These basins work most effectively in conjunction with additional sediment and erosion control BMPs installed and maintained up gradient of the basins.

Guidance Disclaimer

This is a guidance document and may not be feasible in all situations. Alternative means and methods for sediment basin design and construction also may be employed.

All means and methods must comply with the DHEC South Carolina NPDES General Permit for Stormwater Discharges from Construction Activities (Permit). Approved means and methods include those published and approved by an MS4 in compliance with the Permit.
In addition, a licensed Professional Engineer may design a sediment basin that, when constructed, accommodates the anticipated sediment loading from the land-disturbing activity and meets a removal efficiency of 80% suspended solids or $0.5 \mathrm{ML} / \mathrm{L}$ peak settable solids concentration, whichever is less, while remaining in compliance with the Permit.

FEATURES

- Sediment Control
- Volume Control
- Velocity Control

SECTIONS

- General Design
- Forebays
- Porous Baffles
- Basin Dewatering
- Skimmers
- Spillways
- Permanent Pools
- Maintenance
- Design Aids

Also Addressed

- Inlet Protection
- Basin Safety
- Sediment Storage
- Slope Stabilization
- Rock Berms
- Outlet Protection
- Basin Removal

PLAN SYMBOL

General Information

Located near the site's perimeters, sediment basins can be created by the building of an embankment or through excavation, when the topography is relatively flat. Careful planning is necessary, during both design and construction phases, to ensure that sediment basins are not placed within Waters of the State (WoS) and are installed prior to the implementation of mass clearing, grubbing, and grading activities.

As runoff discharges into a sediment basin, specific mechanisms are used to reduce the velocity and turbulence of the runoff to allow for settling of suspended particles, a process known as sedimentation. Examples of these mechanisms include sediment forebays, porous baffles, and spillways with outlet structures that only discharge water from near the surface of the water column impounded within the basin.
After construction of the basin, routine inspection and maintenance of sediment basins along with the implementation of additional sediment and erosion control BMPs up gradient of the basin is essential to maintain the required trapping efficiency.

Design Requirements

\square TSS Removal Efficiency* $-\geq 80 \%$
\square Peak Settleable Solids Conc. ${ }^{*}-\leq 0.5 \mathrm{~mL} / \mathrm{L}$
\square Discharge Capacity - 10-yr, 24-hr Storm Event
\square Inspections and Maintenance** - Weekly
\square Internal Components***
\square Sediment Forebay - Basin Inlets
\square Porous Baffles - Between Inlets \& Outlets
\square Water Surface Dewatering - Basin Outlets

* Whichever is less. ** Maintenance as necessary per inspection. ***Unless Infeasible.

The above requirements shall serve as a baseline for all sediment basin design within the state of South Carolina. For further reference see SC State Regulations 72.300 Standards for Stormwater Management and Sediment Reduction (Section 72-307.C.5) and the SC NPDES General Permit for Stormwater Discharges from Construction Activities SCR100000 (Section 3.2.6.II).
The following sections of this guidance can be used to aid in the design of a sediment basin capable of meeting, if not exceeding, the above requirements. The selection and implementation of these practices should be based on the best professional judgment and the conditions expected at the construction site during the lifespan of each sediment basin.

Additional Design Considerations

\square Drainage Area - 5-30 Acres*
Sediment Storage - $3600 \mathrm{ft}^{3} /$ Acre Draining
Min Dewatering Time -2 days (48 hours)
Max Dewatering Time -5 days (120 hours)
Basin Shape - L = 2W (Minimum)
Cleanout Height - 1/2 Sediment Storage
\square Forebay Volume - 20\% Sediment Storage
\square Porous Baffles -3 Rows (Minimum)
\square Basin Inlets - Stabilized to Prevent Scour
\square Basin's Bottom Slope -0.5% or Steeper
\square Embankments - 2H:1V or Flatter
*30 Acre Limitation - Based off Design Aids Section. Larger drainage areas may be acceptable when using an alternative methodology to calculated trapping efficiencies.

Location

The location of sediment basins at a construction site will vary due to site-specific conditions, but the following items should be used as guidance to determine the most appropriate location:

- Not within Waters of the State: It is prohibited to construct in or use Waters of the State as a sediment basin.
- Down Gradient from Major Grading Activities: Locations down gradient of large scale grading operations will promote sediment control during construction activities.
- Near Identified Outfalls: Locations near the determined site outfall will allow sediment basins to collect the majority of the runoff from the disturbed area.
- Multipurpose Use: Many construction sites will utilize a sediment basin as a detention pond after construction activities are completed. Selection of an area that allows for the installation of a sediment basin that can be converted to a detention pond post-construction is recommended.
- Exclude Runoff from Off-Site and Undisturbed Areas: The placement of sediment basins are recommended at a location that restricts the amount of stormwater runoff impounded from off-site and other undisturbed areas. Placement of temporary diversions berms, swales, or other conveyance measures may be required to divert the "clean" stormwater runoff away from the basin. This practice will minimize the drainage area being served by the sediment basin and may decrease the surface area required by the sediment basin.

Safety

Incorporate all possible safety precautions, such as signs and fencing, for sediment basins that are readily accessible to populated areas. For Example, a lateral shelf that is located above the sediment cleanout elevation may prevent entry onto the accumulated sediment and may also help with maintenance of the basin. In some circumstances, vector control may be necessary for sediment basins that routinely have a standing pool of water. This is especially important around residential areas to inhibit a rise in mosquito populations and the spread of disease. Maintaining a water depth of at least 3 feet within basins with permanent pools may also help prevent a rise in mosquito populations.

All other applicable safety criteria as outlined by the USDA Soil Conservation Service (previously the Natural Resources Conservation Service), the U.S. Army Corps of Engineers, and state Dam Safety Regulations should also be followed during design and construction of sediment basins.

Basin Design Criteria

Properly sizing a sediment basin is crucial to improving sediment control during construction conditions. When designing a basin the following criteria should be addressed:

- Storage Volume: The minimum sediment storage volume recommended within a sediment basin is equal to 3,600 cubic feet per acre draining to the basin. Twenty percent (20%) of this volume should be provided within the sediment forebay. (Basin Volumes of 50 ac-ft or more may be subject to Dam Safety Regulations and Permits.)
- Shape: Sediment basins should be designed to maximize the flow length between the basins' inlets and outlets. To accomplish this, the minimum length-to-width ratio of each basin should be no less than 2:1. This results with an effective flow length that is at least twice the width of the basin. Additional (non-porous) baffling may be required if site constraints prevents the basin from meeting this minimum ratio. In each circumstance, measures must be taken to prevent shortcircuiting of the sediment basin. Length and width measurements may be measured from top of embankment.
- Surface Area: The surface area within a sediment basin can have a substantial impact on the basin's trapping efficiency. Maximizing the surface area may lead to higher trapping efficiencies and may prove to be very beneficial when employed with multiple rows of porous baffles.
- Depth: The provided depth in a sediment basin will be directly linked to the required storage volumes and the appropriate surface area. It is recommended that a depth of $5-10 \mathrm{ft}$ be provided in order to maximize surface area within the basin. (Basin Depths resulting in an embankment height of 25 ft or more may be subject to Dam Safety Regulations and Permits.)
- Slope: The sediment basin's bottom must be graded to have a slope of not less than 0.5%.

Basin Dewatering

Sediment basins must be designed to have the capability to discharge the $10-\mathrm{yr}$, NRCS $24-\mathrm{hr}$ storm event through the principle spillway while under during construction conditions. This spillway must employ a mechanism to withdraw the impounded stormwater runoff from near the surface of the water column impounded within a basin.

This volume of water should discharge through the principle spillway within a time frame of 2-5 days, with 3 days being the recommended target. Meeting this recommended dewatering time allows for finer particulates to fall from suspension, improving the trapping efficiency of the sediment basin.

Embankments

Proper construction and stabilization of basin embankments are important factors of sediment basin design. When designing a basin the following criteria on embankments should be addressed:

- Construction: The foundation of the embankment should be stripped and grubbed of all vegetation, stumps, topsoil and other organic matter prior to construction of the dam. Machine compact the soil material used to construct the dam.
- Minimum Width: The top width of the embankment should be no less than 5 feet.
- Side Slopes: All side slopes, including those located within basin areas that are not part of the embankment, shall be $2: 1(\mathrm{H}: \mathrm{V})$ or flatter. The recommended slope is $3: 1$ to allow for ease of maintenance.
- Penetrations: Any penetrations, including conduits, through the embankment shall be equipped with anti-seep mechanisms, such as anti-seep collars or a core/key trench.
- Top of Embankment: Keep the top of the embankment at a minimum of 2 feet above the crest of the principle spillway's riser. (This minimum elevation provides an emergency spillway that is at least 1 foot in height and has a 1 -foot separation between its crest and the principle spillway's crest.)
- Stabilization: Promptly stabilize all areas disturbed by the construction of the embankment including embankment side slopes and access areas. Temporary or permanent stabilization measures should be conducted as necessary.

Excavations

All sediment basins created or expanded through excavation shall retain side slopes of 2:1 or flatter, and all side slopes should be promptly stabilized to prevent the formation of rills and gullies. The recommended slope is $3: 1(\mathrm{H}: \mathrm{V})$ to allow for ease of maintenance.

Inlet Protection

Inlets into a sediment basin shall be equipped with energy dissipation measures to prevent scour by reducing runoff velocities and/or shall be equipped with stabilization measures designed to handle peak flow conditions. This can be accomplished through the selection and use of BMPs such as riprap aprons, turf reinforcement matting, and plunge pools.
These BMPs should be provided at all inlets into the basin, including inlets that are submerged, and it is recommended that the invert of each inlet is cited to be at the bottom of the sediment basin to prevent erosion along side slopes. When an invert of a basin inlet is not cited at the bottom of the basin, proper conveyance measures should be proposed to allow runoff to enter the basin without eroding the basin's side slopes.

Sediment Forebay

Each sediment basin should be designed to incorporate the use of a sediment forebay, a settling area or impoundment constructed at the incoming points of stormwater runoff that promotes the settling of coarse particulates away from the basin's outlets. Inclusion of a sediment forebay may also help ease maintenance by allowing for the deposition of the larger suspended particles into an easily accessible area away from the principle spillway.
Proper design, construction, and stabilization of each sediment forebay will promote the required functions of sediment basins. When designing a basin the following criteria on forebays should be addressed:

- Construction: A riprap berm, gabion, or an earthen berm with a rock filled outlet should be constructed across the bottom of the sediment basin to create a cell within the basin for use as the sediment forebay. The location and height of this berm should be designed to meet the appropriate sediment forebay volume and depth criteria. Alternatively, plunge pools or rock berms may be constructed around each inlet to create a combined volume behind the berms equal to the minimum sediment forebay volume recommendation.
- Volume: The minimum volume provided within the forebay(s) should be twenty percent (20\%) of the provided sediment storage volume of the basin.
- Depth: The depth of the forebay will be dependant upon the required volume. It is recommended to keep the depth between 2 and 4 feet.
- Accessibility: Direct access to the forebay will be necessary to allow for routine cleanout of the accumulated sediment. Side slopes adjacent to the forebay may be graded to create a safe path for equipment to access the forebay, or a maintenance ramp or shelf can be incorporated into the basin's design to allow for direct and easy access to all areas of the sediment basin.
- Clean Out: A fixed cleanout stake, solely for use within the sediment forebay is recommended near the forebay berm. This cleanout stake is beneficial since the forebay may become inundated with sediment faster than the rest of the basin. The recommended cleanout height for sediment forebays is $1 / 2$ the height of the forebay's berm.

Photo: Sediment Forebay

Porous Baffles

Located between the sediment forebay and the basin's spillways (outlets), porous baffles must be installed to aid in the dispersion of runoff across the entire width of the basin and to promote sedimentation by reducing turbulence. Baffles function in basins with or without permanent pools.

Proper design, construction, and stabilization of porous baffles will promote the required functions of sediment basins. When designing a basin the following criteria on porous baffles should be addressed:

- Height: The recommended height of each baffle is 3 feet. When possible, the height of each baffle should be equal to or above the 10-yr, 24-hour NRCS Storm's design water surface elevation within the sediment basin.
- Width: The width of each baffle shall be equal to the entire width of the sediment basin, including the side slopes up to where the height of the baffle intersects the slope.
- Spacing: The minimum spacing between baffles should be 10 feet. Baffles should ultimately be placed to maximize the space between each of the rows of baffles and the basin's sediment forebay/spillways and the adjacent baffle row.
- Materials: All porous baffles not composed of turf reinforcement matting (TRM) material should consist of materials derived from coir (coconut fibers) products. An example is coir woven
matting. TRMs should consist of materials that do not have loose Straw fibers. The selected material should have a light penetration (open space) between $10-30 \%$. Silt Fence may not be used.
- Posts: The posts used to install porous baffles should be steel posts with a minimum weight of 1.25 lb . per liner foot. Install steel posts at a maximum of 4 -feet on center.
- Rows: A minimum of three (3) porous baffle rows should be installed across the width of the entire basin (including side slopes) where the basin length is greater than 50 feet. For basins with a length of 50 ft or less, only two rows of (2) porous baffles are necessary to be installed.
- Installation: All baffles are to be trenched or anchored into the basin's bottom and tied into side slopes to prevent bypass. A rope or wire can be used along the top of the baffle to prevent excessive sagging between the posts.

Rock Berm

A rock berm, typically provided in a horseshoe orientation around the principle spillway, may be provided to restrict the deposition of sediment within the area directly adjacent to the principle spillway. Restriction of sedimentation within this area will promote proper skimmer function. This rock berm is not recommended when a permanent pool of water is designed to remain within the basin during construction.

Proper design and construction of a rock berm around the principle spillway will promote the desired functions of sediment basins. When designing a basin the following criteria on rock berms should be addressed:

- Installation: The rock berm is to be installed outside the scopes of the skimmer and associated mechanisms required for proper skimmer performance, such as skimmer pits and/or skimmer rock pads. The berm should completely surround the principle spillway and should be installed upon the sediment basin's embankment slopes up to the elevation where the height of the berm intersects the slope.
- Width: The width along the crest of the rock berm should be at a minimum of 2 feet. Wider rock berms may be necessary in larger basins.
- Height: The height of a rock berm should range between 2-4 feet, dependent upon the height of the basin.

Photo: Horseshoe Rock Berm Around Principle Spillway with Skimmer

Skimmers

The most common devices used to meet a sediment basin's surface water dewatering requirements are floating skimmers. These skimmers allow for the dewatering of a basin from the top of the water column up to a specified design elevation, which in South Carolina is the 10-yr, NRCS 24-hr Storm's design Water Surface Elevation (WSE).

The discharge through skimmers will approach a somewhat constant flow rate as the water surface elevation rises within the basin. As the elevation of water rises, the skimmer will remain at the top of the water's surface due to a floatation mechanisms incorporated into skimmer designs by the manufacturer. This floatation is typically designed to keep the depth of water above the skimmer's orifice constant as the water surface elevation rises.

Proper design and installation of skimmers will promote the desired functions of sediment basins. When designing a basin the following criteria on skimmers should be addressed:

- Installation: All skimmers should be installed based on manufacturer's recommendation. The skimmer should also be installed prior to clearing and grading of a basin's drainage area.
- Discharge Capacity: Each skimmer must be designed/selected to allow the sediment basin to have the capacity to pass the 10-yr, NRCS 24-hr storm event within the recommended time of 2-5 days.
- Skimmer Size: The size of the skimmer device, which typically reflects the skimmer's orifice size, should be selected to meet the basin discharge capacity requirements. Most skimmer manufacturers provided skimmer sizes ranging from $1.5^{\prime \prime}$ up to $8^{\prime \prime}$. Orifice size and associated flow rates are product specific and should be based off product-specific testing.
- Skimmer Orifice Sizing: In addition to skimmer size, some skimmer manufacturers provide the option to modify the intake orifice of a skimmer through the use of a plug or flap. These modifications are place within or over the skimmer's orifice to provide a smaller orifice size.
- Additional Options: Dependent on the skimmer manufacturer's recommendations, additional measures may need to be implemented around, near, or under the skimmer to prevent the skimmer from becoming clogged or stuck within deposited sediment. These additional measures included, and may not be limited to, skimmer pits, rock pads, and rope that is attached to the skimmer and then tied to a secure point along the basin's embankment.
A detail of the selected skimmer should be included on the construction site plans that should reference the skimmer's manufacturer, the Daily Discharge Capacity ($\mathrm{ft}^{3} / \mathrm{day}$), the Average Discharge Rate (cfs), and the Dewatering Time (days). Listing these parameters for each proposed skimmer allows the selection of an equivalent skimmer from an alternative manufacturer, when the need arises.
When selecting an equivalent skimmer, from what was specified on the approved plans, it is important to comply with the following guidance to ensure an "equivalent" skimmer is selected.
- The Average Discharge Rate (cfs) from the selected skimmer should be equal to or greater than that discharge rate of the approved skimmer. Any skimmer with a lower Average Discharge Rate would case the peak water surface elevation within the basin to rise during a given storm event.
- The Daily Discharge Capacity ($\mathrm{ft}^{3} /$ day) from the selected skimmer should be equal to or greater than the discharge capacity of the approved skimmer. Any skimmer with a Daily Discharge Capacity lower than the approved skimmer would case the peak water surface elevation within the basin to rise during a given storm event.
- The Dewatering Time should remain within a time frame of 2-5 days. It is recommended to keep the dewatering time as close to possible to that of the approved skimmer, but complying with this item keeps the basin from dewatering too quickly. The Dewatering Time is equal to the time it takes the skimmer(s) to completely dewater the basin.

Any rise in water surface elevation may allow for more water to flow over the riser crest, increasing the discharge rate of the basin. This potential for increased discharge may reduce the trapping efficiency below the required 80% efficiency.
Failing to follow this guidance would require review and approval of the "equivalent" skimmer prior to implementation (in most cases requiring a Major Modification of the approved plans). All skimmer data should be based off product-specific testing.

Photo: Skimmer with Attached Rope for Ease of Maintenance

Principle Spillway

The Principle Spillway is the primary discharge mechanism for sediment basins. This spillway consists of a riser structure, a barrel (outlet pipe), and surface water dewatering mechanisms (typically a skimmer). The riser structure should also be equipped with a trash rack, an anti-vortex device, and an anti-floatation mechanism.

Proper design and installation of the principle spillway will promote the desired functions of sediment basins. When designing a basin the following criteria on principle spillways should be addressed:

- Riser: May be provided as a concrete box/pipe or corrugated pipe. Recommended heights range between 3 and 6 feet.
- Barrel: The barrel connects into the riser structure and extends through the basin's embankment to allow impounded stormwater runoff to discharge from the basin. Anti-seep mechanisms must be provided along the barrel to prevent embankment failure.
- Orifices: Limit orifices on the riser to those necessary to connect the skimmer device(s). Orifices along the riser in which a skimmer is not connected are not considered to meet the water surface dewatering requirements.
- Weirs: Limit the use of weirs along the riser to within 1-foot of the riser crest. Weirs below this elevation are not considered to meet the water surface dewatering requirements.
- Trash Rack and Anti-Vortex Device: Equip the riser structure with a trash rack and anti-vortex device to prevent clogging of the principle spillway and non-weir flow over the riser crest.
- Anti-Floatation Mechanism: Provide an anchor to prevent floatation of the riser structure. Recommended weight of the anti-floatation mechanism is 1.1 times greater than the weight of the volume of water displaced by the riser structure.
- $\mathbf{1 0 - Y r}$ Design WSE: The $10-y r$ design WSE should target the crest of the riser. The maximum head above the riser crest should be limited to 1 foot to maintain water surface dewatering requirements. Basins with permanent pools subject to high ground water tables may be accepted with the $10-\mathrm{yr}$ design WSE more than 1 foot above the riser crest.

Photo: Principle Spillway's Riser Structure with Skimmer

Emergency Spillway

The Emergency Spillway is the secondary discharge mechanism for the sediment basin designed to discharge larger storm events, such as the $100-\mathrm{yr}$, NRCS $24-\mathrm{hr}$ storm event, from the basin. This spillway consists of a stabilized, open channel along the top of the basin's embankment.
Proper design and installation of the emergency spillway will promote the desired functions of sediment basins. When designing a basin the following criteria on emergency spillways should be addressed:

- Location: Where feasible, construct the emergency spillway in natural ground and not over fill material.
- Elevation: The crest of the emergency spillway should be at least 1 foot below the top of the basin's embankment. This spillway should also be located 1 foot above the crest of the principle spillway's riser or the 10-yr design WSE whichever is higher.
- Height: The height should be at least 1 foot and should be designed to successfully pass the $100-\mathrm{yr}$, NRCS $24-\mathrm{hr}$ storm event with a freeboard of no less than 0.5 feet between the maximum water surface elevation from this storm event and the basin's embankment.
- Width: The width of the emergency spillway should be at a minimum of 10 feet.
- Side Slopes: The side slopes of the emergency spillway should be no steeper than a 2:1 slope.
- Stabilization: The entirety of the emergency spillway, including side slopes and the embankment's slopes, should be properly stabilized. When located on fill material, this stabilization should consist of rip-rap with underlying geotextile fabric or erosion prevention BMPs capable of conveying the expected velocities without failure.

Outlet Protection

Each of the sediment basin's outlets shall be designed to prevent scour and to reduce velocities during peak flow conditions. This can be accomplished through the selection and design of energy dissipation structures such as riprap aprons. Each outlet should also be directed towards pre-existing point source discharges or be equipped with a mechanism to release the discharge as close to sheet flow as possible, to prevent the creation of new point source discharges. Try to restrict the outlets from being placed within 20 linear feet of adjacent properties lines.

Photo: Principle Spillway's Barrel (Outlet Pipe) with Plunge Pool and Level Spreader

Permanent Pools

Sediment basins located in low-lying areas or areas with high ground water tables may be incapable of avoiding a standing pool of water within the basin. These conditions may result in a permanent pool of water within the basin during the course of construction activities. Under such conditions, the following design criteria will need to be re-evaluated:

- Sediment Forebay: The forebay should be located above the permanent pool elevation when possible. If site-specific constraints are limiting, a forebay may not be capable of being provided. Forebays may not be beneficial when the basin's inlets are submerged and there is little to no overland flow to basin during construction.
- Rock Berm: The rock berm may prove ineffective under these circumstances and is not recommended to be provided.
- Cleanout Height: Sediment should be removed when approximately $1 / 2$ of the sediment storage volume is lost due to accumulated sediment. Removal of sediment will also need to be conducted when the skimmer mechanism fails to rise and fall with the water surface elevation due to sediment accumulation along riser structure.
Additionally many other aspects, including baffles and skimmers, of a sediment basin may prove challenging or infeasible to provide and may require other solutions to design a basin that remains in compliance with South Carolina requirements. This is especially true along the coastal regions of South Carolina where relatively flat topography and high water tables limit the depth of basins.

One option to address such circumstances is the use of a single weir as water surface dewatering mechanism. Allowance of this practice may be dependent upon the following:

- The basin's length-to-width ratio;
- The prevention of short-circuiting between the basin's inlets and outlets;
- Whether or not the basin's inlets are submerged;
- The dispersion of flow within the basin;
- The depth of the permanent pool; and
- The maximum head on the weir crest during the $10-\mathrm{yr}$, NRCS $24-\mathrm{hr}$ storm event.

Another practice to consider when designing a sediment basin with a permanent pool is turbidity curtains. This practice provides an impermeable liner along the entirety of the water column and only allows flow to discharge near the top of the water surface. Upon proper selection and implementation, turbidity curtains may be capable of enhancing the sedimentation process, dispersion of flow, dewatering from the top of the water surface, and restricting the accumulation of sediment near or around the outlet structure.
The use of these suggested practices must be approved prior to being implemented at the construction site.

Inspections \& Maintenance

The key to a functional sediment basin is continual inspections, routine maintenance and regular sediment removal. Each sediment basin should be inspected at a minimum of once every calendar week. It is also recommended to inspect sediment basins within 24 hours of a storm event producing 0.5 " of precipitation or greater.
Any deficiencies noted during an inspection of the basin must be addressed within 7 calendar days, before the next scheduled inspection, or before the next storm event.

Over the course of the construction project, accumulated sediment will need to be removed from the basin. Ultimately, the accumulated sediment will need to be removed once it reaches $1 / 2$ of the provided sediment storage volume within the sediment basin but it is recommended to cleanout certain sections of the sediment basin (such as the sediment forebay and the cells between the porous baffles) more frequently. For this reason the following sediment removal procedures may be necessary.

- Sediment Forebay: Accumulated sediment should be removed from the forebay when the elevation of the deposited sediment reaches $1 / 2$ the height of the forebay's berm.
- Porous Baffles' Cells: Accumulated sediment should be removed from the cells created by each row of baffles when the elevation of the deposited sediment reaches $1 / 2$ the height of the baffles or the cleanout mark located on the cleanout stake, whichever is lower.
- Rock Berm: Accumulated sediment should be removed from in front of the rock berm when the elevation of the deposited sediment reaches $1 / 2$ the height of the berm or the cleanout mark located on the cleanout stake, whichever is lower.

When accumulated sediment is removed from a sediment basin, it should be placed in designated stockpile storage areas or spread thinly across the disturbed area and promptly stabilized.

Accumulate sediment is not the only issue that may prevent proper sediment basin functions. Additional maintenance issues that are commonly required to maintain sediment basins are listed in the table located on the following page.

Identified Sediment Basin Condition	Maintenance Measures To Be Taken
Outlet pipe (barrel) is clogged with debris.	$\begin{array}{c}\text { Remove debris. Modify trash rack at top of riser structure to } \\ \text { restrict larger debris particles from entering the outlet pipe. }\end{array}$
$\begin{array}{c}\text { Emergency Spillway has eroded due to high } \\ \text { discharge velocities during recent storm } \\ \text { event. }\end{array}$	$\begin{array}{c}\text { Stabilize spillway with Erosion Control Blankets (ECBs) or Turf } \\ \text { Reinforcement Mats (TRMs) with higher sheer stress capabilities. } \\ \text { Alternatively, stabilize spillway with Rip-Rap sized to address } \\ \text { anticipated velocities. } \\ \text { Extend stabilization down the embankments interior and exterior } \\ \text { slopes, if not already provided. }\end{array}$
$\begin{array}{c}\text { Basin's side slopes are eroding. The } \\ \text { formation of rills and gullies are evident. }\end{array}$	$\begin{array}{c}\text { Re-grade slopes and provide proper tracking techniques. Seed } \\ \text { slopes and stabilize with ECBs, TRMs, or equivalent erosion } \\ \text { prevention BMPs, as necessary. Ensure that the slopes are } \\ \text { graded correctly. Do not fill rills/gullies with rip-rap. } \\ \text { Inspect upland areas for evidence of concentrated flows towards } \\ \text { slopes. If evident provide a stabilized conveyance method to } \\ \text { prevent further erosion along the slope. }\end{array}$
Excessive accumulated sediment identified	
in basin.	

Place removed sediment in stockpiles or across disturbed areas.\end{array}\right]\)

Basin Removal

Sediment Basin may be removed when all areas discharging to the basin have reached final stabilization or when the conditions listed within the approved On-Site SWPPP have been met. In most circumstances, the basin will not be removed but converted to a detention pond to serve the site postconstruction.
When a basin is to be removed, it should be completed within 30 days after final site stabilization is achieved or when the approved conditions indicate removal requirements have been met. All areas disturbed as a result of the sediment basin removal will need to be permanently stabilized. Additional BMPs, such as silt fence may need to be utilized to accept runoff from this area until final stabilization is reached.

Design Aids

The following design methodology (Hayes et al. 1995) may be used to design sediment basins to meet the 80 percent trapping efficiency requirements for TSS, which has a drainage area limitation of 30 acres. Alternatively computer models that utilize eroded particle size distributions to calculate a corresponding trapping efficiency may also be used; these models may allow larger drainage areas.
The listed methodology utilizes an eroded particle diameter from on-site soils to determine the settling velocity associated with the soil's specified particle diameter, the surface area of the basin at the riser crest, and the 10-yr, NRCS 24-hr peak outflow from the basin. These three parameters will then be used to calculate a Basin Ratio that can then be used to determine the trapping efficiency from Figure SB-1 or SB-2 located in Appendix K of SC DHEC's Stormwater BMP Handbook.

Unfortunately, the majority of the available methodologies and computer models may not take into account the anticipated benefits of the various components of the sediment basin, such as water surface withdrawal, porous baffles, and the sediment forebay.
The suggested procedure to determine the trapping efficiency is outlined below.

Calculating the Trapping Efficiency of a Sediment Basin

1. Determine on-site soils' characteristic eroded particle diameter. Each soil has a unique eroded particle diameter and the D_{15} (the particle diameter in which only 15% of the soil particle diameters are less than). To determine the D_{15} use Appendix E of SC DHEC's Stormwater BMP Handbook to look up the smallest D_{15} listed for all soils identified on-site.
2. Determine the characteristic settling velocity of on-site soils. Use Figure SV-1, found in Appendix K, which plots eroded particle diameter (D_{15}) versus settling velocity (V_{15}), to determine the value of the settling velocity. This unit is provided in feet per second (fps).
3. Calculate the Basin Ratio. Use the provided formula to calculate the Basin Ratio (BR).

$$
\text { Basin Ratio }=\frac{q_{p o}}{A V_{15}}
$$

Where:

$\mathbf{q}_{\mathrm{po}}=$ Peak Outflow Rate from the Basin for the 10-yr, NRCS 24-hr Storm Event (cfs),
A = Surface Area of the Basin at the Riser Crest (acres),
$\mathbf{V}_{15}=$ Characteristic Settling Velocity (fps) of the Characteristic D_{15} Eroded Particle (mm).
4. Determine Trapping Efficiency. Use Figure SB-1 or Figure SB-2 to determine the trapping efficiency with the Basin Ratio calculated in step 3. These figures plot trapping efficiency versus the basin ratio, and each figure is for separate conditions identified as follows:

- Figure SB-1 is for basins not located in low lying areas and/or not having a high water table.
- Figure SB-2 is for basin located in low lying areas and/or having a high water table. This figure is appropriate for Hydrologic Soil Group (HSG) D soils classified as such due to the presence of a high water table. HSGs A/D, B/D, and C/D are also considered to have high water tables based upon the characteristics of dual hydrologic soil groups.
When using this methodology the following design constraints must be considered:
- Drainage Area to the Sediment Basin must be less than or equal to 30 Acres.
- Overland slope of this drainage area must be less than or equal to 20 percent.
- The sediment basin's Barrel (outlet pipe) must be less than or equal to 6 feet in diameter.
- Any Basin Ratios above the design curves on Figures SB-1 and SB-2 are not recommended for any application of the design aids.
- This methodology is not applicable to sediment basins in series.

Additional design guidance on this methodology is as follows:

- If the Basin Ratio intersects the design curve at a point having a trapping efficiency of less than the desired value, the design is inadequate and must be revised.
- A basin, not located in low lying area and not having a high water table, has a basin ratio equal to 2.20 E5 at 80 percent trapping efficiency as shown in Figure SB-1.
- A basin that is located in low lying area and does not have a high water table, has a basin ratio equal to 4.7 E3 at 80 percent trapping efficiency as shown in Figure SB-2.

Design Example

Design a sediment basin to accept stormwater runoff from a 14 -acre (0.0219 mi) construction site during construction conditions. Assume the entire area is disturbed and discharges into the sediment basin. (There are no additional discharges to the basin.) The proposed location of the sediment basin is not located in low-lying areas and does not have a high water table. The only constraint on the size of the basin is to limit the surface area at the basin's riser crest to 0.75 acres. Soil Maps indicate that both Cecil and Edisto soil types are found on-site. Calculate the trapping efficiency of the basin for a 10-year, NRCS 24-hour storm event with and without the use of a skimmer. (The peak discharge from the basin is 8.5 cfs when a skimmer is not employed. Assume that no weir flow occurs across riser crest when skimmer is employed.)

Skimmer Manufacturer Information

Skimmer Size	$\mathbf{1 . 5}$	$\mathbf{2 "}$	$\mathbf{2 . 5}$	3"	$\mathbf{4 "}$	$\mathbf{5 "}$	$\mathbf{6 "}$	$\mathbf{8 "}$
3 Day Discharge Capacity (Cubic Feet)	5500	10200	19500	31250	64500	102250	165580	298500

Design Example's Given and Find Information

Given:

- Drainage Area $=14$ Acres (0.0219 mi 2)
- A $=0.75$ Acres (at Riser Crest)
- Cecil and Edisto Soil Types
- Not in Low-Lying Areas.
- There is not a High Water Table.
- Peak Discharge without Skimmer $=8.5$ cfs

Find:

- Trapping Efficiency with Skimmer
- Trapping Efficiency without Skimmer

Solution 1 (No Skimmer):

1. Determine D_{15}. From Appendix E, determine the smallest D_{15} for both Cecil and Edisto Type Soils.
a. For Cecil Soils, $\mathrm{D}_{15}=0.0043 \mathrm{~mm}$
b. For Edisto Soils, $\mathrm{D}_{15}=0.0093 \mathrm{~mm}$

Since Cecil has the smallest D_{15}, use $\mathbf{0 . 0 0 4 3} \mathbf{~ m m}$.
2. Determine \mathbf{V}_{15}. From Appendix K , use Figure $\mathrm{SV}-1$ to determine the V_{15}. From this figure and use a $D_{15}=0.0043 \mathrm{~mm}$ (from step 1), the V_{15} will be approximately $5.19 \mathrm{E}-05 \mathrm{fps}$.
Alternatively, this may be calculated from the following equation $\mathrm{V}_{15}=2.81\left(\mathrm{D}_{15}\right)^{2}$. (This equation may only be used if D_{15} is less than 0.01 mm .)
3. Calculate Basin Ratio. Calculate the Basin Ratio using the given information and the V_{15} determined is step 2.

$$
\begin{gathered}
\mathrm{BR}=\frac{(8.5 \mathrm{cfs})}{(0.75 \mathrm{Acres})(5.19 \mathrm{E}-05 \mathrm{fps})} \\
\mathrm{BR}=218,368.65
\end{gathered}
$$

4. Determine Trapping Efficiency. Determine the trapping efficiency using the calculated $B R$ from step 3 and Figure SB-1 from Appendix K.
Trapping Efficiency = ~80\%

Solution 2 (Skimmer):

1. Discharge Volume. The discharge volume could be estimated using the recommended sediment storage volume (3600 cubic feet per acre draining) as the discharge volume but, when known, the volume beneath the riser crest should be used as the discharge volume. For this example the sediment storage volume will be used.

Calculate the required volume that the skimmer must have the capacity to discharge.

$$
\text { Discharge Volume }=\frac{3600 \mathrm{ft}^{3}}{\text { Acre }} \times 14 \text { Acres }=50,400 \mathrm{ft}^{3}
$$

2. Calculate 3-Day Skimmer Dewatering Discharge. Use the calculated discharge volume to select a skimmer based off the provided manufacturer's 3-Day Discharge Capacity. In order to
discharge 50,400 cubic feet within 3 days, select the 4 " skimmer since it can discharge 64,500 cubic feet in 3 days.

Determine the average discharge rate through the skimmer in cubic feet per second (cfs) using the 4 " skimmer's discharge capacity. (The manufacturer may directly cite the average discharge rate.)
$\frac{64,500 \mathrm{ft} 3}{3 \text { days }} \times \frac{1 \text { day }}{24 \mathrm{hrs}} \times \frac{1 \text { hour }}{60 \mathrm{mins}} \times \frac{1 \mathrm{~min}}{60 \mathrm{secs}}=0.249 \mathrm{cfs}$

Note: This average discharge rate of 0.249 cfs assumes that water does not overtop the riser crest during the $10-\mathrm{yr}$ storm event. Basin routing should be conducted to confirm this. The peak discharge from the basin will be greater if the Water Surface Elevation (WSE) during this storm event overtops the riser crest. If the WSE is more than 1 foot above the riser crest, a larger or multiple skimmers may be necessary.
3. Determine D15. From Appendix E, determine the smallest D_{15} for both Cecil and Edisto Type Soils.
a. For Cecil Soils, $\mathrm{D}_{15}=0.0043 \mathrm{~mm}$
b. For Edisto Soils, $D_{15}=0.0093 \mathrm{~mm}$

Since Cecil has the smallest D_{15}, use $\mathbf{0 . 0 0 4 3} \mathbf{~ m m}$.
4. Determine V15. From Appendix K, use Figure SV-1 to determine the V_{15}. From this figure and use a $D_{15}=0.0043 \mathrm{~mm}$ (from step 1), the V_{15} will be approximately $5.19 \mathrm{E}-05 \mathrm{fps}$.
Alternatively, this may be calculated from the following equation $V_{15}=2.81\left(D_{15}\right)^{2}$. (This equation may only be used if D_{15} is less than 0.01 mm .)
5. Calculate Basin Ratio. Calculate the Basin Ratio using the given information and the V_{15} determined is step 2.

$$
B R=6396.92
$$

6. Determine Trapping Efficiency. Determine the trapping efficiency using the calculated $B R$ from step 3 and Figure SB-1 from Appendix K.
Trapping Efficiency = ~92.5\%

References

1. Atlanta Regional Commission. Georgia Stormwater Management Manual Volume 2. GPO, 2001. Web.
2. Faircloth, J.W. A Manual for Designing, Installing, and Maintaining Skimmer Sediment Basins. J.W. Faircloth \& Son. Nov. 2005. Web. 29 Aug. 2013. < http://www.fairclothskimmer.com/>
3. Hann, C.T., B.J. Barfield, and J.C. Hayes. Fundamental of Fluid Mechanics Second Edition. Reading, Massachusetts. Addison-Wesley Publishing Company, 1992.
4. Hayes, J.C. and B.J. Barfield. "Engineering Aids and Design Guidelines for Control of Sediment in South Carolina." In South Carolina Stormwater and Sediment Control Handbook for Land Disturbance Activities. GPO, 1995. Web.
5. Idaho Department of Environmental Quality. IDEQ Storm Water Best Management Practices Catalog. GPO, 2005. Web.
6. Iowa Department of Natural Resources. Iowa Stormwater Management Manual. GPO, 2008. Web.
7. Jarret, A.R. Controlling the Dewatering of Sedimentation Basins. Penn State University Publications. Agricultural and Biological Engineering. Web. 29 Aug. 2013. http://pubs.cas.psu.edu/freepubs/pdfs/f253.pdf.
8. Jarret, A.R. Selecting a Faircloth Skimmer. Penn State University Publications. Agricultural and Biological Engineering. Web. 29 Aug. 2013. http://pubs.cas.psu.edu/freepubs/pdfs/f252.pdf.
9. Johns, J.P. Baffles and Surface Water Discharge Design. UpstateForever.org. Woolpert, 27 Feb. 2013. Web. 29 Aug. 2013. http://www.upstateforever.org/progCAWdocs/2013.02.27BaffleSkimmer.pdf.
10. Massachusetts Department of Environmental Protection. Erosion and Sediment Control Guidelines for Urban and Suburban Areas. Northampton, MA. GPO, 1997. Web.
11. Massachusetts Highway Department. The Mass Highway Storm Water Handbook for Highways and Bridges. Massachusetts: GPO, 2004. Web.
12. New Hampshire Department of Environmental Services. NH Stormwater Management Manual Volume 2: PostConstruction Best Management Practices Selection and Design. Concord, NH: GPO, 2008. Web.
13. North Carolina Division of Energy, Mineral and Land Resources. North Carolina Erosion and Sediment Control Planning and Design Manual - Chapter 6. GPO, 2013. Web.
14. Pennsylvania Department of Environmental Protection. Erosion and Sediment Pollution Control Program Manual. GPO, 2012. Web.
15. South Carolina Department of Transportation. Supplemental Technical Specification for Porous Baffles. GPO, 2013. Web.
16. Tennessee Department of Environment and Conservation. Erosion and Sediment Control Handbook. GPO, 2012. Web.
17. Urban Drainage and Flood Control District. Urban Storm Drainage Criteria Manual Volume 3. Denver, CO. GPO, 2010. Web.
18. Virginia Department of Conservation and Resources. VA DCR Stormwater Design Specification- Appendix D Sediment Forebay. GPO, 2011. Web.
19. Wisconsin Department of Natural Resources. Storm Water Construction Technical Standards - Sediment Basins. GPO, 2006. Web.

Reference 8

Design Hydrology and Sedimentology for Small Catchments, Haan, C.T., Barfield and Hayes, 1994. Pg. 147-148.

Figure 5.2 Energy losses for flow in a drop inlet spillway considering bend losses and entrance losses separately.

Solution: The discharge under orifice flow will equal

$$
Q=C^{\prime} a(2 g H)^{1 / 2} .
$$

The area of $24-\mathrm{in}$. pipe is $3.14 \mathrm{ft}^{2}$. Assuming a value of 0.6 for C^{\prime} since the riser is corrugated metal pipe and substituting values including the gravitational constant, we have

$$
Q=0.6(3.14) \sqrt{2(32.2) H}
$$

which reduces to

$$
Q=15.1 H^{1 / 2}
$$

Substituting a head equal to 1 ft into the equation yields $Q=15.1 \mathrm{cfs}$ for orifice flow.

Pipes as Flow Control Devices

A drop inlet spillway consists of a vertical pipe called a riser and a nearly horizontal pipe called a barrel. This spillway can serve as a flow control device, even when operating under pipe flow. A schematic showing energy losses with pipe flow is given in Fig. 5.2. When the water level shown in Fig. 5.2 rises to a point such that the pipe flows full, the total head causing flow is given by H^{\prime} (as shown in Fig. 5.2) instead of H as it was for weir and orifice control. This head is dissipated as entrance head loss, transition head loss, bend head loss, friction head loss, and velocity head. Frequently, in pipes used to drain detention reservoirs, the only transitions and bends are at the connection between the drop inlet and the bottom pipe. If head losses are given in terms of a head loss coefficient times the
velocity head, $V^{2} / 2 g$, and the transition and bend head losses are combined into a single head loss term, then the total head H^{\prime} can be written as

$$
\begin{equation*}
H^{\prime}=\frac{V^{2}}{2 g}\left(1+K_{\mathrm{e}}+K_{\mathrm{b}}+K_{\mathrm{c}} L\right), \tag{5.4}
\end{equation*}
$$

where H^{\prime} is the head on the pipe as shown in Fig. 5.2, K_{e} is the entrance head loss coefficient, K_{b} is the bend head loss coefficient, K_{c} is the head loss coefficient due to friction, L is the length of the pipe (including the riser), and V is the mean velocity in the pipe. A schematic showing the head loss terms is given in Fig. 5.2. Since discharge through the pipe is equal to velocity times area, Eq. (5.4) can be solved for discharge as

$$
\begin{equation*}
Q=\frac{a\left(2 g H^{\prime}\right)^{1 / 2}}{\left(1+K_{\mathrm{e}}+K_{\mathrm{b}}+K_{\mathrm{c}} L\right)^{1 / 2}}, \tag{5.5}
\end{equation*}
$$

where Q is discharge and a is cross-sectional area of the pipe. Values for K_{c} are given in Tables 5.1 and 5.2 for circular and square pipes. Values for K_{e} and K_{b} depend on the configuration of the entrance and the bend. Typical values for K_{e} and K_{b} are 1.0 and 0.5 , respectively. Brater and King (1976), as well as Hoffman (1974), can be consulted for further details.

For risers with rectangular inlets, the bend head losses are frequently combined with the entrance head losses into one term. The total head dissipated through the riser can then be written as

$$
\begin{equation*}
H^{\prime}=\left(\frac{V^{2}}{2 g}\right)\left(1+K_{\mathrm{e}}^{\prime}+K_{\mathrm{c}} L\right) \tag{5.6}
\end{equation*}
$$

Table 5.1 Head Loss Coefficients for Circular Conduits Flowing Full ${ }^{a}$

Pipe diameter (in.)	Head loss coefficient, K_{c}, for circular pipe flowing full $K_{\mathrm{c}}=5087 n^{2} / D^{4 / 3}$ (Note: Pipe diameter, D, is in inches)																
		Manning's coefficient of roughness, n															
	Flow area $\left(\mathrm{ft}^{2}\right)$	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025
6	0.196	0.0467	0.0565	0.0672	0.0789	0.0914	0.1050	0.1194	0.1348	0.1510	0.1680	0.1870	0.2060	0.2260	0.2470	0.2690	0.2920
8	0.349	0.0318	0.0385	0.0458	0.0537	0.0623	0.0715	0.0814	0.0919	0.1030	0.1148	0.1272	0.1400	0.1540	0.1680	0.1830	0.1990
10	0.545	0.0236	0.0286	0.0340	0.0399	0.0463	0.0531	0.0604	0.0682	0.0765	0.0852	0.0944	0.1041	0.1143	0.1249	0.1360	0.1480
12	0.785	0.0185	0.0224	0.0267	0.0313	0.0363	0.0417	0.0474	0.0535	0.0600	0.0668	0.0741	0.0817	0.0896	0.0980	0.1067	0.1157
14	1.069	0.0151	0.0182	0.0217	0.0255	0.0295	0.0339	0.0386	0.0436	0.0488	0.0544	0.0603	0.0665	0.0730	0.0798	0.0868	0.0942
15	1.230	0.0138	0.0166	0.0198	0.0232	0.0270	0.0309	0.0352	0.0397	0.0446	0.0496	0.0550	0.0606	0.0666	0.0727	0.0792	0.0859
16	1.400	0.0126	0.0153	0.0182	0.0213	0.0247	0.0284	0.0323	0.0365	0.0409	0.0455	0.0505	0.0556	0.0611	0.0667	0.0727	0.0789
18	1.770	0.01078	0.0130	0.0155	0.0182	0.0211	0.0243	0.0276	0.0312	0.0349	0.0389	0.0431	0.0476	0.0522	0.0570	0.0621	0.0674
21	2.410	0.00878	0.01062	0.0126	0.0148	0.0172	0.0198	0.0225	0.0254	0.0284	0.0317	0.0351	0.0387	0.0425	0.0464	0.0506	0.0549
24	3.140	0.00735	0.00889	0.01058	0.0124	0.0144	0.0165	0.0188	0.0212	0.0238	0.0265	0.0294	0.0324	0.0356	0.0389	0.0423	0.0459
27	3.980	0.00628	0.00760	0.00904	0.01061	0.0123	0.0141	0.0161	0.0181	0.0203	0.0227	0.0251	0.0277	0.0304	0.0332	0.0362	0.0393
30	4.910	0.00546	0.00660	0.00786	0.00922	0.01070	0.01228	0.0140	0.0158	0.0177	0.0197	0.0218	0.0241	0.0264	0.0289	0.0314	0.0341
36	7.070	0.00428	0.00518	0.00616	0.00723	0.00839	0.00963	0.01096	0.0124	0.0139	0.0154	0.0171	0.0189	0.0207	0.0226	0.0246	0.0267
42	9.620	0.00348	0.00422	0.00502	0.00589	0.00683	0.00784	0.00892	0.01007	0.01129	0.0126	0.0139	0.0154	0.0169	0.0184	0.0201	0.0218
48	12.570	0.00292	0.00353	0.00420	0.00493	0.00572	0.00656	0.00747	0.00843	0.00945	0.01053	0.01166	0.0129	0.0141	0.0154	0.0168	0.0182
54	15.900	0.00249	0.00302	0.00359	0.00421	0.00488	0.00561	0.00638	0.00720	0.00808	0.00900	0.00997	0.01099	0.0121	0.0132	0.0144	0.0156
60	19.630	0.00217	0.00262	0.00312	0.00366	0.00424	0.00487	0.00554	0.00622	0.00702	0.00782	0.00866	0.00955	0.01048	0.0115	0.0125	0.0135

${ }^{a}$ From Soil Conservation Service (1951).
or

$$
\begin{equation*}
Q=\frac{a\left(2 g H^{\prime}\right)^{1 / 2}}{\left(1+K_{\mathrm{e}}^{\prime}+K_{\mathrm{c}} L\right)^{1 / 2}} \tag{5.7}
\end{equation*}
$$

where K_{e}^{\prime} is the combined entrance and bend head loss term. By providing a smooth transition, the value for K_{e}^{\prime} can be reduced. Typical values of K_{e}^{\prime} are given in Table 5.3.

Frequently when the drop inlet is the same size as the remainder of the pipe, orifice flow will control, and the pipe will never flow full. In this case, it may be necessary to increase the size of the drop inlet in order to utilize the full capacity of the pipe.

Example Problem 5.3 Pipe flow

An 24-in.-diameter corrugated metal pipe (CMP) is attached to the 24 -in. vertical riser described in Problems 5.1
and 5.2. It is being used as the principal spillway for a detention structure. The pipe is 60 ft long and has one 90° bend. The top of the inlet riser is 15 ft above the bottom of the outlet. Assume a free outfall and estimate the discharge under pipe flow if the water elevation 30 ft from the inlet is 1 ft higher than the top of the riser.

Solution: For pipe flow, we have

$$
Q=\frac{a\left(2 g H^{\prime}\right)^{1 / 2}}{\left(1+K_{\mathrm{e}}+K_{\mathrm{b}}+K_{\mathrm{c}} L\right)^{1 / 2}}
$$

where $K_{\mathrm{e}} \approx 1.0$ for most entrances of interest and $K_{\mathrm{b}}=0.5$. Manning's n for CMP is approximately 0.024 (see Table 4.1 for a range of values for CMP). Using this value in Table 5.1, $K_{\mathrm{e}}=0.042$. Head for pipe flow is the distance from the water surface to a point $0.6 D$ above the outlet as shown in Fig. 5.2 and 5.3. H^{\prime} then is given in terms of the stage, H, by

$$
H^{\prime}=H+15-0.6(2.0)=H+13.8
$$

Reference 9

Determining the Skimmer Size and the Required Orifice, Faircloth Skimmer, November 2007.

Determining the Skimmer Size and the Required Orifice for the

 Faircloth Skimmer ${ }^{\text {® }}$ Surface Drain

 Faircloth Skimmer ${ }^{\text {® }}$ Surface Drain}

November 2007

Abstract

Important note: The orifice sizing chart in the Pennsylvania Erosion Control Manual and reproduced in the North Carolina Design Manual DOES NOT APPLY to our skimmers. It will give the wrong size orifice and not specify which size skimmer is required. Please use the information below to choose the size skimmer required for the basin volume provided and determine the orifice size required for the drawdown time, typically 4-7 days in Pennsylvania and 3 days in North Carolina.

The size of a Faircloth Skimmer ${ }^{\circledR}$, for example a 4" skimmer, refers to the maximum diameter of the skimmer inlet. The inlet on each of the 8 sizes offered can be reduced to adjust the flow rate by cutting a hole or orifice in a plug using an adjustable cutter (both supplied).

Determining the skimmer size needed and the orifice for that skimmer required to drain the sediment basin's volume in the required time involves two steps: First, determining the size skimmer required based on the volume to be drained and the number of days to drain it; and Second, calculate the orifice size to adjust the flow rate and "customize" the skimmer for the basin's volume. The second step is not always necessary if the flow rate for the skimmer with the inlet wide open equals or is close to the flow rate required for the basin volume and the drawdown time.

Both the skimmer size and the required orifice radius for the skimmer should be shown for each basin on the erosion and sediment control plan. Make it clear that the dimension is either the radius or the diameter. It is also helpful to give the basin volume in case there are questions. During the skimmer installation the required orifice can be cut in the plastic plug using the supplied adjustable cutter and installed in the skimmer using the instructions provided.

The plan review and enforcement authority may require the calculations showing that the skimmer used can drain the basin in the required time.

Determining the Skimmer Size

Step 1. Below are approximate skimmer maximum flow capacities based on typical draw down requirements, which can vary between States and jurisdictions and watersheds. If one 6" skimmer does not provide enough capacity, multiple skimmers can be used to drain the basin. For drawdown times not shown, multiply the 24 -hour figure by the number of days required.

Example: A basin's volume is 29,600 cubic feet and it must be drained in 3 days. A 3 " skimmer with the inlet wide open will work perfectly. (Actually, the chart below gives 29,322 cubic feet but this is well within the accuracy of the calculations and the basin's constructed volume.) Example: A basin's volume is 39,000 cubic feet and it must be drained in 3 days. The 3 " skimmer is too small; a 4" skimmer has enough capacity but it is too large, so the inlet will need
to be reduced using step 2 to adjust the flow rate for the basin's volume. (It needs a 3.2" diameter orifice.)

1112" skimmer:	1,728 cubic feet in 24 hours	6,912 cubic feet in 4 days
with a $11 / 2$ " head	3,456 cubic feet in 2 days	12,096 cubic feet in 7 days
	5,184 cubic feet in 3 days	
2" skimmer: with a 2" head	3,283 cubic feet in 24 hours	13,132 cubic feet in 4 days
	6,566 cubic feet in 2 days	22,982 cubic feet in 7 days
	9,849 cubic feet in 3 days	
2½" skimmer: with a 2.5 " head Revised 11-6-07	6,234 cubic feet in 24 hours	24,936 cubic feet in 4 days
	12,468 cubic feet in 2 days	43,638 cubic feet in 7 days
	18,702 cubic feet in 3 days	
3" skimmer: with a 3" head	9,774 cubic feet in 24 hours	39,096 cubic feet in 4 days
	19,547 cubic feet in 2 days	68,415 cubic feet in 7 days
	29,322 cubic feet in 3 days	
4" skimmer: with a 4" head Revised 11-6-07	20,109 cubic feet in 24 hours	80,436 cubic feet in 4 days
	40,218 cubic feet in 2 days	140,763 cubic feet in 7 days
	60,327 cubic feet in 3 days	
5" skimmer: with a 4" head	32,832 cubic feet in 24 hours	131,328 cubic feet in 4 days
	65,664 cubic feet in 2 days	229,824 cubic feet in 7 days
	98,496 cubic feet in 3 days	
6" skimmer: with a 5 " head	51,840 cubic feet in 24 hours	207,360 cubic feet in 4 days
	103,680 cubic feet in 2 days	362,880 cubic feet in 7 days
	155,520 cubic feet in 3 days	
8" skimmer: with a 6 " head CUSTOM MADE BY ORDER	97,978 cubic feet in 24 hours	391,912 cubic feet in 4 days
	195,956 cubic feet in 2 days	685,846 cubic feet in 7 days
	293,934 cubic feet in 3 days	
	CALL!	

Determining the Orifice

Step 2. To determine the orifice required to reduce the flow rate for the basin's volume and the number of days to drain the basin, simply use the formula volume \div factor (from the chart below) for the same size skimmer chosen in the first step and the same number of days. This calculation will give the area of the required orifice. Then calculate the orifice radius using Area $=\pi r^{2}$ and solving for $r, r=\sqrt{(\text { Area /3.14) }}$. The supplied cutter can be adjusted to this radius to cut the orifice in the plug. The instructions with the plug and cutter has a ruler divided into tenths of inches. Again, this step is not always necessary as explained above.

An alternative method is to use the orifice equation with the head for a particular skimmer shown on the previous page and determine the orifice needed to give the required flow for the volume and draw down time. $\mathrm{C}=0.59$ is used in this chart.

Example: A 4" skimmer is the smallest skimmer that will drain 39,000 cubic feet in 3 days but a 4 " inlet will drain the basin too fast (in 1.9 days) To determine the orifice required use the factor of 4,803 from the chart below for a 4 " skimmer and a drawdown time of 3 days. 39,000 cubic
feet $\div 4,803=8.12$ square inches of orifice required. Calculate the orifice radius using Area $=\pi$ r^{2} and solving for $r, r=\sqrt{(8.12 / 3.14)}$ and $r=1.61$ ". As a practical matter 1.6 " is about as close as the cutter can be adjusted and the orifice cut..

Factors (in cubic feet of flow per square inch of opening through a round orifice with the head for that skimmer and for the drawdown times shown) for determining the orifice radius for a basin's volume to be drained. This quick method works because the orifice is centered and has a constant head (given above in Step 1).

11⁄2" skimmer:	960 to drain in 24 hours	3,840 to drain in 4 days
	1,920 to drain in $\mathbf{2}$ days	6,720 to drain in 7 days
	2,880 to drain in 3 days	
2" skimmer:	1,123 to drain in 24 hours	4,492 to drain in 4 days
	2,246 to drain in 2 days	7,861 to drain in 7 days
	3,369 to drain in $\mathbf{3}$ days	
21⁄2" skimmer:	1,270 to drain in 24 hours	5,080 to drain in 4 days
Revised 11-6-07	2,540 to drain in $\mathbf{2}$ days	8,890 to drain in 7 days
	3,810 to drain in $\mathbf{3}$ days	
3" skimmer:	1,382 to drain in $\mathbf{2 4}$ hours	5,528 to drain in 4 days
	2,765 to drain in $\mathbf{2}$ days	9,677 to drain in 7 days
	4,146 to drain in 3 days	
4" skimmer:	1,601 to drain in $\mathbf{2 4}$ hours	6,404 to drain in 4 days
Revised 11-6-07	3,202 to drain in 2 days	11,207 to drain in 7 days
	4,803 to drain in 3 days	
5" skimmer:	1,642 to drain in $\mathbf{2 4}$ hours	6,568 to drain in 4 days
	3,283 to drain in 2 days	11,491 to drain in 7 days
	4,926 to drain in 3 days	
6" skimmer:	1,814 to drain in $\mathbf{2 4}$ hours	7,256 to drain in 4 days
	3,628 to drain in 2 days	12,701 to drain in 7 days
	5,442 to drain in 3 days	
8" skimmer:	1,987 to drain in $\mathbf{2 4}$ hours	7,948 to drain in 4 days
	3,974 to drain in $\mathbf{2}$ days	13,909 to drain in 7 days
	5,961 to drain in $\mathbf{3}$ days	

J. W. Faircloth \& Son, Inc.
Post Office Box 757
412-A Buttonwood Drive Hillsborough, North Carolina 27278
Telephone (919) 732-1244 FAX (919) 732-1266 FairclothSkimmer.com jwfaircloth@embarqmail.com

Orifice sizing Revised 2-2-01; 3-3-05; 2-1-07; 11-6-07

Reference 10

SC DHEC Stormwater BMP Handbook, Appendix E - South Carolina Soils, SC DHEC, Revised July 2005.

Reference 11

SC DHEC Stormwater MP Handbook, Appendix K - Figures, SC DHEC, Revised July 2005.
qpo/AV15

DESIGN AID FOR ESTIMATING TRAPPING EFFICIENCY FOR SEDIMENT BASINS NOT LOCATED IN LOW LYING AREAS AND/OR NOT HAVING A HIGH WATER TABLE

FIGURE SB-2
TRAPPING EFFIENCY FOR BASINS IN LOW LYING AREAS
qpo/AV15

DESIGN AID FOR ESTIMATING TRAPPING EFFICIENCY FOR SEDIMENT BASINS LOCATED IN LOW LYING AREAS AND/OR HAVING A HIGH WATER TABLE

Reference 12

ENG - Riprap Lined Plunge Pool for Cantilever Outlet, USDA SCS Design Note. No. 6, $2^{\text {nd }}$ Ed. March 5, 1986.

SUBJECT: ENG - RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET

Purpose. To distribute Design Note No. 6 (Second Edition), "Riprap Lined Plunge Pool for Cantilever Outlet."

Effective Date. Effective when received.
Explanation. Design Note No. 6 was originally issued in 1969 and was based on research reported in 1967. This second edition was developed based on recently reported research by Fred W. Blaisdell of the Agricultural Research Service. The need for a revision of the original Design Note No. 6 has been identified by several reported situations of riprap being displaced from the plunge pool.

The Blaisdell developed mathematical model is in overall agreement with the experimental data. The purpose of this edition of the design note is to present Blaisdell's final design equations with modifications to facilitate construction and still meet the minimum design requirement.

Filing Instructions. Discard the 1969 edition of Design Note No. 6 and file this second edition with other design notes.

Distribution. The design note should be useful to professionals designing or reviewing the design of an energy dissipator at the downstream end of a conduit spillway. Initial distribution is shown on the reverse side. Additional copies may be obtained from Central Supply.

JOSEPH W. HAAS
Deputy Chief for Technology
Enclosure

Design Note No. 6 (Second Edition)*

Subject: Riprap Lined Plunge Pool for Cantilever Outlet

INTRODUCTION

The energy in flow exiting from a spillway usually requires dissipation before being released to the outlet channel. For flow exiting from a conduit, when an open plunge pool is acceptable, an excavated ripraplined hole at the downstream end of the conduit can be an economical energy dissipator. However, the size of plunge pool, location relative to the conduit outlet, and size of riprap must be properly designed for the plunge pool to operate successfully. Successful operation consists of negligible kinetic energy in the outflow, no erosion or loss of the plunge pool foundation soil due to the turbulence in the process of energy dissipation, and no displacement of the riprap.

Design Note No. 6, originally issued in 1969, was based on research reported in 1967. This second edition was developed based on recently reported research (Blaisdell and Anderson 1984). The need for a revision was identified by several reported situations of riprap being displaced from the plunge pool.

Fred W. Blaisde11, Research Hydraulic Engineer, of the Agricultural Research Service conducted experiments at the Saint Anthony Falls Hydraulic Laboratory of the University of Minnesota in Minneapolis to evaluate the scour at cantilevered pipe spillway outlets. The Blaisdell developed mathematical model indicates an overall agreement with the experimental data. The final equations for the design of plunge pool energy dissipators for cantilevered pipe spillways were presented at the ASCE Hydraulic Division Conference in Coeur d'Alene, Idaho, August, 1984. The purpose of this edition of the design note is to present the final design equations with modifications to facilitate the evaluation of plunge pool shape, length, width, depth, position in relation to the outlet end of the conduit, and plunge pool volumes. Figures 1 and 2 illustrate the plunge pool layout dimensions.

DISCHARGE PARAMETER

The plunge pool dimensions were developed using a discharge parameter. The parameter is based on the design discharge, Q , pipe diameter, D , and combined with the acceleration of gravity, g, resulting in a

[^1] D.C.
dimensionless parameter of $\frac{Q}{\sqrt{\mathrm{gD}^{5}}}$. This is very convenient since Q and D are known prior to the plunge pool design.

Figure 1 -- Plunge pool definition sketch

DISCHARGE JET TRAJECTORY

The plunge pool location is determined by the discharge jet trajectory. The location of the plunge pool centerline downstream from the discharge end of the pipe is dependent on the jet velocity and angle of impingement with the pool surface as well as the plunge pool depth.

The jet impingement velocity and angle of entry into the pool can be determined from the pipe exit slope, pipe discharge velocity, and height of pipe invert above the water surface. The height of pipe invert above the water surface, Z_{p}, should be measured from the tailwater elevation for the associated discharge used for the plunge pool design. The discharge should be the maximum prior to any secondary spillway flow. The pipe slope is $\frac{S}{\sqrt{1-S^{2}}}$, where S is the sine of the angle whose tangent is the slope of the pipe. The discharge velocity, V_{o}, is computed based on the design discharge and the conduit cross-sectional area. The path of the free falling jet is a parabola between the pipe exit and tailwater surface where the jet enters the water with the impingement velocity, V_{p}, and the slope, tan α. The horizontal distance, X_{p}, from the pipe exit to where the jet plunges into the tailwater with horizontal velocity, V_{h}, and vertical velocity, V_{v}, is given in Eq. 5; where

$$
\begin{aligned}
& V_{h}=V_{0} \cos \left(\sin ^{-1} S\right) \\
& V_{v}=\sqrt{\left(V_{0} S\right)^{2}+2 g\left[Z_{p}+\frac{D}{2} \cos \left(\sin ^{-1} S\right)\right]} \\
& \tan \alpha=\frac{V_{v}}{V_{h}} \\
& V_{p}=\sqrt{v_{h}^{2}+v_{v}^{2}} \\
& X_{p}=\frac{V_{h}}{g}\left(V_{v}-V_{o} S\right)
\end{aligned}
$$

Eq. 1

Eq. 2

Eq. 3

Eq. 4

Eq. 5

PLUNGE POOL DEPTH

The depth of erosion created by the discharging jet can be controlled by the bed material size. The bed material is represented by its mean grain size, d_{50}, the size of which 50 percent by weight is finer in diameter. The research tests were run on noncohesive materials. Therefore, this design procedure is appropriate for soil and rock bed material that perform as single grain material in resisting erosion. The d_{50} size for riprap lining material may be varied to adfust the erosion depth. The plunge pool depth is computed using a densimetric Froude number, F_{d}, as follows:

$$
F_{d}=\frac{V_{p}}{\sqrt{g d_{50}\left(\rho_{s}-\rho\right) / \rho}}
$$

Eq. 6
where: $\quad \rho_{s}=$ Bed material or riprap particle density $\rho=$ Water density

For $\frac{Z_{p}}{D} \leqslant 1$, the maximum eroded depth is computed by the equation

$$
Z_{m}=7.5 \mathrm{D}\left[1-\mathrm{e}^{-0.6\left(\mathrm{~F}_{\mathrm{d}}-2\right)}\right] \quad \mathrm{Eq} \cdot 7 \mathrm{a}
$$

For $\frac{Z}{D}>1$, the maximum eroded depth is computed by the equation

$$
Z_{m}=10.5 \mathrm{D}\left[1-\mathrm{e}^{-0.35\left(\mathrm{~F}_{\mathrm{d}}-2\right)}\right] \quad \mathrm{Eq} \cdot 7 \mathrm{~b}
$$

The effect of a horizontal ledge or a nonerodible layer on the shape of the plunge pool above the layer was tested and found to be a minimal.

The dimensions of the plunge pool are functions of $\frac{Z_{m}}{D}$. When the plunge pool dimensions are based on the value of z_{m}, the designed contours above the ledge conform to the plunge pool shape. Therefore, it is acceptable to size and construct the plunge pool to 0.8 of the computed maximum depth, Z_{m}. However, the full value of the computed Z_{m}, as determined by equation 7 a or 7 b , must be used in subsequent equations 9, 10 , and 11.

The d_{50} bed material size must be checked to assure that it is adequate to control shallow beach type erosion at the top edge of the plunge pool. High flow rates during research testing caused flow to circulate upstream along both sides of the plunge pool. When these circulating flows exceeded the bed material's critical tractive stress, beach erosion at the top edge of the plunge pool occurred. The check for adequate bed material size up to the tailwater elevation is by equation 8 . The d_{50} size is adequate and beach erosion will not occur if

$$
\begin{equation*}
\frac{Q}{\sqrt{g D^{5}}} \leqslant\left[1.0+25 \frac{d_{50}}{D}\right] \tag{Eq. 8}
\end{equation*}
$$

If the bed material d_{50} is not large enough, protection will need to be added. In the case of riprap, a larger particle gradation will be required.

LOCATION OF PLUNGE POOL
The horizontal distance, X_{m}, from the pipe exit to the center of the plunge pool, i.e., where maximum scour depth occurs is

$$
X_{m}=\left[X_{p}+\frac{Z_{m}}{\tan \alpha}\right] 1.15 e^{-0.15\left[Q /\left(g D^{5}\right)^{1 / 2}\right]}
$$

Eq. 9

> DIMENSION OF PLUNGE POOL

The plunge pool natural shape is an ellipse with the greater length parallel to the pipe flow. The minimum size based on laboratory tests is the result of flow turbulence, boundary tractive stresses and submerged angle of repose of granular material. The test material d_{50} sizes ranged from 0.5 to 8 mm . The minimum horizontal distance from the center of the plunge pool to the water surface contour at the upstream end of the pool is equal to L_{e}.

$$
\begin{aligned}
L_{e}=Z_{m}\left[\frac{3}{2}+\frac{1}{3} \frac{Q}{\sqrt{g D^{5}}}\right] & \text { Eq. } 10 \\
& (210-V I-D N-6, \text { Second Ed., January 1986) }
\end{aligned}
$$

Pigure 2 - Plunge Pool

Since the plunge pool shape is that of an ellipse, the distance from the center of the plunge pool to the water surface contour at the projected scour hole slope at the downstream end is also equal to the minimum L_{e}.

The minimum width of the plunge pool at the center of the pool is equal to $2 W_{e}$.

$$
W_{e}=Z_{m}\left[1.5+0.15 \frac{Q}{\sqrt{g D^{5}}}\right]
$$

Eq. 11

Once the minimum width, length, depth and the distance from the end of the pipe to the center of the plunge pool are determined for a given spillway layout and d_{50} particle size, the final design shape and dimensions can be estabilshed. It is suggested that a comparable rectangular shape with length equal to $2 \mathrm{~L}_{e}$ and width equal to $2 \mathrm{~W}_{e}$ be specified thus facilitating construction and still meeting the minimum design requirement. The dimensions of the rectangular base at the bottom of the plunge pool, $0.8 \mathrm{Z}_{\mathrm{m}}$ below the water surface, are length, ${ }^{2} \mathrm{~L}_{\mathrm{r} 2}$, and width, $2 W_{r 2}$ where;

$$
\begin{align*}
2 \mathrm{~L}_{\mathrm{r} 2} & =0.4 \mathrm{~L}_{\mathrm{e}} \tag{Eq. 12}\\
2 \mathrm{~W}_{\mathrm{r} 2} & =0.4 \mathrm{~W}_{\mathrm{e}}
\end{align*}
$$

It is recommended that the excavated side slopes of the plunge pool along the length, z_{ℓ} and along the width, z_{ω}, be adjusted to acceptable grades for layout and riprap placement purposes, e.g., 3 horizontal to 1 vertical. The final length and width of the plunge pool at the water surface are $2 L_{r}$ and $2 W_{r}$, respectively. Where;

$$
\begin{align*}
& \mathrm{L}_{\mathrm{r}}=0.8 \mathrm{Z}_{\mathrm{m} \ell}^{\mathrm{z}}+\mathrm{L}_{\mathrm{r} 2} \tag{Eq. 14}\\
& \mathrm{~W}_{\mathrm{r}}=0.8 \mathrm{Z}_{\mathrm{m} \omega} \mathrm{z}_{\omega}+\mathrm{W}_{\mathrm{r} 2} \tag{Eq. 15}
\end{align*}
$$

If L_{r} is less than X_{m}, the water surface contour at the upstream end of the pool is downstream from the end of the conduit. Therefore, L_{r} should be increased to equal to or greater than X_{m}.

PLUNGE POOL VOLUMES

The volume, V, in cu. yds. of the plunge pool and lining materials, such as riprap and granular filter, can be determined as frustums of pyramids. For convenience, the appropriate equation is listed below

$$
V=\frac{1}{81}\left[A_{1}+A_{2}+\sqrt{A_{1} A_{2}}\right] z
$$

where $\quad A_{1}$ is the plan rectangular area of the plunge pool at the invert elevation of the outlet channel, ft^{2}
A_{2} is the plan rectangular area at the bottom of the plunge pool at a distance Z below the invert elevation of the outlet channel, ft^{2}

Z is either equal to $0.8 Z_{m}-Z_{d}, 0.8 Z_{m}-Z_{d}+a_{1}$, or $0.8 Z_{m}-Z_{d}+a_{2}$ below the invert elevation of the outlet channel, ft.
a_{1} is the thickness of the riprap lining, ft. a_{2} is the thickness of the riprap lining and granular filter material, ft.
Z_{d} is the water depth above the invert elevation of the outlet channel, ft.

The volumes of riprap and filter material above the invert elevation of the outlet channel depend on the site topography.

PROCEDURE
The step procedure given below is in a form that can easily be programmed on either programmable calculators or microcomputers.

1. Compute $\frac{Q}{\sqrt{g D^{5}}}$
2. Compute $V_{0}=\frac{4 Q}{\pi D^{2}}$
3. Compute $V_{h}=V_{0} \cos \left(\sin ^{-1} \mathrm{~s}\right)$

Eq. 1
$V_{v}=\sqrt{\left(V_{0} S\right)^{2}+2 g\left[z_{p}+\frac{D}{2} \cos \left(\sin ^{-1} S\right)\right]} \quad$ Eq. 2
$\tan \alpha=\frac{V_{v}}{V_{h}}$
Eq. 3

$$
v_{p}=\sqrt{v_{h}^{2}+v_{v}^{2}}
$$

Eq. 4

$$
X_{p}=\frac{V_{h}}{g}\left(V_{v}-V_{0} S\right)
$$

Eq. 5
4. Compute $F_{d}=\frac{V_{p}}{\sqrt{g d_{50}\left(\rho_{s}-\rho\right) / p}}$

Eq. 6
5. Compute $\frac{Z_{p}}{D}$; if $\leqslant 1$, $G o$ to step $6 a$; if >1, Go to step $6 b$

6a. Compute $Z_{m}=7.5 \mathrm{D}\left[1-e^{-0.6\left(F_{d}-2\right)}\right]$; Go to step 7 Eq. 7a

6b. Compute $Z_{m}=10.5 \mathrm{D}\left[1-\mathrm{e}^{-0.35\left(\mathrm{~F}_{\mathrm{d}}-2\right)}\right]$
Eq. $7 b$
7. Compute $1.0+25 \frac{\mathrm{~d}_{50}}{\mathrm{D}}$

Eq. 8
8. If $\frac{Q}{\sqrt{g D^{5}}} \leqslant 1.0+25 \frac{d_{50}}{D}$, then go to step 9 ; otherwise, make
design adjustments to increase d_{50} and return to step 4.
9. Compute $X_{m}=\left[X_{p}+\frac{Z_{m}}{\tan \alpha}\right] 1.15 e^{-0.15\left[Q /\left(g D^{5}\right)^{1 / 2}\right]} \quad$ Eq. 9
10. Compute $\mathrm{L}_{\mathrm{e}}=\mathrm{Z}_{\mathrm{m}}\left[\frac{3}{2}+\frac{1}{3} \frac{Q}{\sqrt{\mathrm{gD}^{5}}}\right]$

$$
W_{e}=z_{m}\left[1.5+0.15 \frac{Q}{\sqrt{g D^{5}}}\right]
$$

11. Determine A_{2}, plan rectangular area of the plunge pool bottom at $0.8 \mathrm{Z}_{\mathrm{m}}$ below the water surface
$\mathrm{L}_{\mathrm{r} 2}=0.2 \mathrm{~L}_{\mathrm{e}}$
$\mathrm{W}_{\mathrm{r} 2}=0.2 \mathrm{~W}_{\mathrm{e}}$
$\mathrm{A}_{2}=4 \mathrm{~L}_{\mathrm{r} 2} \mathrm{~W}_{\mathrm{r} 2}$
12. Check the side slopes of the plunge pool and adjust, if necessary to acceptable grades, z_{ℓ} and z_{ω}. The final length and width of the plunge pool at the water surface are $2 L_{r}$ and $2 W_{r}$, respectively.
$\mathrm{L}_{\mathrm{r}}=0.8 \mathrm{Z}_{\mathrm{m}} \quad \mathrm{z}_{\ell}+\mathrm{L}_{\mathrm{r} 2}$
$W_{r}=0.8 \mathrm{Z}_{\mathrm{m}} \quad \mathrm{z}_{\omega}+\mathrm{W}_{\mathrm{r} 2}$
13. If $L_{r}<X_{m}$, increase side slope, z_{ℓ}, so that $L_{r} \geqslant X_{m}$
14. Determine A_{1}, plan rectangular area of the plunge pool at the invert elevation of the outlet channel

$$
A_{1}=4\left(L_{r}-z_{\ell} Z_{d}\right)\left(W_{r}-z_{\omega} Z_{d}\right)
$$

15. Plunge Pool Volume:

The Volume between a horizontal plane at the invert elevation of the outlet channel and the exposed riprap surface is V_{ao}.

$$
v_{a o}=\frac{1}{81}\left[A_{1}+A_{2}+\sqrt{A_{1} A_{2}}\right]\left[0.8 Z_{m}-Z_{d}\right], \text { cu. yds. }
$$

The volume between a horizontal plane at the invert elevation of the outlet channel and a surface at a thickness, a_{1}, below the exposed riprap surface is V_{al}.

$$
V_{a l}=\frac{1}{81}\left[A_{1 a l}+A_{2 a l}+\sqrt{A_{1 a l} A_{2 a 1}}\right]\left[0.8 z_{m}-Z_{d}+a_{1}\right], \text { cu. yds. }
$$

where $A_{1 a l}=4\left[L_{r}-z_{\ell} Z_{d}+a_{1} \sqrt{1+z_{\ell}^{2}}\right]\left[W_{r}-z_{\omega} Z_{d}+a_{1} \sqrt{1+z_{\omega}^{2}}\right]$
and

$$
A_{2 a 1}=4\left[L_{r 2}+a_{1}\left(\sqrt{1+z_{\ell}^{2}}-z_{\ell}\right)\right]\left[W_{r 2}+a_{1}\left(\sqrt{1+z_{\omega}^{2}}-z_{\omega}\right)\right]
$$

The volume of riprap at thickness, a_{1}, below a horizontal plane at the invert elevation of the outlet channel, exclusive of the volume of the riprap filter cap is $\mathrm{V}_{\mathrm{al}}-\mathrm{V}_{\mathrm{ao}}$, cu . yds.

The volume between a horizontal plane at the invert elevation of the outlet channel and a surface at a thickness, a_{2}, below the exposed riprap surface is $\mathrm{V}_{\mathrm{a} 2}$
$v_{a 2}=\frac{1}{81}\left[A_{1 a 2}+A_{2 a 2}+\sqrt{A_{1 a 2} A_{2 a 2}}\right]\left[0.8 z_{m}-Z_{d}+a_{2}\right]$, cu. yds.
where $A_{l a 2}=4\left[L_{r}-z_{\ell} Z_{d}+a_{2} \sqrt{1+z_{\ell}^{2}}\right]\left[W_{r}-z_{\omega} z_{d}+a_{2} \sqrt{1+z_{\omega}^{2}}\right]$
and

$$
A_{2 a 2}=4\left[L_{r 2}+a_{2}\left(\sqrt{1+z_{\ell}^{2}}-z_{\ell}\right)\right]\left[W_{r 2}+a_{2}\left(\sqrt{1+z_{\omega}^{2}}-z_{\omega}\right)\right]
$$

The volume of filter material of thickness, $a_{2}-a_{1}$, below a horizontal plane at the invert elevation of the outlet channel, including the volume of the riprap filter cap, is equal to $\mathrm{v}_{\mathrm{a} 2}-\mathrm{v}_{\mathrm{al}}$, cu. yds.

EXAMPLE

Given:
Invert elevation at outlet end of conduit $=102.5$
Invert elevation of outlet channel $=100.0$
Elevation of tailwater for maximum conduit discharge $=101.5$
$Q=147 \mathrm{cfs}, \quad D=2.5 \mathrm{ft} ., \quad \mathrm{S}=0$
Riprap size, $d_{50}=1.0 \mathrm{ft}, \rho_{\mathrm{s}}=2.64$
Thickness of filter material bed $=0.75 \mathrm{ft}$.

Determine:
I. Plunge pool position with respect to outlet end of conduit
II. Plunge pool depth, length, and width
III. Plunge pool volumes below the invert elevation of outlet channel

Solution:

1. $\frac{Q}{\sqrt{g D^{5}}}=\frac{147}{\sqrt{32.16(2.5)^{5}}}=2.62$
2. $V_{0}=\frac{4 Q}{\pi D^{2}}=\frac{4(147)}{3.14(2.5)^{2}}=30 \mathrm{ft} / \mathrm{sec}$
3. $V_{h}=V_{0} \cos \left(\sin ^{-1} \mathrm{~S}\right)=30 \mathrm{ft} / \mathrm{sec}$

$$
\begin{aligned}
V_{v} & =\left[\left(V_{o} S\right)^{2}+2 g\left(Z_{p}+\frac{D}{2} \cos \left(\sin ^{-1} \mathrm{~S}\right)\right)\right]^{1 / 2}=\left[0+64.32\left(1.0+\frac{2.5}{2}\right)\right]^{1 / 2} \\
& =12.0 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

$\tan \alpha=\frac{V_{v}}{V_{h}}=\frac{12.0}{30}=0.40$
$V_{p}=\sqrt{v_{h}^{2}+v_{v}^{2}}=\sqrt{(30)^{2}+(12.0)^{2}}=32.3 \mathrm{ft} / \mathrm{sec}$
$X_{p}=\frac{V_{h}}{g}\left(V_{v}-V_{0} S\right)=\frac{30}{32.16}(12.0)=11.2 \mathrm{ft}$
4. $\quad F_{d}=\frac{V_{p}}{\sqrt{g d_{50}\left(\rho_{s}-\rho\right) / \rho}}=\frac{32.3}{\sqrt{32.16(1)(2.64-1) / 1}}=4.45$
5. $\frac{Z_{p}}{D}=\frac{1}{2.5}=0.4<1$, therefore use Equation 6a
6. $Z_{m}=7.5 D\left[1-e^{-0.6\left(F_{d}-2\right)}\right]=7.5(2.5)\left[1-e^{-1.47}\right]=14.4 \mathrm{ft}$
7. $1.0+25 \frac{d_{50}}{D}=1.0+25 \frac{1}{2.5}=11$
8. $\frac{Q}{\sqrt{g D^{5}}}<\left[1.0+25 \frac{d_{50}}{D}\right]$;
therefore riprap size is adequate to prevent significant shallow erosion enlargement at water surface elevation.
9. Plunge pool position from outlet end of pipe to center of pool, X_{m}

$$
\begin{aligned}
& X_{m}=\left[X_{p}+\frac{Z_{m}}{\tan \alpha}\right] 1.15 e^{-0.15\left(Q / \sqrt{g D^{5}}\right)} \\
& X_{m}=\left[11.2+\frac{14.4}{0.40}\right] 1.15 e^{-0.15(2.62)}=36.6 \mathrm{ft}
\end{aligned}
$$

10. Plunge Pool Dimensions
depth at center $=0.8 \mathrm{Z}_{\mathrm{m}}=0.8(14.4)=11.5 \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{e}}=\mathrm{z}_{\mathrm{m}}\left[\frac{3}{2}+\frac{1}{3} \frac{Q}{\sqrt{\mathrm{gD}^{5}}}\right]=14.4\left[\frac{3}{2}+\frac{2.62}{3}\right]=34.2 \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{e}}=\mathrm{z}_{\mathrm{m}}\left[1.5+0.15 \frac{Q}{\sqrt{\mathrm{gD}^{5}}}\right]=14.4[1.5+0.15(2.62)]=27.3 \mathrm{ft}
\end{aligned}
$$

11. $\mathrm{L}_{\mathrm{r} 2}=0.2 \mathrm{~L}_{\mathrm{e}}=0.2(34.2)=6.8 \mathrm{ft}$.
$W_{r 2}=0.2 W_{e}=0.2(27.3)=5.5 \mathrm{ft}$.
$A_{2}=4 L_{r 2} W_{r 2}=4(6.8)(5.5)=150 \mathrm{ft}^{2}$
12. $z_{\ell}=\frac{L_{e}-L_{r 2}}{0.8 z_{m}}=\frac{34.2-6.8}{11.5}=2.4$; Adjust z_{ℓ} to 3.0

$$
\therefore \mathrm{L}_{\mathrm{r}}=0.8 \mathrm{z}_{\mathrm{m}} \mathrm{z}_{\ell}+\mathrm{L}_{\mathrm{r} 2}=11.5(3.0)+6.8=41.3 \mathrm{ft}
$$

$$
z_{\omega}=\frac{W_{e}-W_{r 2}}{0.8 z_{m}}=\frac{27.3-5.5}{11.5}=1.9 ; \text { Ad just } z_{\omega} \text { to } 2.0
$$

$$
\therefore W_{r}=0.8 z_{\mathrm{m}} z_{\omega}+W_{r 2}=11.5(2.0)+5.5=28.5 \mathrm{ft}
$$

13. $L_{r}=41.3>X_{m}=36.6 \quad 0 . K$.
14. $A_{1}=4\left(L_{r}-Z_{\ell} Z_{d}\right)\left(W_{r}-z_{\omega} Z_{d}\right)=4[41.3-3(1.5)][28.5-2(1.5)]$
$=3754 \mathrm{ft}^{2}$
15. $V_{a o}=\frac{1}{81}\left[A_{1}+A_{2}+\sqrt{A_{1} A_{2}}\right]\left[0.8 Z_{m}-Z_{d}\right]$
$=\frac{1}{81}[3754+150+\sqrt{3754 \times 150}][11.5-1.5]=574 \mathrm{cu} . \mathrm{yds}$.

12

$$
\begin{aligned}
& A_{l a l}=4\left[L_{r}-z_{\ell} Z_{d}+a_{1} \sqrt{1+z_{\ell}^{2}}\right]\left[W_{r}-z_{\omega} Z_{d}+a_{1} \sqrt{1+z_{\omega}^{2}}\right. \\
& =4\left[41.3-3(1.5)+2.5 \sqrt{1+3^{2}}\right]\left[28.5-2(1.5)+2.5 \sqrt{1+2^{2}}\right] \\
& =5560 \mathrm{ft}^{2} \\
& A_{2 a 1}=4\left[L_{r 2}+a_{1}\left(\sqrt{1+z_{\ell}^{2}}-z_{\ell}\right)\right]\left[W_{r 2}+a_{1}\left(\sqrt{1+z_{\omega}^{2}}-z_{\omega}\right)\right] \\
& =4\left[6.8+2.5\left(\sqrt{1+3^{2}}-3\right)\right]\left[5.5+2.5\left(\sqrt{1+2^{2}}-2\right)\right]=176 \mathrm{ft}^{2} \\
& V_{a l}=\frac{1}{81}\left[A_{1 a l}+A_{2 a l}+\sqrt{A_{1 a l} A_{2 a l}}\right]\left[0.8 z_{m}-Z_{d}+a_{1}\right] \\
& =\frac{1}{81}[5560+176+\sqrt{5560 \times 176}][11.5-1.5+2.5]=1038 \mathrm{cu} . \mathrm{yds} . \\
& \text { Volume of riprap }=\mathrm{V}_{\mathrm{al}}-\mathrm{V}_{\mathrm{ao}}=1038-574=464 \mathrm{cu} \text {. yds. } \\
& A_{l a 2}=4[41.3-4.5+3.25 \sqrt{10}][28.5-3+3.25 \sqrt{5}]=6170 \mathrm{ft}^{2} \\
& A_{2 a}=4[6.8+3.25(\sqrt{10}-3)][5.5+3.25(\sqrt{5}-2)]=184 \mathrm{ft}^{2} \\
& v_{a 2}=\frac{1}{81}[6170+184+\sqrt{6170 \times 184}][11.5-1.5+3.25]=1214 \mathrm{cu} . y d s .
\end{aligned}
$$

Volume of filter $=\mathrm{V}_{\mathrm{a} 2}-\mathrm{V}_{\mathrm{a} 1}=1214-1038=176 \mathrm{cu} . \mathrm{yds}$.

NOMENCLATURE

a_{1}	三	Thickness of riprap，ft
a_{2}	三	Thickness of riprap and filter material，ft
\mathbf{A}_{1}	三	Plan rectangular area of the plunge pool at the invert elevation of the outlet channel， ft^{2}
\mathbf{A}_{2}	\equiv	Plan rectangular area at the bottom of the plunge pool at a distance Z below the invert elevation of the outlet channel， ft^{2} ．
d_{50}	ミ	Size of rock in riprap of which 50 percent by weight is finer，ft
D	\equiv	Cantilever outlet pipe diameter，ft
e	ミ	Base of natural logarithms
$\mathrm{F}_{\mathbf{d}}$	三	Densimetric Froude number
g	三	Acceleration of gravity，ft／sec ${ }^{2}$
L_{e}	\equiv	Minimum horizontal distance from the center of the pool to the water surface contour at the upstream or down－ stream end of an elliptical－shape plunge pool，ft
$L_{\mathbf{r}}$	\equiv	Adjusted horizontal distance from the center of the pool to the water surface contour at the upstream or downstream end of the rectangular－shape plunge pool，ft
$L_{r 2}$	\equiv	One－half＇the length of the bottom of a rectangular－shape plunge pool，ft
Q	\equiv	Design discharge，cfs
S	\equiv	Sine of the angle whose tangent is the slope of the pipe
$\mathrm{V}_{\text {ao }}$	\equiv	Volume of the plunge pool between the invert elevation of the outlet channel and the exposed riprap surface，cu．yds．
$\mathrm{V}_{\text {al }}$	\equiv	Volume of the plunge pool between the invert elevation of the outlet channel and a surface at a thickness，a_{1} ， below the exposed riprap surface，cu．yds．
$\mathrm{V}_{\mathrm{a} 2}$	\equiv	Volume of the plunge pool between the invert elevation of the outlet channel and a surface at a thickness，a_{2} ． below the exposed riprap surface，cu．yds．
		（210－VI－DN－6，Second Ed．，January 1986）

V_{h}	ミ	Horizontal component of the jet impingement velocity， V_{p} ， $\mathrm{ft} / \mathrm{sec}$
v_{0}	三	Velocity in the pipe corresponding to the design discharge， Q，ft／sec
V_{p}	\equiv	Velocity where the jet plunges into the water surface， ft／sec
v_{v}	\equiv	Vertical component of the jet impingement velocity，V_{p} ， $\mathrm{ft} / \mathrm{sec}$
W_{e}	\equiv	One－half the minimum width at the center of the elliptical－ shape plunge pool at the water surface elevation，ft
W_{r}	三	One－half the adjusted width at the center of the rectangular－ shape plunge pool at the water surface elevation，ft
$\mathrm{W}_{\mathrm{r} 2}$	ミ	One－half the width of the bottom of a rectangular plunge pool，ft
$\mathrm{X}_{\text {m }}$	三	Horizontal distance from the pipe exit to the center of the plunge pool，ft
X_{p}	ミ	Horizontal distance from the pipe exit to the center of the jet plunging into the water surface，ft
${ }^{2} \ell$	三	Side slope ratio of the upstream or downstream slope of the rectangular－shape plunge pool
2_{ω}	ミ	Side slope ratio of the side slopes of the rectangular－ shape plunge pool
Z_{d}	三	Water depth above the invert elevation of the outlet channel，ft
Z_{m}	三	Maximum computed depth of the plunge pool，ft
Z_{p}	三	Vertical distance from the tailwater surface to the cantilever pipe invert，ft
p	\equiv	Water density
${ }^{\text {s }}$	三	Bed material or riprap particle density
α	三	Jet impingement angle where the jet plunges into the water surface

REFERENCES

Blaisdell, F. W., and Anderson, C. L. 1984. Pipe spillway plunge pool design equations. Proceedings of the conference - water for resource development, Hydraulics Division, ASCE, Coeur d'Alene, Idaho.

Anderson, C. L. and Blaisde11, F. W. 1982. Plunge pool energy dissipator for pipe spillways, Proceedings of the conference - applying research to hydraulic practice, ASCE, Jackson, Mississippi, p. 289-297.

Blaisdell, F. W., Anderson, C. L., and Hebaus, G. G. 1981. U1timate dimensions of local scour. Journal of the Hydraulics Division, ASCE, Vol. 107, No. HY3, Proc. Paper 16144, p. 327-337.

Reference 13

Riprap Lined Plunge Pool for Cantilever Outlet, NRCS Plunge Pool Sheets, March 2021.

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 8.99)
(Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

JOB: Luck Stone PT-SB-1 Plunge Pool		
DESIGNER: JCC	Date:	3/9/2021
CHECKER: AEW	Date:	3/9/2021
INPUT DATA:		
Conduit Diameter	$\mathrm{D}=$	2.00 ft
Conduit Discharge:	Q =	6.41 cfs
Conduit Slope at Outlet:	S =	$0.01 \mathrm{ft} / \mathrm{ft}$
Conduit Outlet Invert Elevation:	$\mathrm{El}, \mathrm{CO}=$	556.00 ft
Tailwater Elevation:	El, TW =	556.00 ft
Outlet Channel Invert Elevation:	El, CH =	556.00 ft
Water Density:	$\mathrm{RHO}=$	1.00
Bed/Riprap Particle Density: (Default 2.64)	RHOS =	2.64
D, 50 Riprap Size:	RS =	0.25 ft
Riprap Thickness: (2.5*D, 50 recommended)	RT =	0.63 ft
Bedding Thickness: (6 inch min. rec.) (Enter 0 for geotextile)	BT $=$	0.50 ft
Side Slope Ratio:	$\mathrm{Zw}=$	$2.00 \mathrm{ft} / \mathrm{ft}$
Upstream End Slope Ratio:	Zlu =	$3.00 \mathrm{ft} / \mathrm{ft}$
Downstream End Slope Ratio:	Zld =	$3.00 \mathrm{ft} / \mathrm{ft}$
Combined End Slope Ratio:	Z1 =	$3.00 \mathrm{ft} / \mathrm{tt}$

OUTPUT---POOL LOCATION AND DIMENSIONS:
Vert. Dist. from Tailwater to Conduit Invert: $\quad \mathrm{Zp}=\quad 0.00 \mathrm{ft}$
Submergence Check: (If $Z p<0$, Use $Z p=0$) Use $Z p=\quad 0.00 \mathrm{ft}$
Beaching Check: [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]
Beaching Controlled
Distance from Conduit Exit to C/L Pool:
Pool depth at C/L Below Conduit Invert:
Pool Bottom Elev:
Pool Bottom Length:
Pool Bottom Width:
Upstream Pool Length at Tailwater Elev.:
Downstream Pool Length at Tailwater Elev.:
Pool Width at Tailwater Elev.:
Check Side Slope Ratio: (Wr>=We)
Side Slope Ratio Zw O.K.
Check Min. End Slope Ratio: (Lru \& Lrd $>=$ Le)
End Slope Ratios O.K.
Check Upstream Length: (Lru >= Xm)
End Slope Ratio Zlu O.K.
Pool Bottom Elev. at Bottom of Riprap: EI, BR $=553.53 \mathrm{ft}$
Pool Bottom Elev. at Bottom of Bedding:
$\mathrm{El}, \mathrm{BB}=553.03 \mathrm{ft}$

OUTPUT---VOLUMES BELOW WATER SURFACE ELEVATION:

Volume of Excavation (measured from bottom surface of bedding):

$\mathrm{V}, \mathrm{pbs}=$	11.2 cuyd
$\mathrm{V}, \mathrm{rs}=$	3.7 cuyd
$\mathrm{V}, \mathrm{bs}=$	4.5 cuyd

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90
Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98
Design Note No. 6 (Second Edition), Jan. 23, 1986

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 8.99)
(Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

JOB: Luck Stone W-SB-1 Plunge Pool		
DESIGNER: JCC	Date:	3/9/2021
CHECKER: AEW	Date:	3/9/2021
INPUT DATA:		
Conduit Diameter	$\mathrm{D}=$	2.00
Conduit Discharge:	Q =	4.93 cfs
Conduit Slope at Outlet:	S =	$0.01 \mathrm{ft} / \mathrm{ft}$
Conduit Outlet Invert Elevation:	El, CO =	499.00 ft
Tailwater Elevation:	El, TW =	499.00 ft
Outlet Channel Invert Elevation:	El, CH =	499.00 ft
Water Density:	RHO =	1.00
Bed/Riprap Particle Density: (Default 2.64)	RHOS =	2.64
D, 50 Riprap Size:	RS =	0.25 ft
Riprap Thickness: $(2.5 * \mathrm{D}, 50$ recommended)	RT =	0.63 ft
Bedding Thickness: (6 inch min. rec.) (Enter $\mathbf{0}$ for geotextile)	BT $=$	0.50 ft
Side Slope Ratio:	$\mathrm{Zw}=$	$2.00 \mathrm{ft} / \mathrm{ft}$
Upstream End Slope Ratio:	Zlu =	$3.00 \mathrm{ft} / \mathrm{ft}$
Downstream End Slope Ratio:	Zld =	$3.00 \mathrm{ft} / \mathrm{ft}$
Combined End Slope Ratio:	Z1 =	$3.00 \mathrm{ft} / \mathrm{ft}$

OUTPUT---POOL LOCATION AND DIMENSIONS:
Vert. Dist. from Tailwater to Conduit Invert:

$\mathrm{Zp}=$	0.00	ft
Use $\mathrm{Zp}=$	0.00	ft
O.K.		

Beaching Check: [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]
Beaching Controlled
Distance from Conduit Exit to C/L Pool:
Pool depth at C/L Below Conduit Invert:
Pool Bottom Elev:
Pool Bottom Length:

$\mathrm{Xm}=$	0.90 ft	
$\mathrm{Zp}+0.8 \mathrm{Zm}=$	1.67 ft	
El, PB	$=$	497.33 ft
2 Lr 2	$=$	1.30
ft		
$2 \mathrm{Wr2}$	$=$	1.27
ft		
Lru	$=$	5.67
ft		
Lrd	$=$	5.67
ft		
2 Wr	$=$	7.97
ft		

Upstream Pool Length at Tailwater Elev.:
Lru =
Downstream Pool Length at Tailwater Elev.:
2 Wr =
7.97 ft

Check Side Slope Ratio: (Wr>=We)
Side Slope Ratio Zw O.K.
Check Min. End Slope Ratio: (Lru \& Lrd >= Le)
O.K.
End Slope Ratios O.K.
Check Upstream Length: (Lru >=Xm)
End Slope Ratio Zlu O.K.
Pool Bottom Elev. at Bottom of Riprap: EI, BR $=496.70 \mathrm{ft}$
Pool Bottom Elev. at Bottom of Bedding:
$\mathrm{El}, \mathrm{BB}=496.20 \mathrm{ft}$
OUTPUT---VOLUMES BELOW WATER SURFACE ELEVATION:
Volume of Excavation (measured from bottom surface of bedding):

$\mathrm{V}, \mathrm{pbs}=$	9.2 cu yd
$\mathrm{V}, \mathrm{rs}=$	3.1 cu yd
$\mathrm{V}, \mathrm{bs}=$	3.9 cu yd

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90
Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98
Design Note No. 6 (Second Edition), Jan. 23, 1986

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 8.99)
(Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

OUTPUT---POOL LOCATION AND DIMENSIONS:
Vert. Dist. from Tailwater to Conduit Invert: $\quad \mathrm{Zp}=\quad 0.00 \mathrm{ft}$
Submergence Check: (If $Z p<0$, Use $Z p=0$) Use $Z p=\quad 0.00 \mathrm{ft}$
Beaching Check: [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]
Beaching Controlled
Distance from Conduit Exit to C/L Pool:
Pool depth at C/L Below Conduit Invert:
Pool Bottom Elev:
Pool Bottom Length:
Pool Bottom Width:
Upstream Pool Length at Tailwater Elev.:
Downstream Pool Length at Tailwater Elev.:
Pool Width at Tailwater Elev.:

Xm	$=$
$\mathrm{Zp}+0.8 \mathrm{Zm}$	$=$
2.69 ft	

Check Side Slope Ratio: ($\mathrm{Wr}>=\mathrm{We}$)
Side Slope Ratio Zw O.K.
Check Min. End Slope Ratio: (Lru \& Lrd >= Le)
End Slope Ratios O.K.
Check Upstream Length: (Lru >= Xm)
**End Slope Ratio Zlu O.K..*
Pool Bottom Elev. at Bottom of Riprap: \quad EI, $B R=445.65 \mathrm{ft}$
Pool Bottom Elev. at Bottom of Bedding:
OUTPUT---VOLUMES BELOW WATER SURFACE ELEVATION:
Volume of Excavation (measured from bottom surface of bedding):

$\mathrm{V}, \mathrm{pbs}=$	24.8 cu yd
$\mathrm{V}, \mathrm{rs}=$	7.4 cu yd
$\mathrm{V}, \mathrm{bs}=$	8.0 cu yd

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90
Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98
Design Note No. 6 (Second Edition), Jan. 23, 1986

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 8.99)
(Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

JOB: Luck Stone P-SB-2 Plunge Pool		
DESIGNER: JCC	Date:	3/9/2021
CHECKER: AEW	Date:	3/9/2021
INPUT DATA:		
Conduit Diameter	$\mathrm{D}=$	2.00 ft
Conduit Discharge:	Q =	5.03 cfs
Conduit Slope at Outlet:	S =	$0.01 \mathrm{ft} / \mathrm{ft}$
Conduit Outlet Invert Elevation:	$\mathrm{El}, \mathrm{CO}=$	480.00 ft
Tailwater Elevation:	El, TW =	480.00 ft
Outlet Channel Invert Elevation:	El, CH =	480.00 ft
Water Density:	$\mathrm{RHO}=$	1.00
Bed/Riprap Particle Density: (Default 2.64)	RHOS =	2.64
D, 50 Riprap Size:	RS =	0.25
Riprap Thickness: (2.5*D, 50 recommended)	RT =	0.63 ft
Bedding Thickness: (6 inch min. rec.) (Enter 0 for geotextile)	BT $=$	0.50 ft
Side Slope Ratio:	$\mathrm{Zw}=$	$2.00 \mathrm{ft} / \mathrm{ft}$
Upstream End Slope Ratio:	Zlu =	$3.00 \mathrm{ft} / \mathrm{ft}$
Downstream End Slope Ratio:	Zld =	$3.00 \mathrm{ft} / \mathrm{ft}$
Combined End Slope Ratio:	Z1 =	$3.00 \mathrm{ft} / \mathrm{ft}$

OUTPUT---POOL LOCATION AND DIMENSIONS:
Vert. Dist. from Tailwater to Conduit Invert: $\quad \mathrm{Zp}=\quad 0.00 \mathrm{ft}$
Submergence Check: (If $Z p<0$, Use $Z p=0$) Use $Z p=\quad 0.00 \mathrm{ft}$
Beaching Check: [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]
Beaching Controlled
Distance from Conduit Exit to C/L Pool:
Pool depth at C/L Below Conduit Invert:
Pool Bottom Elev:
Pool Bottom Length:

$\mathrm{Zp}=$	0.00 ft
Use $\mathrm{Zp}=$	0.00
O.K.	

Pool Bottom Width:
Upstream Pool Length at Tailwater Elev.:
Downstream Pool Length at Tailwater Elev.:
$\mathrm{Xm}=0.92 \mathrm{ft}$

Pool Width at Tailwater Elev.
Check Side Slope Ratio: (Wr>=We)
Side Slope Ratio Zw O.K.
Check Min. End Slope Ratio: (Lru \& Lrd $>=$ Le)
End Slope Ratios O.K.
Check Upstream Length: (Lru >= Xm)
End Slope Ratio Zlu O.K.
Pool Bottom Elev. at Bottom of Riprap: EI, BR $=477.69 \mathrm{ft}$
Pool Bottom Elev. at Bottom of Bedding:
$\mathrm{El}, \mathrm{BB}=477.19 \mathrm{ft}$

OUTPUT---VOLUMES BELOW WATER SURFACE ELEVATION:

Volume of Excavation (measured from bottom surface of bedding):

$\mathrm{V}, \mathrm{pbs}=$	9.4 cu yd
$\mathrm{V}, \mathrm{rs}=$	3.2 cuyd
$\mathrm{V}, \mathrm{bs}=$	4.0 cuyd

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90
Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98
Design Note No. 6 (Second Edition), Jan. 23, 1986

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 8.99)
(Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

JOB: Luck Stone P-SB-3 Plunge Pool		
DESIGNER: JCC	Date:	3/18/2021
CHECKER: AEW	Date:	3/18/2021
INPUT DATA:		
Conduit Diameter	$\mathrm{D}=$	2.00 ft
Conduit Discharge:	Q =	6.76 cfs
Conduit Slope at Outlet:	S =	$0.01 \mathrm{ft} / \mathrm{ft}$
Conduit Outlet Invert Elevation:	$\mathrm{El}, \mathrm{CO}=$	489.00 ft
Tailwater Elevation:	El, TW =	489.00 ft
Outlet Channel Invert Elevation:	El, CH =	489.00 ft
Water Density:	$\mathrm{RHO}=$	1.00
Bed/Riprap Particle Density: (Default 2.64)	RHOS =	2.64
D, 50 Riprap Size:	RS =	0.25 ft
Riprap Thickness: (2.5*D, 50 recommended)	RT =	0.63 ft
Bedding Thickness: (6 inch min. rec.) (Enter 0 for geotextile)	BT $=$	0.50 ft
Side Slope Ratio:	$\mathrm{Zw}=$	$2.00 \mathrm{ft} / \mathrm{ft}$
Upstream End Slope Ratio:	Zlu =	$3.00 \mathrm{ft} / \mathrm{ft}$
Downstream End Slope Ratio:	Zld =	$3.00 \mathrm{ft} / \mathrm{ft}$
Combined End Slope Ratio:	Z1 =	$3.00 \mathrm{ft} / \mathrm{tt}$

OUTPUT---POOL LOCATION AND DIMENSIONS:
Vert. Dist. from Tailwater to Conduit Invert:

$\mathrm{Zp}=$	0.00	ft
Use $\mathrm{Zp}=$	0.00	ft
	O.K.	

Beaching Check: [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]
Beaching Controlled
Distance from Conduit Exit to C/L Pool:
Pool depth at C/L Below Conduit Invert:
Pool Bottom Elev:
Pool Bottom Length:

Xm	$=$	1.30 ft
$\mathrm{Zp}+0.8 \mathrm{Zm}$	$=$	1.90
ft		
EI, PB	$=$	487.10
ft		
2 Lr 2	$=$	1.49 ft
$2 \mathrm{Wr2}$	$=$	1.45
ft		
Lru	$=$	6.43
ft		
Lrd	$=$	6.43
ft		
2 Wr	$=$	9.04 ft
		$0 . K$.

Check Side Slope Ratio: (Wr>=We)
Side Slope Ratio Zw O.K.
Check Min. End Slope Ratio: (Lru \& Lrd >= Le)
End Slope Ratios O.K.
Check Upstream Length: (Lru >= Xm)
End Slope Ratio Zlu O.K.
Pool Bottom Elev. at Bottom of Riprap: EI, BR $=486.48 \mathrm{ft}$
Pool Bottom Elev. at Bottom of Bedding:
$\mathrm{El}, \mathrm{BB}=485.98 \mathrm{ft}$

OUTPUT---VOLUMES BELOW WATER SURFACE ELEVATION:

Volume of Excavation (measured from bottom surface of bedding):

V,pbs $=$	11.7 cu yd
$\mathrm{V}, \mathrm{rs}=$	3.9 cu yd
$\mathrm{V}, \mathrm{bs}=$	4.7 cu yd

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90
Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98
Design Note No. 6 (Second Edition), Jan. 23, 1986

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 8.99)
(Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

JOB: Luck Stone NE-SB-1 Plunge Pool		
DESIGNER: JCC	Date:	3/18/2021
CHECKER: AEW	Date:	3/18/2021
INPUT DATA:		
Conduit Diameter	$\mathrm{D}=$	2.00 ft
Conduit Discharge:	Q =	6.55 cfs
Conduit Slope at Outlet:	S =	$0.01 \mathrm{ft} / \mathrm{ft}$
Conduit Outlet Invert Elevation:	$\mathrm{El}, \mathrm{CO}=$	426.00 ft
Tailwater Elevation:	El, TW =	426.00 ft
Outlet Channel Invert Elevation:	El, CH =	426.00 ft
Water Density:	$\mathrm{RHO}=$	1.00
Bed/Riprap Particle Density: (Default 2.64)	RHOS =	2.64
D, 50 Riprap Size:	RS =	0.25 ft
Riprap Thickness: (2.5*D, 50 recommended)	RT =	0.63 ft
Bedding Thickness: (6 inch min. rec.) (Enter 0 for geotextile)	BT $=$	0.50 ft
Side Slope Ratio:	$\mathrm{Zw}=$	$2.00 \mathrm{ft} / \mathrm{ft}$
Upstream End Slope Ratio:	Zlu =	$3.00 \mathrm{ft} / \mathrm{ft}$
Downstream End Slope Ratio:	Zld =	$3.00 \mathrm{ft} / \mathrm{ft}$
Combined End Slope Ratio:	Z1 =	$3.00 \mathrm{ft} / \mathrm{tt}$

OUTPUT---POOL LOCATION AND DIMENSIONS:
Vert. Dist. from Tailwater to Conduit Invert: $\quad \mathrm{Zp}=\quad 0.00 \mathrm{ft}$
Submergence Check: (If $Z p<0$, Use $Z p=0$) Use $Z p=\quad 0.00 \mathrm{ft}$
Beaching Check: [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]
Beaching Controlled
Distance from Conduit Exit to C/L Pool:
Pool depth at C/L Below Conduit Invert:
Pool Bottom Elev:
Pool Bottom Length:

$\mathrm{Zp}=$	0.00	ft
Use $\mathrm{Zp}=$	0.00	ft
O.K.		

Pool Bottom Width:
Upstream Pool Length at Tailwater Elev.:

$\mathrm{Xm}=$	1.25 ft
$\mathrm{Zp}+0.8 \mathrm{Zm}=$	1.87 ft
$\mathrm{El}, \mathrm{PB}=$	424.13 ft
$2 \mathrm{Lr} 2=$	1.46 ft
$2 \mathrm{Wr} 2=$	1.43 ft
$\mathrm{Lru}=$	6.33 ft
$\mathrm{Lrd}=$	6.33 ft
$2 \mathrm{Wr}=$	8.90 ft

Pool Width at Tailwater Elev.:
O.K.
heck Side Slope Ratio: (Wr>=We)
Side Slope Ratio Zw O.K.
Check Min. End Slope Ratio: (Lru \& Lrd >= Le)
O.K.
End Slope Ratios O.K.
Check Upstream Length: (Lru >= Xm)
End Slope Ratio Zlu O.K.
Pool Bottom Elev. at Bottom of Riprap: EI, BR $=423.51 \mathrm{ft}$
Pool Bottom Elev. at Bottom of Bedding:
$\mathrm{El}, \mathrm{BB}=423.01 \mathrm{ft}$

OUTPUT---VOLUMES BELOW WATER SURFACE ELEVATION:

Volume of Excavation (measured from bottom surface of bedding):

$\mathrm{V}, \mathrm{pbs}=$	11.4 cu yd
$\mathrm{V}, \mathrm{rs}=$	3.8 cu yd
$\mathrm{V}, \mathrm{bs}=$	4.6 cu yd

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90
Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98
Design Note No. 6 (Second Edition), Jan. 23, 1986

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 8.99)
(Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

JOB: Luck Stone NE-SB-2 Plunge Pool		
DESIGNER: JCC	Date:	3/9/2021
CHECKER: AEW	Date:	3/9/2021
INPUT DATA:		
Conduit Diameter	$\mathrm{D}=$	2.00
Conduit Discharge:	Q =	3.52 cfs
Conduit Slope at Outlet:	S =	$0.01 \mathrm{ft} / \mathrm{ft}$
Conduit Outlet Invert Elevation:	El, CO =	411.00 ft
Tailwater Elevation:	El, TW =	411.00 ft
Outlet Channel Invert Elevation:	El, CH =	411.00 ft
Water Density:	RHO =	1.00
Bed/Riprap Particle Density: (Default 2.64)	RHOS =	2.64
D, 50 Riprap Size:	RS =	0.25 ft
Riprap Thickness: $(2.5 * \mathrm{D}, 50$ recommended)	RT =	0.63 ft
Bedding Thickness: (6 inch min. rec.) (Enter $\mathbf{0}$ for geotextile)	BT $=$	0.50 ft
Side Slope Ratio:	$\mathrm{Zw}=$	$2.00 \mathrm{ft} / \mathrm{ft}$
Upstream End Slope Ratio:	Zlu =	$3.00 \mathrm{ft} / \mathrm{ft}$
Downstream End Slope Ratio:	Zld =	$3.00 \mathrm{ft} / \mathrm{ft}$
Combined End Slope Ratio:	Z1 =	$3.00 \mathrm{ft} / \mathrm{ft}$

OUTPUT---POOL LOCATION AND DIMENSIONS:
Vert. Dist. from Tailwater to Conduit Invert:

$\mathrm{Zp}=$	0.00	ft
Use $\mathrm{Zp}=$	0.00	ft
O.K.		

Beaching Check: [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]
Beaching Controlled
Distance from Conduit Exit to C/L Pool:
Pool depth at C/L Below Conduit Invert:
Pool Bottom Elev:
Pool Bottom Length:

$\mathrm{Xm}=$	0.62 ft	
$\mathrm{Zp}+0.8 \mathrm{Zm}=$	1.55 ft	
El, PB	$=$	409.45
2 ft		
2 Wr 2	$=$	1.19
ft		
Lru	$=$	1.17
ft		
Lr	$=$	5.23
ft		
2 Wr	$=$	7.23
ft		
		$0 . \mathrm{Kt}$

Upstream Pool Length at Tailwater Elev.:
Lru =
Downstream Pool Length at Tailwater Elev.:
$2 \mathrm{Wr}=$
O.K.

Check Side Slope Ratio: ($\mathrm{Wr}>=\mathrm{We}$)
Side Slope Ratio Zw O.K.
Check Min. End Slope Ratio: (Lru \& Lrd >= Le)
O.K.
End Slope Ratios O.K.
Check Upstream Length: (Lru >=Xm)
O.K.
End Slope Ratio Zlu O.K.
Pool Bottom Elev. at Bottom of Riprap: $\quad \mathrm{El}, \mathrm{BR}=408.83 \mathrm{ft}$
Pool Bottom Elev. at Bottom of Bedding:
$\mathrm{El}, \mathrm{BB}=408.33 \mathrm{ft}$
OUTPUT---VOLUMES BELOW WATER SURFACE ELEVATION:
Volume of Excavation (measured from bottom surface of bedding):

$\mathrm{V}, \mathrm{pbs}=$	8.0 cu yd
$\mathrm{V}, \mathrm{rs}=$	2.7 cu yd
$\mathrm{V}, \mathrm{bs}=$	3.6 cu yd

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90
Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98
Design Note No. 6 (Second Edition), Jan. 23, 1986

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 8.99)
(Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

JOB: Luck Stone NE-SB-3 Plunge Pool		
DESIGNER: JCC	Date:	3/9/2021
CHECKER: AEW	Date:	3/9/2021
INPUT DATA:		
Conduit Diameter	$\mathrm{D}=$	2.00
Conduit Discharge:	Q =	3.87 cfs
Conduit Slope at Outlet:	S =	$0.01 \mathrm{ft} / \mathrm{ft}$
Conduit Outlet Invert Elevation:	El, CO =	411.00 ft
Tailwater Elevation:	El, TW =	411.00 ft
Outlet Channel Invert Elevation:	El, CH =	411.00 ft
Water Density:	RHO =	1.00
Bed/Riprap Particle Density: (Default 2.64)	RHOS =	2.64
D, 50 Riprap Size:	RS =	0.25 ft
Riprap Thickness: $(2.5 * \mathrm{D}, 50$ recommended)	RT =	0.63 ft
Bedding Thickness: (6 inch min. rec.) (Enter $\mathbf{0}$ for geotextile)	BT $=$	0.50 ft
Side Slope Ratio:	$\mathrm{Zw}=$	$2.00 \mathrm{ft} / \mathrm{ft}$
Upstream End Slope Ratio:	Zlu =	$3.00 \mathrm{ft} / \mathrm{ft}$
Downstream End Slope Ratio:	Zld =	$3.00 \mathrm{ft} / \mathrm{ft}$
Combined End Slope Ratio:	Z1 =	$3.00 \mathrm{ft} / \mathrm{ft}$

OUTPUT---POOL LOCATION AND DIMENSIONS:
Vert. Dist. from Tailwater to Conduit Invert:

$\mathrm{Zp}=$	0.00	ft
Use $\mathrm{Zp}=$	0.00	ft
O.K.		

Beaching Check: [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]
Beaching Controlled
Distance from Conduit Exit to C/L Pool:
Pool depth at C/L Below Conduit Invert:
Pool Bottom Elev:
Pool Bottom Length:

$\mathrm{Xm}=$	0.69 ft	
$\mathrm{Zp}+0.8 \mathrm{Zm}=$	1.57 ft	
El, PB	$=$	409.43 ft
2 Lr 2	$=$	1.21
ft		
2 Wr	$=$	1.20
ft		
Lru	$=$	5.33
ft		
Lrd	$=$	5.33
ft		
2 Wr	$=$	7.49
ft		

Check Side Slope Ratio: ($\mathrm{Wr}>=\mathrm{We}$)
Side Slope Ratio Zw O.K.
Check Min. End Slope Ratio: (Lru \& Lrd >= Le)
O.K.
End Slope Ratios O.K.
Check Upstream Length: (Lru >=Xm)
O.K.
End Slope Ratio Zlu O.K.
Pool Bottom Elev. at Bottom of Riprap: $\quad \mathrm{El}, \mathrm{BR}=408.80 \mathrm{ft}$
Pool Bottom Elev. at Bottom of Bedding:
$\mathrm{El}, \mathrm{BB}=408.30 \mathrm{ft}$
OUTPUT---VOLUMES BELOW WATER SURFACE ELEVATION:
Volume of Excavation (measured from bottom surface of bedding):

$\mathrm{V}, \mathrm{pbs}=$	8.3 cu yd
$\mathrm{V}, \mathrm{rs}=$	2.8 cu yd
$\mathrm{V}, \mathrm{bs}=$	3.6 cu yd

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90
Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98
Design Note No. 6 (Second Edition), Jan. 23, 1986

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 8.99)
(Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

JOB: Luck Stone NE-SB-4 Plunge Pool		
DESIGNER: JCC	Date:	3/9/2021
CHECKER: AEW	Date:	3/9/2021
INPUT DATA:		
Conduit Diameter	$\mathrm{D}=$	2.00 ft
Conduit Discharge:	$Q=$	5.51 cfs
Conduit Slope at Outlet:	$S=$	$0.01 \mathrm{ft} / \mathrm{ft}$
Conduit Outlet Invert Elevation:	$\mathrm{El}, \mathrm{CO}=$	478.00 ft
Tailwater Elevation:	El, TW =	478.00 ft
Outlet Channel Invert Elevation:	El, $\mathrm{CH}=$	478.00 ft
Water Density:	RHO =	1.00
Bed/Riprap Particle Density: (Default 2.64)	RHOS =	2.64
D, 50 Riprap Size:	RS =	0.25 ft
Riprap Thickness: $(2.5 * \mathrm{D}, 50$ recommended)	RT =	0.63 ft
Bedding Thickness: (6 inch min. rec.) (Enter $\mathbf{0}$ for geotextile)	BT =	0.50 ft
Side Slope Ratio:	$\mathrm{Zw}=$	$2.00 \mathrm{ft} / \mathrm{ft}$
Upstream End Slope Ratio:	Zlu =	$3.00 \mathrm{ft} / \mathrm{tt}$
Downstream End Slope Ratio:	Zld =	$3.00 \mathrm{ft} / \mathrm{ft}$
Combined End Slope Ratio:	Z1 =	$3.00 \mathrm{ft} / \mathrm{ft}$

OUTPUT---POOL LOCATION AND DIMENSIONS:
Vert. Dist. from Tailwater to Conduit Invert: $\quad \mathrm{Zp}=\quad 0.00 \mathrm{ft}$
Submergence Check: (If $Z p<0$, Use $Z p=0$) Use $Z p=\quad 0.00 \mathrm{ft}$
Beaching Check: [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]
Beaching Controlled
Distance from Conduit Exit to C/L Pool:
Pool depth at C/L Below Conduit Invert:
Pool Bottom Elev:
Pool Bottom Length:

$\mathrm{Zp}=$	0.00	ft
Use $\mathrm{Zp}=$	0.00	ft
O.K.		

Pool Bottom Width:
Upstream Pool Length at Tailwater Elev.:

$\mathrm{Xm}=$	1.02 ft
$\mathrm{Zp}+0.8 \mathrm{Zm}=$	1.74 ft
$\mathrm{El}, \mathrm{PB}=$	476.26 ft
$2 \mathrm{Lr} 2=$	1.35 ft
$2 \mathrm{Wr} 2=$	1.33 ft
$\mathrm{Lru}=$	5.89 ft
$\mathrm{Lrd}=$	5.89 ft
$2 \mathrm{Wr}=$	8.28 ft
	$0 . K$.

Check Side Slope Ratio: (Wr>=We)
Side Slope Ratio Zw O.K.
Check Min. End Slope Ratio: (Lru \& Lrd >= Le)
O.K.
End Slope Ratios O.K.
Check Upstream Length: (Lru >= Xm)
O.K.
**End Slope Ratio Zlu O.K. ${ }^{* *}$
Pool Bottom Elev. at Bottom of Riprap: EI, BR $=475.64 \mathrm{ft}$
Pool Bottom Elev. at Bottom of Bedding:
$\mathrm{El}, \mathrm{BB}=475.14 \mathrm{ft}$

OUTPUT---VOLUMES BELOW WATER SURFACE ELEVATION:

Volume of Excavation (measured from bottom surface of bedding):

$\mathrm{V}, \mathrm{pbs}=$	9.9 cu yd
$\mathrm{V}, \mathrm{rs}=$	3.4 cu yd
$\mathrm{V}, \mathrm{bs}=$	4.2 cu yd

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90
Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98
Design Note No. 6 (Second Edition), Jan. 23, 1986

[^0]: ${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
 Please refer to NOAA Atlas 14 document for more information.

[^1]: *Prepared by H. J. Goon, Design Unit, Engineering Division, Washington,

