

October 14, 2021

SRNS-J2200-2021-00320 RSM Track #: 10818

Air Permitting Division Director Bureau of Air Quality South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia, SC 29201

RECEIVED UC (2 0 2021 BAQ PERMITTING

Dear Director:

<u>SAVANNAH RIVER SITE (SRS) CONSTRUCTION PERMIT APPLICATION -</u> <u>MODIFICATION TO CHEMICAL FLOWSHEET PROCESS ASSOCIATED WITH EMISSION</u> <u>UNIT 16 TV-0080-0041 DEFENSE WASTE PROCESSING FACILITY VITRIFICATION</u> <u>PROCESS</u>

The mission of the Defense Waste Processing Facility (DWPF) is to vitrify High-Level Liquid Radioactive Waste (HLW). The proposed modification will replace formic acid with glycolic acid in the chemical flowsheet.

This package includes one permit application (DHEC 2566 and 2573 forms with associated documentation) with original signatures and professional engineer embossment/stamp. An electronic copy of this application with modeling files will also be transmitted to Robert Mahoney via email distribution and <u>airpermitting@dhec.sc.gov</u>.

Please contact me at (803) 952-6853 if you have any questions concerning this request.

Sincerely,

Kim A. Wolfe Environmental Compliance

Enclosures

Air Permitting Division Director SRNS-J2200-2021-00320 Page 2 October 14, 2021

c: R. K. Mahoney, SCDHEC – Columbia (electronic with modeling files) T. R. Fuss, SCDHEC - Aiken (electronic) G. N. O'Quinn, SCDHEC – Aiken (electronic) P. A. Risa, SCDHEC - Aiken (electronic) J. G. DeMass, DOE-SR, 730-B A. G. Hammett, 730-B J. T. Maul, Jr., 704-S M. N. Ndingwan, 730-B C. L. Bergren, SRNS, 730-4B A. J. Meyer, 730-4B C. J. Ward, 730-4B K. A. Wolfe, 730-4B A. R. Waller, 730-4B J. R. Wicker, 730-4B M. C. Wright, 703-47A R. J. Biasiny, 703-47A P. J. Breidenbach, SRR, 766-H M. A. Schmitz, 766-H L. Ling, 766-H G. J. Matis, 766-H P. M. Allen, 766-H T. H. Huff, 704-S M. A. Rios-Armstrong, 704-S J. S. Kirk, 766-H D. P. Skiff, 766-H P. J. Rowan, 704-S K. R. Liner, 704-S T. B. Caldwell, 766-H P. B. Underwood, 705-1C Records Administration, 773-52A

Bureau of Air Quality Construction Permit Application Page 2 of 13

Application Date

October 14, 2021

BAQ PERMITTING

SECTION 1 - FACILITY IDENTIFICATION

SC Air Permit Number (8-digits only)	
(Leave blank if one has never been assigned)	
0080 - 0041	

Facility Name/Legal Identity (This should be the official legal name under which the facility is owned/operated and should be consistent with the name registered with the S.C. Secretary of State's office, as applicable.)

U.S. Department of Energy - Savannah River Site managed and operated by Savannah River Nuclear Solutions, LLC; Liquid Waste Operations currently operated by Savannah River Remediation, LLC

Facility Site Name (Optional) (Please provide any alternative or additional identifier of the facility, such as a specific plant identifier (e.g., Columbia plant) or any applicable "doing business as" (DBA) identity. This name will be listed on the permit and used to identify the facility at the physical address listed below.)

Defense Waste Processing Facility (DWPF)

Facility Federal Tax Identification Number (Established by the U.S. Internal Revenue Service to identify a business entity) 26-3972730

REQUEST TYPE (Check all that apply)

Complete Section 1 and attach documentation to support exemption request.

Construction Application:

Exemption Request: 🗆

Minor New Source Review Project

□ Synthetic Minor Project

Prevention of Significant Deterioration Project

112(g) Project

Expedited Review Request: 🗆

If checked, include <u>Expedited Form D-2212</u> in the construction application package.

Construction Permit Modification:

Provide the construction permit ID (e.g. CA, CB, etc.) for which modification is requested:

Application Revision: 🗀

CONSTRUCTION PERMIT APPLICATION FORMS BEING REVISED

(Amended construction permit forms must be filled out completely and attached to this modification request.)

Form #	Date of Original Submittal	Brief Description of Revision
D-2566		
D-2573		

FACIL	TY PHYSICAL ADDRESS	
Physical Address: Savannah River Site (SRS)		County: Aiken (also Barnwell and Allendale)
City: Aiken	Zip Code: 29808-0001	

Bureau of Air Quality Construction Permit Application Page 3 of 13

FACILITY PHYSICAL ADDRESS

 Facility Coordinates (Facility coordinates should be based at the front door or main entrance of the facility)

 Latitude: 431063.4205192

 Longitude: 3689656.543319

FACILITY'S PRODUCTS / SERVICES

Primary Products / Services (List the primary product and/or service)				
Processed Fissile Material and High Level Liquid Radioactive Waste Vitrification				
Primary SIC Code (Standard Industrial Classification Codes) Primary NAICS Code (North American Industry Classification System)				
4953 562211				
Other Products / Services (List other products and/or services)				
Environmental Remediation				
Other SIC Code(s): Other NAICS Code(s): N/A				

PROJECT DESCRIPTION	
Project Description (What, why, how, etc.): See Attachment A	

AIR PERMIT FÁCILITY CONTACT				
(Person listed will be in our files as the point of contact for all air perm	nitting related questions and will receive	e all air permitting notifications.)		
Title/Position: Air Program Lead, Salutation: Ms.	First Name: Kim	Last Name: Wolfe		
Environmental Compliance - SRNS, LLC				
Mailing Address: Savannah River Site 730-4B, Room 3051				
City: Aiken State: SC Zip Code: 29808-0001				
	Primary Phone No.: (803)	Alternate Phone No.: (803)		
E-mail Address: kim.wolle@srs.gov	952-6853	507-2066		

The signed permit will be e-mailed to the designated Air Permit Contact.			
If additional individuals need copies of the permit, please provide their names and e-mail addresses.			
Name E-mail Address			
Adam Waller adam.waller@srs.gov			
aul Rowan paul.rowan@srs.gov			

CONFIDENTIAL INFORMATION / DATA

Is <u>confidential information</u> or data being submitted under separate cover? 🛛 No 🗌 Yes*

*If yes, submit ONLY ONE COMPLETE CONFIDENTIAL APPLICATION, with original signature, along with the public version of the application.

CO-LOCATION DETERMINATION

Are there other facilities in close proximity that could be considered collocated? \Box No 🛛 Yes*

If yes, list potential collocated facilities, including air permit numbers if applicable: See Attachment B

*If yes, please submit collocation applicability determination details in an attachment to this application.

This form is subject to Retention Schedule 16303.

	OWNER OF	OPERATOR			
Title/Position: Director - ESH&QA&CA	Salutation: Ms.	First Name: Patricia	Last Name: Allen		
Mailing Address: Savannah River Site, Building 766-H, Room 2308					
City: Aiken		State: SC	Zip Code: 29808		
E-mail Address: patricia.allen@srs.gov		Primary Phone No.: (803) 208-3152	Alternate Phone No.: (803) 646-9043		
	OWNER OR OPER	ATOR SIGNATURE			
I certify, to the best of my knowledge and belief, that no applicable standards and/or regulations will be contravened or violated. I certify that any application form, supporting documentation, report, or compliance certification submitted in this permit application is true, accurate, and complete based on information and belief formed after reasonable inquiry. I understand that any statements and/or descriptions, which are found to be incorrect, may result in the immediate revocation of any permit issued for this application.					
Patricia M.Alla			10/13/21		
Signature of Owner or Operator			Date		
APPLICATION PI	REPARER (if other	than Professional Engineer	below)		
Title/Position: Principal Engineer/ECA	Salutation: Mr.	First Name: Paul	Last Name: Rowan		
Mailing Address: Savannah River Site, I	Building 704-S				
City: Aiken		State: SC	Zip Code: 29808-0001		
E-mail Address: paul.rowan@srs.gov		Phone No.: (803) 208-6470	Cell No.: (803) 507-4213		
PR	OFESSIONAL ENG	INEER INFORMATION			
Consulting Firm Name: Savannah River	Remediation LLC	SC Certificate of Authority Li	cense No.: 3997		
Title/Position: Principal Engineer	Salutation: Mr.	First Name: Thomas	Last Name: Caldwell		
Mailing Address: Savannah River Site, B	Building 766-H, Roc	om 2423	L		
City: Aiken	0	State: SC	Zip Code: 29808		
E-mail Address: thomas.caldwell@srs.g	ζΟV	Phone No.: (803) 208-3145	Cell No.: (803) 979-3209		
SC License/Registration No.: 14164					
P	ROFESSIONAL EN	GINEER SIGNATURE			
I have placed my signature and seal o construction permit application as it p <i>Control Regulations and Standards.</i>	n the engineering pertains to the req	documents submitted signify uirements of South Stress of the	ring that I have Allewed this Regulation 51.62, All Reflation SAVANNAH		
Signature of Professional Engineer Thomas B. Caldwell PE – SC Licens	<i>io 13 202 </i> Date e No. 14164 - SC COA No. 39	- IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	RIVER REMEDIATION LLC No. 3997 OF AUTHOR		
			"Annumers		

DHEC 2566 (03/2021)

This form is subject to Retention Schedule 16303.

Bureau of Air Quality Construction Permit Application Page 5 of 13

SECTION 2- EQUIPMENT / PROCESS INFORMATION INSTRUCTIONS

The information provided in tables in this section will identify the equipment and processes that will be added, removed or modified at the facility, including the size and type along with the make and model, and any associated control devices and/or emission points.

As an attachment to this form include a narrative with the following information:

- Description of the facility's proposed new or altered processes;
- Physical and chemical properties and feed rate(s) of the raw materials used and products made from which the facility determined potential emissions;
 - Process flow diagram / production process layout of all new or altered sources changed showing the flow of materials and intermediate and final products.

Equipment / Process Information Table:

Please identify the equipment and processes that are being added, removed, modified, or are existing and provide the information requested in this table. Additional information required to complete the review of this permit application should be submitted as attachments.

Control Device Information Table:

Identify the control devices being added, removed, modified, or existing in the proposed construction project and provide the information requested in this table. Additional information required to complete the review of this permit application should be submitted as attachments.

Bureau of Air Quality Construction Permit Application Page 6 of 13

EQUIPMENT / PROCESS INFORMATION
Be as detailed as possible when filling out "Equipment/Process Description." The following includes examples of source types and relevant information associated with that source:
External Combustion Sources : Equipment type and usage (e.g. steam generation, process heat, drying, curing, etc.), maximum heat capacity (MMBTU/hr) primary and backup fuel type (e.g. natural gas, fuel oil, coal, etc.), fuel sulfur content, Low NO _x burners, direct or indirect heating
Stationary Internal Combustion Sources: Equipment type and usage (e.g. emergency generator, fire pump, etc.), output brake/electrical power (hp/kW) fuel type
Liquid Storage Tanks: Tank type (e.g. fixed roof, floating roof, variable vapor pressure, etc.), materials stored, material density, vapor pressure, maximum average storage temperature, loading source (e.g. pipeline, rail car, process, etc.)
Incinerators: Incinerator type (e.g. rotary kiln, air curtain, single chamber, etc.), primary and secondary waste types (e.g. municipal waste, yard waste, clear wood, etc.), waste charge rate (tons/day or lb/hr), burner capacity (BTU/hr), minimum chamber temperature
Surface Coating Sources: Coating operation type (e.g. large appliances, auto and light duty trucks, paper and other webs, publication printing inks, etc.) transfer efficiency, coating density, percent Volatile Organic Compound (VOC)/Hazardous Air Pollutants (HAPs)/Toxic Air Pollutants (TAPs), Safety Data Sheets (SDS)

Please review applicable regulations to determine additional information that may be required for permitting.

Bureau of Air Quality Construction Permit Application Page 7 of 13

	EQUIPMENT / PROCESS INFORMATION						
Equipment ID/ Process ID	Action	Action Equipment / Process Description		Control Device ID(s)	Emission Point ID(s)		
	Add Remove Modify Existing	See attached equipment/process information spreadsheet (Attachment C)					
	Add Remove Modify Existing	See attached emission point pre and post modification flowsheets (Attachment D)					
	Add Remove Modify Existing						

 CONTROL DEVICE INFORMATION

 Inherent, required and voluntary control devices, as used in the table below, are defined as:

 Inherent: Consult EPA Guidance "Criteria for Determining Whether Equipment is Air Pollution Control Equipment or Process Equipment." When a control device is deemd "Inherent", a detailed explanation of the determination must be included as an attachment.

 Required: Control device is relied-upon or required by regulation, and controlled emissions are used to show compliance with applicable standards and regulations.

 Voluntary: Control device is not relied-upon and uncontrolled emissions are used to show compliance with applicable standards and regulations.

Bureau of Air Quality Construction Permit Application Page 8 of 13

	CONTROL DEVICE INFORMATION							
Control Device ID	Action	Control Device Description	Maximum Design Capacity (Units)	Inherent/ Required/ Voluntary	Pollutants Controlled (include CAS #)	Capture Efficiency	Destruction/ Removal Efficiency	Emission Point ID(s)
CD-J 0005	☐ Add ☐ Remove ⊠ Modify ☐ Existing	Condenser - Mitternight Boiler Works, 31-60 - No physical change to control device due to process modification. However, Formic Acid will no longer be listed as a pollutant it condenses, since the process has moved to the use of glycolic acid. Mercury will continue to be removed by this condenser. However, maximum potential to emit emissions of mercury and mercury compounds are less than 1% by weight of the emission stream and these pollutants are not OSHA carcinogens. Therefore, condenser is considered voluntary.	Normal flow of 2530 lb/hr at an inlet temperature of 50C and exit temperature of 10C (ESH- ECS-2002- 00284, attached)	Voluntary	Mercury (Elemental) [CAS# 7439- 97-6]	100%	96%	SDP007
	Add Add Remove Modify Existing							
	Add Remove Modify Existing							

Bureau of Air Quality Construction Permit Application Page 9 of 13

SECTION 3 – SOURCE IDENTIFICATION AND EMISSIONS CHECKLIST INSTRUCTIONS

Definitions for completing the information in the tables below:

<u>Uncontrolled emissions</u>: Maximum emission rate at full design capacity without consideration of control devices or emission limitations.

<u>Controlled emissions</u>: Maximum emission rate at full design capacity taking into consideration control devices. Controlled emissions only apply if there are associated control equipment and should be based on uncontrolled emissions and capture/control efficiencies. Controlled emissions do not take into consideration emission limitations.

<u>Potential to Emit (PTE)</u>: The maximum capacity of a source to emit a regulated pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the source to emit a regulated pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design only if the limitation or the effect it would haveon emissions is federally enforceable. Secondary emissions as defined in S.C. Regulation 61-62.1, Section I(81), do not count in determining the potential to emit of a source.

Check Box for information addressed	Required Information			
	Source identification and emissions:			
X	Name of each source, process, and control device.			
X	 Assign each source an Equipment ID. The IDs must match the IDs listed in Section 2 of this application. 			
X	Assign an Emission Point ID for each source.			
X	Assign a Control Device ID for each control device.			
X	List each pollutant the source will emit.			
 List the Uncontrolled, Controlled, and PTE emissions for each source or equipmed lb/hr and tons/year. 				
X	• Emission rates for each pollutant should be totaled and listed in lb/hr and tons/year.			
X	Provide the CAS# for each Hazardous Air Pollutant (HAP) and/or Toxic Air Pollutant (TAP)			
	Information to support emission rates:			
X	Sample calculations.			
	• Emission factors. Include the source, revision date, specific table and/or chapters. Include source test data if factors were derived from source testing.			
X	Explanation of assumptions, bottlenecks, etc.			
	 Source test information: A copy of the source test results may be requested. If the test results are not included in the application, the application should cite whether this was a DHEC approved test, and if not, explain where the test was conducted and other identifying information. 			

Bureau of Air Quality Construction Permit Application Page 10 of 13

Check Box for information addressed	Required Information
	Manufacturer's data.
	 Vendor guarantees that support control device efficiencies.
	New Source Review (NSR) analysis.
	Other (e.g. example particle size analysis)

	Existing (Permitted) Facilities				
Check Box	Required Information	Location in Application			
×	 Facility-wide emissions prior to construction/modification: Include an explanation if these emissions do not match the facility-wide emissions submitted in the last application. 	Attachment G			
	 Facility-wide emissions after construction/modification: Include net change, if applicable. 	Attachment G			
	As applicable for the construction/ modification:				
X	Name of each source.	Attachments A and C			
X	 Assign each source an Equipment ID. The IDs must match the IDs listed in Section 2 of this application or on your current construction / operating permit. 	Attachment C			
X	Assign a Control Device ID for each control device.	Attachment C			
X	 Assign an Emission Point ID for each source. 	Attachment C			
X	List each pollutant the source will emit.	Attachment A			
X	 List the Uncontrolled, Controlled, and PTE (if applicable) emissions for each source or equipment. 	Attachments E and F			
	 Emission rates for each pollutant should be totaled and listed in lb/hr and tons/year. 	Attachment F			
	Provide the CAS# for each HAP and/or TAP.	Attachments C, E, and F			
	Information to support facility-wide emission rates:				
X	Sample calculations.	Q-ESR-S-00002, Attachment H, and SRR-ESH- 2019-00240			
	 Emission factors. Include the source, revision date, specific table and/or chapters. Include source test data if factors were derived from source testing. 				
X	Explanation of assumptions, bottlenecks, etc.	Attachment H			

Bureau of Air Quality Construction Permit Application Page 11 of 13

Existing (Permitted) Facilities					
Check Box	-	Location in Application			
	•	Source test information: A copy of source the test results may be requested. If the results are not included in the application, the application should cite whether this was a DHEC approved test and if not, explain where the test was conducted and other identifying information.			
	•	Manufacturer's data.			
	•	Vendor guarantees that support control device efficiencies.			
N	•	NSR analysis.	Attachment i		
	•	Other (please explain)			

Bureau of Air Quality Construction Permit Application Page 12 of 13

Section 4 Completeness Checklist for Regulatory Review

State and Federal Air Pollution Control Regulations and Standards

Perform a review of all State and Federal Air Pollution Control Regulations and Standards for applicability and attach a detailed narrative from the regulatory review to the permit application. If the standard or regulation is not applicable, state the reason. Check all regulations and standards that have been reviewed and addressed in the narrative.

Check Box	State and Federal Air Pollution Control Regulations and Standards
\boxtimes	S.C. Regulation 61-62.1 Section II.E Synthetic Minor Construction Permits
\boxtimes	S.C. Regulation 61-62.5 Air Pollution Control Standards
	Standard No. 1 Emissions from Fuel Combustion
\boxtimes	Standard No. 2 Ambient Air Quality
\boxtimes	Standard No. 3 Waste Combustion and Reduction (state only)
	 Standard No. 4 Emissions from Process Industries
	(Note: If Section VIII of this Standard applies, include the process weight rate (PWR) in ton per hour for
	each applicable source or process.)
	Standard No. 5 Volatile Organic Compounds
	Standard No. 5.2 Nitrogen Oxides Lowest Achievable Emission Rate
\boxtimes	Standard No. 7 Prevention of Significant Deterioration (PSD)
\boxtimes	Standard No. 7.1 Nonattainment New Source Review (NSR)
\boxtimes	Standard No. 8 Toxic Air Pollutants (TAPs) (state only)
\boxtimes	S.C. Regulation 61-62.6 Control of Fugitive Particulate Matter
\boxtimes	S.C. Regulation 61-62.60 and 40 CFR Part 60 New Source Performance Standards (NSPS)
	S.C. Regulation 61-62.61 and 40 CFR Part 61 National Emission Standards for Hazardous Air Pollutants (NESHAP)
	S.C. Regulation 61-62.63 and 40 CFR Part 63 National Emission Standards for Hazardous Air Pollutants
	(NESHAP) for Source Categories
	40 CFR Part 64 Compliance Assurance Monitoring (CAM)
\boxtimes	S.C. Regulation 61-62.68 and 40 CFR Part 68 Chemical Accident Prevention Provisions
	S.C. Regulation 61-62.70 and 40 CFR Part 70 Title V Operating Program
	Other S.C. Air Pollution Control Regulations, as applicable.
	Other Federal Air Pollution Control Regulations, as applicable.
	40 CFR 98 Green House Gas (GHG) emissions
	(Note: Quantify GHG emissions, if S.C. Regulation 61-62.5, Standard No. 7 or S.C. Regulation 61-62.5, Standard
	No. 7.1 is triggered.)

Bureau of Air Quality Construction Permit Application Page 13 of 13

Completeness Checklist:

For applicable federal and state regulations, the narrative should address the specific limitations, monitoring, recordkeeping, and reporting requirements associated with the new or altered source(s). Include the specific regulatory citations. Check all that have been reviewed and addressed in the narrative.

Check Box	Completeness Checklist:							
	Applicability Determination:							
	Is this regulation applicable, reasonably applicable, potentially applicable, or not applicable?							
	 Is the basis for the applicability determination explained? 							
Affected Sources:								
\boxtimes	 Is the name and identification of each emission source or process included? 							
Compliance Demonstration:								
\boxtimes	How will compliance be demonstrated?							
\boxtimes	 Are specific methods or activities to be utilized by the facility to demonstrate compliance with each specific limitation and/or requirement provided? 							
\boxtimes	Are control devices and control device requirements included?							
\boxtimes	 Are monitoring, recordkeeping, and reporting requirements necessary to demonstrate compliance included? 							
	Regulatory Citations:							
	Are the regulatory citations identified?							

DHEC Form 2566 - Project Description - Attachment A

The mission of the Defense Waste Processing Facility (DWPF) is to vitrify High-Level Radioactive Waste (HLW). This is achieved by mixing the HLW with silica sand, melting the mixture, and pouring the glass mixture into stainless steel canisters, which are stored temporarily on-site, pending final disposition.

The proposed activity will involve a change in DWPF Building 221-S Chemical Process Cell (CPC) operations that affect the SDP0007 emission point, as well as the SDP0009, SDP0019, SDP0067, SDT0035, SDT0036, SDT0043, SDT0046, and SDT0047. SDP0067 (raw material storage), SDT0035 (waste/chemical treatment), SDT0036 (waste/chemical treatment), SDT0043 (raw material storage), SDT0046 (raw material storage), and SDT0047 (raw material storage) are not part of the vitrification process but, that have been listed on the Title V Operating permit as insignificant for emission levels.

The DWPF will remain a batch process as described in previous maximum potential to emit calculations (e.g., SRNS-J2200-2019-00240) and the calculations attached to this construction permit application (Attachment H and Q-ESR-S-00002)). The change from formic acid to glycolic acid will not remove any bottlenecks within the process and will not result in an increase in the annual maximum quantity of glass that can be produced at the facility.

The current DWPF CPC operation uses nitric acid to neutralize HLW resulting in the destruction of hydroxides and carbonates. The neutralization step is followed by the addition of formic acid (reductant) to reduce mercury into elemental mercury. The reductant converts mercury compounds—a carryover from the Separations process—in the raw sludge to its metal state thus allowing the metal to be steam stripped out of the feed stream before entering the Melter. The current nitric-formic acid flowsheet uses formic acid as the reductant; the proposed nitric-glycolic acid flowsheet uses glycolic acid. Glycolic acid is more effective at reducing mercury while minimizing hydrogen gas generation as compared to formic acid.

The DWPF process will be converted to a glycolic acid flowsheet from the current formic acid flowsheet. The glycolic acid operation will utilize existing DWPF process equipment with minor modification to provide a significant process improvement to the CPC. With the change to the glycolic acid flowsheet, the reference to and use of formic acid in the CPC will be replaced with glycolic acid. The existing formic acid storage and transfer equipment will be relabeled and used to store and transfer glycolic acid.

The emission points (SDP0007, SDP0009, SDP0019, SDT0035, SDT0036, SDT0043, and SDT0046) emitting formic acid prior to the proposed change will no longer emit formic acid after implementation of the glycolic acid flowsheet. SCDHEC ID 103S [SDP0009], SCDHEC IDs 131S, 132S and 129S [SDP0019], SCDHEC ID 288S [SDP0067], SCDHEC ID 374S [SDT0046] and SCDHEC ID 407S [SDT0047] will be abandoned in place as part of this modification. The nitric acid emissions from SDP0067 (only regulated pollutant emitted) will be slightly increased by this modification. The vapor pressure of glycolic acid is very low. This results in no regulated pollutants being emitted from SDT0035, SDT0036, and SDT0043. Future HLW streams processed in DWPF after the glycolic acid flowsheet is implemented could have higher radionuclide concentrations, but the future waste feed concentrations as it pertains to nitrogen- and carbon-based pollutants should not exceed the values calculated to support those

DHEC Form 2566 - Project Description - Attachment A

incorporated in this permit application as they were determined to be the worst-case scenario for the glycolic acid-based reductant process.

Facility	Air Permit Numbers	Proximity	Ownership/Common Control	Additional Information
Ameresco Biomass Cogeneration Facility (including K-Area and L- Area biomass boilers)	0080-0144	Located within boundaries of SRS	Property is Owned by the Department of Energy (DOE)	Steam generated at Ameresco facilities support SRS facilities.
Salt Waste Processing Facility (SWPF)	NA-Exempted via condition 7.B.3 of SRS's original Title V Operating permit	Located within boundaries of SRS	Property is Owned by the Department of Energy (DOE)	The purpose of SWPF is to process streams from other SRS facilities. This is a support facility.
Research and Development (R&D) Activities performed at leased facilities within the Savannah River Research Campus maintained by Aiken County and at facilities located on SRS	NA-R&D activities are exempt from construction and operating permitting	In 2013 a determination was made that even though the research campus facilities are not within the SRS boundary they were collocated (SRNS-J2000-2013- 00248). The current guidance states, "(The collocation guidance) is intended to be a guide and not an exhaustive list of all possible scenarios. These determinations are made on a case-by-case basis regarding the existing situation at specific facilities."	Personnel performing R&D activities at the Aiken country facilities and on the SRS site are under common control and share the major industrial grouping 87. Research performed at these laboratories support the work at SRS.	On 4/1/2021 a meeting was held with SCDHEC personnel on transition of SRNL to Battelle Savannah River Alliance, LLC (BSRA). Collocation with respect to air permitting was discussed and it was determined SRNL activities would remain collocated with SRS activities.
Three Rivers Solid Waste Authority Regional Landfill (Landfill)	0080-0112	The Landfill is within the SRS site boundary, but a fence separates the Landfill from the remainder of SRS. Public access to the Landfill is not allowed, but access is provided to member counties and approved commercial haulers. (http://www.trswa.org/landfill.shtml)	 Landfill does not share a common workforce with SRS. Landfill is responsible for its own equipment, property, and pollution control devices. Landfill personnel do not share common employee benefits, health plans, retirement funds and other administrative functions The Landfill does accept waste from the SRS. However, SRS contributes only 1.3% of the total waste received (http://www.trswa.org/landfill.shtml) SRS could transport their waste to another permitted facility with little or no impacts to the Landfill personnel are responsible for compliance with air quality control requirements at the Landfill. The DOE is not listed on the air permit for the Landfill. Easement has been provided to the Landfill for the use of the property. The Landfill does receive waste from the SRS. These are not agreements that impact control and operation of the Landfill. 	The Landfill and SRS are not within the same industrial grouping. The Landfill is not a support facility for SRS since the SRS contributes far less than 50% of the waste being disposed at the Landfill and does not have operational control over the Landfill. Conclude not co-located based on SIC/NAICS codes or support.

Form 2566 – Collocation Determination – Attachment B

* "Guidance for Collocation/Single Source Determinations," issued by Elizabeth Basil, dated 10/28/2016, was utilized in the generation of this table.

Conclusion: Ameresco Biomass Cogeneration Facility, Salt Waste Processing Facility, and the Research and Development (R&D) Activities performed at leased facilities within the Savannah River Research Campus maintained by Aiken County and on SRS property are co-located facilities/activities. The Three Rivers Solid Waste Authority Regional Landfill is not co-located facilities with SRS. Simplistically speaking the Landfill is not dependent on the presence of SRS to perform their services.

"Modify" was selected if impacted by chemical flowsheet change

"Remove" was selected if equipment was being removed due to no longer emitting any regulated pollutants or if physically Abandoned In Place (AIP) "Existing was selected if equipment was part of the vitrification process and will not be impacted by modification

For equipment outside of the vitrification process per the June 15, 1999 SCDHEC guidance titled, "Guidance document for Standard 4, Section VIII – PM Emission Limitations" it was only listed on the table if impacted by the modification. These are annotated as "IA" at the end of the description

Equipment ID/Process ID	Action	Equipment/Process Description	Maximum Design Capacity (Units)	Control Device ID(s)	Emission Point ID(s)
2665	Modify – change in chemical flowsheet	Slurry Mix Evaporator (SME)	60 Batches	CD-J 0005	EP-S D P 007
2675	Modify – change in chemical flowsheet	Sludge Receipt and Adjustment Tank (SRAT)	60 Batches	CD-J 0005	EP-S D P 007
2705	Modify – change in chemical flowsheet	Melter	60 Batches	None	EP-S D P 007
2755	Modify – change in chemical flowsheet	Precipitate Reactor Feed Tank	60 Batches	None	EP-S D P 007
2645	Modify – change in chemical flowsheet	Decontaminate Waste Treatment Tank	60 Batches	None	EP-S D P 007
2565	Modify – change in chemical flowsheet	SME Isolation Pot	60 Batches	CD-J 0005	EP-S D P 007
2785	Modify – change in chemical flowsheet	Offgas Condensate Tank 1	60 Batches	None	EP-S D P 007
4885	Modify – change in chemical flowsheet	Offgas Condensate Tank 2	60 Batches	None	EP-S D P 007
3885	Modify – change in chemical flowsheet	Crane Decon Feed Tank	60 Batches	None	EP-S D P 007
1765	Existing – no change	Sludge Tank (5800 gal)	60 Batches	None	ES-S D P 001
1775	Existing – no change	Recycle Tank (5800 gal)	60 Batches	None	ES-S D P 001

1785	Existing – no change	Precipitate Tank (5800 gal)	60 Batches	None	ES-S D P 001
1215	Remove – will not emit regulated pollutants	Currently 90% Formic Acid Feed Tank (600 gal) rename Glycolic Acid Feed Tank (600 gal)	NA – will not emit regulated pollutants	None	EP-S D P 009
1115	Existing – no change	Nitric Acid Dilution Tank (100 gal)	3600 gal/yr		EP-S D P 009
1095	Existing – no change	Nitric Acid Decon Feed Tank (1100 gal)	72000 gal/yr		EP-S D P 009
1085	Remove – will not emit regulated pollutants	Process Frit Slurry Feed Tank (2800 gal)	NA – will not emit regulated pollutants	None	EP-S D P 009
1075	Remove – will not emit regulated pollutants	Frit Decon Slurry Feed Tank (780 gal)	NA – will not emit regulated pollutants	None	EP-S D P 009
1065	Remove - – will not emit regulated pollutants	Currently Copper Catalyst Feed Tank (180 gal) rename to Sodium Permanganate Feed Tank (180 gal)	30 gal/yr	None	EP-S D P 009
1055	Existing – no change	Additive Mix Feed Tank (180 gal)	21600 gal/yr	None	EP-S D P0009
1035	Remove - AIP	Oxalic Decon Feed Tank (1100 gal)	NA – AIP	None	EP-S D P 009
1025	Remove – will not emit regulated pollutants	Organic Acid Drain Tank (1200 gal)	NA – AIP	None	EP-S D P 009
1015	Existing – no change	Sodium Nitrite Feed Tank (600 gal)	112500 gal/yr	None	EP-S D P 009

1005	Existing – no change	Nitric Acid Feed Tank (600 gal)	36000 gal/yr	None	EP-S D P 009
0985	Existing – no change	Acid Drain Catch Tank (1200 gal)	306000 gal/yr	None	EP-S D P 009
1325	Remove - AIP	Oxalic Acid Make Up Tank (1300 gal)	NA – AIP	None	EP-S D P 0019
1315	Remove - AIP	Formic Acid Feed Tank (2000 gal)	NA – AIP	None	EP-S D P 0019
1295	Remove - AIP	Formic Acid Dilution Tank (2000 gal)	NA – AIP	None	EP-S D P 0019
1285	Remove – will not emit regulated pollutants	Frit Slurry Make Up Tank (2300 gal)	NA – will not emit regulated pollutants	None	EP-S D P 0019
2885	Remove - AIP	Catalyst Make-up tank (550 gal) Raw Material Storage - IA	NA – AIP	None	EP-S D P 0067
2915	Modify – change in chemical flowsheet	Nitric Acid Decon Make-up tank (1300 gal) Raw Material Storage - IA	32000 gal/yr	None	EP-S D P 0067
2935	Modify – change in chemical flowsheet	50% Nitric Acid Storage Tank (1000 gal) Raw Material Storage - IA	15000 gal/yr	None	EP- S D P 0067
0795	Remove – will not emit regulated pollutants	Organic Waste/Neutralization Tank #1 (3150 gal) Waste/Chemical Treatment - IA	NA – will not emit regulated pollutants	None	EP- S D T 0035
0205	Remove – will not emit regulated pollutants	Organic Waste/ Neutralization Tank #2 (3150 gal)	NA – will not emit regulated pollutants	None	EP- S D T 0036

		Wase/Chemical			
		Treatment - IA			
374S	Remove - AIP	Formic Acid Storage	NA – AIP	None	EP-S D T 0046
		Tank #1, (6500 gal)			
		Raw Material Storage			
		- IA		189824	
407S	Remove - AIP	Oxalic Acid Storage	NA – AIP	None	EP-S D T 0046
		Tank (6000 gal) Raw			
		Material Storage - IA			
2985	Remove – will not	Currently Formic Acid	NA – wi ll not	None	EP-S D T 0043
	emit regulated	Storage Tank #2	emit regulated		
	pollutants	(6500 gal) After	pollutants		
		modification will be			
		Glycolic Acid Storage			
		Tank (6500 gal) Raw			
		Material Storage - IA			

----→ Air Emissions, stream number from Reference 1, Choi 1996

Process Flow

S-Area Emission Unit – Emission Point SDP009

S-Area Emission Unit – Emission Point SDP0019

Air Emissions
Process Flow

DHEC Form 2566 – Emission Units Process Flowsheets - Attachment D Post Modification

S-Area Emission Unit – Emission Point SDP009

Air Emissions
Process Flow

S-Area Emission Unit – Emission Point SDP0019

Air Emissions
Process Flow

DHEC Form 2566 – Emission Units Process Flowsheets - Attachment D Insignificant Activities

Pre-Modification	Post Modification
288S, SDP0067 – on IA list	Remove from IA list - AIP
291S, SDP0067 – on IA list	Slight increase in nitric acid, still qualifies to be on IA list
293S, SDP0067 – on IA list	Slight increase in nitric acid, still qualifies to be on IA list
079S, SDT0035 - on IA list	Removed from IA list, no longer emits regulated pollutants
020S, SDT0036 – on IA list	Removed from IA list, no longer emits regulated pollutants
374S, SDT0046 – on IA list	Removed from IA list - AIP
407S, SDT0046 – on IA list	Removed from IA list - AIP
298S, SDT0043 – on IA list	Removed from IA list, no longer emits regulated pollutants

DHEC Form 2566 - After Modification Potential Emission Rates - Attachment E

	POTENTIAL EMISSION RATES AT MAXIMUM DESIGN CAPACITY						2
Equipment ID / Process ID Emission Point ID		Pollutants (CAS#)	Calculation Methods / Limits Taken / Other Comments	Uncontrolled		Controlled	
	de la contra de la c			lbs/hr	tons/yr	lbs/hr	tons/yr
267S, 266S,	SDP007	Carbon Dioxide (CAS 124-38-9)	Engineering Calculation: Q-ESR-00002_r1	8.31E+01	2.39E+02	8.31E+01	2.39E+02
2705, 2755,		PM	Engineering Calculations: SRNS-J2200-2019-00240	1.18E-01	3.28E-01	1.18E-01	3.28E-01
264S, 256S,		PM-10	Engineering Calculations: SRNS-J2200-2019-00240	1.18E-01	3.28E-01	1.18E-01	3.28E-01
2785, 488S,		PM-2.5	Engineering Calculations: SRNS-J2200-2019-00240	1.18E-01	3.28E-01	1.18E-01	3.28E-01
3885		Oxides of Nitrogen (NOx) as NO2	Engineering Calculation: Q-ESR-00002_r1	2.49E+01	6.43E+01	2.49E+01	6.43E+01
		Lead Compounds (PbO)	Engineering Calculations: 5RNS-J2200-2019-00240	1.69E-06	5.82E-06	1.69E-06	5.82E-06
		Nitrous Oxide (N2O) (CAS 1024-97-2)	Engineering Calculation: Q-E5R-00002_r1	3.70E+00	1.10E+01	3.70E+00	1.10E+01
		Carbon Monoxide (CAS 630-08-0)	Engineering Calculation: Q-ESR-00002_r1	2.50E+00	8.60E+00	2.50E+00	8.60E+00
1215	SDP009	No regulated Pollutants	Glycolic Acid Vapor Pressure is too low to emit		<u> </u>		
1115	SDP009	Nitric Acid (CAS 7697-37-2)	SRNS-J2200-2019-00240 is bounding	6.39E-05	2.80E-04	6.39E-05	2.80E-04
1095	SDP009	Nitric Acid (CAS 7697-37-2)	SRNS-J2200-2019-00240 is bounding	5.41E-04	2.37E-03	5.41E-04	2.37E-03
1095	SDP009	PM	SRNS-J2200-2019-00240 is bounding	1.14E-06	5.00E-06	1.14E-06	5.00E-06
1095	SDP009	PM-10	SRNS-J2200-2019-00240 is bounding	1.14E-06	5.00E-06	1.14E-06	5.00E-06
1095	SDP009	PM-2.5	5RNS-J2200-2019-00240 is bounding	1.14E-06	5.00E-06	1.14E-06	5.00E-06
1095	SDP009	Manganese Compounds	SRNS-J2200-2019-00240 is bounding	1.14E-06	5.00E-06	1.14E-06	5.00E-06
1085	SDP009	No regulated Pollutants	Glycolic Acid Vapor Pressure is too low to emit				
1075	SDP009	No regulated Pollutants	Glycolic Acid Vapor Pressure is too low to emit				
1065	SDP009	No regulated Pollutants	Sodium Permanganate Vapor pressure is too low to emit				
1055	SDP009	voc	SRNS-J2200-2019-00240 is bounding	2.40E-05	1.05E-04	2.40E-05	1.05E-04
1025	SDP009	No regulated Pollutants	No longer using oxalic acid				
1015	SDP009	PM	SRNS-J2200-2019-00240 is bounding	2.85E-05	1.25E-04	2.85E-05	1.25E-04
1015	SDP009	PM-10	SRNS-J2200-2019-00240 is bounding	2.85E-05	1.25E-04	2.85E-05	1.25E-04
1015	SDP009	PM-2.5	SRNS-J2200-2019-00240 is bounding	2.85E-05	1.25E-04	2.85E-05	1.25E-04
1005	SDP009	Nitric Acid (CAS 7697-37-2)	SRNS-J2200-2019-00240 is bounding	1.87E-03	8.21E-03	1.87E-03	8.21E-03
985	SDP009	Nitric Acid (CAS 7697-37-2)	SRNS-J2200-2019-00240 is bounding	4.75E-03	2.08E-02	4.75E-03	2.08E-02
1285	SDP0019	No regulated Pollutants	Glycolic Acid Vapor Pressure is too low to emit		····		
176S, 177S	SDP001	РМ	Modification does not impact this emission point.	6.85E-05	3.00E-04	6.85E-05	3.00E-04
			Included to allow for total of vitrification process. SRNS-				
			J2200-2019-00240 is bounding				
178S,		PM-10		6.85E-05	3.00E-04	6.85E-05	3.00E-04
		PM-2.5		6.85E-05	3.00E-04	6.85E-05	3.00E-04
		Manganese Compounds		3.42E-06	1.50E-05	3.42E-06	1.50E-05

DHEC Form 2566 - After Modification Potential Emission Rates - Attachment E

and the states		POTENTIAL EMISS	ION RATES AT MAXIMUM DESIGN CAPACITY				
Equipment ID / Process ID	Emission Point ID	Pollutants (CAS#)	Calculation Methods / Limits Taken / Other Comments	Uncor	ntrolled	Cont	rolled 👘
나랫봐요. 관련 그 사고				lbs/hr	tons/yr	lbs/hr	tons/yr
EU 16 S-Area	SDP001	PM	Totals for Vitrification Process	1.18E-01	3.28E-01	1.18E-01	3.28E-01
	SDP007	PM-10		1.18E-01	3.28E-01	1.18E-01	3.28E-01
	SDP009	PM-2.5		1.18E-01	3.28E-01	1.18E-01	3.28E-01
	SDP0019	Manganese Compounds		4.57E-06	2.00E-05	4.57E-06	2.00E-05
		Nitric Acid (CAS 7697-37-2)		7.22E-03	3.17E-02	7.22E-03	3.17E-02
		voc		2.40E-05	1.05E-04	2.40E-05	1.05E-04
	1. M/18	Oxides of Nitrogen (NOx) as NO2		2.49E+01	6.43E+01	2.49E+01	6.43E+01
		Lead Compounds (PbO)		1.69E-06	5.82E-06	1.69E-06	5.82E-06
		Nitrous Oxide (N2O) (CAS 1024-97-2)		3.70E+00	1.10E+01	3.70E+00	1.10E+01
		Carbon Monoxide (CAS 630-08-0)		2.50E+00	8.60E+00	2.50E+00	8.60E+00
		Carbon Dioxide (CAS 124-38-9)		8.31E+01	2.39E+02	8.31E+01	2.39E+02

				Uncon	trolled			Controlled					
		SDP7	SDP7	other EPs	other EPs	Total DW	PF process	SDP7	SDP7	other EPs	other EPs	Total DWF	PF process
CAS#		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
630-08-0	Carbon monoxide	2.50E+00	8.60E+00			2.50E+00	8.60E+00	2.50E+00	8.60E+00			2.50E+00	8.60E+00
124-38-9	Carbon dioxide (GHG)	8.31E+01	2.39E+02			8.31E+01	2.39E+02	8.31E+01	2.39E+02			8.31E+01	2.39E+02
7697-37-2	Nitric acid			7.23E-03	3.17E-02	7.23E-03	3.17E-02			7.23E-03	3.17E-02	7.23E-03	3.17E-02
1024-97-2	Nitrous oxide (GHG)	3.70E+00	1.10E+01			3.70E+00	1.10E+01	3.70E+00	1.10E+01			3.70E+00	1.10E+01
	Total Particulate	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01
	PM-10	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01
	PM-2.5	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01
	Nitrogen oxides (NO2) [MW=46.01]	2.49E+01	6.43E+01			2.49E+01	6.43E+01	2.49E+01	6.43E+01			2.49E+01	6.43E+01
	voc			2.40E-05	1.05E-04	2.40E-05	1.05E-04			2.40E-05	1.05E-04	2.40E-05	1.05E-04
	Lead compounds (PbO)	1.69E-06	5.82E-06			1.69E-06	5.82E-06	1.69E-06	5.82E-06			1.69E-06	5.82E-06
	Manganese compounds (MnO2)			4.57E-06	2.00E-05	4.57E-06	2.00E-05			4.57E-06	2.00E-05	4.57E-06	2.00E-05

DHEC Form 2566 - SRS Facility-Wide Emissions Pre-Modification - Attachment G

	Uncontrolled	Uncontrolled	
Pollutant	SRS	Ameresco	Total
со	3.49E+02	4.58E+02	8.07E+02
Nitrogen Dioxide (NO2)	4.06E+02	5.26E+02	9.32E+02
NOx	5.27E+02	5.26E+02	1.05E+03
Pb	1.55E-01	2.02E-01	3.57E-01
PM	1.15E+03	1.58E+03	2.73E+03
PM10	4.64E+02	1.58E+03	2.04E+03
PM2.5	4.34E+02	1.58E+03	2.01E+03
502	6.62E+01	2.77E+03	2.84E+03
voc	1.94E+02	8.65E+01	2.80E+02
1,1,1-Trichloroethane (Methy	5.39E-02	7.14E-02	1.25E-01
1.1-dichloroethylene (vinyli	1.33E-02		1.33E-02
1.4-Dioxane	4.51E-02		4.51E-02
Acetaldehyde	1.55E-06	4.02E-01	4.02E-01
Acrylonitrile	2.60E-10		2.60E-10
Antimony Compounds	2.68E-08	1.82E-02	1.82E-02
Benzene	2.08F+00	2.55E+00	4.63E+00
Cadmium	8.68F-07	3.89E-02	3.89E-02
Carbon Disulfide	1.42E-05	0.001 01	1.42E-05
Carbon Tetrachloride	1.42E 03	1 04F-01	2 49F-01
Chlorine	4 34F-01	1.87E+00	2 25E+00
Chloroform	4.665-03	6.45E-02	6.91F-02
Chromium Compounds	2 955-01	3.62E-02	3 31E-01
Cumene	1 725-02	5.022 02	1 72F-02
Ethylhonzono	3 165-01	7 14E-02	3 88F-01
Formaldohydo	8 125-01	2 835+00	3.64F±00
formic acid	1 785-01	2.032100	1 78F-01
Hevano	2.085-01		2.08F-01
	3 335+00	2 51E+01	2.00L 01
Hydrochione Acid	1.07E-02	2,511+01	1.07E-02
	2.065.04		2.965-04
Hydrogen Suilde	6 715 05		2.30E-04
Manganasa sompounds	7.71E-03		7 715-01
Marganese compounds	1 715 01	7 005 02	1 705.01
Mathenal	2.005.02	7.30E-03	0.425-01
Method Sthul Ketone	2.00E-02	9.222-01	5.42E-01
Nethyl Ethyl Ketone	0.22E-03		0.226-03
Methyl isobutyl Ketone	3.14E-02	6 695 01	5.14E-02
Wethylene Chioride (Dichloro	9.16E-03	6.68E-01	0.776-01
Naphthalene	6.65E-06	2.23E-01	2.23E-01
Nickel Compounds	1.7/E-01		1.77E-01
nickel oxide	1.53E-04		1.53E-04
Nickel	1.77E-01	3.37E-02	2.11E-01
initric acid	1.6/E+02		1.6/E+02
Oxalic Acid	1.05E-01		1.05E-01
Sodium Hydroxide	1.19E+00		1.19E+00
Styrene	3.33E-01	1.07E+00	1.41E+00
Tetrachloroethylene (Perchl	3.54E+01	8.75E-02	3.55E+01
Toluene	1.46E+00	2.12E+00	3.58E+00
Trichloroethylene	2.30E+01	6.91E-02	2.30E+01
Vinyl Chloride	5.84E-03	4.14E-02	4.73E-02
Xylene (m-)	2.45E+00		2.45E+00
Xylene(o-)	8.11E-03	5.76E-02	6.57E-02
Xylenes	2.34E-02		2.34E-02
Acenaphthene (POM)		2.09E-03	2.09E-03

Controlled	Controlled	
SRS	Ameresco	Total
3.49E+02	4.57E+02	8.06E+02
3.94E+02	3.68E+02	7.62E+02
5.15E+02	3.68E+02	8.83E+02
3.73E-02	2.02E-01	2.39E-01
6.21E+01	2.12E+02	2.74E+02
5.76E+01	2.12E+02	2.70E+02
3.62E+01	2.12E+02	2.48E+02
6.62E+01	5.31E+02	5.97E+02
1.94E+02	8.65E+01	2.80E+02
5.39E-02	7.14E-02	1.25E-01
1.33E-02		1.33E-02
4.51E-02		4.51E-02
1.55E-06	4.02E-01	4.02E-01
2.60E-10		2.60E-10
2.68E-08	1.82E-02	1.82E-02
2.08E+00	2,55E+00	4.63E+00
8.68F-07	3.89F-02	3.89E-02
1 42E-05	5.65E 02	1 42F-05
1.42E-03	1 04F-01	2 49F-01
1.40E 01	1.825+00	2.45E 01
4.540-01	6 455 02	6 01E 02
4.002-03	2.625.02	2 215 01
2.952-01	5.02E-02	1 725 02
1.72E-02	7 1 45 02	1.72E-02
3.10E-01	7.14E-02	3.000-01
8.12E-01	2.83E+00	3.64E+00
1.40E-01		1.40E-01
2.08E-01	1.025+01	2.08E-01
3.33E+00	1.02E+01	1.300+01
1.07E-02		1.076-02
2.96E-04		2.90E-04
6./1E-05		6./1E-05
7.71E-01		7.71E-01
1.71E-01	7.90E-03	1.79E-01
2.00E-02	9.22E-01	9.42E-01
6.22E-03		6.22E-03
3.14E-02		3.14E-02
9.16E-03	6.68E-01	6.77E-01
6.65E-06	2.23E-01	2.23E-01
1.77E-01		1.77E-01
1.53E-04		1.53E-04
1.77E-01	3.37E-02	2.11E-01
1.67E+02		1.67E+02
1.05E-01		1.05E-01
1.19E+00		1.19E+00
3.33E-01	1.07E+00	1.41E+00
3.54E+01	8.75E-02	3.55E+01
1.46E+00	2.12E+00	3.58E+00
2.30E+01	6.91E-02	2.30E+01
5.84E-03	4.14E-02	4.73E-02
2.45E+00		2.45E+00
8.11E-03	5.76E-02	6.57E-02
2.34E-02		2.34E-02
	2.09E-03	2.09E-03

DHEC Form 2566 - SRS Facility-Wide Emissions Pre-Modification - Attachment G

Pollutant SRS Ameresco Total Acenaphthylen (POM) 1.15E-02 1.15E-02 1.15E-02 Acetophenone 7.37E-00 3.87E+00 3.87E+00 Actolpin 3.87E+00 3.87E+00 3.87E+00 Anthracene (POM) 6.91E-03 6.91E-03 6.91E-03 Benzo(a)pyrene (POM, PAH) 5.99E-03 5.99E-06 5.99E-06 Benzo(b)fluoranthene (POM, PAH) 2.32E-05 Benzo(b)ryrene 5.99E-06 5.99E-06 Benzo(b)ryrene 5.99E-06 5.99E-06 5.29E-05 8.28E-02 3.68E-04 3.68E-04 Benzo(b)ryrene 0.82F-02 3.68E-04 3.68E-04 3.68E-04 3.68E-04 Benzo(b)ryrene (POM) 8.29E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-03 3.68E-02 5.30E-02 5.48E-03 <t< th=""><th></th><th>Uncontrolled</th><th>Uncontrolled</th><th></th></t<>		Uncontrolled	Uncontrolled	
Acenaphthylene (POM) 1.15E-02 1.15E-02 Acetophenone 7.37E-06 7.37E-06 Acrolein 3.87E+00 3.87E+00 Anthracene (POM) 6.91E-03 6.91E-03 Benzo(a)anthracene (POM, PAH) 1.50E-04 1.50E-04 Benzo(b,k)fluoranthene (POM, PAH) 2.30E-04 2.30E-04 Benzo(b,k)fluoranthene (POM, PAH) 1.92E-05 1.92E-05 Benzo(b,k)fluoranthene (POM) 2.14E-04 2.14E-04 Benzo(k,l/fluoranthene (POM) 2.14E-04 2.14E-04 Benzo(k,l/fluoranthene (POM) 8.29E-05 8.29E-05 Bis(2-Ethylhexyl)phthalate (DEHP) 1.08E-04 1.08E-04 Bromomethane (methyl choride) 3.45E-02 3.45E-02 Chiorobenzene 7.60E-02 7.60E-02 Chiorobenzene (POM) 2.74E-05 3.75E-05 Dibenzo(a,h)anthracene (POM) 2.74E-05 3.29E-05 Dibenzo(a,h)anthracene (POM) 3.68E-03 3.68E-03 1,2-Dichloropenane (Propylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04	Pollutant	SRS	Ameresco	Total
Accobenone 7.37E-06 7.37E-06 Acrolein 3.87E+00 3.87E+00 Anthracene (POM) 6.91E-03 6.91E-03 Benzo(a)aptrene (POM, PAH) 5.99E-03 5.99E-03 Benzo(b)fluoranthene (POM, PAH) 1.30E-04 2.30E-04 Benzo(b,filuoranthene (POM, PAH) 1.92E-05 5.99E-06 Benzo(b,filuoranthene (POM) 2.14E-04 2.14E-04 Benzo(b,filuoranthene (POM) 8.29E-05 8.29E-05 Benzo(b,filuoranthene (POM) 8.29E-05 8.29E-05 Bis/2-Ethylhexyliphtalate (DEHP) 1.08E-04 1.08E-04 Bromomethane (methyl bromide) 3.45E-02 7.60E-02 Chlorobenzene 7.60E-02 7.60E-02 Chlorobenzene 7.60E-03 7.60E-02 Chlorobenzene (POM) 2.74E-05 3.74E-05 1,2-Dichlorootehane (Ethylene dichloride) 6.68E-02 6.68E-02 1,2-Dichlorootehane (Ethylene dichloride) 7.60E-02 7.60E-02 1,2-Dichlorootehane (Ethylene dichloride) 7.60E-02 7.60E-02 1,2-Dichlorootehane (Ethylene dichloride) 7.60E-02	Acenaphthylene (POM)		1.15E-02	1.15E-02
Acrolein 3.87E+00 3.87E+00 3.87E+00 Anthracene (POM) 6.91E-03 6.91E-03 6.91E-03 Benzo(a)anthracene (POM, PAH) 1.50E-04 1.50E-04 1.50E-04 Benzo(a)pyrene (POM, PAH) 2.30E-04 2.30E-04 3.99E-03 Benzo(b)k)fluoranthene (POM, PAH) 2.30E-04 2.30E-04 3.68E-04 3.68E-02 5.30E-02 Chloromethane (methyl bromide) 5.30E-02 5.30E-02 Chloromethane (methyl chloride) 7.60E-02 7.60E-02 <td>Acetophenone</td> <td></td> <td>7.37E-06</td> <td>7.37E-06</td>	Acetophenone		7.37E-06	7.37E-06
Anthracene (POM) 6.91E-03 6.91E-03 Benzo(a)anthracene (POM, PAH) 1.50E-04 1.50E-04 Benzo(b)fluoranthene (POM, PAH) 2.30E-04 2.30E-04 Benzo(b)fluoranthene (POM, PAH) 1.92E-05 1.92E-05 Benzo(b)fluoranthene (POM) 2.14E-04 2.14E-04 Benzo(b)fluoranthene (POM) 2.14E-04 2.14E-04 Benzo(b)fluoranthene (POM) 8.29E-05 8.29E-05 Bis(2-Ethylhexyl)phthalate (DEHP) 1.08E-04 1.08E-04 Bromomethane (methyl bromide) 3.45E-02 3.45E-02 Chlorobenzene 7.60E-02 7.60E-02 Chlorobenzene (POM) 8.75E-05 8.75E-05 Dibenzo(a,h)anthracene (POM) 2.74E-05 1.72E-05 1,2-Dichloropropane (Propylene dichloride) 7.60E-02 7.60E-02 1,2-Dichloropropane (Propylene dichloride) 7.60E-03 3.68E-03 1,2-Dichloropropane (Propylene dichloride) 7.63E-03 3.68E-03 1,2-Dichloropropane (Propylene dichloride) 7.60E-02 7.60E-02 1,2-Dichloropropane (Propylene dichloride) 7.60E-02 7.63E-03	Acrolein		3.87E+00	3.87E+00
Benzo(a)anthracene (POM, PAH) 1.50E-04 1.50E-04 Benzo(a)pyrene (POM, PAH) 5.99E-03 5.99E-03 Benzo(b,/fluoranthene (POM, PAH) 1.30E-04 2.30E-04 Benzo(b,/fluoranthene (POM, PAH) 1.92E-05 Benzo(b,/fluoranthene (POM) 2.14E-04 2.14E-04 Benzo(b,/fluoranthene (POM) 8.21E-05 8.29E-05 8.29E-05 8.29E-05 Benzo(k,/fluoranthene (POM) 8.29E-03 8.29E-02 3.45E-02 3.45E-02 Bromomethane (methyl bromide) 3.45E-02 3.45E-02 5.30E-02 5.3	Anthracene (POM)		6.91E-03	6.91E-03
Benzo(a)pyrene (POM, PAH) 5.99E-03 5.99E-03 Benzo(b)fluoranthene (POM, PAH) 2.30E-04 2.30E-04 Benzo(b)k/fluoranthene (POM, PAH) 1.92E-05 1.92E-05 Benzo(a)k/fluoranthene (POM) 2.14E-04 2.14E-04 Benzo(a)k/fluoranthene (POM) 8.29E-05 8.29E-05 Benzo(a)k/fluoranthene (POM) 8.29E-05 8.29E-05 Big(2-Ethylhexyl)phthalate (DEHP) 1.08E-04 1.08E-04 Bromomethane (methyl bromide) 3.45E-02 3.45E-02 Chlorobenzene 7.60E-02 7.60E-02 Choromethane (Methyl chloride) 6.68E-02 6.68E-02 Dibenzo(a,h)anthracene (POM) 8.75E-05 8.75E-05 J,2-Dichloropropane (Propylene dichloride) 7.60E-02 7.60E-02 J,2-Dichloropropane (Propylene dichloride) 7.60E-02 7.60E-02 J,2-Dichloropropane (Propylene dichloride) 7.83E-03 3.68E-03 Fluoranthene (POM) 7.83E-03 3.68E-03 Fluoranthene (POM) 7.83E-03 3.68E-03 Heyachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octacholorodibe	Benzo(a)anthracene (POM, PAH)		1.50E-04	1.50E-04
Benzo(b)fluoranthene (POM, PAH) 2.30E-04 2.30E-04 2.30E-04 Benzo(b,k)fluoranthene (POM), PAH) 1.92E-05 1.92E-05 5.99E-06 Benzo(b,k)fluoranthene 3.68E-04 3.68E-04 3.68E-04 Benzo(b,k)fluoranthene 3.68E-04 3.68E-04 3.68E-04 Benzo(b,k)fluoranthene (POM) 8.29E-05 8.29E-05 8.29E-05 Bis(2-Ethylhexyl)phthalate (DEHP) 1.08E-04 1.08E-02 3.45E-02 Chloromethane (methyl bromide) 3.45E-03 3.5E-05 3.76E-02 Chloromethane (Methyl chloride) 5.30E-02 7.60E-02 7.60E-02 Chloromethane (Methyl chloride) 2.74E-05 7.74E-05 7.74E-05 7.74E-05 7.74E-05 7.24E-05	Benzo(a)pyrene (POM, PAH)		5.99E-03	5.99E-03
Benzo(b,k)fluoranthene (POM, PAH) 1.92E-05 1.92E-05 Benzo(e)pyrene 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-05 8.29E-05 8.45E-07 8.25E-03 8.26E-03 8.26E-03 <	Benzo(b)fluoranthene (POM, PAH)		2.30E-04	2.30E-04
Benzo(e)pyrene 5.99E-06 5.99E-06 Benzo(g,h,i)perylene (POM) 2.14E-04 2.14E-04 Benzo(g,h,i)perylene (POM) 8.29E-05 8.29E-05 Bis[2-Ethylhexyl)phthalate (DEHP) 1.08E-04 1.08E-04 Bromomethane (methyl bromide) 3.45E-02 3.45E-02 Chlorobenzene 7.60E-02 7.60E-02 Chorobenzene (POM) 8.75E-05 8.75E-05 Dibenzo(a,h)anthracene (POM) 2.74E-05 2.74E-05 1,2-Dichloroperpane (Propylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluorent (POM) 7.83E-03 3.68E-03 Fluorene (POM) 7.83E-03 3.68E-03 Fluorene (POM) 7.83E-03 3.68E-03 Fluorene (POM) 7.83E-03 3.68E-03 Heptachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-furans 2.03E-07 2.03E-07 Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.07E-07 2.07E-07 2,3,7.8-Tetra	Benzo(b,k)fluoranthene (POM, PAH)	1	1.92E-05	1.92E-05
Benzo(g,h,i)perylene (POM) 2.14E-04 2.14E-04 Benzo(j,k)fluoranthene 3.68E-04 3.68E-04 Benzo(j,k)fluoranthene (POM) 8.29E-05 8.29E-05 Bis(2-Ethylhexyl)phthalate (DEHP) 1.08E-04 1.08E-04 Bromomethane (methyl bromide) 3.45E-02 3.45E-02 Chlorobenzene 7.60E-02 7.60E-02 Choromethane (Methyl chloride) 5.30E-02 5.30E-02 Chrysene (POM) 8.75E-05 8.75E-05 1,2-Dichloroethane (Ethylene dichloride) 7.60E-02 7.60E-02 1,2-Dichloropropane (Propylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluorene (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heytachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-dioxins 1.52E-04 3.45E-06 Chachlorodibenzo-p-furans 2.03E-07 2.07E-07 Pentachlorodibenzo-p-furans 2.03E-07 <	Benzo(e)pyrene		5.99E-06	5.99E-06
Benzo(j,k)fluoranthene 3.68E-04 3.68E-04 Benzo(k)fluoranthene (POM) 8.29E-05 8.29E-05 Bis(2-Ethylhexyl)phthalate (DEHP) 1.08E-04 1.08E-04 Bromomethane (methyl bromide) 3.45E-02 3.45E-02 Chlorobenzene 7.60E-02 7.60E-02 Chorobenzene 7.60E-02 5.30E-02 Dibenzo(a,h)anthracene (POM) 8.75E-05 8.75E-05 1,2-Dichloropethane (Ethylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluorent (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.07E-07 7.67E-07 Pentachlorodibenzo-p-furans 1.73E-06 1.73E-06	Benzo(g,h,i)perylene (POM)		2.14E-04	2.14E-04
Benzo(k/fluoranthene (POM) 8.29E-05 8.29E-05 Bis(2-Ethylhexyl)phthalate (DEHP) 1.08E-04 1.08E-04 Bromomethane (methyl bronide) 3.45E-02 3.45E-02 Chlorobenzene 7.60E-02 7.60E-02 Chloromethane (Methyl chloride) 5.30E-02 5.30E-02 Chrysene (POM) 8.75E-05 8.75E-05 Dibenzo(a,h)anthracene (POM) 2.74E-05 2.74E-05 1,2-Dichloroptopane (Propylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluoranthene (POM) 7.83E-03 7.83E-03 Fluorene (POM) 7.83E-03 7.83E-03 Fluorene (POM) 7.83E-03 3.68E-03 Heptachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Heptachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-furans 2.07E-07 2.07E-07 Pentachlorodibenzo-p-furans 1.73E-06 1.73E-06	Benzo(j,k)fluoranthene		3.68E-04	3.68E-04
Bis(2-Ethylhexyl)phthalate (DEHP) 1.08E-04 1.08E-04 Bromomethane (methyl bromide) 3.45E-02 3.45E-02 Chlorobenzene 7.60E-02 7.60E-02 Chorobenzene 7.60E-02 7.60E-02 Choromethane (Methyl chloride) 5.30E-02 5.30E-02 Dibenzo(a,h)anthracene (POM) 2.74E-05 2.74E-05 1,2-Dichloroethane (Ethylene dichloride) 6.68E-02 6.68E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluoranthene (POM) 3.68E-03 3.68E-03 Fluoranthene (POM) 7.68E-03 3.68E-03 Fluoranthene (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-furans 5.53E-07 5.58E-07 Hexachlorodibenzo-p-furans 6.45E-07 6.45E-07 Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.07E-07 2.07E-07 Z,37,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 Z,37,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07	Benzo(k)fluoranthene (POM)		8.29E-05	8.29E-05
Bromomethane (methyl bromide) 3.45E-02 3.45E-02 Chlorobenzene 7.60E-02 7.60E-02 Chloromethane (Methyl chloride) 5.30E-02 5.30E-02 Chrysene (POM) 8.75E-05 8.75E-05 Dibenzo(a,h)anthracene (POM) 2.74E-05 2.74E-05 1,2-Dichloropethane (Ethylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluoranthene (POM) 3.68E-03 3.68E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Heptachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-furans 6.45E-07 6.45E-07 Octachlorodibenzo-p-furans 1.52E-04 1.52E-04 Octachlorodibenzo-p-furans 2.07E-07 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 2,3,7,8-Tetrachlorodibenzo-p-furans 1	Bis(2-Ethylhexyl)phthalate (DEHP)		1.08E-04	1.08E-04
Chlorobenzene 7.60E-02 7.60E-02 Chloromethane (Methyl chloride) 5.30E-02 5.30E-02 Chrysene (POM) 8.75E-05 8.75E-05 Dibenzo(a,h)anthracene (POM) 2.74E-05 2.74E-05 1,2-Dichloroethane (Ethylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluorene (POM) 3.68E-03 3.68E-03 Fluorene (POM) 7.83E-03 7.83E-03 Fluorene (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-furans 6.45E-07 6.45E-07 Hexachlorodibenzo-p-furans 6.45E-07 6.45E-07 Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.03E-07 2.07E-07 Pentachlorodibenzo-p-furans 2.07E-07 2.37.8-E0 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 Pentachlorodibenzo-p-furans 1.73E-06 1.73E-06 <tr< td=""><td>Bromomethane (methyl bromide)</td><td></td><td>3.45E-02</td><td>3.45E-02</td></tr<>	Bromomethane (methyl bromide)		3.45E-02	3.45E-02
Chloromethane (Methyl chloride) 5.30E-02 5.30E-02 Chrysene (POM) 8.75E-05 8.75E-05 Dibenzo(a, h)anthracene (POM) 2.74E-05 2.74E-05 1,2-Dichloropenane (Ethylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluoranthene (POM) 3.68E-03 3.68E-03 Fluoranthene (POM) 7.63E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-furans 5.53E-07 6.45E-07 Hexachlorodibenzo-p-furans 0.45E-07 6.45E-07 Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.03E-07 9.67E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.37E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 Phenol 1.17E-04 1.17E-04 Phenol 1.17E-04 1.17E-04 Phenol 1.17E-04 1.40E-01 Phenon	Chlorobenzene	· · · · · · · · · · · · · · · · · · ·	7.60E-02	7.60E-02
Chrysene (POM) 8.75E-05 8.75E-05 Dibenzo(a,h)anthracene (POM) 2.74E-05 2.74E-05 1,2-Dichloroethane (Ethylene dichloride) 6.68E-02 6.68E-02 1,2-Dichloropropane (Propylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluoranthene (POM) 7.83E-03 3.68E-03 Fluorene (POM) 7.83E-03 3.68E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 3.68E-07 6.45E-07 Octachlorodibenzo-p-furans 2.03E-07 9.67E-07 Pentachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.07E-07 2.07E-07 Z,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 Lidenodibenzo-p-furans 2.07E-07 2.07E-07 Z,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.17E-04 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E	Chloromethane (Methyl chloride)		5.30E-02	5.30E-02
Dibenzo(a,h)anthracene (POM) 2.74E-05 2.74E-05 1,2-Dichloroethane (Ethylene dichloride) 6.68E-02 6.68E-02 1,2-Dichloropropane (Propylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluoranthene (POM) 3.68E-03 7.68E-03 Fluorene (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-furans 6.45E-07 6.45E-07 Octachlorodibenzo-p-furans 1.52E-04 1.52E-04 Octachlorodibenzo-p-furans 2.03E-07 9.67E-07 Pentachlorodibenzo-p-furans 2.07E-07 2.07E-07 Z,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 Phenol 1.17E-04 1.17E-04 Phenol 1.17E-04 1.17E-04 <tr< td=""><td>Chrysene (POM)</td><td></td><td>8.75E-05</td><td>8.75E-05</td></tr<>	Chrysene (POM)		8.75E-05	8.75E-05
1,2-Dichloroethane (Ethylene dichloride) 6.68E-02 6.68E-02 1,2-Dichloropropane (Propylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluoranthene (POM) 3.68E-03 3.68E-03 Fluorene (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-furans 6.45E-07 6.45E-07 Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 3.45E-06 3.45E-06 Pentachlorodibenzo-p-furans 2.07E-07 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 Pentachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 Pentachlorodibenzo-p-furans 1.73E-06 1.78E-06 Ponjonaldehyde 1	Dibenzo(a,h)anthracene (POM)		2.74E-05	2.74E-05
12-Dichloropropane (Propylene dichloride) 7.60E-02 7.60E-02 2,4-Dinitrophenol 4.14E-04 4.14E-04 Fluoranthene (POM) 3.68E-03 3.68E-03 Fluorene (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.03E-07 2.03E-07 Qottachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.03E-07 2.07E-07 Z,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 Pentachlorophenol 1.17E-04 1.17E-04 Phenol 1.17E-04 1.17E-04 Phenol 1.17E-01 1.17E-01 <	1.2-Dichloroethane (Ethylene dichloride	2)	6.68E-02	6.68E-02
2.4-Dinitrophenol 4.14E-04 4.14E-04 Fluoranthene (POM) 3.68E-03 3.68E-03 Fluorene (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-furans 2.03E-07 9.67E-07 Pentachlorodibenzo-p-furans 2.07E-07 2.07E-07 Pentachlorodibenzo-p-furans 2.07E-07 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 Pentachlorophenol 1.17E-01 1.17E-04 Phenol 1.17E-01 1.17E-04 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.86E-02 2.86E-02 Pyrene (POM) 5.06E-05 3.98E-09 3.98E-09 <	1.2-Dichloropropane (Propylene dichlor	ride)	7.60E-02	7.60E-02
Fluoranthene (POM) 3.68E-03 3.68E-03 Fluorene (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-furans 3.68E-03 3.68E-03 Hexachlorodibenzo-p-furans 6.45E-07 6.45E-07 Octachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-dioxins 3.45E-06 3.45E-06 Pentachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 9.67E-07 9.67E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 1.17E-04 1.17E-04 Pentachlorodibenzo-p-dioxins 1.38E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Propionaldehyde 1.40E-01 1.40E-01 Propionaldehyde 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 3.98E-09	2.4-Dinitrophenol	1	4.14E-04	4.14E-04
Fluorene (POM) 7.83E-03 7.83E-03 Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-dioxins 3.68E-03 3.68E-03 Hexachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.03E-07 2.07E-07 Pentachlorodibenzo-p-furans 2.07E-07 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-01 1.17E-01 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7.8-Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 <td>Eluoranthene (POM)</td> <td></td> <td>3.68E-03</td> <td>3.68E-03</td>	Eluoranthene (POM)		3.68E-03	3.68E-03
Heptachlorodibenzo-p-dioxins 4.60E-06 4.60E-06 Heptachlorodibenzo-p-furans 5.53E-07 5.53E-07 Hexachlorodibenzo-p-furans 3.68E-03 3.68E-03 Hexachlorodibenzo-p-furans 6.45E-07 6.45E-07 Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 2.07E-07 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-01 1.17E-01 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 Poropionaldehyde 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05	Eluorene (POM)		7.83E-03	7.83E-03
Instruction Instruction Heptachlorodibenzo-p-furans 5.53E-07 Hexachlorodibenzo-p-furans 6.45E-07 Octachlorodibenzo-p-furans 6.45E-07 Octachlorodibenzo-p-furans 2.03E-07 Pentachlorodibenzo-p-dioxins 3.45E-06 Octachlorodibenzo-p-furans 2.03E-07 Pentachlorodibenzo-p-furans 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 2.53E-04 Phenanthrene (POM) 1.61E-02 Phenanthrene (POM) 1.61E-02 Phenol 1.17E-01 Propionaldehyde 1.40E-01 Propionaldehyde 1.40E-01 Propionaldehyde 2.17E-07 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 3.98E-09 2,3,7,8-Tetrachlorodibenzo-p-dioxins 2.88E-01 Propionaldehyde 1.40E-01 Propionaldehyde 2.17E-07 2,4,6-Trichlorophenol 5.06E-05	Heptachlorodibenzo-p-dioxins		4.60E-06	4.60E-06
Hexachlorodibenzo-p-dioxins 3.68E-03 Hexachlorodibenzo-p-furans 6.45E-07 Octachlorodibenzo-p-furans 2.03E-07 Octachlorodibenzo-p-furans 2.03E-07 Pentachlorodibenzo-p-furans 2.03E-07 Pentachlorodibenzo-p-furans 9.67E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.03E-07 2.53E-04 Pentachlorophenol 1.17E-04 Pentachlorophenol 1.17E-04 Phenanthrene (POM) 1.61E-02 Phenol 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 Pyrene (POM) 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3,98E-09 3.98E-09 Petrachlorodibenzo-p-dioxins 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 Arsenic 2.86E-02 Beryllium 6.64E-03<	Heptachlorodibenzo-p-furans	 	5.53E-07	5.53E-07
Hexachlorodibenzo-p-furans 6.45E-07 Octachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-dioxins 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 9.67E-07 9.67E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium	Hexachlorodibenzo-p-dioxins		3.68E-03	3.68E-03
Octachlorodibenzo-p-dioxins 1.52E-04 1.52E-04 Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 3.45E-06 3.45E-06 Pentachlorodibenzo-p-furans 9.67E-07 9.67E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 Z,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.	Hexachlorodibenzo-p-furans	1	6.45E-07	6.45E-07
Octachlorodibenzo-p-furans 2.03E-07 2.03E-07 Pentachlorodibenzo-p-furans 3.45E-06 3.45E-06 Pentachlorodibenzo-p-furans 9.67E-07 9.67E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 Z,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 2.88E-01 Pyrene (POM) 8.52E-03 8.52E-03 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 5.06E-05 5.06E-05 Arsenic 2.86E-02	Octachlorodibenzo-p-dioxins		1.52E-04	1.52E-04
Pentachlorodibenzo-p-dioxins 3.45E-06 3.45E-06 Pentachlorodibenzo-p-furans 9.67E-07 9.67E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 7,8-Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt <td< td=""><td>Octachlorodibenzo-p-furans</td><td></td><td>2.03E-07</td><td>2.03E-07</td></td<>	Octachlorodibenzo-p-furans		2.03E-07	2.03E-07
Pentachlorodibenzo-p-furans 9.67E-07 9.67E-07 2,3,7,8-Tetrachlorodibenzo-p-furans 2.07E-07 2.07E-07 Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 7,8-Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00	Pentachlorodibenzo-p-dioxins		3.45E-06	3.45E-06
Child Biologic Description Control Control Control 2,3,7,8-Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 2.88E-01 Pyrene (POM) 8.52E-03 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 8.06E-03 Cobalt 1.50E-02	Pentachlorodibenzo-p-furans		9.67E-07	9.67E-07
Tetrachlorodibenzo-p-furans 1.73E-06 1.73E-06 Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Propionaldehyde 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 Z,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02	2.3.7.8-Tetrachlorodibenzo-p-furans		2.07E-07	2.07E-07
Indeno(1,2,3,c,d)pyrene (POM, PAH) 2.00E-04 2.00E-04 4-Nitrophenol 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Propionaldehyde 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02	Tetrachlorodibenzo-p-furans		1.73E-06	1.73E-06
4-Nitrophenol 2.53E-04 2.53E-04 Pentachlorophenol 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Propionaldehyde 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 2.98E-09 3.98E-09 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02	Indepo(1.2.3.c.d)pyrene (POM, PAH)	<u> </u>	2.00E-04	2.00E-04
Pentachlorophenol 1.17E-04 1.17E-04 Phenanthrene (POM) 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Propionaldehyde 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02	4-Nitrophenol		2.53E-04	2.53E-04
Phenanthrene (POM) 1.61E-02 1.61E-02 1.61E-02 Phenol 1.17E-01 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 2.88E-01 Propionaldehyde 1.40E-01 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 3.98E-09 Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 4.64E-02 Arsenic 2.86E-02 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 6.22E-02 Selenium 3.32E-02	Pentachlorophenol		1.17E-04	1.17E-04
Phenol 1.17E-01 1.17E-01 PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Propionaldehyde 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02	Phenanthrene (POM)		1.61E-02	1.61E-02
PCB (Polychlorinated Biphenyls) 1.88E-05 1.88E-05 POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 2.88E-01 Propionaldehyde 1.40E-01 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium 2.81E-02 2.81E-02 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02	Phenol		1.17E-01	1.17E-01
POM (Polycyclic Organic Matter) 2.88E-01 2.88E-01 Propionaldehyde 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium 2.81E-02 2.81E-02 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 3.32E-02 Selenium 3.32E-02 3.32E-02	PCB (Polychlorinated Binhenyls)		1.88E-05	1.88F-05
Propionaldehyde 1.40E-01 1.40E-01 Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02	POM (Polycyclic Organic Matter)	<u> </u>	2.88E-01	2.88E-01
Pyrene (POM) 8.52E-03 8.52E-03 2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 7etrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium 2.81E-02 2.81E-02 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 3.32E-02 Selenium 3.32E-02 3.32E-02	Propionaldehyde	1	1.40E-01	1.40E-01
2,3,7,8-Tetrachlorodibenzo-p-dioxins 3.98E-09 3.98E-09 2,3,7,8-Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium 2.81E-02 2.81E-02 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 3.32E-02 Selenium 3.32E-02 3.32E-02	Pyrene (POM)		8.52E-03	8.52E-03
Tetrachlorodibenzo-p-dioxins 2.17E-07 2.17E-07 2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium 2.81E-02 2.81E-02 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02	2 3 7 8-Tetrachlorodibenzo-n-dioxins		3.98E-09	3.98E-09
2,4,6-Trichlorophenol 5.06E-05 5.06E-05 Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium 2.81E-02 2.81E-02 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02	Tetrachlorodibenzo-n-dioxins		2.17E-07	2.17F-07
Arsenic 2.86E-02 2.86E-02 Beryllium 6.64E-03 6.64E-03 Chromium 2.81E-02 2.81E-02 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02 Total 2.84E+02	2 4.6-Trichloronbenol		5.06F-05	5.06F-05
Beryllium 6.64E-03 6.64E-03 Chromium 2.81E-02 2.81E-02 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02 Total 2.84E+02 2.84E+02	Arsenic		2.86F-02	2,86F-02
Octyment Octor Chromium 2.81E-02 2.81E-02 Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02 Total 2.84E+02 2.84E+02	Beryllium		6.64E-03	6.64F-03
Chromium 2.012 Gl 2.012 Gl Chromium (Hex) 8.06E-03 8.06E-03 Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02 Total 2.84E+02	Chromium		2 81F-02	2.81F-02
Cobalt 1.50E-02 1.50E-02 Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02 Total 2.84E+02 2.84E+02	Chromium (Hex)		8.06F-03	8.06F-03
Manganese 1.02E+00 1.02E+00 Phosphorus 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02 Total 2.84E+02	Cobalt		1.50E-02	1.50F-02
Phosphorus 6.22E-02 6.22E-02 6.22E-02 Selenium 3.32E-02 3.32E-02 3.32E-02 Total 2.84F+02 2.84F+02	Manganese		1.02F+00	1.02F+00
Selenium 3.32E-02 3.32E-02 Total 2 84F+02	Phosphorus		6 22E-00	6.22F-02
Total 2 84F+02	Selenium		3 32F-02	3.32F-02
	Total		5.522 02	2.84F+02

Controlled	Controlled	
SRS	Ameresco	Total
	1.15E-02	1.15E-02
	7.37E-06	7.37E-06
	3.87E+00	3.87E+00
	6.91E-03	6.91E-03
	1.50E-04	1.50E-04
	5.99E-03	5.99E-03
	2.30E-04	2.30E-04
	1.92E-05	1.92E-05
	5.99E-06	5.99E-06
	2.14E-04	2.14E-04
	3.68E-04	3.68E-04
	8.29E-05	8.29E-05
	1.08E-04	1.08E-04
	3.45E-02	3.45E-02
	7.60E-02	7.60E-02
	5.30E-02	5.30E-02
	8.75E-05	8.75E-05
	2.74E-05	2.74E-05
	6.68E-02	6.68E-02
	7.60E-02	7.60E-02
	4.14E-04	4.14E-04
	3.68E-03	3.68E-03
	7.83E-03	7.83E-03
	4.60E-06	4.60E-06
	5.53E-07	5.53E-07
	3.68E-03	3.68E-03
	6.45E-07	6.45E-07
	1.52E-04	1.52E-04
	2.03E-07	2.03E-07
	3.45E-06	3.45E-06
	9.67E-07	9.67E-07
	2.07E-07	2.07E-07
	1.73E-06	1.73E-06
	2.00E-04	2.00E-04
	2.53E-04	2.53E-04
	1.17E-04	1.17E-04
	1.61E-02	1.61E-02
	1.17E-01	1.17E-01
	1.88E-05	1.88E-05
	2.88E-01	2.88E-01
	1.40E-01	1.40E-01
	8.52E-03	8.52E-03
	3.98E-09	3.98E-09
	2.17E-07	2.17E-07
	5.06E-05	5.06E-05
	2.86E-02	2.86E-02
	6.64E-03	6.64E-03
	2.81E-02	2.81E-02
	8.06E-03	8.06E-03
	1.50E-02	1.50E-02
	1.02E+00	1.02E+00
	6.22E-02	6.22E-02
	3.32E-02	3.32E-02

DHEC Form 2566 - SRS Facility-Wide Emissions Pre-Modification - Attachment G

	Uncontrolled	Uncontrolled	
Pollutant	SRS	Ameresco	Total
1112344555-Decafluoropentane	3.84E-01		
CO2	1.11E+05		
Methane	6.74E+02		
Nitrous Oxide (N2O)	2.70E+00		
CO2e	1.29E+05	4.79E+05	6.08E+05

Controlled	Controlled	
SRS	Ameresco	Total
3.84E-01		
1.11E+05		
6.74E+02		
2.70E+00		
1.29E+05	4.79E+05	6.08E+05

Used Table A-1 of Supbart A of Part 98 for GWPs

Note: The last facility wide emissions submitted to SCDHEC was in support of the construction permit application for Surplus Plutonium Disposition in January 2020. Several Insignificant Activities (IAs) that are insignificant due to their emissions levels have been added to the site's IAs List. Among these additions are numerous Internal Combustion Engines. These engines were exempt from construction permitting and were insignificant activities due their emission level. Due to the number of engines and the requirement to apply 8760 hours/year run time for maximum potential to emit calculations these additions to the IA list impact the facility wide emissions for PM, SOx, NOx, CO, VOC, CO2 and methane emissions.

	Uncontrolled	Uncontrolled	
Pollutant	SRS	Ameresco	Total
со	3.58E+02	4.58E+02	8.15E+02
Nitrogen Dioxide (NO2)	4.27E+02	5.26E+02	9.53E+02
NOx	5.49E+02	5.26E+02	1.07E+03
Pb	1.55E-01	2.02E-01	3.57E-01
PM	1.15E+03	1.58E+03	2.73E+03
PM10	4.64E+02	1.58E+03	2.04E+03
PM2.5	4.34E+02	1.58E+03	2.01E+03
SO2	6.62E+01	2.77E+03	2.84E+03
VOC	1.94E+02	8.65E+01	2.80E+02
1,1,1-Trichloroethane (Methy	5.39E-02	7.14E-02	1.25E-01
1,1-dichloroethylene (vinyli	1.33E-02		1.33E-02
1,4-Dioxane	4.51E-02		4.51E-02
Acetaldehyde	1.55E-06	4.02E-01	4.02E-01
Acrylonitrile	2.60E-10		2.60E-10
Antimony Compounds	2.68E-08	1.82E-02	1.82E-02
Benzene	2.08E+00	2.55E+00	4.63E+00
Cadmium	8.68E-07	3.89E-02	3.89E-02
Carbon Disulfide	1.42E-05		1.42E-05
Carbon Tetrachloride	1.46E-01	1.04E-01	2.49E-01
Chlorine	4.34E-01	1.82E+00	2.25E+00
Chloroform	4.66E-03	6.45E-02	6.91E-02
Chromium Compounds	2.95E-01	3.62E-02	3.31E-01
Cumene	1.72E-02		1.72E-02
Ethylbenzene	3.16E-01	7.14E-02	3.88E-01
Formaldehyde	8.12E-01	2.83E+00	3.64E+00
formic acid	0.00E+00		0.00F+00
Hexape	2 08F-01		2.08F-01
Hydrochloric Acid	3.33E+00	2.51E+01	2.85E+01
Hydrogen cyanide	1.07F-02		1.07E-02
Hydrogen Sulfide	2.96F-04		2.96E-04
Lead Compounds	7.29E-05		7.29E-05
Manganese compounds	7.71E-01		7.71E-01
Mercury	1.71E-01	7.90F-03	1.79E-01
Methanol	2.00F-02	9,22F-01	9.42E-01
Methyl Ethyl Ketone	6.22E-03		6.22E-03
Methyl Isobutyl Ketone	3.14F-02		3.14E-02
Methylene Chloride (Dichloro	9.16E-03	6.68E-01	6.77E-01
Nanhthalene	6.65E-06	2.23F-01	2.23E-01
Nickel Compounds	1.77E-01		1.77E-01
nickel oxide	1.53E-04		1.53E-04
Nickel	1.77E-01	3.37E-02	2.11E-01
nitric acid	1.64F+02		1.64E+02
Oxalic Acid	9.04F-02		9.04F-02
Sodium Hydroxide	1.19F+00		1.19F+00
Styrene	3 33F-01	1.07E+00	1.41F+00
Tetrachloroethylene (Perchl	3 54F+01	8 75F-02	3.55F+01
Toluene	1.46E+00	2,12E+00	3.58E+00
Trichloroethylene	2.30F+01	6.91F-02	2.30F+01
Vinyl Chloride	5 84F-03	4 14F-02	4.73E-02
Xylene (m-)	2 45F±00		2.45F+00
Xylene(o-)	8 11F_02	5 76F-02	6 57F-02
Xylenes	2 345-02	5.702-02	2 34F-02
Aconsphthene (DOM)	2.346-02	2 095-02	2.041-02
Acenaphthylene (POM)		1 15E-03	1.15F-02
	1	1 1.1JL-UZ	1 1.1JL-VZ

Controlled	Controlled	
SRS	Ameresco	Total
3.58E+02	4.57E+02	8.14E+02
4.15E+02	3.68F+02	7.83F+02
5 36E+02	3.68E+02	9.05F+02
3 73F-02	2 02F-01	2 39F-01
6.21E+01	2.02L-01	2.35L-01
5.212+01	2.120+02	2.741+02
3.700+01	2.12E+02	2.700+02
5.012+01	5 215+02	5.40E+U2
0.02E+U1	5.31E+U2	3.97E+02
1.94E+02	8.05E+UI	2.80E+02
5.39E-02	7.14E-02	1.25E-01
1.33E-02		1.33E-02
4.51E-02		4.51E-02
1.55E-06	4 02F-01	4 02F-01
2 60F-10		2 60F-10
2 68F-08	1 82F-02	1.82F-02
2.00L-00	2 55F+00	4 63E+00
8 68F-07	3 895-02	3 895-02
1.425-05	5.051-02	1.425-05
1.420-03	1.045-01	2.495-01
1.400-01	1.04L-01	2.491-01
4.34E-01	1.826400	2.230+00
4.00E-03	0.45E-02	0.910-02
2.95E-01	3.02E-02	3.310-01
1.72E-02	7.4.5.00	1.72E-02
3.16E-01	7.14E-02	3.88E-01
8.12E-01	2.83E+00	3.64E+00
0.00E+00		0.00E+00
2.08E-01		2.08E-01
3.33E+00	1.02E+01	1.36E+01
1.07E-02		1.07E-02
2.96E-04		2.96E-04
7.29E-05		7.29E-05
7.71E-01		7.71E-01
1.71E-01	7.90E-03	1.79E-01
2.00E-02	9.22E-01	9.42E-01
6.22E-03		6.22E-03
3.14E-02		3.14E-02
9.16E-03	6.68E-01	6.77E-01
6.65E-06	2.23E-01	2.23E-01
1.77E-01		1.77E-01
1.53E-04		1.53E-04
1.77E-01	3.37E-02	2.11E-01
1.64E+02		1.64E+02
9.04E-02	1	9.04E-02
1.19E+00		1.19E+00
3.33E-01	1.07E+00	1.41E+00
3.54E+01	8.75E-02	3.55E+01
1.46E+00	2.12E+00	3.58E+00
2.30E+01	6.91F-02	2.30E+01
5.84F-03	4,14F-02	4.73E-02
2.45F+00		2.45E+00
8 11F-03	5.76F-02	6.57F-02
2.34F-02	5.702.02	2.34F-02
	2.09F-03	2.09F-03
	1.15F-02	1.15E-02
	1.150 02	

DHEC Form 2566 - SRS Facility-Wide Emissions Post Modification - Attachment G

=	Uncontrolled	Uncontrolled	
Pollutant	SRS	Ameresco	Total
Acetophenone		7.37E-06	7.37E-06
Acrolein		3.87E+00	3.87E+00
Anthracene (POM)		6.91E-03	6.91E-03
Benzo(a)anthracene (POM, PAH)		1.50E-04	1.50E-04
Benzo(a)pyrene (POM, PAH)		5.99E-03	5.99E-03
Benzo(b)fluoranthene (POM, PAH)		2.30E-04	2.30E-04
Benzo(b,k)fluoranthene (POM, PAH)		1.92E-05	1.92E-05
Benzo(e)pyrene		5.99E-06	5.99E-06
Benzo(g,h,i)perylene (POM)		2.14E-04	2.14E-04
Benzo(j,k)fluoranthene		3.68E-04	3.68E-04
Benzo(k)fluoranthene (POM)		8.29E-05	8.29E-05
Bis(2-Ethylhexyl)phthalate (DEHP)		1.08E-04	1.08E-04
Bromomethane (methyl bromide)		3.45E-02	3.45E-02
Chlorobenzene		7.60E-02	7.60E-02
Chloromethane (Methyl chloride)		5.30E-02	5.30E-02
Chrysene (POM)		8.75E-05	8.75E-05
Dibenzo(a,h)anthracene (POM)		2.74E-05	2.74E-05
1,2-Dichloroethane (Ethylene dichloride)	6.68E-02	6.68E-02
1,2-Dichloropropane (Propylene dichlor	ide)	7.60E-02	7.60E-02
2,4-Dinitrophenol		4.14E-04	4.14E-04
Fluoranthene (POM)		3.68E-03	3.68E-03
Fluorene (POM)		7.83E-03	7.83E-03
Heptachlorodibenzo-p-dioxins		4.60E-06	4.60E-06
Heptachlorodibenzo-p-furans		5.53E-07	5.53E-07
Hexachlorodibenzo-p-dioxins		3.68E-03	3.68E-03
Hexachlorodibenzo-p-furans		6.45E-07	6.45E-07
Octachlorodibenzo-p-dioxins		1.52E-04	1.52E-04
Octachlorodibenzo-p-furans		2.03E-07	2.03E-07
Pentachlorodibenzo-p-dioxins		3.45E-06	3.45E-06
Pentachlorodibenzo-p-furans		9.67E-07	9.67E-07
2,3,7,8-Tetrachlorodibenzo-p-furans		2.07E-07	2.07E-07
Tetrachlorodibenzo-p-furans		1.73E-06	1.73E-06
Indeno(1,2,3,c,d)pyrene (POM, PAH)		2.00E-04	2.00E-04
4-Nitrophenol		2.53E-04	2.53E-04
Pentachlorophenol		1.17E-04	1.17E-04
Phenanthrene (POM)		1.61E-02	1.61E-02
Phenol		1.17E-01	1.17E-01
PCB (Polychlorinated Biphenyls)		1.88E-05	1.88E-05
POM (Polycyclic Organic Matter)		2.88E-01	2.88E-01
Propionaldehyde		1.40E-01	1.40E-01
Pyrene (POM)		8.52E-03	8.52E-03
2,3,7,8-Tetrachlorodibenzo-p-dioxins		3.98E-09	3.98E-09
Tetrachlorodibenzo-p-dioxins		2.17E-07	2.17E-07
2,4,6-Trichlorophenol		5.06E-05	5.06E-05
Arsenic		2.86E-02	2.86E-02
Beryllium		6.64E-03	6.64E-03
Chromium		2.81E-02	2.81E-02
Chromium (Hex)		8.06E-03	8.06E-03
Cobalt		1.50E-02	1.50E-02
Manganese		1.02E+00	1.02E+00
Phosphorus		6.22E-02	6.22E-02
Selenium		3.32E-02	3.32E-02
Total			2.81E+02

Controlled	Controlled	
SRS	Ameresco	Total
	7.37E-06	7.37E-06
	3.87E+00	3.87E+00
	6.91E-03	6.91E-03
	1.50E-04	1.50E-04
	5.99E-03	5.99E-03
	2.30E-04	2.30E-04
	1.92E-05	1.92F-05
	5.99E-06	5.99E-06
	2 14F-04	2.14F-04
	3 68F-04	3.68F-04
	8 29F-05	8.29E-05
	1.08F-04	1.08F-04
	3 45F-02	3 45E-02
	7.605-02	7 60F-02
	5 30F-02	5 30F-02
	8 75F-05	8 75F-05
	2 745-05	2 7/15-05
	6.695.02	6 685 02
	7.605.02	7 605 02
	7.00E-02	1 1 4 E 04
	2 695 02	2 695 02
	3.000-03	3.000-03
	7.83E-03	7.83E-03
	4.60E-06	4.602-06
	5.53E-07	5.53E-07
	3.08E-03	3.08E-03
	6.45E-07	0.45E-07
	1.52E-04	1.52E-04
	2.03E-07	2.03E-07
	3.45E-06	3.45E-06
	9.67E-07	9.6/E-0/
	2.0/E-0/	2.0/E-0/
	1./3E-06	1./3E-06
	2.00E-04	2.00E-04
· · · · ·	2.53E-04	2.53E-04
	1.1/E-04	1.1/E-04
	1.61E-02	1.61E-02
	1.1/E-01	1.1/E-01
	1.88E-05	1.88E-05
	2.88E-01	2.88E-01
	1.40E-01	1.40E-01
	8.52E-03	8.52E-03
	3.98E-09	3.98E-09
	2.17E-07	2.17E-07
	5.06E-05	5.06E-05
	2.86E-02	2.86E-02
	6.64E-03	6.64E-03
	2.81E-02	2.81E-02
	8.06E-03	8.06E-03
	1.50E-02	1.50E-02
	1.02E+00	1.02E+00
	6.22E-02	6.22E-02
	3.32E-02	3.32E-02

2.66E+02
DHEC Form 2566 - SRS Facility-Wide Emissions Post Modification - Attachment G

	Uncontrolled	Uncontrolled	
Pollutant	SRS	Ameresco	Total
1112344555-Decafluoropentane	3.84E-01		
CO2	1.11E+05		
Methane	6.74E+02		
Nitrous Oxide (N2O)	1.37E+01		
CO2e	1.32E+05	4.79E+05	6.12E+05

Controlled	Controlled	
SRS	Ameresco	Total
3.84E-01		
1.11E+05		
6.74E+02		
1.37E+01		
1.32E+05	4.79E+05	6.12E+05

Used Table A-1 of Supbart A of Part 98 for GWPs

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

PURPOSE:

The Defense Waste Process Facility (DWPF) processes high level waste into a stable glass form. This is achieved by mixing the radioactive waste with silica sand, melting the mixture, and pouring the mixture into stainless steel canisters.

The process consists of several process units. The June 15, 1999 SCDHEC guidance titled, "Guidance document for Standard 4, Section VIII – PM Emission Limitations" was used to identify which pieces of equipment is part of the DWPF process and which pieces are not. The following summarizes this review. A column has been added to identify any impacts resulting form switch to glycolic acid.

Emission	SCDHEC	Description	Part of	Basis for exemption	Impact from
point	IDs	-	Process	If not exempt - basis	Modification
			(Y/N)	for emissions	
SDJ0001	349S,	Frit Transfer (Material	N	Raw material storage	None
	351S,	Handling)			
	352S,				
	354S				
SDP0001	176S	5800 GALLON SLUDGE	Y	SRNS-J2210-2013-	None
		TANK (5800 gallons)		00050	
SDP0001	1778	5800 GALLON RECYCLE	Y	SRNS-J2210-2013-	None
		TANK (5800 gallons)		00050	
SDP0001	1785	5800 GALLON	Y	SRNS-J2210-2013-	None
		PRECIPITATE TANK		00050	
	1	(5800 gallons)			
SDP0007	2758	Precipitate Reactor Feed	Y	WSRC-TR-95-0247	Yes
		Tank		· · · · · · · · · · · · · · · · · · ·	
SDP0007	2648	Decontamination Waste	Y	WSRC-TR-95-0247	Yes
		Treatment Tank			
SDP0007	2565	CDC-SME isolation pot	Y	WSRC-TR-95-0247	Yes
SDP0007	278S	Offgas Condensate Tank 1	Y	WSRC-TR-95-0247	Yes
SDP0007	488S	Offgas Condensate Tank 2	Y	WSRC-TR-95-0247	Yes
SDP0007	3885	Crane Decon Feed Tank	Y	WSRC-TR-95-0247	Yes
SDP0007	2678	Sludge Receipt Tank	Y	WSRC-TR-95-0247	Yes
SDP0007	2665	Slurry Mix Evaporator	Y	WSRC-TR-95-0247	Yes
SET COOT	2005	(SME)			105
SDP0007	2705	Melter	Y	WSRC-TR-95-0247	Yes
SDP0009	1218	90% FORMIC ACID	Y	SRNS-J2210-2013-	Yes, will no longer
		FEED TANK, 600 GAL		00050	emit regulated
		(600 gallons)			pollutant (formic
		(*** 8====)			acid)
SDP0009	1115	NITRIC ACID DILUTION	Y	SRNS-J2210-2013-	No. SRNS-J2200-
		TANK, 100 GAL (100		00050	2019-00240
1		gallons)			bounding for nitric
		- /			acid
SDP0009	1095	NITRIC ACID DECON	Y	SRNS-J2210-2013-	No, SRNS-J2200-
		FEED TANK, 1100 GAL		00050	2019-00240
		(1100 gallons)			bounding for nitric
					acid and manganese

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

					compounds
SDP0009	1085	PROCESS FRIT SLURRY	Y	SRNS-J2210-2013-	Yes, will no longer
		FEED TANK, 2800 GAL		00050	emit regulated
		(2800 gallons)			pollutant (formic
000000					acid)
SDP0009	107S	FRIT DECON SLURRY	Y	SRNS-J2210-2013-	Yes, will no longer
		FEED TANK (780 gallons)		00050	emit regulated
	1				pollutant (formic
					acid)
SDP0009	106S	COPPER CATALYST	Y	SRNS-J2210-2013-	Yes, will no longer
		FEED TANK (180 gallons)		00050	emit regulated
					pollutant (PM)
SDP0009	105S	ADDITIVE MIX FEED	Y	SRNS-J2210-2013-	No, SRNS-J2200-
		TANK (180 gallons)		00050	2019-00240
					bounding for VOC
					emissions
SDP0009	103S	221-S Vitrification Process	Y	SRNS-J2210-2013-	Yes, will be AIP
		Oxalic Decon Feed Tank		00050	
		(1100 gallons)			
SDP0009	1028	ORGANIC ACID DRAIN	Y	SRNS-J2210-2013-	Yes, will no longer
		TANK, 1200 GAL (1200		00050	emit regulated
		gallons)			pollutant (oxalic
					acid)
SDP0009	101S	SODIUM NITRITE FEED	Y	SRNS-J2210-2013-	No, SRNS-J2200-
		TANK, 600 GAL (600		00050	2019-00240
		gallons)			bounding for PM
					emissions
SDP0009	1005	NITRIC ACID FEED	Y	SRNS-J2210-2013-	No, SRNS-J2200-
		TANK, 600 GAL (600		00050	2019-00240
		gallons)			bounding for nitric
			V	CDNG 12210 2012	acid
SDP0009	0988	ACID DRAIN CATCH	Y	SRNS-J2210-2013-	NO, SKNS-J2200-
		TANK, 1200 GAL (1200		00050	2019-00240
		gallons)			bounding for nitric
000010	1220		V	CDNG 12210 2012	
SDP0019	1328	UXALIC ACID MAKE UP	Y	SKNS-J2210-2013-	Yes, will be AIP
		TANK, 1300 GAL (1300		00030	
000010	1210	gallons)	V	CDNC 12210 2012	Ver will be AID
SDP0019	1318	DILUTE FORMIC ACID	Y	SRNS-J2210-2013-	Yes, will be AIP
		FEED TANK, 2000 GAL		00050	
000010	1200	(2000 gallons)	V	CDNG 12210 2012	Vee will be AID
SDP0019	1298	FORMIC ACID	Y	SKNS-J2210-2013-	Yes, will be AIP
		DILUTION TANK, 2000	 	00030	
SDD0010	1000	EDIT CLUDDY MAKE UD	v	SDNG 12210 2012	Vac will no longer
SDP0019	1288	TANK (2200 college)	I	SKINS-J2210-2013-	amit regulated
		TAINK (2300 gallons)		00050	nollutant (formic
					pointiant (formic
SDD0067	2865	DOT A SSILINA NUTD A TE	N	Pow material storess	No SPNS 12200
SDP000/	2805	FUIASSIUMINIIKAIE		Kaw material storage	2021_00108 only
•		IMAKE-UP TAINK, 100	1		2021-001000my

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

		GAL (160 gallons)			emits water
SDP0067	2885	CATALYST MAKE-UP TANK (550 gallons)	N	Raw material storage	Yes, will be AIP SRNS-J2200-2021- 00108 only emits water
SDP0067	2918	NITRIC ACID DECON MAKE-UP TANK, 1300 GAL (1300 gallons)	N	Raw material storage	Yes, slight increase in nitric acid emissions
SDP0067	2895	SODIUM NITRITE MAKE-UP TANK, 540 GAL (540 gallons)	N	Raw material storage	No, SRNS-J2200- 2021-00108 only emits water
SDP0067	2938	50% NITRIC ACID STORAGE TANK, 1000 GAL (1000 gallons)	N	Raw material storage	Yes, slight increase in nitric acid emissions
SDT0028	3358	NITRIC ACID WASTE HOLD TANK (2100 gallons)	N	Waste/Chemical Treatment	No, SRNS-J2210- 2013-0050 bounding for nitric acid emissions
SDT0029	192S	8% NITRIC ACID MIX DAY TANK (375 gallons)	N	Waste/Chemical Treatment	No, SRNS-J2210- 2013-0050 bounding for nitric acid emissions
SDT0035	0795	ORGANIC WASTE/NEUT TANK #1 (3150 gallons)	N	Waste/Chemical Treatment	Yes, will no longer emit regulated pollutant (formic acid)
SDT0036	0205	ORGANIC WASTE/NEUT TANK #2 (3150 gallons)	N	Waste/Chemical Treatment	Yes, will no longer emit regulated pollutant (formic acid)
SDT0043	2985	FORMIC ACID STORAGE TANK #2, 6500 GAL (6500 gallons)	N	Raw material storage	Yes, will no longer emit regulated pollutant (formic acid)
SDT0046	3748	FORMIC ACID STORAGE TANK #1, 6500 GAL (6500 gallons)	N	Raw material storage	Yes, will be AIP
SDT0047	4075	OXALIC ACID STORAGE TANK (6000 gallons)	N	Raw material storage	Yes, will be AIP

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

ASSUMPTIONS:

- 1. The DWPF is a "batch" designed process
- 2. One (1) batch of waste will result in an average of 5 canisters of glass (Q-ESR-S-00002)
- 3. Maximum annual capacity is 60 batches per year (300 canisters) (Q-ESR-S-0002)
- 4. The hourly glass production rate is 228 pounds per hour for an annual glass capacity of 60 cycles/year × 115 hours per cycle × 228 pounds per hour = 1,573,200 pounds per year.
- 5. Uncontrolled emissions from SDP0007 are from Reference 1 streams 39, 166, 185, 94, and 4. With the exception of emission rates of Carbon Monoxide, Carbon Dioxide, Oxalic Acid, Formic Acid, Nitric Acid, Nitrous Oxide, Nitric Oxide, Nitrogen Oxides, Volatile Organic Compounds (VOCs), Cobalt Glycolate, Magnesium Glycolate, and Nickel Glycolate. With the change to Glycolic Acid emissions of Formic Acid, Oxalic Acid, and VOCs will no longer occur at emission point SDP0007. Emission rates for Carbon Monoxide, Carbon Dioxide, Nitric Acid, Nitrous Oxide, Nitric Oxide, Nitrogen Oxides, Cobalt Glycolate, Magnesium Glycolate, and Nickel Glycolate are calculated under Q-ESR-S-00002 for emission point SDP0007.
- 5. SRAT batch process time is 86 hours (Q-ESR-S-00002).
- 6. SME batch process time is 86 hours (Q-ESR-S-00002).
- 7. Melter batch process time is 115 hours (Q-ESR-S-00002).
- 8. Emissions will occur from either the melter OG (Off Gas) or the melter BUOG (Back Up Off Gas) systems, but not both.
- Trace emission evaluation is performed as described in SCDHEC Air Quality Modeling Guidelines dated October 2018 (Revised 4/15/2019). Trace determination is performed at the outlet of each stack, e.g. SDP0007 stack (controlled).
- 10. Mercury (Hg) and Mercury compounds were conservatively included as Particulate Matter.
- 11.Streams 39 and 4 contained in Reference 1 go through the formic acid vent condenser (FAVC).
- 12. The FAVC (J0005) has a capture efficiency of 100% and a 96% mercury removal rate.
- 13. The HEPA filter (N0001) is for radiological PM removal only and is not credited for non-radiological emissions control.
- 14. The composition of Group A and Group B components are located on page 43 of Choi, A.S., Lee, L.M., *Title V Projected Atmospheric Emissions From the Defense Waste Processing Facility*, WSRC-TR-95-00247, Rev. 0, Westinghouse Savannah River Company, January, 1996.
- 15. Conservatively assumed Particulate Matter PM2.5 equates PM10 and equates Total PM.
- 16. There are no control devices associated with SDP0001, SDP0009, and SDP0019.

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

CALCULATION:

Table 1 is the maximum uncontrolled emission in lb/hr for the streams pulled from Reference 1:

		WSRC-TR-95-0247 (Choi			30	155	185	94		
		sice any				outlet from	outlet from		Precipitate	
						Decontamina tion Waste	can decontamin		Reactor Bottoms	Total
					Inlet vapor to	Treatement	taion		Tank to	Uncontrolle
CASE				MW/b/lb-mo	FAVC flows (lb/br)	Tank flows (Ib/br)	chamber flows ()b/hr)	meiter flows (ib/	FAVC flows (lb/hr	d SDP7 flows (lb/hr)
7440-22-4	s	Silver	Ag	107.87	1.44E-17	0.00E+00	0.00€+00	0	0.00E+00	1.44E-17
20667-12-3 90669-62-8	5	Silver Code Aluminium adde	Ag20 Al203	231.74	1.74E-24 3.08E-13	5.768-19	0.00E+00	2.015-04	0.00€+00	2.02E-14 2.01E-04
1301-86-2	s	Boron oxide	8203	69,62	1,18E-13	2.20E-19	2.28E-07	3,295-04	0.00E+00	3.29E-04
7727-43-7	5	Barium oxde Barium Sulfate	840 82504	233,39	2.83E-21 7,50E-15	1.40E-20	0.00E+00	4,37E-06	0.0000+00	4.37E-06
124-38-9	G	Carbon dioxide	CO2	44,01	8,50E+00	4.27E-01	0.00E+00	1.42E+01	6.13E-07	2.31€+01
544-17-2	s	Calcium formate	Ca(COOH)2	130.11	9.27E-16	0.00E+00	0.00E+00	0	0.00E+00	9.27E-16
10124-37-5	s	Celcium nitrata	Ca(NO3)2	164.09	9.50E-14	1.78E-19	0.00E+00	0	0.00€+00	9.50E-14
563-72-4	s	Calcium oxalate	CaC204	128,1	1,56E-15	3.108-21	0.00E+00	5.525-05	0.00E+00	1.66E-15
7789-75-5	S	Calcium fluoride	CaF2	97.07	4.97E-16	9.30E-22	0.00E+00	2 23 5-05	0.00E+00	4.97E-16
7778-18-9	ŝ	Calcium Sulfate	CaSO4	136,14	1,64E-15	3.06E-21	0.00E+00	9.595-07	0.000E+00	9.59E-07
544-18-3	s	Cobalt formate	Ce(COOH)2	148.97	4.11E-18	D.00E+00 5.52E-24	0.00E+00	1.915-09	0.00E+00	4.118-18
1308-38-9	s .	Chromium (III) oxide	Cr2C3	151,99	5.42E-15	1.02E-20	3.35E-10	3,55E-06	0.00€+00	3.55E-06
20281-00-9	s	Cesium oxide Cesium Formala	Cs2O CsCOOH	281.81	4.91E-18 6.46E-15	9.20E-24 0.00E+00	0.00E+00	2.986-06	0.00E+00	2.98E-06 6.46E-15
7789-18-6	s	Cesium nitrale	CsNO3	194,91	6.97E-19	1.31E-24	0.00E+00	0	0.00E+00	6.97E-19
21351-79-1 544-19-4	s	Cesium hydroxide Copper formate	CSOH CH(CODH)2	149.91 153.58	3.13E-19 1.36E-16	1.02E-20 0.00E+00	0.00E+00		0.0000000	3.248-19
3251-23-8	s	Copper nitrate	Cu(NO3)2	187.56	6.75E-14	1.26E-19	0.00E+00	0	0.00€+00	6.75E-14
1317-38-0 1309-37-1	s	Copper oxide iron(W) oxide	Fe2C3	79.55	6.01E-16 7.50E-13	1.268-21	1.316-10	1.90E-05 4,89E-04	0.0000000	1.90£-05 4.89E-04
1345-25-1	s	aroh(11) oxide	FeO	71,65	7,50E-14	1.408-19	0.00€+00	4,89E-05	0.00E+00	4.89E-05
-			Group B		6.35E-16 3,17E-16	5.93E-21	0.00E+00	2,07E-06	0.000000	2.07E-06
133-74-0	G	hydrogen	H2 H2C2O4	2.02	3.146-02	0.00E+00	0.00E+00		4.50E-25	3.14E-02
10043-35-3	ì	Boric acid	H3803	61,83	2,40E-13	0.00E+00	0.00€+00	0	0.000 +00	2.40E-13
64-18-6	L.	Formic acid	HCOOH	46,03	0	0.00E+00	0.000 +00	1545-01	1.62E-02	1.626-02
7697-37-2	G	nibic acid	HNO3	63.01	1.15E+00	0.00E+00	0.00E+00	1,02E-02	0.00E+00	1.16E+00
7439-97-6	s	m ercury m ercury	Hg Hg/NC312	200.59	9.23E-02	0.00E+00	0.00E+00	2.126-02	2.88E-08 0.00E+00	2,49E-02 7,56E-12
10112-91-1	s	m ercury(f) chloride	Hg2Cl2	472.09	0	0.00E+00	0.00E+00	1.98E-05	0.00E+00	1,98E-05
15385-57-6	s	mercury() lodide mercury(i) chloride	Hg2l2 HgCl2	654.99	0	0.00E+00	0.00E+00	3.71E-10 3.64E-16	0.00E+00	3.71E-10 3.64E-16
21908-53-2	s	n:ercury(1) oxide	HgO	216.59	3,76E-19	8.82E-13	0.0000+000	0	0.00E+00	6,82E-13
7553-56-2	5	lodine potassium oxide	12 K2O	253.81 94.2	4.77E-15	0.00E+00 8.94E-21	0.00E+00 0.00E+00	7.26E-10 1.14E-04	0.00E+00	7.26E-10 1.14E-04
590-28-4	s	potassium formate	ксосн	84,12	3,05E-13	0.00E+00	0.00E+00	0	0.00E+00	3.05E-13
7757-79-1 1310-58-3	s	potassium hitete	KOH	101.1	9.24E-16 1.95E-18	2.27£-08	0.00€+00		0.00E+00	9.24E-16 2.27E-08
12057-24-8	s	lithium oxide	L120	29,68	1.03E-13	1.932-19	2.00E-07	2.13E-04	0.0000+000	2.13E-04
557-39-1 1309-48-8	s s	magnesium formate magnesium oxide	Mg(COOH)2 MgC	49.3	1.09E-13 3,90E-14	1.45E-19	5.71E-08	9,20E-05	0.00E+00	9.21E-05
3251-96-5	s	manganese formate	Mn(COOH)2	144.98	7.88E-14	0.00E+00	0.00E+00	0	0.00E+00	7.88E-14
1317-34-6	s	manganese(B) oxide manganese dicxide	MnO2	70.94	5.39E-19 6,82E-14	3.51E-08	0.0000+00	6.142-05	0.00E+00	3.51E-08
18868-43-4	s	molybdenum (IV) oxide	MoO2	127.94	4,605-17	8.60E-23	0.00E+00	3.00E-08	0.000+00	3.00E-08
1024-97-2	G	nitrous oxide	N20	44.01	1.33E+03 3.17E-19	0.00000	0.00E+00	1.402403	3.165-19	6.33E-19
7664-41-7	G	ammonie	NH3 NH4NO3	17.03	1.09E-03	1.14E-16	0.00E+00		3.30E-07	1.09E-03
1336-21-6	G	antmonium hydroxide	NHACH	35.05	0	2.87E-21	0.00E+00		0.000+00	2.87E-21
10102-43-9	G	nitric oxde	NO NO2	30.01	2.895+00	0.00E+00	0.00E+00	2.91E+00	3.385-12	2.91E+00 8.72E+00
71377-02-1	s	sodium borate decahydrate	No28407	201,22	2.12E-18	3.668-19	0.00E+00		0.0000+00	2.49E-18
62-76-0	s	sodium oxilaite sodium carbonate	Na2C2O4 Na2CD3	134	1.41E-16 1.40E-13	2.62E-19	0.00E+00 0.00E+00		0.00E+00	1.64E-06
1313-59-3	s	discdium axide	Na2O	61.98	1.71E-13	3.21E-19	1.52E-07	5,05E-04	0.00E+00	5.05E-04
7757-82-6	s	sodium sulfate sodium phosphate	Na2SO4 Na3PO4	142.04	9.54E-15 2,40E-16	1.79E-20 4.49E-22	0.00E+0E 0.00E+0E	1.00E-05 1.56E-07	0.00E+00	1.00E-05 1.56E-07
141-53-7	s	socium formate	NaCOOH	68,01	2,76E-14	9.06E-19	4.22E-08	(0.00E+00	4.22E-08
7647-14-5	s	sodium chloride sodium fluoride	NaCI NaF	58.44 41.99	5.73E-16 1.18E-15	2.21E-21	0.000E+00	1.86E-0	0.00E+00	7.49E-07
7681-82-5	s	eadium işdide	Nal	149.89	2.63E-19	4.93E-2	0.00€+00	2 C	0.0000	2.63E-19
7631-99-4	s	sodium nitrite	NaNO2 NaNO3	64,99	8.10E-13	1.38E-0	0.00E+00		0.00000	1.388-06
1310-73-2	s	Andrew hydroxole	NaOH	40	1145-10	8.18E-08	8 0.00E+00		0.00E+00	8.18E-08
1313-99-1	ŝ	Nickel oxide	NIKO	74,69	8,71E-15	1.74E-20	1.356-0	6.12E-06	0.00E+00	6.128-06
7782-44-7	G	Oxygen	O2 PMN 0312	32	4.00E+02	1.65E+0	1.56E+02	4.26E+0	1.66E+01	1.02E+03
598-63-0	s	Lead carbonate	Рысса	267,21	1.226-17	2.285-2	0.00E+0X		0.00E+00	1.22E-17
1317-36-8	s	Lead oxide Lead sulfate	PbQ PbSC4	223.2 303.26	8.02E-22 3.50E-15	0.00E+0	0.00E+00	\$.13E-04 2.17E-04	0.00E+00	9.13E-08 2.17E-06
7440-05-3	š	Palladium	Pd	105.42	6.77E-19	0.0000+00	0.00E+00		0.00E+00	5.77E-19
1314-08-5	s	Palladium oxide Plutonium dioxide	Pu02	122.42	3.08E-16	9.43E-10 5.76E-2	0.00E+00 2 0.00E+00	2.035-0	0.00€+00	2.03E-07
	s	Plutonium Oxide Dirodium 1	PuO2(NaTi2O	673.49	7,70E-16	1.448-2	0.00E+00	4. (0.0000	7.70E-18
12137-27-8	s	Rhedium Rhedium dioxide	RhO2	102.91	2.43E-25	2.84E-1	0.00E+00		0.00E+0	2.84E-15
7440-18-8	s	Ruthenium	Ru	101.07	2.43E-16	4.54E-2	2 0.00E+00		0.000000	2.438-16
/64/-17-8	1	Cesium critoride	Semi Vol CSC	106,36		0.00E+0	0.0000	2.14E-0	0.00000	2.148-05
71377-02-1	1	sodium borate decahydrate	Semi Vol Na2	201.22		0.00E+0	0.00E+00	2.39E-0	0.005+0	2.39E-03
7681-82-5	1	sodium lodide	Semi Vol Nal	149.89		0.00E+0	0.006+0	1.705-0	0.00E+0	1.70E-07
7631-86-9	s	Silicon diaxide Strontium formale	SK02 StrCQCH17	60.08	1.18E-12 1.22E-19	2 2.22E-1	8 2.20E-D	2,375-0	0.00E+0	2.38E-03
10042-76-8	s	Stronburn nitrate	Sr(NO3)2	211.63	9.61E-10	1.80E-2	1 0.00E+0	1	0.00E+0	9.61E-16
1314-11-0	s	Stronburn disodium titanate Stronburn oxide	Sr(NaTi2O5)2 SrO	485,11	2.17E-10 2.70E-21	4.05E-2	4 0.00E+0	3.08E-0	0.00E+0	2.17E-18 3.08E-07
12036-16-7	Ś	Technebum dioxide	TeO2	130	9,29E-17	1 748-2	2 0.00E+0	8,79E-0	0.00E+0	8.79E-08
1314-20-1 13463-67-7	5 5	Thorium dioxide	ThC2 TrC2	264.04 79.85	3.69E-11 2.44E-14	6.90E-2 4.57E-2	0.00E+0	2.41E-0 1.58E-0	5 0.00E+0	2.41E-06 1.58E-05
10028-17-8	G	tiðum	Tribum	3	1,415-1	1.56E-1	9 0.00E+0	3.93E-1	6 31E-1	5 1.45E-10
1317-99-3 16984-59-1	s	triansniam octoade uranyl formate	U 308 U 02(C 00H12	842.08 360.06	2.255-2	1.42E-1 0.00E+0	0.00E+0	3 4.94E-0	0.00E+0 0.00E+0	4.94E-05 2.25E-21
10102-05-4	s	urenyi nitrate	U02(NO3)2	394.04	3.30E-1	6 18E-2	4 0.00E+0		0.0000+0	0 3.30E-18
15331-71-2 13768-67-7	s	yttrium formate yttrium nitrate	NCOOH)3 N(NO3)3	223.96 274.92	1.98E-11 3.32E-14	0.00E+0 6 6.22E-2	2 0.00E+00 2 0.00E+00	1	0.00E+0 0.00E+0	1.98E-19 3.32E-16
1314-36-9	s	yttrium (W) oxide	Y203	225,81	4,425-11	9 1.02E-2	4 0.00E+0	6.94E-0	B D.DOE+0	0 8.94E-08
557-41-5	s s	and formate	Zn(COCH)2	155.43	7.24E-11 1.94E-11	0.00E+0	0.00E+0		0.00E+0	0 1.94E-15
1314-13-2	s	ant oxide	ZnO	81,39	2.32E-1	6.24E-2	1 0.00E+0	2,178-0	6 0.00E+0	2.17E-06
7732-18-5	G	water	water	17.01	1.03E-11 1.47E+0	2 1.71E-1 2 1.22E+0	0 1.83E+0	1 2.64E+0	1 4.89€+0	1.97€+02

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Table 2 is the maximum lb/hr values for Carbon Monoxide, Carbon Dioxide, Nitric Acid, Nitrous Oxide, Nitric Oxide, Nitrogen Oxides, Cobalt Glycolate, Magnesium Glycolate, and Nickel Glycolate from Q-ESR-S-0002.

Chemical	Lb/hr (controlled and uncontrolled)
Carbon Monoxide (CO)	2.5
Carbon Dioxide (CO2)	83.1
Nitric Acid (HNO3)	0.017
Nitrous Oxide (N2O)	3.7
Nitric Oxide (NO)	0
Nitrogen Oxides (NOx as NO2)	24.9
Cobalt Glycolate	1.158E-15
Magnesium Glycolate	2.255E-11
Nickel Glycolate	3.219E-13

The only emission sources for the above chemicals at SDP0007 are accounted for at the SRAT, SME, and melter once glycolic acid is in use.

The following are pertinent excerpts from Q-ESR-S-0002 to support the values provided in the above table.

Carbon Monoxide

Carbon monoxide, CO, gasses off in the Melter at a rate of 2.5 lb/h. The annual rate is,

$$\stackrel{\text{d}}{=} 2.5 \frac{\text{lb}}{\text{h}} \left(115 \frac{\text{h}}{\text{cycle}} \right) \left(60 \frac{\text{cycle}}{\text{y}} \right) = 17,250 \frac{\text{lb}}{\text{y}} \xrightarrow{\pm 2,000 \text{ lb}/_{\text{ton}}} 8.6 \frac{\text{ton}}{\text{y}}$$

Carbon Dioxide

The concentration of carbon compounds in the sludge and the amount of glycolic acid added in the SRAT has a direct effect on the production of carbon dioxide, CO₂. For conservative purposes, the maximum potential emissions for CO₂ are based on 600 gallons of glycolic acid added to a processing cycle.

CARBON DIOXIDE FROM CARBONATE IN THE SRAT AND SME

Hourly

For the hourly emission rate Total Inorganic Carbon (TIC) = 1,400 mg/kg, which is based on dissolved sodium carbonate (Na₂CO₃, molar mass = 105.99 kg/kg-mole). For a SRAT volume of 7,500 gallons (28,391 L) for each processing cycle at a density of 1.16 kg/L, conversion to kg-mole is therefore,

$$1,400 \ \frac{\text{mg}}{\text{kg}} \left(\frac{28,391 \text{ L}}{\text{cycle}}\right) \left(1.16 \ \frac{\text{kg}}{\text{L}}\right) \left(\frac{\text{kg-mole}}{105.99 \ \text{kg}}\right) \left(\frac{\text{kg}}{1,000,000 \ \text{mg}}\right) = 0.435 \ \frac{\text{kg-mole}}{\text{cycle}}$$

Carbon dioxide (molar mass = 44.01 kg/kg-mole) emitted from carbonate is,

0.435
$$\frac{\text{kg-mole}}{\text{cycle}} \left(44.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right) \left(\frac{\text{cycle}}{86 \text{ h}}\right) = 0.5 \frac{\text{lb}}{\text{h}}$$

Annual

For the annual emission rate, TIC = 1,200 mg/kg, which is based on dissolved sodium carbonate (Na₂CO₃, molar mass = 105.99 kg/kg-mole). For a SRAT volume of 7,500 gallons (28,391 L) for each processing cycle at a density of 1.12 kg/L, conversion to kg-mole is therefore,

$$1,200 \ \frac{\text{mg}}{\text{kg}} \left(\frac{28,391 \text{ L}}{\text{cycle}}\right) \left(1.12 \ \frac{\text{kg}}{\text{L}}\right) \left(\frac{\text{kg-mole}}{105.99 \text{ kg}}\right) \left(\frac{\text{kg}}{1,000,000 \text{ mg}}\right) = 0.360 \ \frac{\text{kg-mole}}{\text{cycle}}$$

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Carbon dioxide (molar mass = 44.01 kg/kg-mole) emitted from carbonate is,

$$0.360 \frac{\text{kg-mole}}{\text{cycle}} \left(44.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right) \left(60 \frac{\text{cycle}}{\text{y}}\right) = 2,096 \frac{\text{lb}}{\text{y}}$$

CARBON DIOXIDE FROM GLYCOLIC ACID IN THE SRAT AND SME

Chemical reactions in the SRAT and SME produce carbon dioxide from glycolic acid ($C_2H_4O_3$, molar mass = 76.05 kg/kg-mole) additions. For both the annual and hourly emission rate, each processing cycle uses 600 gallons (2,271 L) of glycolic acid for each operating cycle. The reaction combinations that produce 9 kilogram moles of CO₂ per 5 kilogram moles of glycolic acid produce the most CO₂. The CO₂ emissions from this set of reactions is,

$$2,271 \frac{L}{\text{cycle}} \left(1.27 \frac{\text{kg}}{\text{L}}\right) \left(\frac{\text{kg-mole}}{76.05 \text{ kg}}\right) \left(\frac{70}{100}\right) = 26.55 \frac{\text{kg-mole } C_2 \text{H}_4 \text{O}_3}{\text{cycle}}$$

Hourly

The hourly emission rate is then,

$$26.55 \frac{\text{kg-mole}}{\text{cycle}} \left(\frac{9 \text{ kg-mole}_{\text{C02}}}{5 \text{ kg-mole}_{\text{C2H}_4\text{O}_3}}\right) \left(44.01 \frac{\text{kg}_{\text{C02}}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right) \left(\frac{\text{cycle}}{86 \text{ h}}\right) = 53.9 \frac{\text{lb}}{\text{h}}$$

Annual

Similarly, the annual emission rate is,

$$26.55 \frac{\text{kg-mole}}{\text{cycle}} \left(\frac{9 \text{ kg-mole}_{\text{CO}_2}}{5 \text{ kg-mole}_{\text{C}_2\text{H}_4\text{O}_3}}\right) \left(44.01 \frac{\text{kg}_{\text{CO}_2}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right) \left(60 \frac{\text{cycle}}{y}\right) = 278,260 \frac{\text{lb}}{y}$$

TOTAL CARBON DIOXIDE FROM THE SRAT AND SME

The total CO₂ production in the SME and SRAT combined from both mechanisms is determined. *Hourly*

Annual

$$0.5 \ \frac{lb}{h} + 53.9 \frac{lb}{h} = 54.4 \frac{lb}{h}$$

2,096 $\frac{lb}{y}$ + 278,260 $\frac{lb}{y}$ = 280,356 $\frac{lb}{y} \xrightarrow{+2,000 lb/ton}$ 140.2 $\frac{ton}{y}$

CARBON DIOXIDE FROM BICARBONATE IN THE MELTER

The Melter receives a conservative concentration of 2,000 mg/kg of bicarbonate, HCO₃-, for eventual offgassing. Carbon dioxide, CO₂, is the off-gas product. This input addresses any absorption of carbon dioxide gas (forming the bicarbonate) into the frit slurry while awaiting feed to the Melter.

The bicarbonate anion (HCO₃₋, molar mass = 61.02 kg/kg-mole) is present in the feed to the Melter at a conservative concentration of 2,000 mg/kg for a 6,000-gallon cycle volume (22,712 L)

Hourly

The number of kilogram moles of bicarbonate present per operating cycle is,

$$0.002 \frac{\text{kg}_{\text{HCO}_{3}^{-}}}{\text{kg}_{\text{sludge}}} \left(\frac{\text{kg-mole}_{\text{HCO}_{3}^{-}}}{61.02 \text{ kg}_{\text{HCO}_{3}^{-}}}\right) \left(1.16 \frac{\text{kg}_{\text{sludge}}}{\text{L}}\right) \left(22,712 \frac{\text{L}}{\text{cycle}}\right) = 0.864 \frac{\text{kg-mole}}{\text{cycle}}$$

Every kilogram mole of bicarbonate produces one kilogram mole of CO₂, so the hourly emission rate of carbon dioxide from bicarbonate is,

$$\frac{I}{0.864} \frac{\text{kg-mole}}{\text{cycle}} \left(44.01 \frac{\text{kg}}{\text{kg-mole}} \right) \left(2.205 \frac{\text{lb}}{\text{kg}} \right) \left(\frac{\text{cycle}}{115 \text{ h}} \right) = 0.7 \frac{\text{lb}}{\text{h}}$$

Annual

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

The number of kilogram moles of bicarbonate present per operating cycle for the annual emission is,

$$0.002 \ \frac{\text{kg}_{\text{HCO}_{3}^{-}}}{\text{kg}_{\text{sludge}}} \left(\frac{\text{kg-mole}_{\text{HCO}_{3}^{-}}}{61.02 \ \text{kg}_{\text{HCO}_{3}^{-}}}\right) \left(1.12 \ \frac{\text{kg}_{\text{sludge}}}{L}\right) \left(22,712 \ \frac{L}{\text{cycle}}\right) = 0.834 \ \frac{\text{kg-mole}}{\text{cycle}}$$

The annual emission rate of carbon dioxide from bicarbonate is,

$$0.834 \frac{\text{kg-mole}}{\text{cycle}} \left(44.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right) \left(60 \frac{\text{cycle}}{\text{y}}\right) = 4,855 \frac{\text{lb}}{\text{y}} \xrightarrow{+2,000 \text{lb}/\text{ton}} 2.4 \frac{\text{ton}}{\text{y}}$$

CARBON DIOXIDE FROM CALCINE GASES IN THE MELTER

Glass production produces carbon dioxide in the Melter via calcination. The hourly off-gas rate of carbon dioxide is 28 lb/h.

Annual

The annual rate is,

$$28 \frac{\text{lb}}{\text{h}} \left(115 \frac{\text{h}}{\text{cycle}}\right) \left(60 \frac{\text{cycle}}{\text{y}}\right) = 193,200 \frac{\text{lb}}{\text{y}} \xrightarrow{+2,000 \text{ lb}/_{\text{ton}}} 96.6 \frac{\text{ton}}{\text{y}}$$

TOTAL CARBON DIOXIDE FROM THE MELTER

Hourly

The hourly emission rates for CO2 in the Melter is then

$$0.7 \ \frac{lb}{h} + 28.0 \ \frac{lb}{h} = 28.7 \ \frac{lb}{h}$$

Annual

The total annual emission rates for CO2 in the Melter is then,

$$2.4 \frac{\tan}{y} + 96.6 \frac{\tan}{y} = 99.0 \frac{\tan}{y}$$

Hourly Maximum Potential Emissions for Carbon Dioxide Summing the hourly CO₂ emissions from the SRAT, SME, and Melter,

49.0
$$\frac{lb}{h}$$
 (SRAT) + 5.4 $\frac{lb}{h}$ (SME) + 28.7 $\frac{lb}{h}$ (Melter) = 83.1 $\frac{lb}{h}$

Annual Maximum Potential Emissions for Carbon Dioxide

Summing the annual \mbox{CO}_2 emissions from the SRAT, SME, and Melter,

126.2
$$\frac{\tan}{y}$$
 (SRAT) + 14.0 $\frac{\tan}{y}$ (SME) + 99.0 $\frac{\tan}{y}$ (Melter) = 239.2 $\frac{\tan}{y}$

Nitric Acid Emissions

A change in reductant will not change the acid vapor entrainment ratios previously evaluated for formic acid, which coincide with the following stream values shown in the figure below (pounds per hour) for 300 gallons of nitric acid (the original acid baseline) introduced into the SRAT.

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Under the nitric-glycolic acid flowsheet, the SRAT receives 380 gallons of nitric acid for the annual emission estimate and 420 gallons for the hourly emission estimate.

ANNUAL EMISSIONS

For each cycle, the SRAT operates for 84 hours and the Melter operates for 115 hours. The nitric acid annual emissions are based on 60 cycles per year. Ratioing the flow rates accordingly (i.e., 380 gallons-to-300 gallons) reveals the new nitric acid annual maximum potential emissions,

SRAT – Nitric acid

$$\frac{380 \text{ gal}}{300 \text{ gal}} \left(0.00197 \frac{\text{lb}}{\text{h}}\right) \left(86 \frac{\text{h}}{\text{cycle}}\right) \left(60 \frac{\text{cycle}}{\text{y}}\right) \left(\frac{\text{ton}}{2000 \text{ lb}}\right) = 0.006 \frac{\text{ton}}{\text{y}}$$

Melter – Nitric acid

$$\frac{380 \text{ gal}}{300 \text{ gal}} \left(0.01020 \ \frac{\text{lb}}{\text{h}}\right) \left(115 \ \frac{\text{h}}{\text{cycle}}\right) \left(60 \ \frac{\text{cycle}}{\text{y}}\right) \left(\frac{\text{ton}}{2000 \text{ lb}}\right) = 0.045 \ \frac{\text{ton}}{\text{y}}$$

Annual maximum potential emissions for nitric acid

HNO₃ (annual) = 0.006
$$\frac{\tan}{y}$$
 + 0.045 $\frac{\tan}{y}$ = 0.05 $\frac{\tan}{y}$

HOURLY EMISSIONS

Similarly, the hourly maximum potential emissions,

SRAT - Nitric acid

$$\frac{420 \text{ gal}}{300 \text{ gal}} \left(0.00197 \frac{\text{lb}}{\text{h}} \right) = 0.0028 \frac{\text{lb}}{\text{h}}$$

Melter - Nitric acid

$$\frac{420 \text{ gal}}{300 \text{ gal}} \left(0.01020 \ \frac{\text{lb}}{\text{h}} \right) = 0.0143 \ \frac{\text{lb}}{\text{h}}$$

Hourly maximum potential emissions nitric acid

HNO₃ (hourly) = 0.0028
$$\frac{lb}{h}$$
 + 0.0143 $\frac{lb}{h}$ = 0.017 $\frac{lb}{h}$

Nitrogen Oxide (NOx) Emissions

The nitric-glycolic acid flowsheet will use more nitric acid for each sludge processing cycle than the

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

nitric-formic acid flowsheet and will therefore change the oxides of nitrogen emissions. NO_x originates from nitrogen sources in the 1) sludge, 2) MST-sludge solids, 3) strip effluent, and 4) nitric acid. A simple nitrogen balance on the process shown in figure below presents the conservative permitting basis for NO_x emissions.

NO_x and N2O Emission Basis

The following inputs apply for the NOx emission analysis,

1. Nitrogen sources in the sludge are from nitrite, NO₂-, and nitrate, NO₃-, anions. Concentrations of other nitrogen compounds, such as ammonia, NH₃, are small and considered negligible.

2. Nitrogen sources in the MST-sludge solids are from nitrite, NO₂-, and nitrate, NO₃-, anions. The composition is based on a review of historical processing data for this stream (from both ARP-MCU and SWPF), which shows the mean nitrite concentration to be less than 0.05 mol/L and the nitrate concentration to be approximately 0.1 mol/L. To include the possible wide variations in this stream, the nitrite concentration is doubled to 0.1 mol/L and the nitrate concentration is doubled to 0.2 mol/L.

3. Nitrogen sources in strip effluent is from the nitrate, NO₃-, anion. The sample results for sodium concentration forms the basis for the mass of nitrogen in the strip effluent. To account for uncertainty, all of the sodium is assigned to the nitrate anion, NO₃-, and a threefold standard deviation, 3σ , allowance is added to the arithmetic mean, μ , which yields a concentration of 195 mg/L.

4. Nitrogen compounds entering DWPF converts to NOx gas (as nitrogen dioxide, NO2) in the following manner,

a. 30 % entering the SRAT. This is based on historical processing data.

b. 5 % entering the SME.

c. 75 % entering the Melter

5. The pre-boil down volume of sludge is 7,500 gallons per processing cycle.

6. The SRAT boils down the sludge, MST-sludge solids, and strip effluent to 6,000 gallons for a transfer volume of 4,500 gallons to the SME.

7. For conservative purposes, the nitric acid solution added for each processing cycle,

a. the estimate for the annual maximum potential emission assumes 380 gallons.

b. the estimate for the hourly maximum potential emission assumes 420 gallons.

8. The ammonia scrubber, the SRAT condenser, or the SME condenser do not convert nitrogen dioxide gas, NO₂, to nitric acid.

ANNUAL EMISSIONS

SRAT - Nitrogen from sludge

From Input 4.a, the concentration for nitrite, NO₂-, is 9,000 mg/kg and for nitrate, NO₃-,

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

10,000 mg/kg. Let the starting sludge volume for a single operating cycle be 7,500 gallons (28,391 L) at a density of 1.12 kg/L (pre-boil down). The mass, *m* (kg), for each anion is therefore,

$$m_{\text{sludge}} = 28,391 \frac{\text{L}}{\text{cycle}} \left(1.12 \frac{\text{kg}}{\text{L}} \right) = 31,797 \frac{\text{kg}}{\text{cycle}}$$
$$m_{\text{NO}_2} = 31,797 \frac{\text{kg}}{\text{cycle}} \left(9,000 \frac{\text{mg}}{\text{kg}} \right) \left(\frac{\text{kg}}{1,000,000 \text{ mg}} \right) = 286.18 \frac{\text{kg}}{\text{cycle}}$$
$$m_{\text{NO}_3} = 31,797 \frac{\text{kg}}{\text{cycle}} \left(10,000 \frac{\text{mg}}{\text{kg}} \right) \left(\frac{\text{kg}}{1,000,000 \text{ mg}} \right) = 317.97 \frac{\text{kg}}{\text{cycle}}$$

Using the molar mass conversions from Input 5, the mass in kilogram moles, n, is,

$$n_{\text{NO}_2^-} = 286.18 \frac{\text{kg}}{\text{cycle}} \left(\frac{\text{kg-mole}}{46.01 \text{ kg}}\right) = 6.22 \frac{\text{kg-mole}}{\text{cycle}}$$
$$n_{\text{NO}_3^-} = 317.97 \frac{\text{kg}}{\text{cycle}} \left(\frac{\text{kg-mole}}{62.01 \text{ kg}}\right) = 5.13 \frac{\text{kg-mole}}{\text{cycle}}$$

The nitrogen total from sludge, $n_{\text{N, sludge}}$, is 6.22 $\frac{\text{kg-mole}}{\text{cycle}}$ + 5.13 $\frac{\text{kg-mole}}{\text{cycle}}$ = 11.35 $\frac{\text{kg-mole}}{\text{cycle}}$.

SRAT – Nitrogen from MST-sludge solids

The concentration for nitrite, NO₂-, is 0.1 mol/L and for nitrate, NO₃-, 0.2 mol/L. The volume of the MST-sludge solids receipt into the SRAT is 3,000 gallons (11,356 L) for a single operating cycle. The mass, n (kg-mole), for each anion is therefore,

$$n_{\text{NO}_2^-} = 0.1 \frac{\text{mol}}{\text{L}} \left(11,356 \frac{\text{L}}{\text{cycle}} \right) \left(\frac{\text{kg-mole}}{1,000 \text{ mol}} \right) = 1.14 \frac{\text{kg-mole}}{\text{cycle}}$$
$$n_{\text{NO}_3^-} = 0.2 \frac{\text{mol}}{\text{L}} \left(11,356 \frac{\text{L}}{\text{cycle}} \right) \left(\frac{\text{kg-mole}}{1,000 \text{ mol}} \right) = 2.27 \frac{\text{kg-mole}}{\text{cycle}}$$

The nitrogen total, $n_{\text{N, MST-sludge solids}}$, is $1.14 \frac{\text{kg-mole}}{\text{cycle}} + 2.27 \frac{\text{kg-mole}}{\text{cycle}} = 3.41 \frac{\text{kg-mole}}{\text{cycle}}$.

SRAT – Nitrogen from strip effluent

The concentration for the nitrogen compounds in the strip effluent is the concentration of sodium (at a 1:1 stoichiometry). The kg-moles of sodium, nnNa+, yields the mass (kg-mole) of nitrogen. For each processing cycle, the SRAT receives 15,000 gallons (56,781 L) of strip effluent.

$$n_{\text{Na}^+}^{\text{I}} = 195 \ \frac{\text{mg}}{\text{L}} \left(56,781 \frac{\text{L}}{\text{cycle}} \right) \left(\frac{\text{kg-mole}}{22.99 \text{ kg}} \right) \left(\frac{\text{kg}}{1,000,000 \text{ mg}} \right) = 0.48 \ \frac{\text{kg-mole}}{\text{cycle}}$$

The total mass of nitrogen from the strip effluent, $n_{\rm N, strip effluent}$, is therefore 0.48 $\frac{\rm kg-mole}{\rm cycle}$.

SRAT - Nitrogen from nitric acid

For each processing cycle, the SRAT receives 380 gallons (1,438 L) of nitric acid, HNO₃. The solution is a 50 wt % aqueous solution with a density of 1.31 kg/L. The molar mass of nitric acid resolves the mass of nitrogen, n (kg-mole).

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

$$n_{\rm HNO_3} = 1.438 \frac{\rm L}{\rm cycle} \left(1.31 \frac{\rm kg}{\rm L}\right) \left(\frac{50}{100}\right) \left(\frac{\rm kg-mole}{63.01 \rm \, kg}\right) = 14.95 \frac{\rm kg-mole}{\rm cycle}$$

The total mass of nitrogen from nitric acid, $n_{\text{N, nitric acid}}$, is therefore 14.95 $\frac{\text{kg-mole}}{\text{cycle}}$.

SRAT - NO_x emission

ź

The total mass, n (kg-mole), of nitrogen in the SRAT before off-gassing is,

$$n_{\text{N, SRAT}_{start}} = n_{\text{N, sludge}} + n_{\text{N, MST-sludge solids}} + n_{\text{N, strip effluent}} + n_{\text{N, nitric acid}}$$
$$= (11.35 + 3.41 + 0.48 + 14.95) \frac{\text{kg-mole}}{\text{cycle}}$$
$$= 30.19 \frac{\text{kg-mole}}{\text{cycle}}$$

From historical sample data, 30 % of the nitrogen entering the SRAT gasses off, as nitrogen dioxide, NO₂, tracked as NO_x.

$$n_{\text{NO}_{x},\text{SRAT}} = \frac{30}{100} \left(30.19 \frac{\text{kg-mole}}{\text{cycle}} \right) = 9.06 \frac{\text{kg-mole}}{\text{cycle}}$$

Annually, at 60 cycles per year, the SRAT NO_x emission in tons per year (using NO_2 as the NO_x pollutant with a molar mass of 46.01 kg/kg-mole),

$$n_{\text{NO}_x, \text{ SRAT}} = 9.06 \frac{\text{kg-mole}}{\text{cycle}} \left(60 \frac{\text{cycle}}{\text{y}}\right) \left(46.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right) \left(\frac{\text{ton}}{2000 \text{ lb}}\right)$$
$$n_{\text{NO}_x, \text{ SRAT}} = 27.6 \frac{\text{ton}}{\text{y}}$$

SME - NO_x emission

The total mass, n (kg-mole), of nitrogen remaining in the SRAT after off-gassing is,

$$n_{\text{N, SRAT}_{end}} = n_{\text{N, SRAT}_{start}} - n_{\text{NO}_x, \text{SRAT}}$$
$$n_{\text{N, SRAT}_{end}} = 30.19 \frac{\text{kg-mole}}{\text{cycle}} - 9.06 \frac{\text{kg-mole}}{\text{cycle}} = 21.13 \frac{\text{kg-mole}}{\text{cycle}}$$

The SRAT volume boils down to 6,000 gallons. The SME receives 4,500 gallons of the slurry (6,000 gallons minus the 1,500-gallon heel),

$$n_{\text{N, SME}_{start}} = \frac{4,500 \text{ gal}}{6,000 \text{ gal}} \left(21.13 \frac{\text{kg-mole}}{\text{cycle}}\right) = 15.85 \frac{\text{kg-mole}}{\text{cycle}}$$

Part of the nitrogen in the SME gasses off at a rate of 5 % of the contents.

$$n_{\text{NO}_x, \text{SME}} = \frac{5}{100} \left(15.85 \frac{\text{kg-mole}}{\text{cycle}} \right) = 0.79 \frac{\text{kg-mole}}{\text{cycle}}$$

Annually, at 60 cycles per year, the SME NO_x emission in tons per year (using NO_2 as the NO_x pollutant with a molar mass of 46.01 kg/kg-mole),

$$n_{\text{NO}_x, \text{SME}} = 0.79 \frac{\text{kg-mole}}{\text{cycle}} \left(60 \frac{\text{cycle}}{\text{y}}\right) \left(46.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right) \left(\frac{\text{ton}}{2000 \text{ lb}}\right)$$
$$n_{\text{NO}_x, \text{SME}} = 2.4 \frac{\text{ton}}{\text{y}}$$

Melter – NOx and N2O emissions

The Melter receives (via the MFT) the nitrogen not gassed off as NOx in the SRAT and SME.

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

$$n_{\text{N, SME}_{end}} = n_{\text{N, Melter_{start}}} = 15.85 \frac{\text{kg-mole}}{\text{cycle}} - 0.79 \frac{\text{kg-mole}}{\text{cycle}} = 15.06 \frac{\text{kg-mole}}{\text{cycle}}$$

A substantial part, 75 %, of the nitrogen that reaches the Melter gasses off as nitrogen dioxide, NO₂ or NO_x, based on projections by the Savannah River National Laboratory. The remaining gasses off as nitrous oxide, N₂O, or nitrogen, N₂, and accounted as greenhouse gases.

$$n_{\text{NO}_{x}.\text{ Melter}} = \frac{75}{100} \left(15.06 \ \frac{\text{kg-mole}}{\text{cycle}} \right) = 11.29 \ \frac{\text{kg-mole}}{\text{cycle}}$$
$$n_{\text{N}_{2}0,\text{ Melter}} = \frac{25}{100} \left(15.06 \ \frac{\text{kg-mole}}{\text{cycle}} \right) = 3.76 \ \frac{\text{kg-mole}}{\text{cycle}}$$

Annually, at 60 cycles per year, the Melter NO_x emission in tons per year (using NO_2 as the NO_x pollutant with a molar mass of 46.01 kg/kg-mole),

$$n_{\text{NO}_x, \text{ Melter}} = 11.29 \frac{\text{kg-mole}}{\text{cycle}} \left(60 \frac{\text{cycle}}{\text{y}}\right) \left(46.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right) \left(\frac{\text{ton}}{2000 \text{ lb}}\right)$$
$$n_{\text{NO}_x, \text{ Melter}} = 34.4 \frac{\text{ton}}{\text{y}}$$

Annual Maximum Potential Emissions for NO_x

The total NO_x emission for each processing cycle is,

 $n_{\text{NO}_x, \text{ total per cycle}} = n_{\text{NO}_x, \text{ SRAT}} + n_{\text{NO}_x, \text{ SME}} + n_{\text{NO}_x, \text{ Melter}}$ $n_{\text{NO}_x, \text{ total per cycle}} = (9.06 + 0.79 + 11.29) \frac{\text{kg-mole}}{\text{cycle}} = 21.14 \frac{\text{kg-mole}}{\text{cycle}}$

The following computation conservatively estimates the annual maximum potential emissions for NO_x at 60 cycles per year using the molar mass for nitrogen dioxide, NO_2 ,

$$NO_x(annual) = 21.14 \frac{\text{kg-mole}}{\text{cycle}} \left(6\rho \frac{\text{cycle}}{y} \right) \left(46.01 \frac{\text{kg}}{\text{kg-mole}} \right) \left(2.205 \frac{\text{lb}}{\text{kg}} \right) \left(\frac{\text{ton}}{2,000 \text{ lb}} \right)$$
$$= 64.3 \frac{\text{ton}}{y}$$

Hence, the annual nitrous oxide emission is,

$$N_2O(\text{annual}) = 3.76 \frac{\text{kg-mole}}{\text{cycle}} \left(60 \frac{\text{cycle}}{\text{y}}\right) \left(44.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right) \left(\frac{\text{ton}}{2,000 \text{ lb}}\right)$$
$$= 11.0 \frac{\text{ton}}{\text{y}}$$

HOURLY EMISSIONS

An off-normal cycle covers the hourly maximum potential emissions for NO_x; characterized by a particularly difficult sludge receipt. The parameters used in the hourly computation is the same as the annual except for the following,

- The sludge nitrite concentration boosts to 10,500 mg/kg

- The sludge nitrate concentration boosts to 13,000 mg/kg

- The sludge density thickens to 1.16 kg/L

- The nitric acid volume increases to 420 gallons

SRAT - Nitrogen from sludge

The starting sludge volume stays the same at 7,500 gallons (28,391 L) for an operating cycle. The mass, m (kg), for each anion is therefore,

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

$$m_{\text{sludge}} = 28,391 \frac{\text{L}}{\text{cycle}} \left(1.16 \frac{\text{kg}}{\text{L}} \right) = 32,933 \frac{\text{kg}}{\text{cycle}}$$
$$m_{\text{NO}_2} = 32,933 \frac{\text{kg}}{\text{cycle}} \left(10,500 \frac{\text{mg}}{\text{kg}} \right) \left(\frac{\text{kg}}{1,000,000 \text{ mg}} \right) = 345.80 \frac{\text{kg}}{\text{cycle}}$$
$$m_{\text{NO}_3} = 32,933 \frac{\text{kg}}{\text{cycle}} \left(13,000 \frac{\text{mg}}{\text{kg}} \right) \left(\frac{\text{kg}}{1,000,000 \text{ mg}} \right) = 428.13 \frac{\text{kg}}{\text{cycle}}$$

Using the molar mass conversions in Input 5, the mass in kilogram moles, n, is,

$$n_{\rm NO_2} = 345.80 \frac{\rm kg}{\rm cycle} \left(\frac{\rm kg-mole}{46.01 \rm \ kg}\right) = 7.52 \frac{\rm kg-mole}{\rm cycle}$$
$$n_{\rm NO_3} = 428.13 \frac{\rm kg}{\rm cycle} \left(\frac{\rm kg-mole}{62.01 \rm \ kg}\right) = 6.90 \frac{\rm kg-mole}{\rm cycle}$$

The total mass of nitrogen from sludge, $n_{\text{N, sludge}}$, is 7.52 $\frac{\text{kg-mole}}{\text{cycle}}$ + 6.90 $\frac{\text{kg-mole}}{\text{cycle}}$ = 14.42 $\frac{\text{kg-mole}}{\text{cycle}}$.

SRAT - Nitrogen from nitric acid

The SRAT receives 420 gallons (1,590 L) of nitric acid, HNO₃, for each operating cycle for calculating the hourly maximum potential emissions for NO_x. The mass of acid, *n* (kg-mole) per cycle is,

$$n_{\rm HNO_3} = 1,590 \frac{L}{\rm cycle} \left(1.31 \frac{\rm kg}{\rm L}\right) \left(\frac{50}{100}\right) \left(\frac{\rm kg-mole}{63.01 \rm \, kg}\right) = 16.53 \frac{\rm kg-mole}{\rm cycle}$$

Consequently, the total mass of nitrogen from nitric acid, $n_{\text{N, nitric acid}}$, for the hourly computation is therefore 16.53 $\frac{\text{kg-mole}}{\text{cycle}}$.

SRAT - NO_x emission

The total mass, n (kg-mole), of nitrogen in the SRAT before off-gassing is,

$$n_{\rm HNO_3} = 1,590 \frac{\rm L}{\rm cycle} \left(1.31 \frac{\rm kg}{\rm L}\right) \left(\frac{50}{100}\right) \left(\frac{\rm kg-mole}{63.01 \rm \, kg}\right) = 16.53 \frac{\rm kg-mole}{\rm cycle}$$

Consequently, the total mass of nitrogen from nitric acid, $n_{\text{N, nitric acid}}$, for the hourly computation is therefore $16.53 \frac{\text{kg-mole}}{\text{cycle}}$.

SRAT - NO_x emission

The total mass, n (kg-mole), of nitrogen in the SRAT before off-gassing is,

$$n_{\text{N, SRAT}_{start}} = n_{\text{N, sludge}} + n_{\text{N, MST-sludge solids}} + n_{\text{N, strip effluent}} + n_{\text{N, nitric acid}}$$
$$= (14.42 + 3.41 + 0.48 + 16.53) \frac{\text{kg-mole}}{\text{cycle}}$$
$$= 34.84 \frac{\text{kg-mole}}{\text{cycle}}$$

The NO_x emission from the SRAT is likewise,

$$n_{\text{NO}_x, \text{SRAT}} = \frac{30}{100} \left(34.84 \frac{\text{kg-mole}}{\text{cycle}} \right) = 10.45 \frac{\text{kg-mole}}{\text{cycle}}$$

At 86 hours per cycle, the SRAT NO_x emission in pounds per hour (using NO_2 as the NO_x pollutant with a molar mass of 46.01 kg/kg-mole),

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

$$n_{\text{NO}_{x}, \text{ SRAT}} = 10.45 \frac{\text{kg-mole}}{\text{cycle}} \left(\frac{\text{cycle}}{86 \text{ h}}\right) \left(46.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right)$$
$$n_{\text{NO}_{x}, \text{ SRAT}} = 12.3 \frac{\text{lb}}{\text{h}}$$

$SME - NO_x$ emission

The total mass, n (kg-mole), of nitrogen in the SRAT after off-gassing is,

 $n_{\rm N, SRAT_{end}} = n_{\rm N, SRAT_{start}} - n_{\rm NO_x, SRAT}$

$$n_{\text{N, SRAT}_{end}} = 34.84 \frac{\text{kg-mole}}{\text{cycle}} - 10.45 \frac{\text{kg-mole}}{\text{cycle}} = 24.39 \frac{\text{kg-mole}}{\text{cycle}}$$

The remaining nitrogen moved to the SME,

$$n_{\text{N, SME}_{start}} = \frac{4,500 \text{ gal}}{6,000 \text{ gal}} \left(24.39 \frac{\text{kg-mole}}{\text{cycle}}\right) = 18.29 \frac{\text{kg-mole}}{\text{cycle}}$$

A part of the nitrogen in the SME gasses off at a rate of 5 % of the contents.

$$n_{\text{NO}_{x}, \text{SME}} = \frac{5}{100} \left(18.29 \frac{\text{kg-mole}}{\text{cycle}} \right) = 0.91 \frac{\text{kg-mole}}{\text{cycle}}$$

At 86 hours per cycle, the SME NO_x emission in pounds per hour (using NO₂ as the NO_x pollutant with a molar mass of 46.01 kg/kg-mole),

$$n_{\text{NO}_{x},\text{SME}} = 0.91 \frac{\text{kg-mole}}{\text{cycle}} \left(\frac{\text{cycle}}{86 \text{ h}}\right) \left(46.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right)$$
$$n_{\text{NO}_{x},\text{SME}} = 1.1 \frac{\text{lb}}{\text{h}}$$

Melter – NO_x and N_2O emissions

The Melter receives (via the MFT) the nitrogen not gassed off as NO_x in the SRAT and SME.

$$n_{\text{N, SME}_{end}} = n_{\text{N, Melter}_{start}} = 18.29 \frac{\text{kg-mole}}{\text{cycle}} - 0.91 \frac{\text{kg-mole}}{\text{cycle}} = 17.37 \frac{\text{kg-mole}}{\text{cycle}}$$

As for the annual computation, 75 %, of the nitrogen that reaches the Melter gasses off as nitrogen dioxide, NO_2 or NO_x for the hourly computation. The remaining gasses off as nitrous oxide, N_2O , or nitrogen, N_2 , and accounted as greenhouse gases.

$$n_{\text{NO}_x, \text{ Melter}} = \frac{75}{100} \left(17.37 \frac{\text{kg-inole}}{\text{cycle}} \right) = 13.03 \frac{\text{kg-mole}}{\text{cycle}}$$
$$n_{\text{N}_2\text{O}, \text{ Melter}} = \frac{25}{100} \left(17.37 \frac{\text{kg-mole}}{\text{cycle}} \right) = 4.34 \frac{\text{kg-mole}}{\text{cycle}}$$

At 115 hours per cycle, the Melter NO_x emission in pounds per hour (using NO_2 as the NO_x pollutant with a molar mass of 46.01 kg/kg-mole),

$$n_{\text{NO}_{x}, \text{ Melter}} = 13.03 \frac{\text{kg-mole}}{\text{cycle}} \left(\frac{\text{cycle}}{115 \text{ h}}\right) \left(46.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right)$$
$$n_{\text{NO}_{x}, \text{ Melter}} = 11.5 \frac{\text{lb}}{\text{h}}$$

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Hourly Maximum Potential Emissions for NO_x

The total hourly emissions from the SRAT, SME, and Melter are thus,

$$NO_x(hourly) = n_{NO_x, SRAT} + n_{NO_x, SME} + n_{NO_x, Melter}$$

= 12.3 $\frac{lb}{h}$ + 1.1 $\frac{lb}{h}$ + 11.5 $\frac{lb}{h}$ = 24.9 $\frac{lb}{h}$

Also, the hourly nitrous oxide emission is,

$$N_2O(\text{hourly}) = 4.34 \frac{\text{kg-mole}}{\text{cycle}} \left(\frac{\text{cycle}}{115 \text{ h}}\right) \left(44.01 \frac{\text{kg}}{\text{kg-mole}}\right) \left(2.205 \frac{\text{lb}}{\text{kg}}\right)$$
$$= 3.7 \text{ lb/h}$$

Glycolate metal Emissions

The source of the metals emitted from DWPF is from the processed salt solution and sludge. The reducing agent does not contribute to the metal emissions. Also, the cycle time and the number of cycles per year are the same as for formic acid. The only change in the

emissions of the metals is that the metal-formates would be present as metal-glycolate.

Mercury emissions are a function of salt and sludge composition; therefore, mercury emissions for the nitric-glycolic acid flowsheet will be the same as the nitric-formic acid flowsheet. *Hourly*

Multiplying each existing metal-formate emission rate by the ratio of the molar mass of the metalglycolate to that of the metal formate calculates the emissions of metal-glycolates.

Example: converting the cobalt formate hourly emission rate to cobalt glycolate in the SME,

$$\left(1.463\text{E-16}\ \frac{\text{lb}}{\text{h}}\text{ cobalt formate}\right)\left(\frac{209.02}{148.97}\right) = \left(2.053\text{E-16}\ \frac{\text{lb}}{\text{h}}\text{ cobalt glycolate}\right)$$

The following table shows the original formate hourly rate and the metal-glycolate conversion result.

CAS Registry	Dellutent	Molar	SRAT	SME	Melter	Total
Number	Pollutant	Mass	(lb/h)	(lb/h)	(lb/h)	(lb/h)
544-18-3	Cobalt formate	148.97	6.789E-16	1.463E-16	0.000E+00	8.252E-16
26656-81-5	Cobalt glycolate	209.02	9.526E-16	2.053E-16	0.000E+00	1.158E-15
3251-96-5	Manganese formate	144.97	1.312E-11	2.826E-12	0.000E+00	1.595E-11
not registered	Manganese glycolate	205.02	1.856E-11	3.997E-12	0.000E+00	2.255E-11
3349-06-2	Nickel formate	148.73	1.887E-13	4.065E-14	0.000E+00	2.294E-13
41587-84-2	Nickel glycolate	208.75	2.649E-13	5.707E-14	0.000E+00	3.219E-13
	Total glycolates		1.882E-11	4.054E-12	0.000E+00	2.287E-11

Annual

The annual rate (tons per year, tpy) is determined by multiplying each glycolate entry by cycle time (86 h) × annual cycle rate (60) × ton/2,000 lb = 2.58 ton-h/lb-y The result for each metal-glycolate is included in the following table for the annual rate.

Table 4-2 Metal-glycolates air emission rates (annual)

			-	
Pollutant	SRAT (tpy)	SME (tpy)	Melter (tpy)	Total (tpy)
Cobalt glycolate	2.458E-15	5.296E-16	0.000E+00	2.987E-15
Manganese glycolate	4.787E-11	1.031E-11	0.000E+00	5.818E-11
Nickel glycolate	6.833E-13	1.472E-13	0.000E+00	8.305E-13
Total metal glycolates	4.856E-11	1.046E-11	0.000E+00	5.902E-11

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Table 3 presents all the regulated pollutants being emitted from SDP0007 (pollutants that meet definition of trace are not included)

				Goes to FAVC				Goes to FAVC									
							melter										
				SRAT limited	SRAT limited	melter limited	limited	SRAT limited	Uncor	ntrolled							
	WSRC-TR-95-00247 (Choi Stream)			39	166	185	94	4			Cont	rolled					
													wt %				
1					outlet from	outlet from		Precipitate			1		to				
					Decontamination	can		Reactor	Total	Total			deter		Carcino		
1				Inlet vapor to	Waste	decontamint		Bottoms Tank	Uncontrolled	Uncontrolled			mine		gen		
				FAVC	Treatement Tank	aion chamber	melter	to FAVC	SDP7 (lb/hr)	SDP7	Total SDP7	Total SDP7	trace		(Y/N)	Trace?	
CAS#			MW lb/lb-mol	flows (lb/hr)	flows (lb/hr)	flows (lb/hr)	flows (lb/	flows (Ib/hr)	(lb/hr)	(TPY)	(lb/hr)	(TPY)					
630-08-0	Carbon monoxide	co	28.01						2.50E+00	8.60E+00	2.50E+00	8.60E+00				NA	Q-ESR-S-00002 rev 1
124-38-9	Carbon dioxide (GHG)	CO2	44.01	8.50E+00	4.27E-01	0.00E+00	1.42E+01	6.13E-07	8.31E+01	2.39E+02	8.31E+01	2.39E+02	NA			NA	Q-ESR-S-00002 rev 1
1024-97-2	Nitrous Oxide	N20	44.01						3.70E+00	1.10E+01	3.70E+00	1.10E+01	13.05			NA	Q-ESR-S-00002 rev 1
10102-44-0	Nitrogen oxides (NO2) [MW=46.01]	NOx	46.01						2.49E+01	6.43E+01	2.49E+01	6.43E+01	76.29			NA	Q-ESR-S-00002 rev 1
	Total Particulate			9.23E-02	3.16E-06	2.88E-06	2.59E-02	2.88E-08	1.18E-01	3.28E-01	1.18E-01	3.28E-01	NA	Criteria		NA	
	PM-10			9.23E-02	3.16E-06	2.88E-06	2.59E-02	2.88E-08	1.18E-01	3.28E-01	1.18E-01	3.28E-01	NA	Criteria		NA	
	PM-2.5			9.23E-02	3.16E-06	2.88E-06	2.59E-02	2.88E-08	1.18E-01	3.28E-01	1.18E-01	3.28E-01	NA	Criteria		NA	
														Standard 2			
	Lead compounds (PbO)			2.59E-15	4.84E-21	0.00E+00	1.69E-06	0.00E+00	1.69E-06	5.82E-06	1.69E-06	5.82E-06	0.00	(Pb)	NA	NA	

If an "S" is in the second column of table 1, the constituent was included in PM emissions.

The total emissions used as the basis to determine trace emissions is:

CO + Hydrofluoric Acid + HNO3 + N2O + ammonia + ammonia hydroxide + NOx (as NO2) + Total PM

8.6 TPY + 5.43E-03 TPY + 5.00E-02 TPY + 11 TPY + 2.81E-03 TPY + 7.40E-21 TPY + 64.3 TPY + 3.28E-01 TPY = 84.3 TPY Controlled

Example Calculation for Nickel Compounds (NiO)

[(8.31E-13 TPY Nickel Glycolate) (1 mole Nickel Glycolate/208.75g) + (2.11E-05 TPY Nickel Oxide) (1 mole Nickel Oxide/74.69g)](74.69 g/1 mole NiO) = 2.11E-05 TPY NiCkel Oxide (1 mole Nickel Glycolate/208.75g) + (2.11E-05 TPY Nickel Oxide) (1 mole Nickel Glycolate/208.75g) + (2.11E-05 TPY Nickel Oxide) (1 mole Nickel Glycolate/208.75g) + (2.11E-05 TPY Nickel Oxide) (1 mole Nickel Glycolate/208.75g) + (2.11E-05 TPY Nickel Oxide) (1 mole Nickel Glycolate/208.75g) + (2.11E-05 TPY Nickel Oxide) (1 mole Nickel Glycolate/208.75g) + (2.11E-05 TPY Nickel Oxide) (1 mole Nickel Glycolate/208.75g) + (2.11E-05 TPY Nickel Oxide) (1 mole Nickel Glycolate/208.75g) + (2.11E-05 TPY Nickel Oxide/208.75g) +

(2.11E-05 TPY Nickel Compounds)/84.3 TPY * 100 = 2.50E-05 wt % less than 0.1wt% (Nickel Compounds is a carcinogen)

The uncontrolled weight percentage for Mercury Compounds (HgO):

Calculate the TPY uncontrolled emission rate of HgO (based on WSRC-TR-95-00247 stream information)

(9.97E-02 lb/hr)(86 hr/batch)(60 batches/yr)(1 ton/2000 lb) + (8.82E-13 lb/hr)(86 hr/batch)(60 batches/yr)(1 ton/2000 lb) +

(2.29E-02 lb/hr)(115 hr/batch)(60 batches/yr)(1 ton/2000 lb) + (3.10E-08 lb/hr)(86 hr/batch)(60 batches/yr)(1 ton/2000 lb) = 3.36E-01 TPY HgO uncontrolled

(3.36E-01 TPY HgO)/(84.3 TPY)*100 = 0.4 wt% Mercury Compounds

Mercury and Mercury Compounds are not Carcinogens and meet the definition of trace. Mercury would have a lower weight percentage than Mercury

Compounds due to lower molecular weight

Therefore, the FAVC is a voluntary control device.

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Tables 4 through 6 represents the emissions impacts at SDP0001, SDP0009, and SDP0019 resulting from the modification.

Table 4 SDP0001 - No change - Maximum potential to emit calculation contained in SRNS-J2200-2019-00240 not impacted

	176S	177S	178S	SDP1 Total	SDP1	SDP1 Total
Constituent	lb/yr	lb/yr	lb/yr	lb/yr	lb/hr	ТРҮ
Water	69.87		37.75	1.08E+02	1.23E-02	5.38E-02
Nitrogen	8.36			8.36E+00	9.54E-04	4.18E-03
Iron Oxide	0.25			2.50E-01	2.85E-05	1.25E-04
Sodium Nitrite	0.09	0.01		1.00E-01	1.14E-05	5.00E-05
Sodium Nitrate			0.03	3.00E-02	3.42E-06	1.50E-05
Sodium Oxalate		0.01	0.01	2.00E-02	2.28E-06	1.00E-05
Sodium Carbonate	0.07			7.00E-02	7.99E-06	3.50E-05
Uranium Oxide	0.03			3.00E-02	3.42E-06	1.50E-05
Manganese Dioxide	0.03			3.00E-02	3.42E-06	1.50E-05
Calcium Carbonate	0.02			2.00E-02	2.28E-06	1.00E-05
Water		69.45		6.95E+01	7.93E-03	3.47E-02
Sodium Formate		0.02		2.00E-02	2.28E-06	1.00E-05
Sodium Nitrate		0.01		1.00E-02	1.14E-06	5.00E-06
Magnesium Oxide	0.01			1.00E-02	1.14E-06	5.00E-06
Sodium Monoxide	0.01			1.00E-02	1.14E-06	5.00E-06
Formic Acid						
Nitric Aid						
Potassium						
Permanganate						
Copper Oxalate						
Hemihydrate						
Dimethyl Methyl						
Siloxane						
Poly Monoallyl Ether						
Acetate						
Oxalic Acid						

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Table 5 SDP0009 – No more Formic Acid or Oxalic Acid Emissions – All other Maximum potential to emit calculation contained in SRNS-J2200-2019-00240 not impacted

									[SDP9 Total	SDP9 Total	SDP9 Total
	1215	1115	1095	1085	1075	1065	1055	1035	1025	1015	100S	985			
Constituent	lb/yr	lb/yr	lb/yr	lb/yr	tb/yr	ib/yr	lb/yr	₩b/yr	fb/yr	lb/yr	lb/yr	łb/yr	lb/yr	lb/hr	ТРҮ
Water	1.4	1.59	13.33	31.93	17.16	2.2	1.78	13.5	379.02	9.14	6.35	16.09	4.93E+02	5.63E-02	2.47E-01
Nitrogen															
Iron Oxide															
Sodium Nitrite										0.25			2.50E-01	2.85E-05	1.25E-04
Sodium Nitrate														er l	
Sodium Oxalate				_											
Sodium Carbonate															
Uranium Oxide															
Manganese Dioxide															
Calcium Carbonate															
Water															
Sodium Formate															
Sodium Nitrate															·
Magnesium Oxide										<u> </u>					
Sodium Monoxide															
Formic Acid	0			0	0								0.00E+00	0.00E+00	0.00E+00
Nitric Aid		0.56	4.74								16.41	41.59	6.33E+01	7.23E-03	3.17E-02
Potassium															
Permanganate			0.01										1.00E-02	1.14E-06	5.00E-06
Copper Oxalate															
Hemihydrate						0.01							1.00E-02	1.14E-06	5.00E-06
Dimethyl Methyl															
Siloxane							0.13						1.30E-01	1.48E-05	6.50E-05
Poly Monoallyl Ether															
Acetate							0.08						8.00E-02	9.13E-06	4.00E-05
Oxalic Acid								0	0				0.00E+00	0.00E+00	0.00E+00

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Table 6 SDP19 - No more Formic Acid or Oxalic Acid Emissions - Emission point will no longer emit any regulated pollutants

						SDP19 Total	SDP19 Total	SDP19 Total
	1325		131S	1295	1285			
Constituent	lb/yr		lb/yr	lb/yr	lb/yr	lb/yr	lb/hr	ТРҮ
Water		8.4	28.18	28.18	40.18	104.94	1.20E-02	5.25E-02
Nitrogen								
Iron Oxide								
Sodium Nitrite								
Sodium Nitrate								
Sodium Oxalate								
Sodium Carbonate								
Uranium Oxide								
Manganese Dioxide								
Calcium Carbonate								
Water								
Sodium Formate								
Sodium Nitrate								
Magnesium Oxide								
Sodium Monoxide								
Formic Acid			0	0	0	0	0.00E+00	0.00E+00
Nitric Aid								
Potassium								
Permanganate								
Copper Oxalate								
Hemihydrate								
Dimethyl Methyl	T							
Siloxane								
Poly Monoallyl Ether	Т							
Acetate								
Oxalic Acid		0		[]		0.00E+00	0.00E+00	0.00E+00

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Table 7 through 9 present the regulated emissions from SDP0001, SDP0009, and SDP0019

Table 7 – No impacts at SDP1

SDP1	REGUL	ATED	сомра	DUNDS

	176S	177S	178S	SDP1 Total	SDP1	SDP1 Total
	lb/yr	lb/yr	lb/yr	lb/yr	lb/hr	TPY
PM	5.10E-01	5.00E-02	4.00E-02	6.00E-01	6.85E-05	3.00E-04
PM10	5.10E-01	5.00E-02	4.00E-02	6.00E-01	6.85E-05	3.00E-04
PM2.5	5.10E-01	5.00E-02	4.00E-02	6.00E-01	6.85E-05	3.00E-04
Manganese Cmpds	3.00E-02	0.00E+00	0.00E+00	3.00E-02	3.42E-06	1.50E-05

Table 8

SDP9 REGUL	SDP9 REGULATED COMPOUNDS														
	1215	1115	109S	10 8 S	1075	106S	1055	103S	102S	1015	1005	985	SDP9 Total	SDP9 Total	SDP9 Total
	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/hr	ТРҮ
PM			1.00E-02			1.00E-02		0.00E+00	0.00E+00	2.50E-01			2.70E-01	3.08E-05	1.35E-04
PM10			1.00E-02			1.00E-02		0.00E+00	0.00E+00	2.50E-01			2.70E-01	3.08E-05	1.35E-04
PM2.5			1.00E-02			1.00E-02		0.00E+00	0.00E+00	2.50E-01			2.70E-01	3.08E-05	1.35E-04
Manganese															
Cmpds	0	0	0.01	0	0	0	0	0	0	0	0	0	1.00E-02	1.14155E-06	0.000005
voc	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.10E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.10E-01	2.40E-05	1.05E-04
formic acid	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
nitric acid	0.00E+00	5.60E-01	4.74E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.64E+01	4.16E+01	6.33E+01	7.23E-03	3.17E-02
oxalic acid								0	0				0.00E+00	0.00E+00	0.00E+00

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Table 9

SDP19 REGULATED COMPOUNDS

	1325	1315	1295	1285	SDP19 Total	SDP19 Total	SDP19 Total
	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/hr	ТРҮ
PM	0				0.00E+00	0.00E+00	0.00E+00
PM10	0				0.00E+00	0.00E+00	0.00E+00
PM2.5	0				0.00E+00	0.00E+00	0.00E+00
Manganese							
Cmpds							
VOC	0	0	0	0	0.00E+00	0.00E+00	0.00E+00
formic acid		0	0	0	0.00E+00	0.00E+00	0.00E+00
nitric acid							
oxalic acid	0	0	0	0	0.00E+00	0.00E+00	0.00E+00

Table 10 represents all the non-SDP0007 regulated emissions for the DWPF process

Table 10

	lb/hr	TPY
PM	9.93E-05	4.35E-04
PM10	9.93E-05	4.35E-04
PM2.5	9.93E-05	4.35E-04
Manganese Cmpds	4.57E-06	2.00E-05
VOC	2.40E-05	1.05E-04
formic acid	0.00E+00	0.00E+00
nitric acid	7.23E-03	3.17E-02
oxalic acid	0.00E+00	0.00E+00

Calculation Sheet

DWPF Process Maximum Potential to Emit Calculations Post Modification to Glycolic Acid

Table 11 is the total emissions from the DWPF process.

		Uncontrolled						Controlled					
		SDP7	SDP7	other EPs	other EPs	Total DW	PF process	SDP7	SDP7	other EPs	other EPs	Total DWF	PF process
CAS#		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
630-08-0	Carbon monoxide	2.50E+00	8.60E+00			2.50E+00	8.60E+00	2.50E+00	8.60E+00			2.50E+00	8.60E+00
124-38-9	Carbon dioxide (GHG)	8.31E+01	2.39E+02			8.31E+01	2.39E+02	8.31E+01	2.39E+02			8.31E+01	2.39E+02
7697-37-2	Nitric acid			7.23E-03	3.17E-02	7.23E-03	3.17E-02			7.23E-03	3.17E-02	7.23E-03	3.17E-02
1024-97-2	Nitrous oxide (GHG)	3.70E+00	1.10E+01			3.70E+00	1.10E+01	3.70E+00	1.10E+01			3.70E+00	1.10E+01
	Total Particulate	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01
	PM-10	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01
	PM-2.5	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01	1.18E-01	3.28E-01	9.93E-05	4.35E-04	1.18E-01	3.28E-01
	Nitrogen oxides (NO2) [MW=46.01]	2.49E+01	6.43E+01			2.49E+01	6.43E+01	2.49E+01	6.43E+01			2.49E+01	6.43E+01
	voc			2.40E-05	1.05E-04	2.40E-05	1.05E-04			2.40E-05	1.05E-04	2.40E-05	1.05E-04
	Lead compounds (PbO)	1.69E-06	5.82E-06			1.69E-06	5.82E-06	1.69E-06	5.82E-06			1.69E-06	5.82E-06
	Manganese compounds (MnO2)			4.57E-06	2.00E-05	4.57E-06	2.00E-05			4.57E-06	2.00E-05	4.57E-06	2.00E-05

Standard No. 7 Prevention of Significant Deterioration (PSD)

For the proposed change from formic acid to glycolic acid at the SRS vitrification process (EU16), the monthly production of canisters has been reviewed with the tables shown below supporting the Standard No. 7 applicability determination. Based on the data presented below, Standard No. 7 will not apply utilizing the starting months of September, October, or November 2011 as baseline actual emissions. The maximum potential to emit once the change to glycolic acid is complete will be 64.3 TPY NOx as NO₂. The calculated data below utilizes the methodology contained in the Title V renewal application for the DWPF vitrification process (SRNS-J2200-2019-00240) to determine the baseline actual emissions.

		Canisters			Canisters
Year	Month	Produced	Year	Month	Produced
2011	September	31	2013	January	7
	October	17		February	16
	November	20		March	20
	December	37		April	26
2012	January	27		May	15
	February	28		June	23
	March	30		July	21
	April	21		August	40
	May	34		September	24
	June	30		October	2
	July	20			
	August	4			
	September	9			
	October	11			
	November	6			
	December	15			

Canister Production Rate (9/2011-10/2013)

DHEC Form 2566 – NSR Review and Aggregation – Attachment I

Canister Production Interval	Canisters produced in 24 consecutive months	Batches (Calculated)	Batches (Rounded)
Starting with September 2011	508	72.57142857	72
Starting with October 2011	501	71.57142857	71
Starting with November 2011	486	69.42857143	69

SDP7 Process Sources Batch Operating Parameters

Process Vessel	Operating Rate
SRAT	86 hr/batch
SME	86 hr/batch
Melter	115 hr/batch

Canister Batch Production Rate	7 canisters/batch
--------------------------------	-------------------

From SRNS-J2200-2019-00240

	SRAT limited	SRAT limited	Melter limited	Melter limited	SRAT limited
Choi Stream	39	166	185	94	4
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
NOx as NO ₂	2.89E+00	1.98E-11	0.00E+00	1.03E+01	5.19E-12

64.3 TPY NOx as NO₂ (Q-ESR-S-00002)

Net NOx Emissions Increase (TPY)

ton/24 consecutive months starting 9/2011	ton/24 consecutive months starting 10/2011	ton/24 consecutive months starting 11/2011	Average TPY starting 9/2011	Average TPY starting 10/2011	Average TPY starting 11/2011	Net emissions increase starting 9/2011 (TPY)	Net emissions increase starting 10/2011 (TPY)	Net emissions increase starting 11/2011 (TPY)
5.15E+01	5.08E+01	4.94E+01	2.58E+01	2.54E+01	2.47E+01	3.85E+01	3.89E+01	3.96E+01

DHEC Form 2566 – NSR Review and Aggregation – Attachment I

Aggregation Analysis

There have been no projects performed in S-Area (DWPF) in recent years (i.e., the last three years) that should be aggregated with the proposed chemical flowsheet change for the DWPF vitrification process.

The DWPF vitrification process has been operational for twenty-five years (Startup: April 1996). Initially, sludge feed material was introduced into the DWPF process after being processed by the ARP/MCU process to remove actinides and lower or remove the cesium content from the sludge. The Salt Waste Processing Facility (SWPF) was started up in October 2020 to provide a more efficient method of actinide and cesium removal. SWPF, as well as, the past ARP/MCU process should be considered separate processes and emission points and not a single or substantially related project with the DWPF vitrification process as described in the 2009 New Source Review Aggregation Action and clarified by the Environmental Protection Agency in a Final Action dated November 15, 2018 (83 Fed. Reg. 57324).

Changes to the DWPF vitrification process with the implementation of the nitric-glycolic flowsheet will have no impact on any other permitted Liquid Waste air emission point or source. The flowsheet implementation will impact the DWPF vitrification process by replacing formic acid as the reductant to glycolic acid, increasing the volume of nitric acid used for each processing cycle, adding sodium permanganate for converting glycolates to oxalates. The change to glycolic acid as the reductant will allow the more efficient conversion of mercury compounds in the raw sludge to its metal state thus allowing the metal to be steam stripped out of the feed stream. The current nitric-formic acid flowsheet uses formic acid as the reductant; the proposed nitric-glycolic acid flowsheet uses glycolic acid. Glycolic acid is more effective at reducing mercury while minimizing hydrogen gas generation as compared to formic acid. This also requires the use of less reductant. Change in the volume of nitric acid together with the reductant, ensures that the proper oxidation-reduction reactions occur in the 221-S Chemical Process Cell (CPC). The correct oxidation-reduction potential ensures a balance of feed flowability, melt characteristics, and Melter operating life. Inherently, because the mercury stripping requires less reductant, extra nitric acid ensures the feed has the correct acidity. Increased NOx emissions are the expected result. Using glycolic acid introduces residual glycolates that could be in the waste streams recycled to the Tank Farms. Under certain conditions, the glycolates can break down into flammable gases. To minimize glycolate recycle, the Recycle Collection Tank will receive sodium permanganate as a precaution to oxidize the glycolates into oxalates (which have a low flammable gas generation potential). This operation should not increase manganese emissions (from any of the processing vessels), but higher manganese compound concentrations in future sludge batches will increase the acid demand. The nitric acid volume used for this analysis incorporates the added manganese in the sludge.

The change to the nitric-glycolic acid flowsheet for the DWPF vitrification process was not made as a result of SWPF coming on-line. It was made to realize the benefits noted it the paragraph above. The proposed nitric-glycolic acid flowsheet change project and the SWPF construction and operation project are not artificially or unreasonably separated activities, as the flowsheet change is not interrelated or dependent upon SWPF coming on-line, the projects were not jointly planned, involve distinct capital funding cycles, rely upon separate engineering studies and are operated by different contractors.

Further, even if the SWPF were considered to be substantially related for aggregation purposes, the contribution of the SWPF to the Site or S-Area NOx emissions would be negligible. Specifically, the maximum

DHEC Form 2566 – NSR Review and Aggregation – Attachment I

emission rate of NOx as NO₂ from SWPF documented in a January 20, 2014 memorandum from K.A. Wolfe to G. C. Fanning entitled *Supporting Documentation for Emission Rates from Salt Waste Processing Facility (SWPF)*, SRNS-J2210-2014-0001, was shown to be 0.05 TPY. The SWPF source of the NOx as NO₂ emissions were from the JDP2 Cold Chemicals Tanks. Relative to the calculated maximum NOx as NO₂ emission rate for the change from formic acid to glycolic acid at the SRS vitrification process (EU16), the emissions from SWPF are negligible and would not push the NOx as NO₂ emission rate over the 40 TPY net emissions increase. SWPF air emissions of other toxic, hazardous, or criteria air pollutants (Mercury, Nitric Acid, Methanol, and VOCs) would also be negligible compared to those from the proposed nitric-glycolic acid flowsheet.

There are no other processes or projects that are artificially or unreasonably separated from the proposed nitricglycolic acid flowsheet for the DWPF vitrification process and thereby would be treated as a single project for aggregation purposes.

DHEC Form 2566 – Regulatory Review - Attachment J

Regulation	Applicable	Applicability Determination	Specific Limitations and/or Requirements that apply	Compliance Demonstrated
S.C. Regulation 61-	No	The facility is not requesting a	N/A	N/A
62.1 Section II.E		federally enforceable		
Synthetic Minor		construction permit condition to		
Construction		constrain the operation of this		
Permits		source to become a minor		
		source.		
S.C. Regulation 61-	No	The emission sources described	N/A	N/A
62.5 Air Pollution		in this application are not fuel		
Control Standards:		burning operations.		
Standard No. 1				
Emissions from Fuel				
Combustion				
Standard No. 2 Ambient Air Quality	Yes	The emission sources described in this application will emit Standard 2 pollutants (PM10, PM2.5, CO, VOC [ozone precursor], NOx as NO ₂ , and lead)	The proposed modification will not trigger Prevention of Significant Deterioration (PSD) permitting actions. PM2.5 and PM10 are below the de minimis emission point level for 1.14 lb/hr for every emission point associated with this modification and the vitrification process so the PM2.5 and PM10 modeling files will not be impacted. CO emissions will now occur at emission point SDP007 but at levels below 5 TPY which makes it exempt from modeling requirements. Facility wide emission levels of lead are below 0.5 TPY so it is not necessary for Lead to be modeled. VOC emissions at all emission points associated with this modification remain below 1000 lb/month. NOx as NO2 emissions have been remodeled to incorporate the new maximum potential to emit hourly remission rate at	Potential Emission Rates at Maximum Design Capacity table for emission rate of Standard No. 2 pollutants from the vitrification process. Modeling files have been provided to demonstrate SRS will remain compliant with Standard No. 2 at the increased emission rate of NOx as NO ₂ .
			emissions for this process and modification).	
Standard No. 3	No	The emission sources described	N/A	N/A
Waste Combustion		in this application wil not involve		
and Reduction (state		waste burning.		
only)				

The regulatory review narrative required in Section 4 of DHEC Form 2566, Construction Permit Application, is summarized in the table below:

DHEC Form 2566 – Regulatory Review - Attachment J

Regulation	Applicable	Applicability Determination	Specific Limitations and/or Requirements that apply	Compliance Demonstrated
Regulation Standard No. 4 Emissions from Process Industries	Applicable Yes	Applicability Determination The emission sources described in this application have the potential to emit particulate matter (PM)	Specific Limitations and/or Requirements that apply The process weight into the process is relative to the glass produced by the vitrification process. With the proposed change to glycolic acid the maximum glass production rate will remain ~1,500,000 lb/year. Therefore, the process weight reported in the Title V renewal application of 0.24 tons/hr) is still appropriate. This results in (1) x (4.10) x (0.24 ton/hr) ^{0.67} = 1.6 lb/hr as the allowable emission rate in lb/hr based on the calculation contained in Standard No. 4	Compliance Demonstrated Refer to Potential Emission Rates at Maximum Design capacity table. The EU 16 Ib/hr emission rate of PM is well below 1.16 Ib/hr. The current Title V permit conditions sufficiently address
Standard No. 5 Volatile Organic Compounds	No	The SRS does not operate a process described in R.61-62.5 Standard No. 5 Section II. (R.61- 62.5 Standard No. 5 Section I Part B).	N/A	N/A
Standard No. 5.2 Nitrogen Oxides Lowest Achievable Emission Rate	No	The emission sources described in this application do not emit NOx generated from fuel combustion.	N/A	N/A
Standard No. 7 Prevention of Significant Deterioration (PSD)	No	Refer to Attachment I. Based on the attached Standard No. 7 applicability calculation and discussion on aggregation, the proposed modification will not result in an increase of 40 TPY or more of NOx. This is based on the actual-to-projected-actual applicability test that was performed in accordance with R.61-62.1 Standard No. 7(A)(2)(d)(iii).	N/A	N/A
Standard No. 7.1 Nonattainment New Source Review (NSR)	No	The emission sources described in this application are located in Aiken County, not a nonattainment area.	N/A	N/A

Specific Limitations and/or Requirements that apply **Compliance Demonstrated** Applicable **Applicability Determination** Regulation The emission sources described Nitric acid is the only TAP emitted at non trace quantities DHEC Form 2573 attached Standard No. 8 Toxic Yes and electronic modeling files in this application emit non-trace per modeling files and DHEC Form 2573 information. Air Pollutants (TAPs) quantities of the toxic air The electronic modeling file for nitric acid will be for nitric acid. (state only) provided to SCDHEC as part of this application pollutant (TAP) nitric acid (7697-37-2). It should be noted that transmittal. It should also be noted that with oxalic acid and formic acid will no implementation of the changes addressed in this longer be emitted by the application, the non-trace emissions of the HAP formic vitrification process or supporting acid will be eliminated. Table 1 - Standard 8 toxic pollutants modeled in AERMOD is attached and equipment once the proposed demonstrates that the site will be compliant with modification is implemented. The manganese compound Standard 8 with the implementation of the changes contained in this construction permit application. emissions at SDP9 will not be impacted. However, the manganese compound emissions at SDP7 are no longer included in modeling since they meet the definition of trace. The emission sources described N/A N/A S.C. Regulation 61-No in this application will not result 62.6 Control of **Fugitive Particulate** in the generation of fugitive Matter particulate matter. N/A N/A S.C. Regulation 61-No 40 CFR 60 Subpart CC: Applies to sources for which a standard is 62.60 and 40 CFR prescribed under 40 CFR 60 Part 60 New Source Subpart CC. The S001 process Performance has a production rate of Standards (NSPS) 1,573,200 lbs glass/year (well below 5 tons glass/day) None of the standards under 40 CFR 60 Subpart CC are applicable to the emission sources described in this application.

DHEC Form 2566 - Regulatory Review - Attachment J

DHEC Form 2566 – Regulatory Review - Attachment J

Regulation	Applicable	Applicability Determination	Specific Limitations and/or Requirements that apply	Compliance Demonstrated
S.C. Regulation 61-	No	40 CFR 63: Applies to sources for	N/A	N/A
62.63 and 40 CFR		which a standard is prescribed		
Part 63 National		under 40 CFR 63. None of the		
Emission Standards		standards under 40 CFR 63 are		
for Hazardous Air		applicable to the emission		
Pollutants		sources described in this		
(NESHAP) for Source		application.		
Categories				
40 CFR Part 64	No	There are no control devices	N/A	N/A
Compliance		associated with the vitrification		
Assurance		process or EU 16. Once the		
Monitoring (CAM)		proposed modification is		
		implemented the FAVC will be a		
		voluntary control device since		
		formic acid will no longer be		
		emitted at emission point		
		SDP007 and uncontrolled		
		mercury and mercury compound		
		emissions are below trace levels.		
S.C. Regulation 61-	No	The SRS does not exceed the	N/A	N/A
62.68 and 40 CFR		thresholds contained in R61-		
Part 68 Chemical		62.68.		
Accident Prevention				
Provisions				
S.C. Regulation 61-	Yes	DWPF 221-S Vitrification Process	This activity will operate under the Construction permit	A modification to the Site's
62.70 and 40 CFR		is a major source listed on the	issued by SCDHEC and the current Title V permit (0080-	Title V permit will be
Part 70 Title V		SRS Title V air permit (EU16).	0041) conditions until the minor modification to the Title	submitted to incorporate the
Operating Program		EU16 will continue to comply	V permit is submitted and approved by SCDHEC.	information provided in this
		with existing Title V permit		construction permit
		conditions.		application.
40 CFR 98 Green	No	Neither Standard No. 7 nor 7.1	N/A	N/A
House Gas (GHG)		are triggered therefore GHG		
emissions		emissions do not have to be		
		quantified.		

Bureau of Air Quality Emission Point Information Page 1 of 6

A. APPLICATION IDENTIFICATION

1. Facility Name: U.S. Department of Energy - Savannah River Site managed and operated by Savannah River Nuclear Solutions, LLC; Liquid Waste Operations currently operated by Savannah River Remediation, LLC 3. Application Date: 10/14/2021

2. SC Air Permit Number (if known; 8-digits only): 0080 - 0041 4. Project Description: Glycolic acid will replace formic acid in the vitrification process chemical flowsheet

B. FACILITY INFORMATION									
	2. If a Small Business or small government facility, is Bureau assistance being								
1. Is your company a Small Business? 🗌 Yes 📈 No	requested?								
	Yes 🗍 No								
3. Are other facilities collocated for air compliance? 🛛 Yes 🗌 No	4. If Yes, provide permit numbers of collocated facilities: Ameresco - 0080-0144								

	C. All	R CONTACT	
Consulting Firm Name (if applicable): N/A			
Title/Position: Air Program Lead, Environmental Compliance - SRNS, LLC	Salutation: Ms.	First Name: Kim	Last Name: Wolfe
Mailing Address: Savannah River Site 730-4B, Room 3051			
City: Aiken		State: SC	Zip Code: 29808-0001
E-mail Address: kim.wolfe@srs.gov		Phone No.: (803) 952-6853	Cell No.: (803) 507-2066

D. EMISSION POINT DISPERSION PARAMETERS

- Source data requirements are based on the appropriate source classification. ٠
- Each emission point is classified as a point, area, volume, flare, area circular, area poly, or open pit source.
- Contact the Bureau of Air Quality for clarification of data requirements.
- Include sources on a scaled site map. Also, a picture of area or volume sources would be helpful but is not required.
- A user generated document or spreadsheet may be substituted in lieu of this form provided all of the required emission point parameters are submitted in the same order, units, etc. as presented in these tables.

Abbreviations / Units of Measure: AGL = Above Ground Level

°F = Degrees Fahrenheit

cal/s = calories per second

ft = feet

° = Degrees

.

- ft/s = feet per second •

- K = Kelvin
- m = meters
- UTM = Universal Transverse Mercator

Bureau of Air Quality Emission Point Information Page 2 of 6

Reminder: For all Emission Points, list the unique Emission Point ID for that source. Use the same emission point ID as shown in the current permit and provided in the last submittal (as applicable). If the emission point ID has been changed from what was previously submitted, please list the current emission point ID with the old/previous emission point ID in parenthesis

	E. POINT SOURCE DATA												
Emission	Description/Name	UTM Coordinates (NAD83)		Release Height	Temp.	Exit	Inside	Discharge	Rain	Distance To Nearest	Building		
Point ID	Description/Name	Easting (m)	Northing (m)	AGL (ft)	(°F)	(ft/s)	(ft)	Orientation	rientation (Y/N)	Property Boundary (ft)	Height (ft)	Length (ft)	Width (ft)
SDP007	221-S Vitrification Process (256S, 264S, 266S, 267S, 270S, 275S, 278S, 388S, 488S)	440288	3684005	147.0	80	85.0	5.0	Vertical	N	See modeling files	See modeling files	See modeling files	See modeling files
SDP009	Vitrification Process Tanks (098S, 100S, 101S, 102S, 105S, 106S, 107S, 108S, 109S, 111S, 121S) (103S will be AIP)	440450	3684123	144.0	80	45.0	8.0	Vertical	N	See modeling files	See modeling files	See modeling files	See modeling files
SDP0019	Vitrification Process Tanks (1295, 1315, 1325 will be AIP and 1285 will only emit water). This emission point will no longer emit regulated pollutants	440501	3684146	27.5	Amb.	0.0033	0.33	Horizontal	N	See modeling files	See modeling fi l es	See modeling files	See modeling files
SDP0067	Raw Material Tanks (2865, 2895, 2915, 2935) (2885 AIP)	440494	3684139	27.5	Amb.	0.0033	0.33	Horizontal	N	See modeling files	See modeling files	See modeling files	See modeling files
SDT0035	Organic Waste/Neutralization Tank #1 (3150 gal.)	440537	3684075	24.5	Amb.	0.0033	0.21	Horizontal	N	See modeling files	See modeling files	See modeling files	See modeling files
SDT0036	Organic Waste Neutralization Tank #2 (3200 gal.)	440534	3684073	24.5	Amb.	0.0033	0.21	Horizontal	N	See modeling files	See modeling files	See modeling files	See modeling files
SDT0043	Formic Acid Storage Tank #2 (6500 gal.) Will become Glycolic Acid Storage Tank (Will not emit any regulated pollutants due to very low vapor pressure.)	440498	3684137	27.5	Amb.	0.0033	0.17	Horizontal	N	See modeling files	See modeling files	See modeling files	See modeling files
SDT0046	Formic Acid Storage Tank #1 (6500 gal.) (Will be AIP)	440504	3684141	27.5	Amb.	0.0033	0.17	Horizontal	N	See modeling files	See modeling files	See modeling files	See modeling files

Bureau of Air Quality Emission Point Information Page 3 of 6

				E. POINT	SOUR	CE DAT/	A						
Emission Point ID	Description (Norma	UTM Coordinates (NAD83)		Release Height	Temp.	Exit	Inside	Discharge	Rain	Distance To Nearest	Building		
	Description/Name	Easting (m)	Northing (m)	AGL (ft)	(°F)	(ft/s)	(ft)	Orientation	(Y/N)	Property Boundary (ft)	Height (ft)	Length (ft)	Width (ft)
SDT0047	Oxalic Acid Storage Tank (6000 gal.) (Will be AIP)	440579	3683316	27.5	Amb.	0.0033	0.75	Horizontal	N	See modeling files	See modeling files	See modeling files	See modeling files

	F. AREA SOURCE DATA											
Emission	Description/Name	UTM Coo (NA	ordinates D83)	Release Height	Easterly Length	Northerly Length	Angle From North	Distance To Nearest				
Point ID	Description/Marile	Easting (m)	Northing (m)	(ft)	(ft)	(ft)	(°)	(ft)				

	G. VOLUME SOURCE DATA											
Emission	Description (Alama	UTM Coo (NA	ordinates D83)	Release Height	Initial Horizontal	Initial Vertical	Distance To Nearest					
Point ID	Description/Mame	Easting (m)	Northing (m)	(ft)	(ft)	(ft)	(ft)					
	· · · · · · · · · · · · · · · · · · ·											

Bureau of Air Quality Emission Point Information Page 4 of 6

			a I	H. FLARE	SOURCE DA	TA						
Emission		UTM Coordinates (NAD83)		Release	Heat	Exit	Exit	Heatloss	Distance To Nearest	Building		
Point ID	Description/Name	Easting (m)	Northing (m)	AGL (ft)	Rate (cal/s)	Velocity (m/s)	Temp. (K)	Fraction	Property Boundary (ft)	Height (ft)	Length (ft)	Width (ft)

	I. AREA CIRCULAR SOURCE DATA											
Emission	Description (Alama	UTM Coordinates (NAD83)		Release Height	Radius of Area	Distance To Nearest Property						
Point ID	Description/Name	Easting (m)	Northing (m)	AGL (ft)	(ft)	(ft)						

J. AREA POLY SOURCE DATA (Table 1)											
Emission Point ID	Description/Name/Area (ft²)	Release Height AGL (ft)	UTM Coordinates (NAD83)								
			Easting-1 (m)	Northing-1 (m)	Easting-2 (m)	Northing-2 (m)	Easting-3 (m)	Northing-3 (m)	Easting-4 (m)	Northing-4 (m)	

J. AREA POLY SOURCE DATA (Table 2)												
Emission Point ID	UTM Coordinates (NAD83)											
	Easting (m)	Northing (m)	Easting (m)	Northing (m)	Easting (m)	Northing (m)	Easting (m)	Northing (m)	Easting (m)	Northing (m)		

Bureau of Air Quality Emission Point Information Page 5 of 6

K. OPEN PIT SOURCE DATA									
Emission Point ID	Description/Name	UTM Coordinates (NAD83)		Release Height	Easterly Length	Northerly Length	Volume	Angle From North	
		Easting (m)	Northing (m)	AGL (ft)	(11)	(ft)	(ft³)	(°)	
								-	

L. EMISSION RATES								
Emission	Pollutant Name	CAS #	Emission Rate	Same as	Controlled or	Averaging		
Point ID	r onucane roanie		(lb/hr)	Permitted? ⁽¹⁾	Uncontrolled	Period		
SDP007	NOx as NO ₂ (increase since last modeling)		24.9	Yes 🗌 No	Uncontrolled	1 hour		
SDP007	Nitric Acid (now meets definition of Trace (0.06 wt%) remove from modeling file.	7697-37-2		🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP007	Carbon Monoxide (increase since last modeling, below exemption rate)	630-08-0	2.50	🛛 Yes 🗌 No	Uncontrolled	1 hour		
SDP007	PM10 (no change since last modeling)		1.18E-01	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP007	PM2.5 (no change since last modeling)		1.18E-01	Yes 🗌 No	Uncontrolled	24 hour		
SDP007	Manganese Compounds (determined to be Trace since last modeling) - remove from file			Yes 🗌 No	Uncontrolled	24 hour		
SDP007	Formic Acid (eliminated since last modeling)	64-18-6	0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP007	Oxalic Acid (eliminated since last modeling)	144-62-7	0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP009	Manganese Compounds (no change)	7697-37-2	1.14E-06	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP009	Formic Acid (eliminated since last modeling)	64-18 - 6	0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP009	Oxalic Acid (eliminated since last modeling)	144-62-7	0	Yes 🗌 No	Uncontrolled	24 hour		
SDP009	Nitric Acid (no change)	7697-37-2	7.23E-03	Yes 🗌 No	Uncontrolled	24 hour		
SDP009	PM10 (decrease since last modeling and still below exemption rate)		3.08E-05	Yes 🗌 No	Uncontrolled	24 hour		
SDP009	PM2.5 (decrease since last modeling and still below exemption rate)		3.08E-05	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP0019	Formic Acid (eliminated since last modeling)	64-18-6	0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP0019	Oxalic Acid (eliminated since last modeling)	144-62-7	0	Yes 🗌 No	Uncontrolled	24 hour		

Bureau of Air Quality Emission Point Information Page 6 of 6

L. EMISSION RATES								
Emission Point ID	Pollutant Name	CAS #	Emission Rate (lb/hr)	Same as Permitted? ⁽¹⁾	Controlled or Uncontrolled	Averaging Period		
SDP0019	PM10 (eliminated since last modeling, last modeling below exemption rate)		0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP0019	PM2.5 (eliminated since last modeling, last modeling below exemption rate)		0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDP0067	Nitric Acid (slight increase since last modeling)	7697-37-2	3.80E-03	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDT0035	Formic Acid (eliminated since last modeling)	64-18-6	0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDT0036	Formic Acid (eliminated since last modeling)	64-18-6	0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDT0043	Formic Acid (eliminated since last modeling)	64-18-6	0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDT0046	Formic Acid (eliminated since last modeling)	64-18-6	0	🛛 Yes 🗌 No	Uncontrolled	24 hour		
SDT0047	Oxalic Acid (eliminated since last modeling)	144-62-7	0	🛛 Yes 🗌 No	Uncontrolled	24 hour		

(1) Any difference between the rates used for permitting and the air compliance demonstration must be explained in the application report.