ENOREE DEVELOPMENT SITE, E&SC PLAN - INITIAL PHASE **LUCK STONE CORPORATION** ENOREE, SPARTANBURG COUNTY, SOUTH CAROLINA

SITE DATA

PARCEL ID(S):

SITE ADDRESS:

SITE ACREAGE: EXISTING ZONING PROPOSED USE:

LATITUDE: LONGITUDE:

RIVER BASIN:

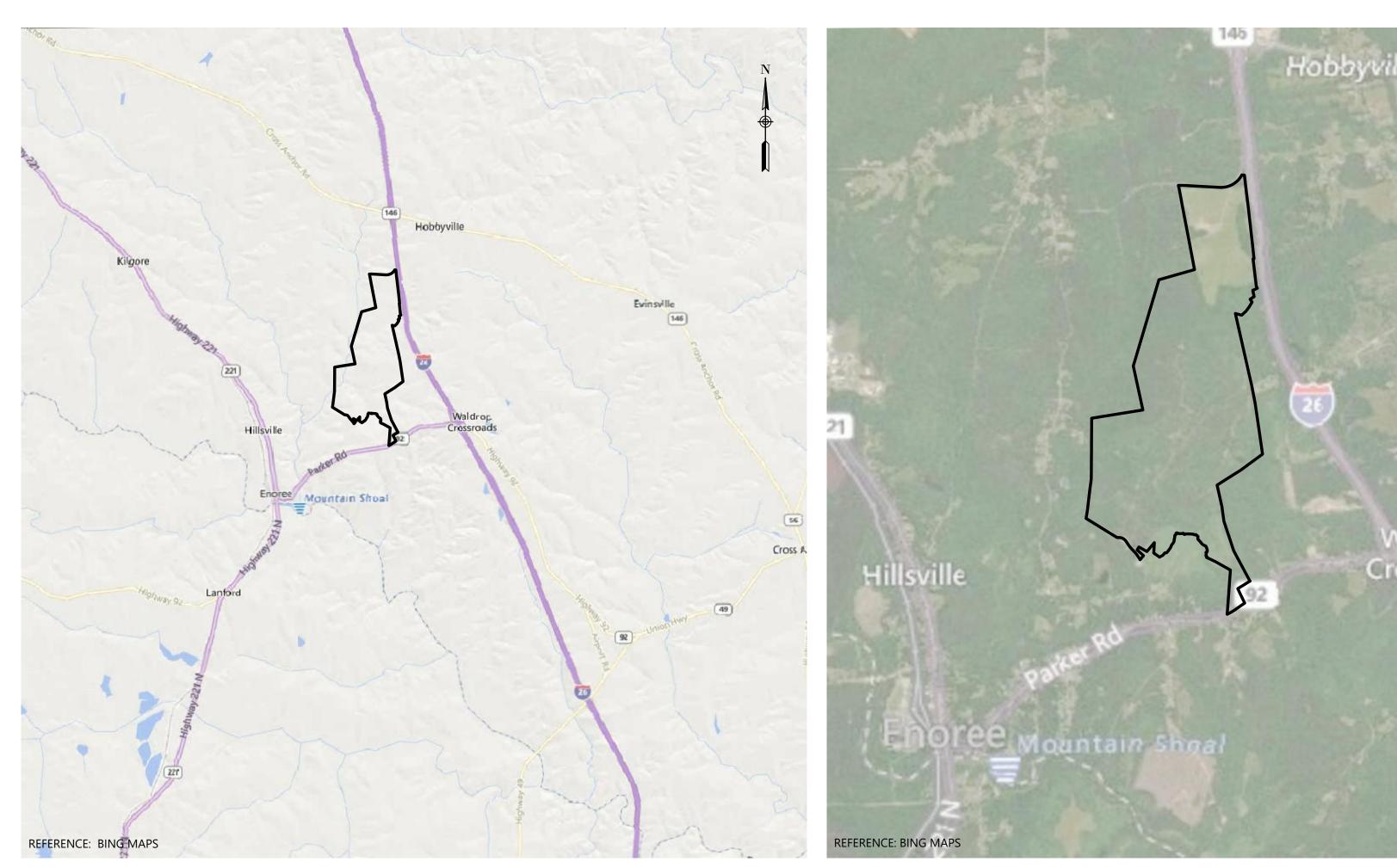
OWNER: ADDRESS:

PHONE NO.: CONTACT NAME CONTACT E-MAIL ADDRESS:

PROJECT REPRESENTATIVE: ADDRESS:

PHONE NO.: CONTACT NAME: CONTACT E-MAIL ADDRESS: 701354629837, 701361001897, 701368868072

OLD ROCK QUARRY ROAD ENOREE, SOUTH CAROLINA 542.86 AC. R2 AGGREGATE MINE OPERATIONS


34°40'27.84"N (34.6744°) -81°56'36.96"W (-81.9436°)

BROAD RIVER MIDDLE ENOREE RIVER

LUCK STONE CORPORATION 515 STONE MILL DRIVE (PO BOX 29682) **RICHMOND, VIRGINIA 23242** (804) 784-6300 BRUCE SMITH brucesmith@luckcompanies.com

S&ME INC. 2016 AYRSLEY TOWN BLVD. SUITE 2-A CHARLOTTE, NC 28273

(704) 523-4726 CHRISTOPHER J.L. STAHL cstahl@smeinc.com

515 STONE MILL DRIVE RICHMOND, VIRGINIA 23242 (804) 784-6300

APRIL 6, 2021

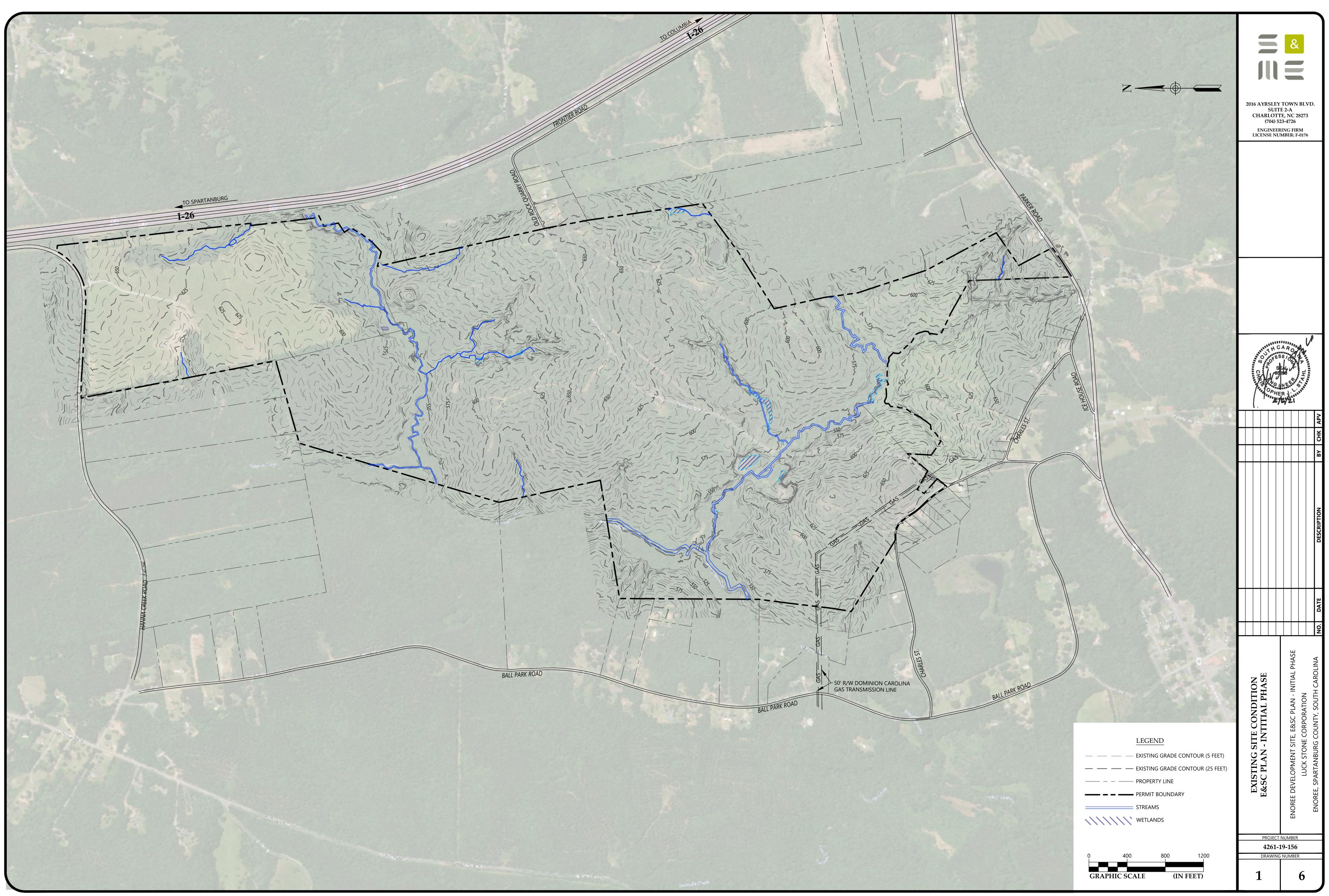
VICINITY MAP SCALE: 1" = 5,000'

PREPARED FOR

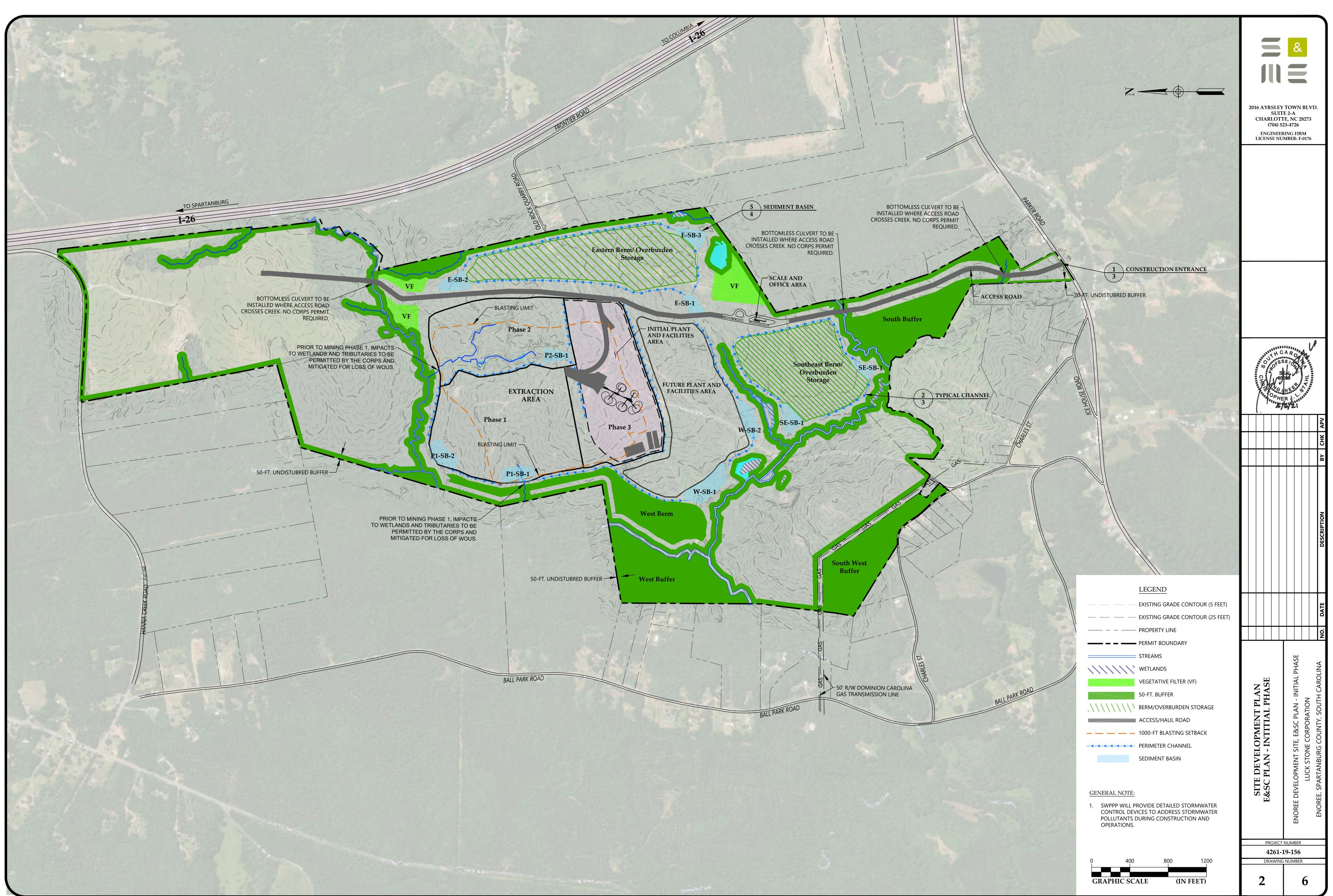
SITE LOCATION SCALE: 1" = 2,000'

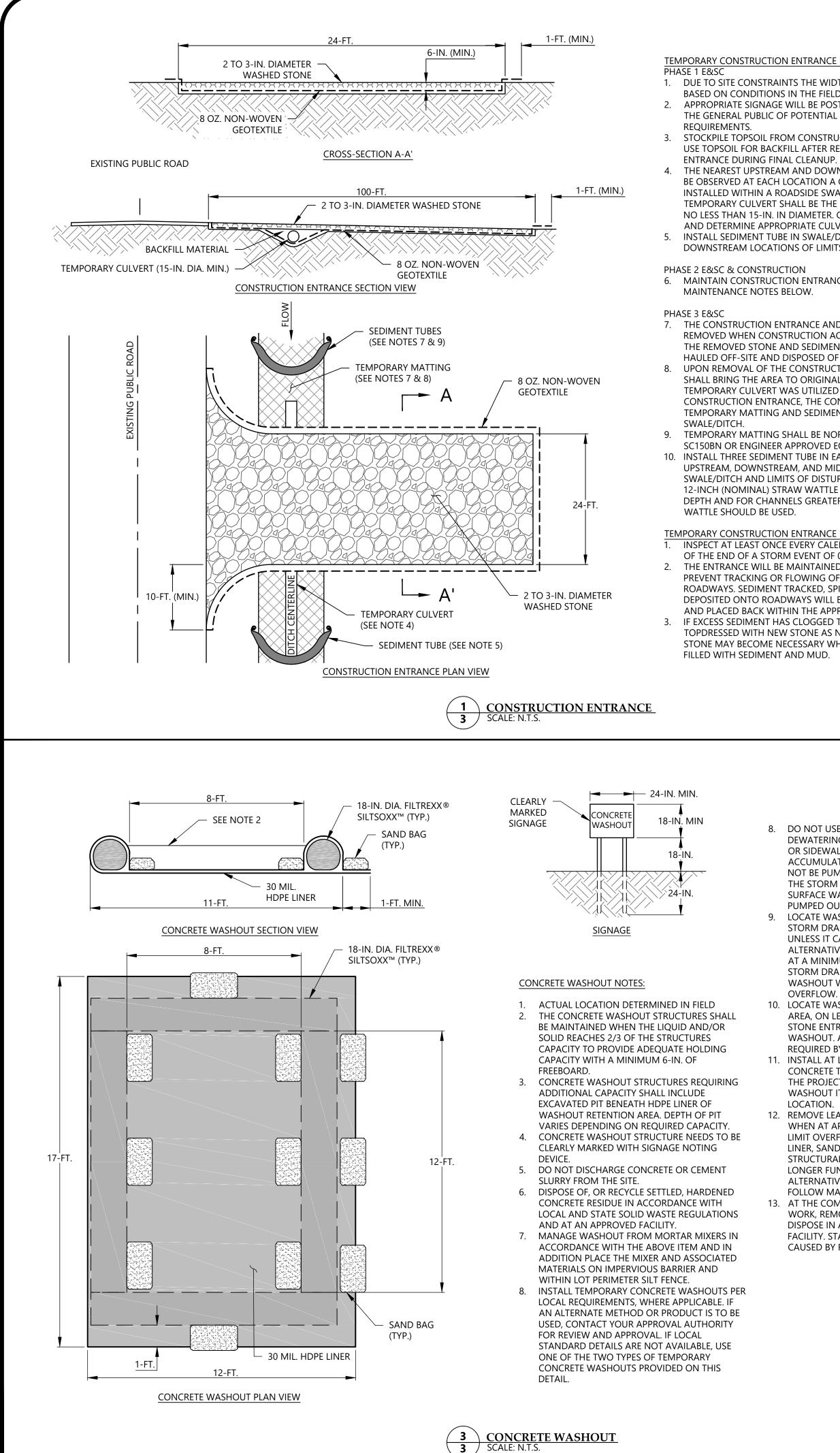
PREPARED BY

2016 AYRSLEY TOWN BLVD. SUITE 2-A CHARLOTTE, NC 28273 (704) 523-4726



DRAWING


NUMBER	TITLE
0	COVER SHEET
1	EXISTING SITE CONDITION
2	SITE DELEVOPMENT PLAN
3	DETAILS (SHEET 1 OF 4)
4	DETAILS (SHEET 2 OF 4)
5	DETAILS (SHEET 3 OF 4)
6	DETAILS (SHEET 4 OF 4)



DRAWING PATH: R:\CADData\Charlotte\4261\19\156 LUCK STONE ENOREE\DWG\E&SC\EXISTING SITE CONDITIC

DRAWING PATH: R:\CADData\Charlotte\4261\19\156 LUCK STONE ENOREE\DWG\E&SC\SITE DELEVOPMENT PLAN

TEMPORARY CONSTRUCTION ENTRANCE NOTES

1. DUE TO SITE CONSTRAINTS THE WIDTH AND LENGTH MAY BE ADJUSTED BASED ON CONDITIONS IN THE FIELD. 2. APPROPRIATE SIGNAGE WILL BE POSTED ALONG THE ROAD TO INFORM THE GENERAL PUBLIC OF POTENTIAL CONSTRUCTION TRAFFIC PER

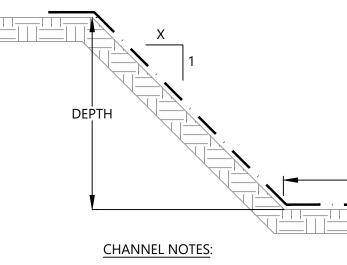
3. STOCKPILE TOPSOIL FROM CONSTRUCTION ENTRANCE INSTALLATION. USE TOPSOIL FOR BACKFILL AFTER REMOVAL OF CONSTRUCTION

4. THE NEAREST UPSTREAM AND DOWNSTREAM CULVERT DIAMETER(S) WILL BE OBSERVED AT EACH LOCATION A CONSTRUCTION ENTRANCE IS TO BE INSTALLED WITHIN A ROADSIDE SWALE/DITCH. DIAMETER OF TEMPORARY CULVERT SHALL BE THE LARGER OF EITHER THE CULVERT, BUT NO LESS THAN 15-IN. IN DIAMETER. CONTRACTOR SHALL FIELD VERIFY AND DETERMINE APPROPRIATE CULVERT TO BE USED. 5. INSTALL SEDIMENT TUBE IN SWALE/DITCH AT UPSTREAM AND DOWNSTREAM LOCATIONS OF LIMITS OF DISTURBANCE.

6. MAINTAIN CONSTRUCTION ENTRANCE IN ACCORDANCE WITH

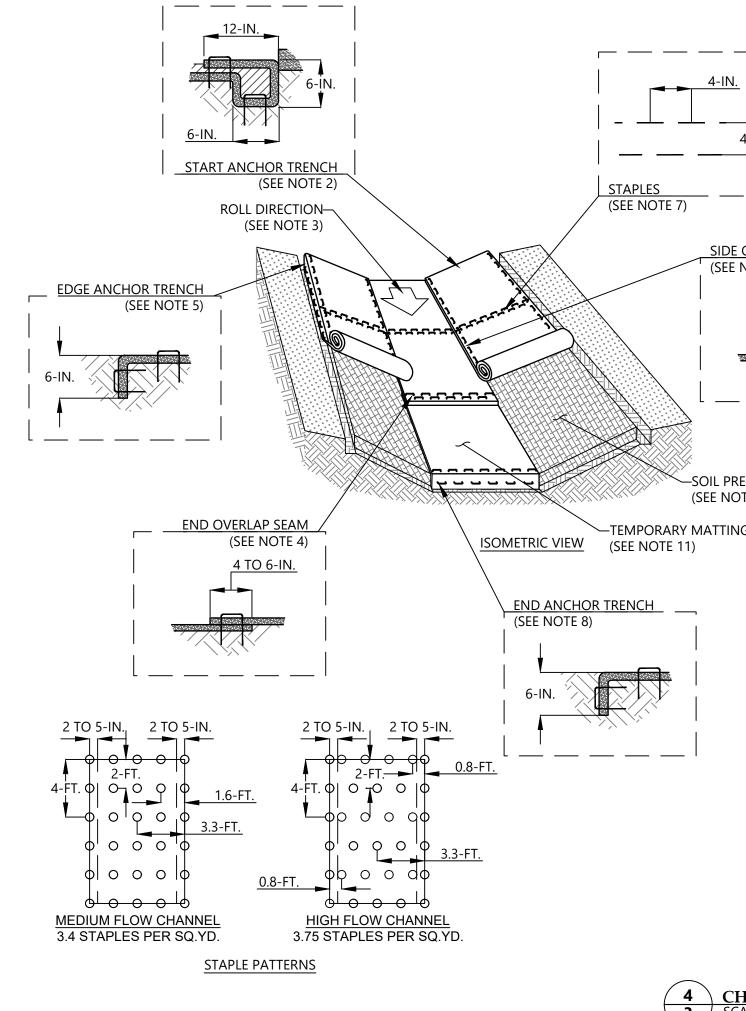
7. THE CONSTRUCTION ENTRANCE AND CULVERT (IF PRESENT), WILL BE REMOVED WHEN CONSTRUCTION ACTIVITIES CEASE ON THE PROJECT. THE REMOVED STONE AND SEDIMENT FROM THE ENTRANCE WILL BE HAULED OFF-SITE AND DISPOSED OF PROPERLY. 8. UPON REMOVAL OF THE CONSTRUCTION ENTRANCE, THE CONTRACTOR

SHALL BRING THE AREA TO ORIGINAL GRADE AND STABILIZE IT. IF A TEMPORARY CULVERT WAS UTILIZED IN CONJUNCTION WITH THE CONSTRUCTION ENTRANCE, THE CONTRACTOR SHALL INSTALL TEMPORARY MATTING AND SEDIMENT TUBE WITHIN ROADSIDE


9. TEMPORARY MATTING SHALL BE NORTH AMERICAN GREEN BIONET SC150BN OR ENGINEER APPROVED EQUIVALENT.

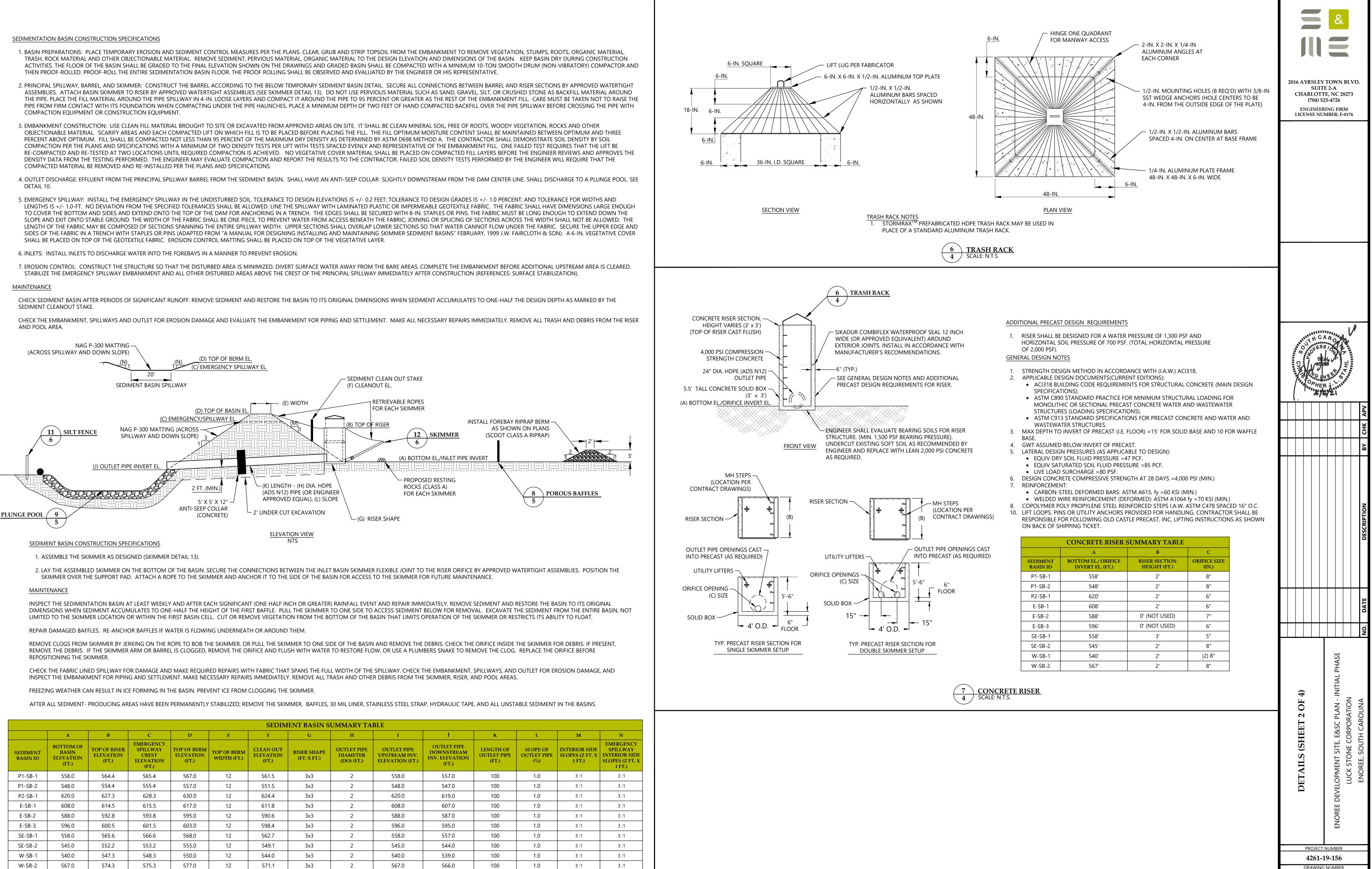
10. INSTALL THREE SEDIMENT TUBE IN EACH IMPACTED SWALE/DITCH; UPSTREAM, DOWNSTREAM, AND MIDDLE OF INTERSECTION OF SWALE/DITCH AND LIMITS OF DISTURBANCE. SEDIMENT TUBE SHALL BE 12-INCH (NOMINAL) STRAW WATTLE FOR CHANNELS LESS THAN 3 FEET IN DEPTH AND FOR CHANNELS GREATER THAN 3 FEET IN DEPTH, A 24-INCH

TEMPORARY CONSTRUCTION ENTRANCE MAINTENANCE

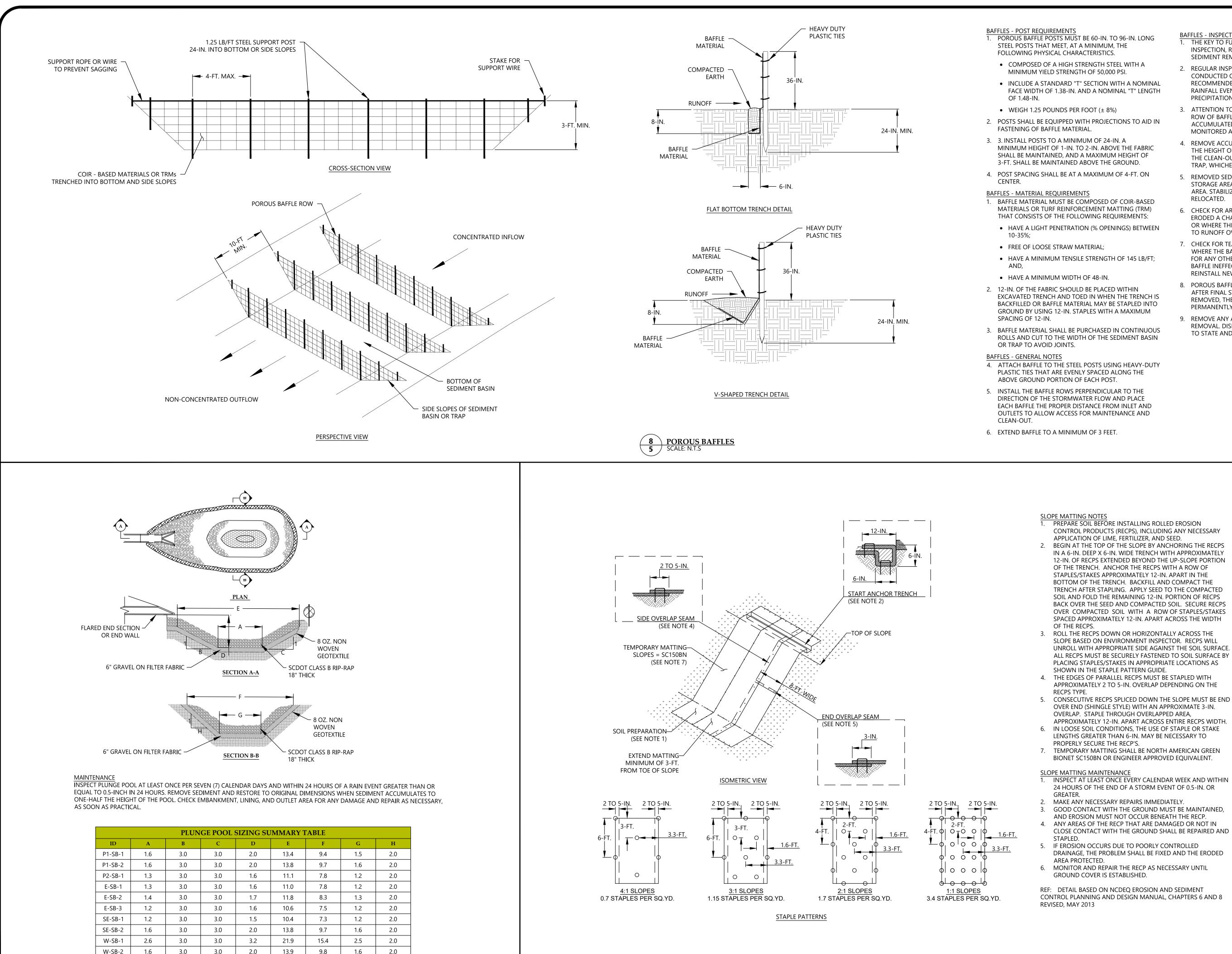

INSPECT AT LEAST ONCE EVERY CALENDAR WEEK AND WITHIN 24 HOURS OF THE END OF A STORM EVENT OF 0.5-IN. OR GREATER IN 24 HOURS. THE ENTRANCE WILL BE MAINTAINED IN A CONDITION THAT WILL PREVENT TRACKING OR FLOWING OF SEDIMENT ONTO EXISTING ROADWAYS. SEDIMENT TRACKED, SPILLED, DROPPED OR OTHERWISE DEPOSITED ONTO ROADWAYS WILL BE SWEPT UP AS SOON AS PRACTICAL AND PLACED BACK WITHIN THE APPROVED DISTURBED AREA. 3. IF EXCESS SEDIMENT HAS CLOGGED THE STONE, THE ENTRANCE WILL BE TOPDRESSED WITH NEW STONE AS NEEDED. REPLACEMENT OF THE STONE MAY BECOME NECESSARY WHEN THE STONE BECOMES ENTIRELY FILLED WITH SEDIMENT AND MUD.

- 8. DO NOT USE CONCRETE WASHOUTS FOR DEWATERING OR STORING DEFECTIVE CURB OR SIDEWALK SECTIONS. STORMWATER ACCUMULATED WITHIN THE WASHOUT MAY NOT BE PUMPED INTO OR DISCHARGED TO THE STORM DRAIN SYSTEM OR RECEIVING SURFACE WATERS. LIQUID WASTE MUST BE PUMPED OUT AND REMOVED FROM PROJECT.
- 9. LOCATE WASHOUTS AT LEAST 50-FT. FROM STORM DRAIN INLETS AND SURFACE WATERS UNLESS IT CAN BE SHOWN THAT NO OTHER ALTERNATIVES ARE REASONABLY AVAILABLE. AT A MINIMUM, INSTALL PROTECTION OF STORM DRAIN INLET(S) CLOSEST TO THE WASHOUT WHICH COULD RECEIVE SPILLS OR OVERFLOW.
- 10. LOCATE WASHOUTS IN AN EASILY ACCESSIBLE AREA, ON LEVEL GROUND AND INSTALL A STONE ENTRANCE PAD IN FRONT OF THE WASHOUT. ADDITIONAL CONTROLS MAY BE
- REQUIRED BY THE APPROVING AUTHORITY. 11. INSTALL AT LEAST ONE SIGN DIRECTING CONCRETE TRUCKS TO THE WASHOUT WITHIN THE PROJECT LIMITS. POST SIGNAGE ON THE WASHOUT ITSELF TO IDENTIFY THIS
- LOCATION. 12. REMOVE LEAVINGS FROM THE WASHOUT WHEN AT APPROXIMATELY 2/3 CAPACITY TO LIMIT OVERFLOW EVENTS. REPLACE THE HDPE LINER, SAND BAGS OR OTHER TEMPORARY STRUCTURAL COMPONENTS WHEN NO LONGER FUNCTIONAL. WHEN UTILIZING ALTERNATIVE OR PROPRIETARY PRODUCTS, FOLLOW MANUFACTURER'S INSTRUCTIONS.
- 13. AT THE COMPLETION OF THE CONCRETE WORK, REMOVE REMAINING LEAVINGS AND DISPOSE IN AN APPROVED DISPOSAL FACILITY. STABILIZE ANY DISTURBANCE CAUSED BY REMOVAL OF WASHOUT.

							S CHARL (70 ENGI	5UITE 2 .OTTE, 04) 523-4 NEERIN	NC 2827	73
2. DIMENSIONING AN GREEN S75 BN, SC 1 BE DEFINED IN THE	BOTTOM WIDTH OR CHANNEL LOCATION. D STABILIZATION MATTING (NC ISOBN OR P300 OR APPROVED EC SWPPP FOR THE FACILITY DE DETAILED CHANNEL DESIGN.	ORTH AMERICAN								
CHANNEL AVERAGE CHANNEL BOT	IANNEL SUMMARY 7 TOM LEFT SLOPE 'H (FT.) (XH:1V)	TABLE RIGHT SLOPE (XH:1V)	CHANNEL DEPTH (FT.)	CHANNEL MATTING						
TYP. 0.0200	4 2	2	2	SC 150BN			CHARTON CHART	A C A A SESSI BSPACE HER HER	O THE THE	August
	2 TYPICAL CHA	ANNEI								APV
	3 SCALE: N.T.S.	AININEL						+		BY CHK
	4-IN. 4-IN. PLES NOTE 7) SIDE OVERLAP SEAN (SEE NOTE 6) 2 TO	2. BEGI DEEI BEYC CHA ANC APA AFTI REM SOIL SPAC 3. ROL SPAC 5-IN. 5-IN. 4. PLAC	D. IN AT THE TOP OF P BY 6-IN. WIDE TR DND THE UP-SLOP NNEL/CULVERT OU CHOR THE RECPS W RT IN THE BOTTOM ER STAPLING. APPL AINING 12-IN. POF SECURE RECPS O CED APPROXIMATE L CENTER RECPS IN PS WILL UNROLL W PS WILL UNROLL W PS MUST BE SECUR PLES/STAKES IN AP TERN GUIDE. CE CONSECUTIVE R	THE CHANNEL BY ANC ENCH WITH APPROXIN PORTION OF THE TRI JTLET AS SUPPLEMENT (ITH A ROW OF STAPLI OF THE TRENCH. BA Y SEED TO THE COMP, RTION OF RECPS BACK VER COMPACTED SOIL ELY 12-IN. APART ACRO I DIRECTION OF WATE (ITH APPROPRIATE SID ELY FASTENED TO SOI PROPRIATE LOCATION ECPS END-OVER-END	CATION OF LIME, FERTIL CHORING THE RECPS IN MATELY 12-IN. OF RECP ENCH. USE SHOREMAX TAL SCOUR PROTECTIO ES/STAKES APPROXIMA CKFILL AND COMPACT ACTED SOIL AND FOLD COVER THE SEED AND C WITH A ROW OF STAP OSS THE WIDTH OF THE R FLOW IN BOTTOM OF ER FLOW IN BOTTOM OF DE AGAINST THE SOIL SU IL SURFACE BY PLACING IS AS SHOWN IN THE S (SHINGLE STYLE) WITH	A 6-INCH S EXTENDED MAT AT THE N AS NEEDED. TELY 12-IN. THE TRENCH THE COMPACTED LES/STAKES RECPS. CHANNEL. JRFACE. ALL TAPLE A 4 TO 6-IN.				DESCRIPTION
		5. FULL	CENTER TO SECUR LENGTH EDGE OF	E RECPS. RECPS AT TOP OF SID	STAGGERED 4-IN. APAR DE SLOPES MUST BE ANG Y 12-IN. APART IN A 6-I	CHORED WITH				DATE
	L	WID 6. ADJ ON	E TRENCH. BACKFI ACENT RECPS MUS RECPS TYPE) AND S	LL AND COMPACT THE T BE OVERLAPPED APF STAPLED.	E TRENCH AFTER STAPL PROXIMATELY 2 TO 5-IN	NG. I. (DEPENDING				NO.
ISOMETRIC VIEW (SEE END ANCHOR TREN (SEE NOTE 8) 6-IN. 6-IN. 2-FT. 0.8-FT. T. O O O O 0.8-FT. T. O O O O 0.3-FT. O O O O 3.3-FT. O O O O 0.8-FT.	SOIL PREPARATION (SEE NOTE 1)	AT 3 APA 8. THE STAI 9. HOR STAI 10. IN LO THA 11. TEM APP AME MAT <u>TEMPOR</u> 1. REGI EVEF RAIN ANY 2. GOO NOT 3. ANY THE 4. IF EF SHA 5. MOI	30 TO 40-FT. INTER' RT AND 4-IN. ON 0 TERMINAL END OF PLES/STAKES APPR NCH. BACKFILL AND SIZONTAL STAPLE S PLES TO SECURE TH OOSE SOIL CONDIT N 6-IN. MAY BE NE PORARY MATTING ROVED EQUIVALEN FRICAN GREEN'S PH TING FOR EACH RE ARY MATTING MAI ULAR INSPECTIONS RY CALENDAR WEE NFALL EVENT THAT NECESSARY REPA DO CONTACT WITH OCCUR BENEATH AREAS OF THE RE GROUND SHALL B ROSION OCCURS D LL BE FIXED AND T	VALS. USE A DOUBLE R CENTER OVER ENTIRE V THE RECPS MUST BE OXIMATELY 12-IN. APA D COMPACT THE TREN PACING SHOULD BE A TONS, THE USE OF STA CESSARY TO PROPERL SHALL BE NORTH AM IT. REFER TO PLAN VIE RODUCT NAME FOR SP DADSIDE SWALE/DITCH NTENANCE S OF TEMPORARY MAT K AND, AS RECOMMEN PRODUCES ½-INCH O IRS IMMEDIATELY. THE GROUND MUST IN THE RECP. CP THAT ARE DAMAGE E REPAIRED AND STAP UE TO POORLY CONTE HE ERODED AREA PRO	ALTERED IF NECESSARY LONG THE CHANNEL SU APLE OR STAKE LENGTH LY SECURE THE RECP'S. IERICAN GREEN OR ENO WORAWINGS FOR NO PECIFIC GRADE OF TEMI H. TTING SHALL BE CONDUNED, WITHIN 24-HOU WR MORE OF PRECIPITAT BE MAINTAINED, AND F ED OR NOT IN CLOSE CO PLED. ROLLED DRAINAGE, THE	GERED 4-IN. EL. DW OF 6-IN. WIDE TO ALLOW JRFACE. IS GREATER GINEER RTH PORARY JCTED ONCE RS AFTER EACH TON. MAKE EROSION MUST ONTACT WITH E PROBLEM	DETAILS (SHEET 1 OF 4)		enoree development site, e≻ plan - initial phase Luck stone corporation	STOLTH CAROLIN
<u>HIGH FLOW CHANNEL</u> 75 STAPLES PER SQ.YD. <u>S</u>								DJECT NU		
_	4 CHANNEL M 3 SCALE: N.T.S.	<u>ATTING</u>						61-19- WING NU		



3


- COMPACTION EQUIPMENT OR CONSTRUCTION EQUIPMENT.
- DETAIL 10.

SEDIMENT CLEANOUT STAKE.

AND POOL AREA.

						SEDIM	ENT BASIN S	UMMARY TA	BLE					
	А	В	С	D	Е	F	G	н	I	J	К	L	М	N
SEDIMENT BASIN ID	BOTTOM OF BASIN ELEVATION (FT.)	TOP OF RISER ELEVATION (FT.)	EMERGENCY SPILLWAY CREST ELEVATION (FT.)	TOP OF BERM ELEVATION (FT.)	TOP OF BERM WIDTH (FT.)	CLEAN OUT ELEVATION (FT.)	RISER SHAPE (FT. X FT.)	OUTLET PIPE DIAMETER (DO) (FT.)	OUTLET PIPE UPSTREAM INV. ELEVATION (FT.)	OUTLET PIPE DOWNSTREAM INV. ELEVATION (FT.)	LENGTH OF OUTLET PIPE (FT.)	SLOPE OF OUTLET PIPE (%)	INTERIOR SIDE SLOPES (Z FT. X 1 FT.)	EMERGENCY SPILLWAY INTERIOR SII SLOPES (Z FT. 1 FT.)
P1-SB-1	558.0	564.4	565.4	567.0	12	561.5	3x3	2	558.0	557.0	100	1.0	3 :1	3 :1
P1-SB-2	548.0	554.4	555.4	557.0	12	551.5	3x3	2	548.0	547.0	100	1.0	3 :1	3 :1
P2-SB-1	620.0	627.3	628.3	630.0	12	624.4	3x3	2	620.0	619.0	100	1.0	3 :1	3 :1
E-SB-1	608.0	614.5	615.5	617.0	12	611.8	3x3	2	608.0	607.0	100	1.0	3 :1	3 :1
E-SB-2	588.0	592.8	593.8	595.0	12	590.6	3x3	2	588.0	587.0	100	1.0	3 :1	3 :1
E-SB-3	596.0	600.5	601.5	603.0	12	598.4	3x3	2	596.0	595.0	100	1.0	3 :1	3 :1
SE-SB-1	558.0	565.6	566.6	568.0	12	562.7	3x3	2	558.0	557.0	100	1.0	3 :1	3 :1
SE-SB-2	545.0	552.2	553.2	555.0	12	549.1	3x3	2	545.0	544.0	100	1.0	3 :1	3 :1
W-SB-1	540.0	547.3	548.3	550.0	12	544.0	3x3	2	540.0	539.0	100	1.0	3 :1	3 :1
W-SB-2	567.0	574.3	575.3	577.0	12	571.1	3x3	2	567.0	566.0	100	1.0	3 :1	3 :1

	PLUNGE POOL SIZING SUMMARY TABLE													
ID	Α	В	С	D	Е	F	G	Н						
P1-SB-1	1.6	3.0	3.0	2.0	13.4	9.4	1.5	2.0						
P1-SB-2	1.6	3.0	3.0	2.0	13.8	9.7	1.6	2.0						
P2-SB-1	1.3	3.0	3.0	1.6	11.1	7.8	1.2	2.0						
E-SB-1	1.3	3.0	3.0	1.6	11.0	7.8	1.2	2.0						
E-SB-2	1.4	3.0	3.0	1.7	11.8	8.3	1.3	2.0						
E-SB-3	1.2	3.0	3.0	1.6	10.6	7.5	1.2	2.0						
SE-SB-1	1.2	3.0	3.0	1.5	10.4	7.3	1.2	2.0						
SE-SB-2	1.6	3.0	3.0	2.0	13.8	9.7	1.6	2.0						
W-SB-1	2.6	3.0	3.0	3.2	21.9	15.4	2.5	2.0						
W-SB-2	1.6	3.0	3.0	2.0	13.9	9.8	1.6	2.0						

POROUS BAFFLE POSTS MUST BE 60-IN. TO 96-IN. LONG STEEL POSTS THAT MEET, AT A MINIMUM, THE

- COMPOSED OF A HIGH STRENGTH STEEL WITH A MINIMUM YIELD STRENGTH OF 50,000 PSI.
- INCLUDE A STANDARD "T" SECTION WITH A NOMINAL FACE WIDTH OF 1.38-IN. AND A NOMINAL "T" LENGTH
- WEIGH 1.25 POUNDS PER FOOT (± 8%)
- 2. POSTS SHALL BE EQUIPPED WITH PROJECTIONS TO AID IN FASTENING OF BAFFLE MATERIAL.
- 3. 3. INSTALL POSTS TO A MINIMUM OF 24-IN. A MINIMUM HEIGHT OF 1-IN. TO 2-IN. ABOVE THE FABRIC
- SHALL BE MAINTAINED, AND A MAXIMUM HEIGHT OF 3-FT. SHALL BE MAINTAINED ABOVE THE GROUND.
- 4. POST SPACING SHALL BE AT A MAXIMUM OF 4-FT. ON
- 1. BAFFLE MATERIAL MUST BE COMPOSED OF COIR-BASED MATERIALS OR TURF REINFORCEMENT MATTING (TRM) THAT CONSISTS OF THE FOLLOWING REQUIREMENTS: HAVE A LIGHT PENETRATION (% OPENINGS) BETWEEN
- FREE OF LOOSE STRAW MATERIAL;
- HAVE A MINIMUM TENSILE STRENGTH OF 145 LB/FT;
- HAVE A MINIMUM WIDTH OF 48-IN.
- 2. 12-IN. OF THE FABRIC SHOULD BE PLACED WITHIN EXCAVATED TRENCH AND TOED IN WHEN THE TRENCH IS BACKFILLED OR BAFFLE MATERIAL MAY BE STAPLED INTO GROUND BY USING 12-IN. STAPLES WITH A MAXIMUM
- 3. BAFFLE MATERIAL SHALL BE PURCHASED IN CONTINUOUS ROLLS AND CUT TO THE WIDTH OF THE SEDIMENT BASIN
- 4. ATTACH BAFFLE TO THE STEEL POSTS USING HEAVY-DUTY PLASTIC TIES THAT ARE EVENLY SPACED ALONG THE ABOVE GROUND PORTION OF EACH POST.
- 5. INSTALL THE BAFFLE ROWS PERPENDICULAR TO THE DIRECTION OF THE STORMWATER FLOW AND PLACE EACH BAFFLE THE PROPER DISTANCE FROM INLET AND OUTLETS TO ALLOW ACCESS FOR MAINTENANCE AND

CONTROL PRODUCTS (RECPS), INCLUDING ANY NECESSARY

IN A 6-IN. DEEP X 6-IN. WIDE TRENCH WITH APPROXIMATELY

12-IN. OF RECPS EXTENDED BEYOND THE UP-SLOPE PORTION

OF THE TRENCH. ANCHOR THE RECPS WITH A ROW OF

STAPLES/STAKES APPROXIMATELY 12-IN. APART IN THE

BOTTOM OF THE TRENCH. BACKFILL AND COMPACT THE TRENCH AFTER STAPLING. APPLY SEED TO THE COMPACTED

SOIL AND FOLD THE REMAINING 12-IN. PORTION OF RECPS

BACK OVER THE SEED AND COMPACTED SOIL. SECURE RECPS OVER COMPACTED SOIL WITH A ROW OF STAPLES/STAKES

SPACED APPROXIMATELY 12-IN. APART ACROSS THE WIDTH

SLOPE BASED ON ENVIRONMENT INSPECTOR. RECPS WILL

PLACING STAPLES/STAKES IN APPROPRIATE LOCATIONS AS

APPROXIMATELY 2 TO 5-IN. OVERLAP DEPENDING ON THE

OVER END (SHINGLE STYLE) WITH AN APPROXIMATE 3-IN.

LENGTHS GREATER THAN 6-IN. MAY BE NECESSARY TO

BIONET SC150BN OR ENGINEER APPROVED EQUIVALENT.

24 HOURS OF THE END OF A STORM EVENT OF 0.5-IN. OR

GOOD CONTACT WITH THE GROUND MUST BE MAINTAINED,

CLOSE CONTACT WITH THE GROUND SHALL BE REPAIRED AND

DRAINAGE, THE PROBLEM SHALL BE FIXED AND THE ERODED

AND EROSION MUST NOT OCCUR BENEATH THE RECP.

INSPECT AT LEAST ONCE EVERY CALENDAR WEEK AND WITHIN

APPROXIMATELY 12-IN. APART ACROSS ENTIRE RECPS WIDTH.

OVERLAP. STAPLE THROUGH OVERLAPPED AREA,

SHOWN IN THE STAPLE PATTERN GUIDE.

PROPERLY SECURE THE RECP'S.

UNROLL WITH APPROPRIATE SIDE AGAINST THE SOIL SURFACE.

ALL RECPS MUST BE SECURELY FASTENED TO SOIL SURFACE BY

APPLICATION OF LIME, FERTILIZER, AND SEED.

6. EXTEND BAFFLE TO A MINIMUM OF 3 FEET.

OF THE RECPS.

RECPS TYPE.

GREATER.

STAPLED.

AREA PROTECTED.

GROUND COVER IS ESTABLISHED.

BAFFLES - INSPECTION & MAINTENANCE

- . THE KEY TO FUNCTIONAL POROUS BAFFLES IS WEEKLY INSPECTION, ROUTINE MAINTENANCE, AND REGULAR SEDIMENT REMOVAL.
- 2. REGULAR INSPECTIONS OF POROUS BAFFLES SHALL BE CONDUCTED ONCE EVERY CALENDAR WEEK AND, AS RECOMMENDED, WITHIN 24-HOURS AFTER EACH RAINFALL EVEN THAT PRODUCES 1/2-IN. OR MORE OF PRECIPITATION.
- 3. ATTENTION TO SEDIMENT ACCUMULATIONS ALONG EACH ROW OF BAFFLES IS EXTREMELY IMPORTANT. ACCUMULATED SEDIMENT SHOULD BE CONTINUALLY MONITORED AND REMOVED WHEN NECESSARY.
- 4. REMOVE ACCUMULATED SEDIMENT WHEN IT REACHES 1/3 THE HEIGHT OF THE BAFFLE ROW OR WHEN IT REACHES THE CLEAN-OUT HEIGHT OF THE SEDIMENT BASIN OR TRAP, WHICHEVER IS REACHED FIRST.
- 5. REMOVED SEDIMENT SHALL BE PLACED IN STOCKPILE STORAGE AREAS OR SPREAD THINLY ACROSS DISTURBED AREA. STABILIZE THE REMOVED SEDIMENT AFTER IT IS RELOCATED.
- 6. CHECK FOR AREAS WHERE STORMWATER RUNOFF HAS ERODED A CHANNEL BENEATH EACH ROW OF BAFFLES, OR WHERE THE BAFFLE HAS SAGGED OR COLLAPSED DUE TO RUNOFF OVERTOPPING THE BAFFLE.
- 7. CHECK FOR TEARS/RIPS WITHIN THE BAFFLES, AREAS WHERE THE BAFFLE HAS BEGUN TO DECOMPOSE, AND FOR ANY OTHER CIRCUMSTANCE THAT MAY RENDER THE BAFFLE INEFFECTIVE. REMOVED DAMAGED BAFFLES AND REINSTALL NEW BAFFLES IMMEDIATELY.
- 8. POROUS BAFFLES SHOULD BE REMOVED WITHIN 30 DAYS AFTER FINAL STABILIZATION IS ACHIEVED AND ONCE IT IS REMOVED, THE RESULTING DISTURBED AREA SHALL BE PERMANENTLY STABILIZED.
- 9. REMOVE ANY ACCUMULATED SEDIMENT UPON BAFFLE REMOVAL. DISPOSE OF SEDIMENT OFF-SITE ACCORDING TO STATE AND LOCAL REGULATIONS.

	CHARTER OF	H FF		RIONELL		HH AH	
							APV
							CHK
							ΒY
							DESCRIPTION
							DATE
							ÖN
	DETAILS (SHEET 3 OF 4)			enoree development site, e≻ plan - initial phase	ILICK STONE CORPORATION	ENOREE, SOUTH CAROLINA	
F		OJEC 261					
		\WI				٢	
4			1				

5

h

2016 AYRSLEY TOWN BLVD.

SUITE 2-A

CHARLOTTE, NC 28273

(704) 523-4726

ENGINEERING FIRM

LICENSE NUMBER: F-0176

E	R TABLE	
	SIZE (IN.)	ORIFICE SIZE (IN.)
	8"	8"
	8"	8"
	8"	6"
	8"	6"
	8"	7"
	8"	6"
	6"	5"
	8"	8"
	8"	8"
	8"	8"

1	CH	ARI (7 NGI	SU] LO] '04) INE	IТ ГТ 52 ЕВ	E FE 23 RI	2-A E, N 8-47 NG	C 2 26 FIR	827 3M	
	LAND CHARTE					RICE	9	AHL AND	
(/***	10	РН А			2	1	, 1 1	
					_				CHK APV
									-
									BΥ
									DESCRIPTION
									DATE
									NO.
	DFTAILS (SHEFT 4 OF 4)						enoree development site, e≻ plan - initial phase	ILICK STONE CORPORATION	enoree, south carolina
		42	DJEC 261	-1	19	9-1	56		
	6		11	NG	Ĩ	NUM	1BEF	<u></u> 6	

Initial Phase – Erosion & Sediment Control Plan Enoree Development Site Spartanburg County, South Carolina S&ME Project No. 4261-19-156

PREPARED FOR

Luck Stone Corporation 515 Stone Mill Drive (PO Box 29682) Richmond, VA 23242

PREPARED BY

S&ME, Inc. 2016 Ayrsley Town Blvd., Suite 2-A Charlotte, NC 28273

April 6, 2021

Initial Phase – Erosion & Sediment Control Plan Enoree Development Site Spartanburg County, South Carolina S&ME Project No. 4261-19-156

Appendices

Appendices Appendix I – Drawings Appendix II – Sediment Basin Calculations Appendices

Appendix I – Drawings

ENOREE DEVELOPMENT SITE, E&SC PLAN - INITIAL PHASE **LUCK STONE CORPORATION** ENOREE, SPARTANBURG COUNTY, SOUTH CAROLINA

SITE DATA

PARCEL ID(S):

SITE ADDRESS:

SITE ACREAGE: EXISTING ZONING PROPOSED USE:

LATITUDE: LONGITUDE:

RIVER BASIN:

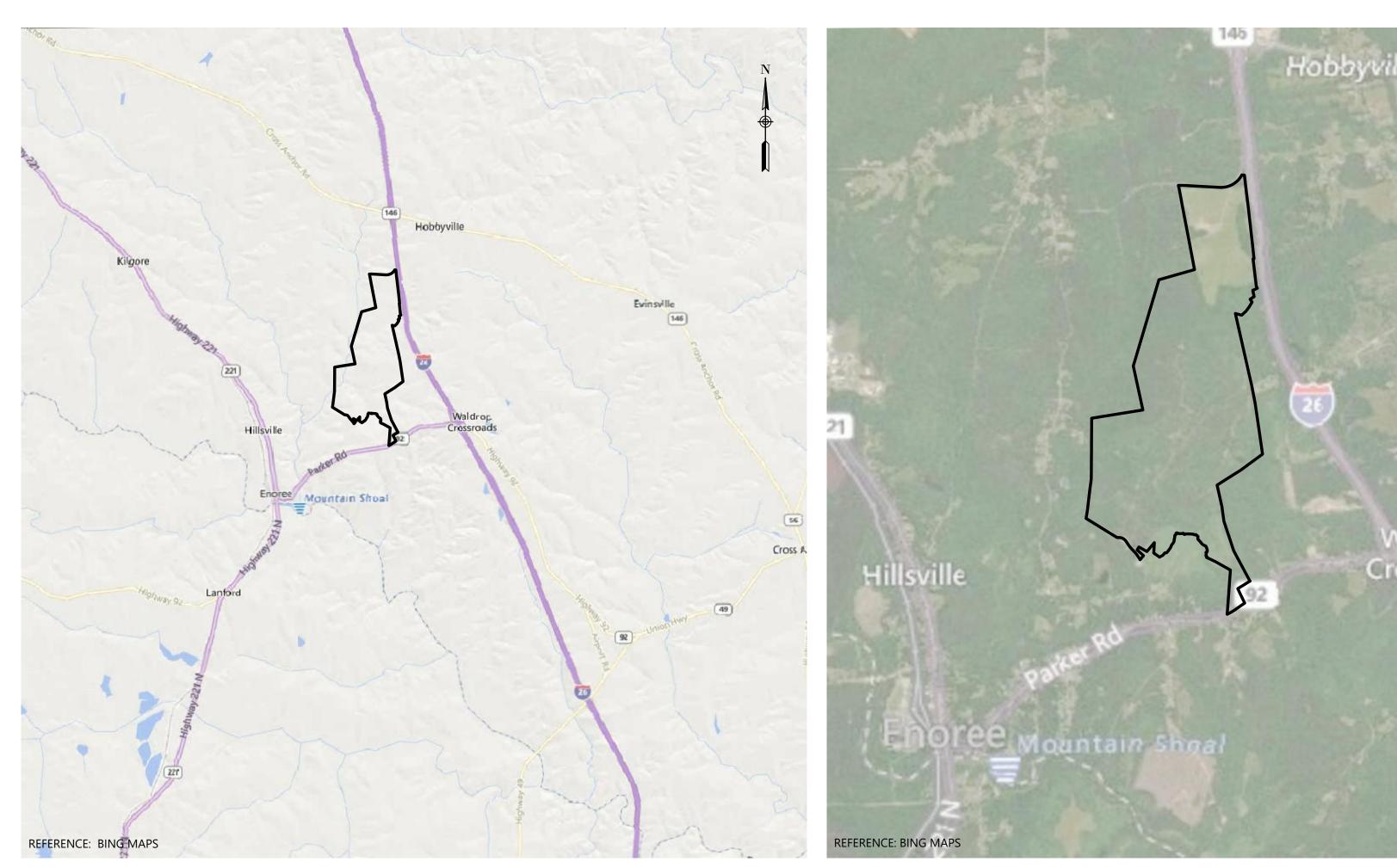
OWNER: ADDRESS:

PHONE NO.: CONTACT NAME CONTACT E-MAIL ADDRESS:

PROJECT REPRESENTATIVE: ADDRESS:

PHONE NO.: CONTACT NAME: CONTACT E-MAIL ADDRESS: 701354629837, 701361001897, 701368868072

OLD ROCK QUARRY ROAD ENOREE, SOUTH CAROLINA 542.86 AC. R2 AGGREGATE MINE OPERATIONS


34°40'27.84"N (34.6744°) -81°56'36.96"W (-81.9436°)

BROAD RIVER MIDDLE ENOREE RIVER

LUCK STONE CORPORATION 515 STONE MILL DRIVE (PO BOX 29682) **RICHMOND, VIRGINIA 23242** (804) 784-6300 BRUCE SMITH brucesmith@luckcompanies.com

S&ME INC. 2016 AYRSLEY TOWN BLVD. SUITE 2-A CHARLOTTE, NC 28273

(704) 523-4726 CHRISTOPHER J.L. STAHL cstahl@smeinc.com

515 STONE MILL DRIVE RICHMOND, VIRGINIA 23242 (804) 784-6300

APRIL 6, 2021

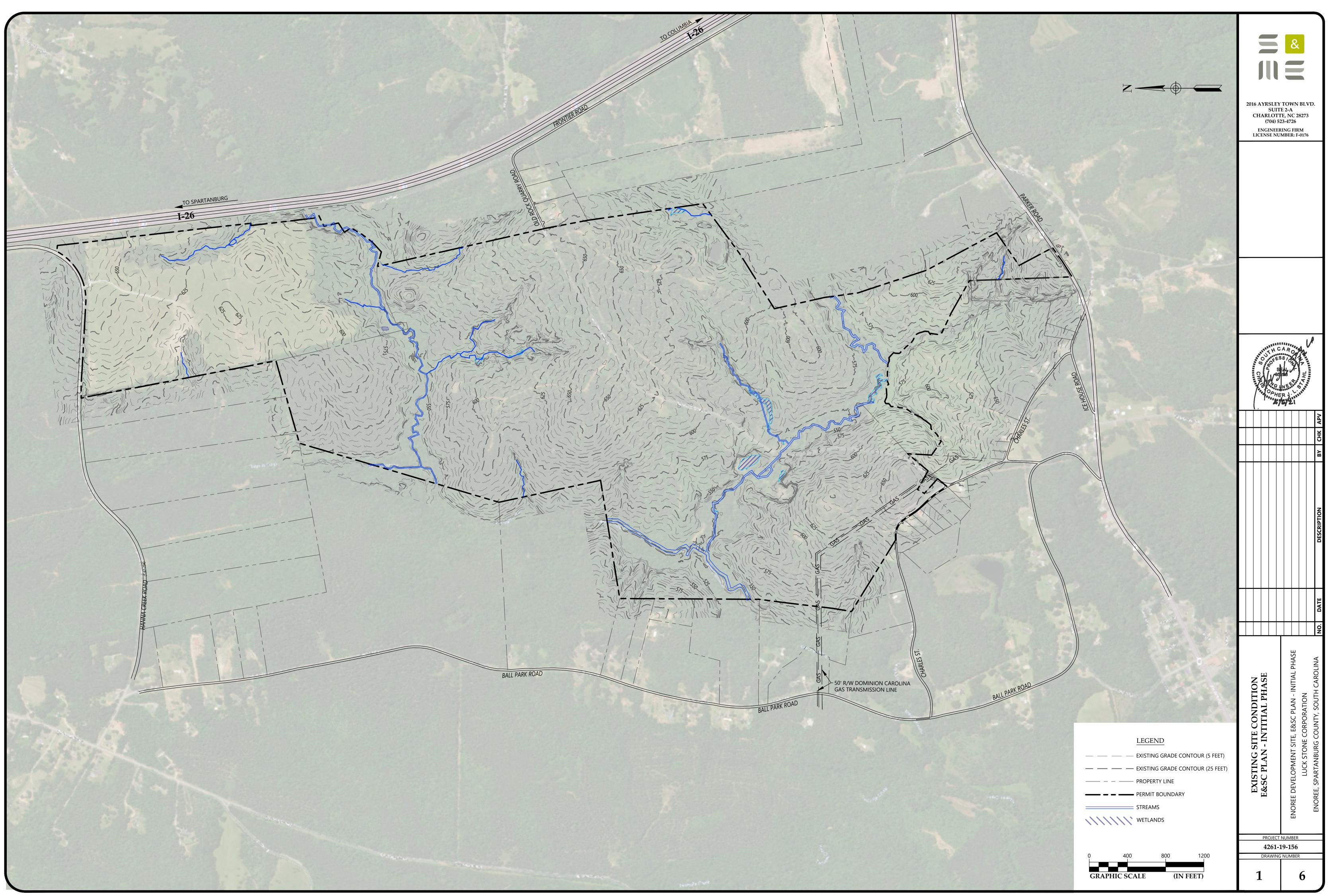
VICINITY MAP SCALE: 1" = 5,000'

PREPARED FOR

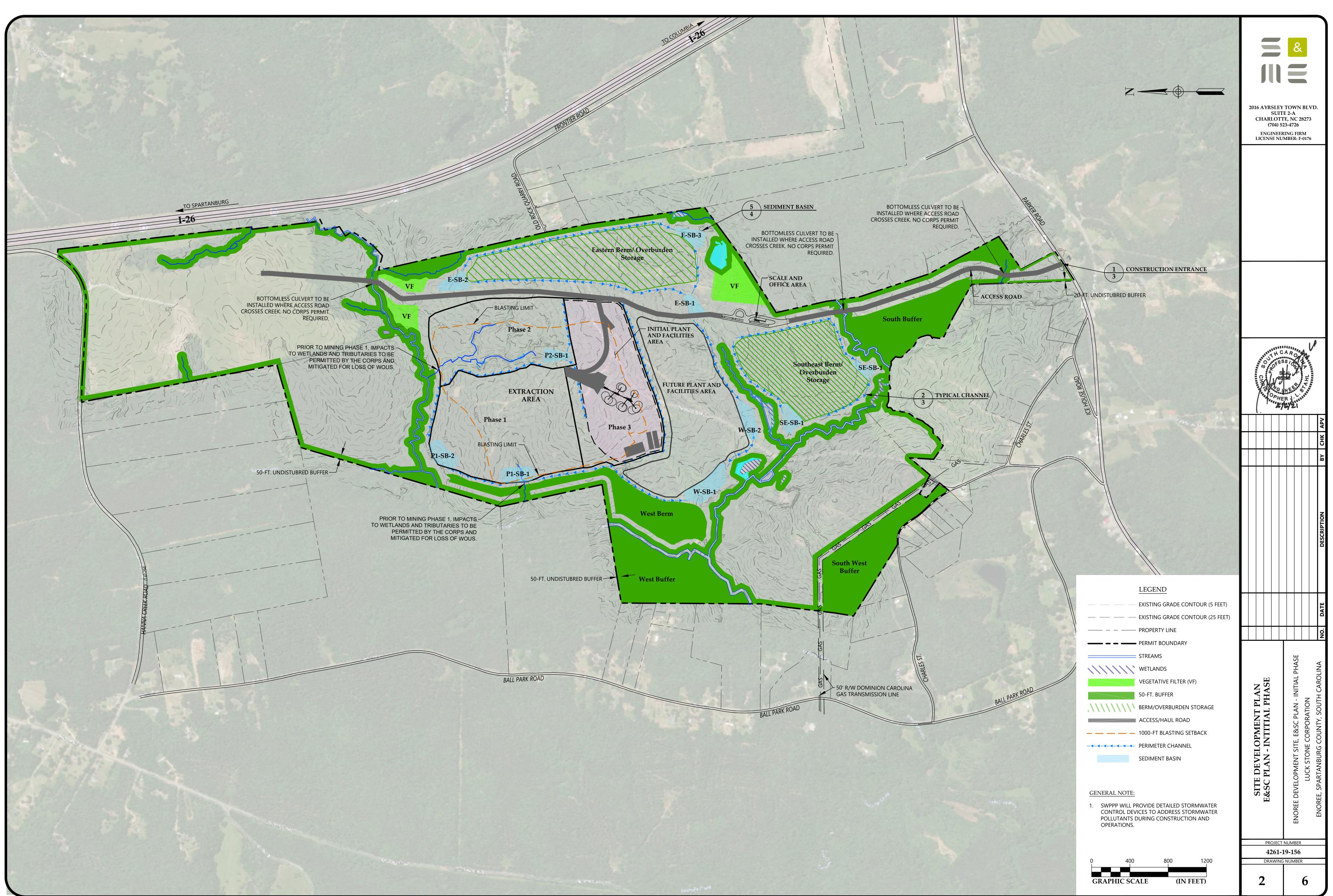
SITE LOCATION SCALE: 1" = 2,000'

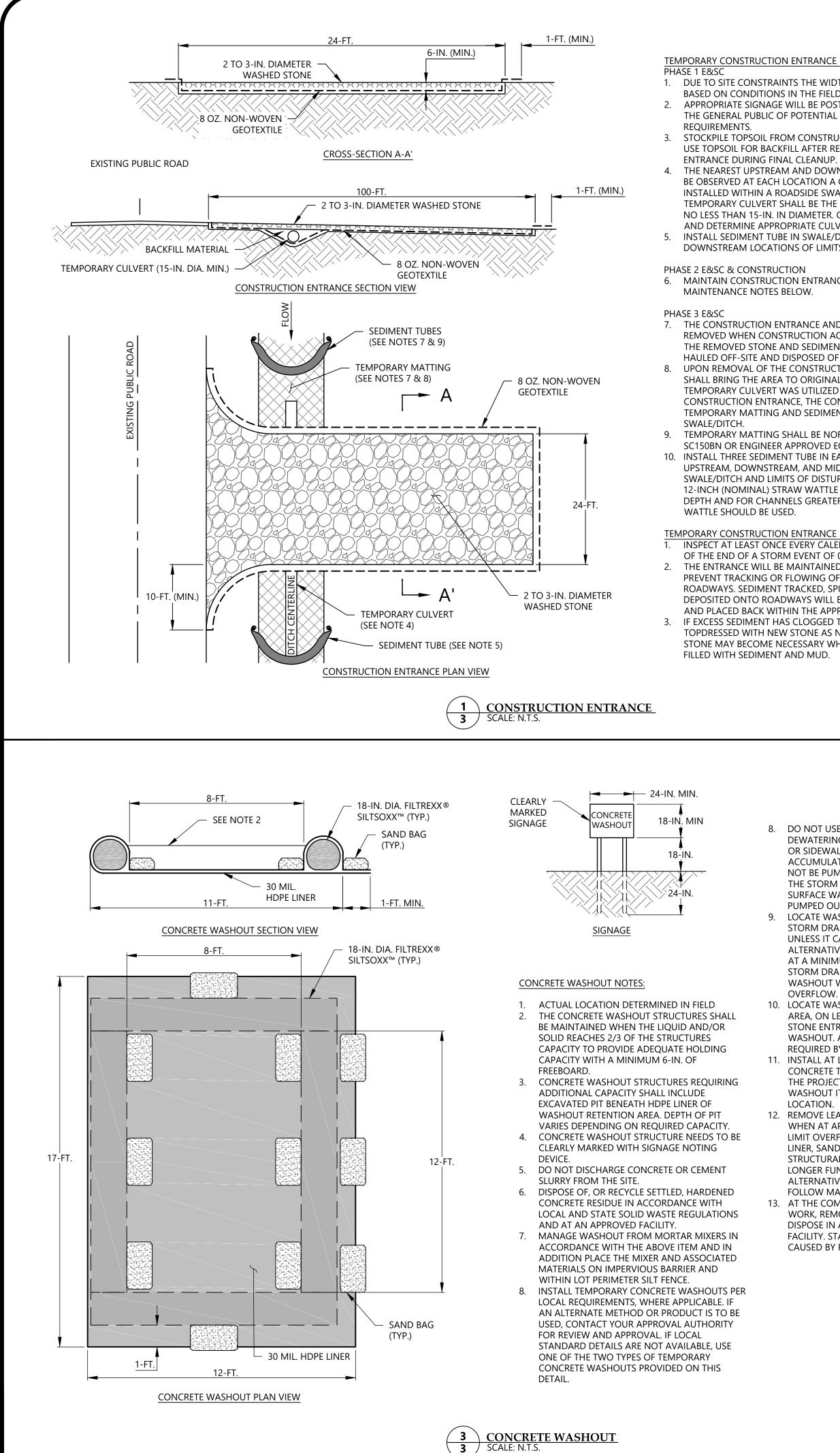
PREPARED BY

2016 AYRSLEY TOWN BLVD. SUITE 2-A CHARLOTTE, NC 28273 (704) 523-4726



DRAWING


NUMBER	TITLE
0	COVER SHEET
1	EXISTING SITE CONDITION
2	SITE DELEVOPMENT PLAN
3	DETAILS (SHEET 1 OF 4)
4	DETAILS (SHEET 2 OF 4)
5	DETAILS (SHEET 3 OF 4)
6	DETAILS (SHEET 4 OF 4)



DRAWING PATH: R:\CADData\Charlotte\4261\19\156 LUCK STONE ENOREE\DWG\E&SC\EXISTING SITE CONDITIC

DRAWING PATH: R:\CADData\Charlotte\4261\19\156 LUCK STONE ENOREE\DWG\E&SC\SITE DELEVOPMENT PLAN

TEMPORARY CONSTRUCTION ENTRANCE NOTES

1. DUE TO SITE CONSTRAINTS THE WIDTH AND LENGTH MAY BE ADJUSTED BASED ON CONDITIONS IN THE FIELD. 2. APPROPRIATE SIGNAGE WILL BE POSTED ALONG THE ROAD TO INFORM THE GENERAL PUBLIC OF POTENTIAL CONSTRUCTION TRAFFIC PER

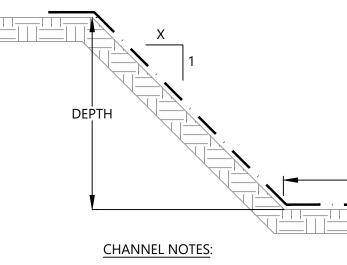
3. STOCKPILE TOPSOIL FROM CONSTRUCTION ENTRANCE INSTALLATION. USE TOPSOIL FOR BACKFILL AFTER REMOVAL OF CONSTRUCTION

4. THE NEAREST UPSTREAM AND DOWNSTREAM CULVERT DIAMETER(S) WILL BE OBSERVED AT EACH LOCATION A CONSTRUCTION ENTRANCE IS TO BE INSTALLED WITHIN A ROADSIDE SWALE/DITCH. DIAMETER OF TEMPORARY CULVERT SHALL BE THE LARGER OF EITHER THE CULVERT, BUT NO LESS THAN 15-IN. IN DIAMETER. CONTRACTOR SHALL FIELD VERIFY AND DETERMINE APPROPRIATE CULVERT TO BE USED. 5. INSTALL SEDIMENT TUBE IN SWALE/DITCH AT UPSTREAM AND DOWNSTREAM LOCATIONS OF LIMITS OF DISTURBANCE.

6. MAINTAIN CONSTRUCTION ENTRANCE IN ACCORDANCE WITH

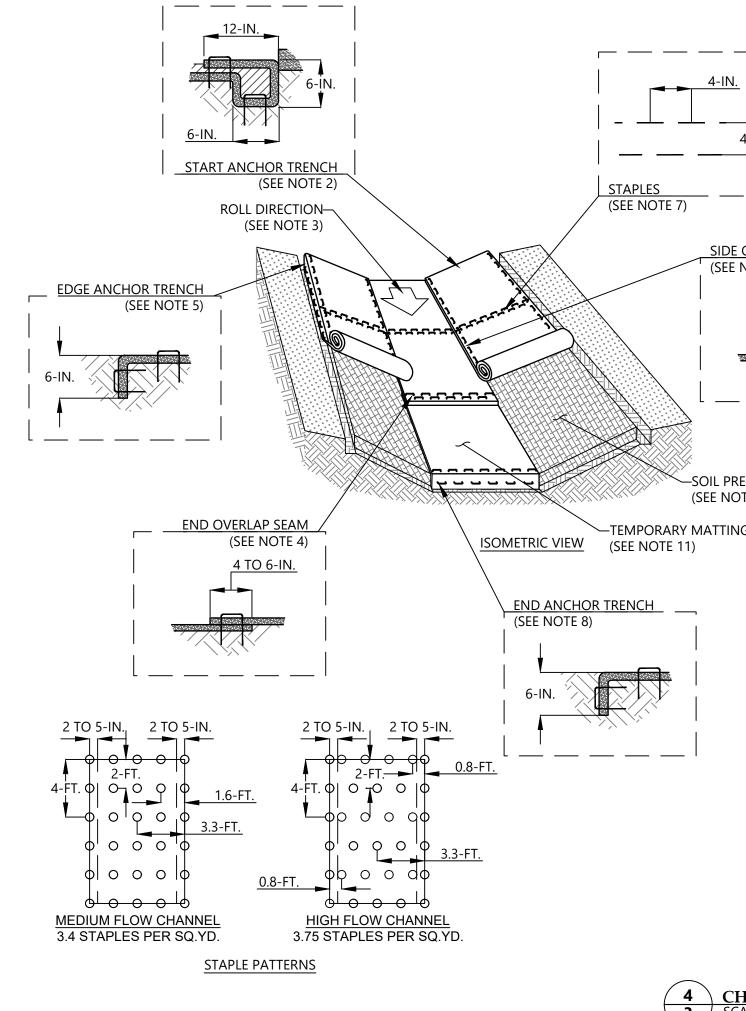
7. THE CONSTRUCTION ENTRANCE AND CULVERT (IF PRESENT), WILL BE REMOVED WHEN CONSTRUCTION ACTIVITIES CEASE ON THE PROJECT. THE REMOVED STONE AND SEDIMENT FROM THE ENTRANCE WILL BE HAULED OFF-SITE AND DISPOSED OF PROPERLY. 8. UPON REMOVAL OF THE CONSTRUCTION ENTRANCE, THE CONTRACTOR

SHALL BRING THE AREA TO ORIGINAL GRADE AND STABILIZE IT. IF A TEMPORARY CULVERT WAS UTILIZED IN CONJUNCTION WITH THE CONSTRUCTION ENTRANCE, THE CONTRACTOR SHALL INSTALL TEMPORARY MATTING AND SEDIMENT TUBE WITHIN ROADSIDE


9. TEMPORARY MATTING SHALL BE NORTH AMERICAN GREEN BIONET SC150BN OR ENGINEER APPROVED EQUIVALENT.

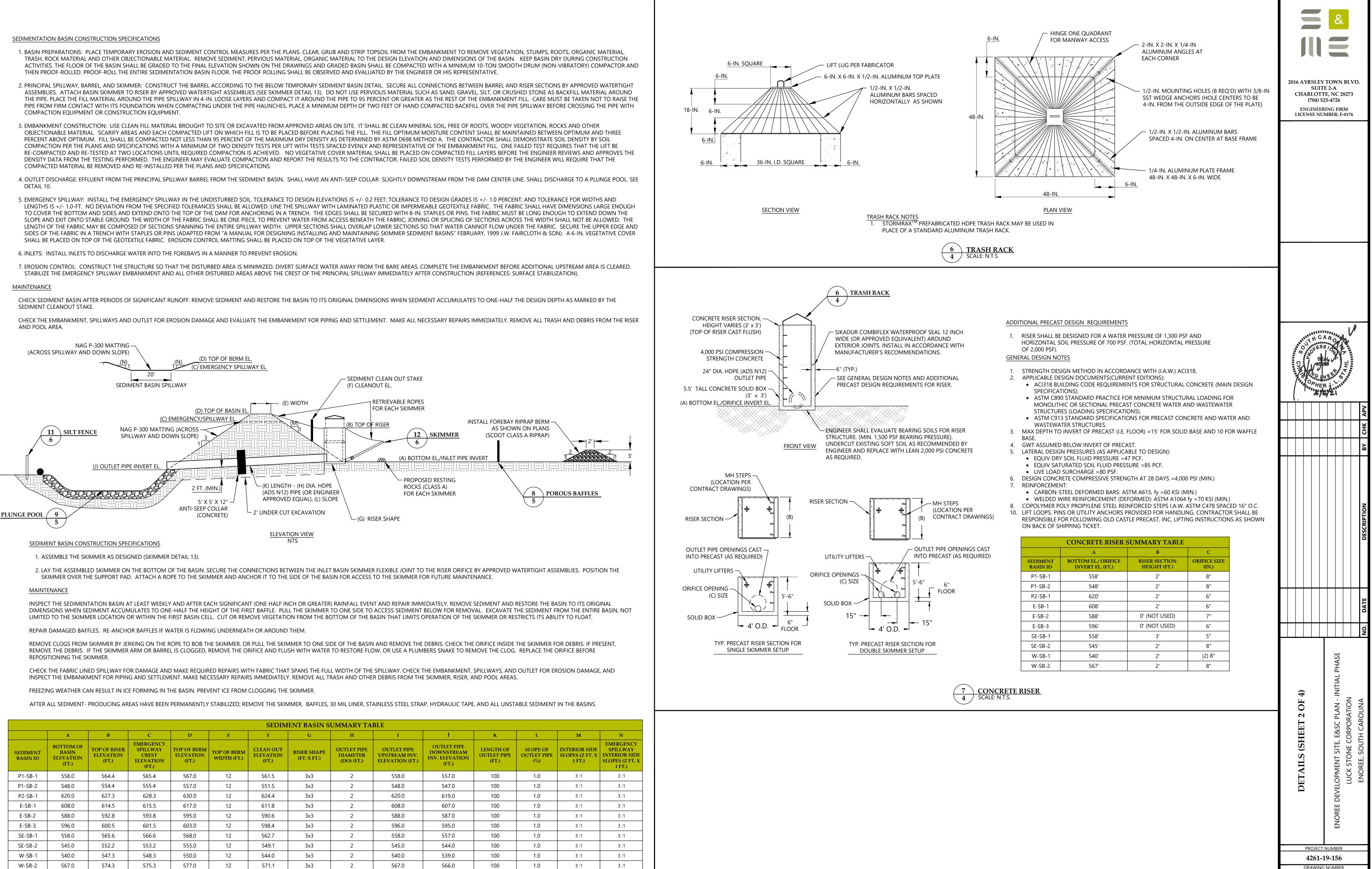
10. INSTALL THREE SEDIMENT TUBE IN EACH IMPACTED SWALE/DITCH; UPSTREAM, DOWNSTREAM, AND MIDDLE OF INTERSECTION OF SWALE/DITCH AND LIMITS OF DISTURBANCE. SEDIMENT TUBE SHALL BE 12-INCH (NOMINAL) STRAW WATTLE FOR CHANNELS LESS THAN 3 FEET IN DEPTH AND FOR CHANNELS GREATER THAN 3 FEET IN DEPTH, A 24-INCH

TEMPORARY CONSTRUCTION ENTRANCE MAINTENANCE

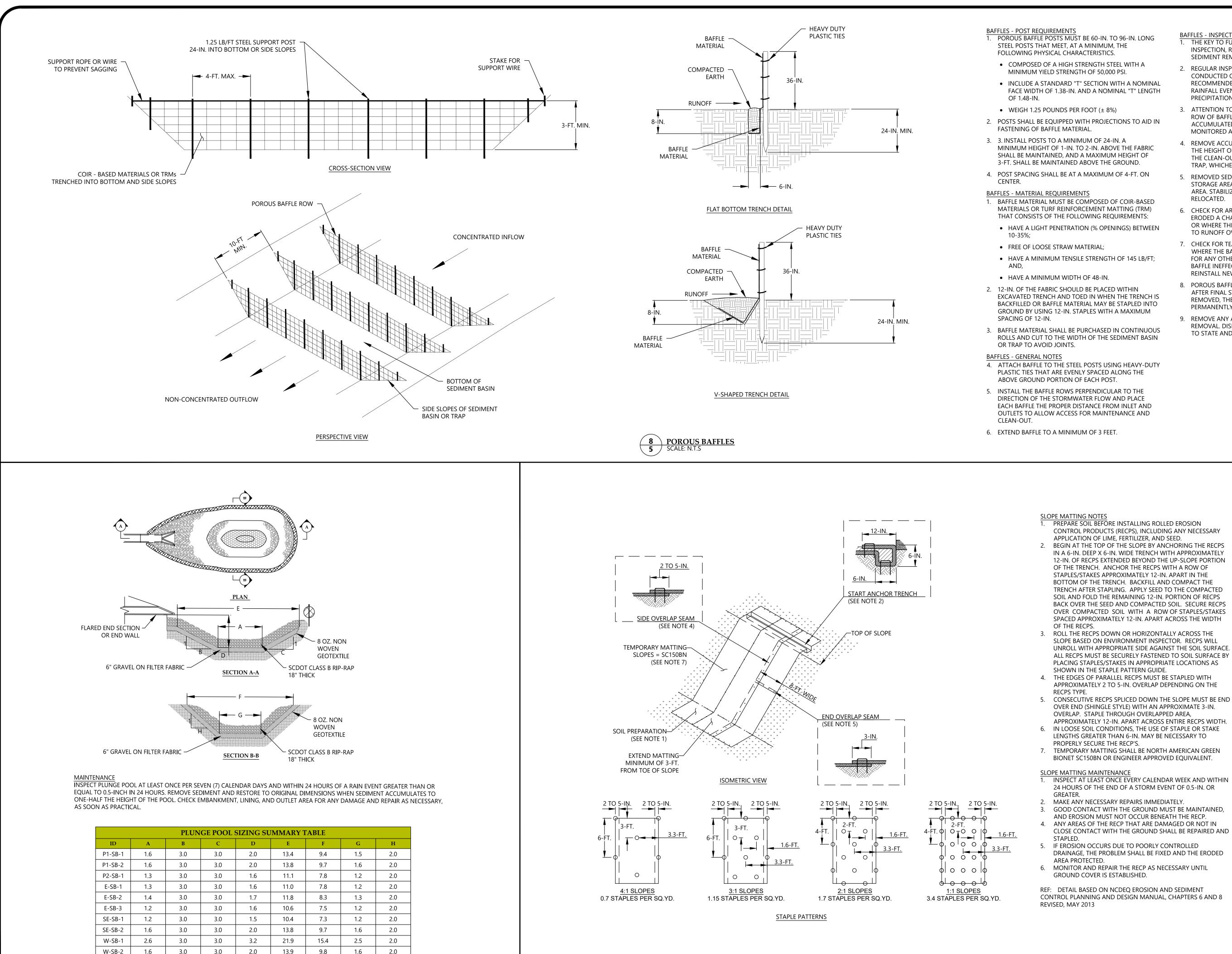

INSPECT AT LEAST ONCE EVERY CALENDAR WEEK AND WITHIN 24 HOURS OF THE END OF A STORM EVENT OF 0.5-IN. OR GREATER IN 24 HOURS. THE ENTRANCE WILL BE MAINTAINED IN A CONDITION THAT WILL PREVENT TRACKING OR FLOWING OF SEDIMENT ONTO EXISTING ROADWAYS. SEDIMENT TRACKED, SPILLED, DROPPED OR OTHERWISE DEPOSITED ONTO ROADWAYS WILL BE SWEPT UP AS SOON AS PRACTICAL AND PLACED BACK WITHIN THE APPROVED DISTURBED AREA. 3. IF EXCESS SEDIMENT HAS CLOGGED THE STONE, THE ENTRANCE WILL BE TOPDRESSED WITH NEW STONE AS NEEDED. REPLACEMENT OF THE STONE MAY BECOME NECESSARY WHEN THE STONE BECOMES ENTIRELY FILLED WITH SEDIMENT AND MUD.

- 8. DO NOT USE CONCRETE WASHOUTS FOR DEWATERING OR STORING DEFECTIVE CURB OR SIDEWALK SECTIONS. STORMWATER ACCUMULATED WITHIN THE WASHOUT MAY NOT BE PUMPED INTO OR DISCHARGED TO THE STORM DRAIN SYSTEM OR RECEIVING SURFACE WATERS. LIQUID WASTE MUST BE PUMPED OUT AND REMOVED FROM PROJECT.
- 9. LOCATE WASHOUTS AT LEAST 50-FT. FROM STORM DRAIN INLETS AND SURFACE WATERS UNLESS IT CAN BE SHOWN THAT NO OTHER ALTERNATIVES ARE REASONABLY AVAILABLE. AT A MINIMUM, INSTALL PROTECTION OF STORM DRAIN INLET(S) CLOSEST TO THE WASHOUT WHICH COULD RECEIVE SPILLS OR OVERFLOW.
- 10. LOCATE WASHOUTS IN AN EASILY ACCESSIBLE AREA, ON LEVEL GROUND AND INSTALL A STONE ENTRANCE PAD IN FRONT OF THE WASHOUT. ADDITIONAL CONTROLS MAY BE
- REQUIRED BY THE APPROVING AUTHORITY. 11. INSTALL AT LEAST ONE SIGN DIRECTING CONCRETE TRUCKS TO THE WASHOUT WITHIN THE PROJECT LIMITS. POST SIGNAGE ON THE WASHOUT ITSELF TO IDENTIFY THIS
- LOCATION. 12. REMOVE LEAVINGS FROM THE WASHOUT WHEN AT APPROXIMATELY 2/3 CAPACITY TO LIMIT OVERFLOW EVENTS. REPLACE THE HDPE LINER, SAND BAGS OR OTHER TEMPORARY STRUCTURAL COMPONENTS WHEN NO LONGER FUNCTIONAL. WHEN UTILIZING ALTERNATIVE OR PROPRIETARY PRODUCTS, FOLLOW MANUFACTURER'S INSTRUCTIONS.
- 13. AT THE COMPLETION OF THE CONCRETE WORK, REMOVE REMAINING LEAVINGS AND DISPOSE IN AN APPROVED DISPOSAL FACILITY. STABILIZE ANY DISTURBANCE CAUSED BY REMOVAL OF WASHOUT.

							S CHARL (70 ENGI	5UITE 2 .OTTE, 04) 523-4 NEERIN	NC 2827	73
2. DIMENSIONING AN GREEN S75 BN, SC 1 BE DEFINED IN THE	BOTTOM WIDTH OR CHANNEL LOCATION. D STABILIZATION MATTING (NC ISOBN OR P300 OR APPROVED EC SWPPP FOR THE FACILITY DE DETAILED CHANNEL DESIGN.	ORTH AMERICAN								
CHANNEL AVERAGE CHANNEL BOT	IANNEL SUMMARY 7 TOM LEFT SLOPE 'H (FT.) (XH:1V)	TABLE RIGHT SLOPE (XH:1V)	CHANNEL DEPTH (FT.)	CHANNEL MATTING						
TYP. 0.0200	4 2	2	2	SC 150BN			CHARTON CHART	A C A A SESSI BSPACE HER HER	O THE THE	August
	2 TYPICAL CHA	ANNEI								APV
	3 SCALE: N.T.S.	AININEL						+		BY CHK
	4-IN. 4-IN. PLES NOTE 7) SIDE OVERLAP SEAN (SEE NOTE 6) 2 TO	2. BEGI DEEI BEYC CHA ANC APA AFTI REM SOIL SPAC 3. ROL SPAC 5-IN. 5-IN. 4. PLAC	D. IN AT THE TOP OF P BY 6-IN. WIDE TR DND THE UP-SLOP NNEL/CULVERT OU CHOR THE RECPS W RT IN THE BOTTOM ER STAPLING. APPL AINING 12-IN. POF SECURE RECPS O CED APPROXIMATE L CENTER RECPS IN PS WILL UNROLL W PS WILL UNROLL W PS MUST BE SECUR PLES/STAKES IN AP TERN GUIDE. CE CONSECUTIVE R	THE CHANNEL BY ANC ENCH WITH APPROXIN PORTION OF THE TRI JTLET AS SUPPLEMENT (ITH A ROW OF STAPLI OF THE TRENCH. BA Y SEED TO THE COMP, RTION OF RECPS BACK VER COMPACTED SOIL ELY 12-IN. APART ACRO I DIRECTION OF WATE (ITH APPROPRIATE SID ELY FASTENED TO SOI PROPRIATE LOCATION ECPS END-OVER-END	CATION OF LIME, FERTIL CHORING THE RECPS IN MATELY 12-IN. OF RECP ENCH. USE SHOREMAX TAL SCOUR PROTECTIO ES/STAKES APPROXIMA CKFILL AND COMPACT ACTED SOIL AND FOLD COVER THE SEED AND C WITH A ROW OF STAP OSS THE WIDTH OF THE R FLOW IN BOTTOM OF ER FLOW IN BOTTOM OF DE AGAINST THE SOIL SU IL SURFACE BY PLACING IS AS SHOWN IN THE S (SHINGLE STYLE) WITH	A 6-INCH S EXTENDED MAT AT THE N AS NEEDED. TELY 12-IN. THE TRENCH THE COMPACTED LES/STAKES RECPS. CHANNEL. JRFACE. ALL TAPLE A 4 TO 6-IN.				DESCRIPTION
		5. FULL	CENTER TO SECUR LENGTH EDGE OF	E RECPS. RECPS AT TOP OF SID	STAGGERED 4-IN. APAR DE SLOPES MUST BE ANG Y 12-IN. APART IN A 6-I	CHORED WITH				DATE
	L	WID 6. ADJ ON	E TRENCH. BACKFI ACENT RECPS MUS RECPS TYPE) AND S	LL AND COMPACT THE T BE OVERLAPPED APF STAPLED.	E TRENCH AFTER STAPL PROXIMATELY 2 TO 5-IN	NG. I. (DEPENDING				NO.
ISOMETRIC VIEW (SEE END ANCHOR TREN (SEE NOTE 8) 6-IN. 6-IN. 2-FT. 0.8-FT. T. O O O O 0.8-FT. T. O O O O 0.3-FT. O O O O 3.3-FT. O O O O 0.8-FT.	SOIL PREPARATION (SEE NOTE 1)	AT 3 APA 8. THE STAI 9. HOR STAI 10. IN LO THA 11. TEM APP AME MAT <u>TEMPOR</u> 1. REGI EVEF RAIN ANY 2. GOO NOT 3. ANY THE 4. IF EF SHA 5. MOI	30 TO 40-FT. INTER' RT AND 4-IN. ON 0 TERMINAL END OF PLES/STAKES APPR NCH. BACKFILL AND SIZONTAL STAPLE S PLES TO SECURE TH OOSE SOIL CONDIT N 6-IN. MAY BE NE PORARY MATTING ROVED EQUIVALEN FRICAN GREEN'S PH TING FOR EACH RE ARY MATTING MAI ULAR INSPECTIONS RY CALENDAR WEE NFALL EVENT THAT NECESSARY REPA DO CONTACT WITH OCCUR BENEATH AREAS OF THE RE GROUND SHALL B ROSION OCCURS D LL BE FIXED AND T	VALS. USE A DOUBLE R CENTER OVER ENTIRE V THE RECPS MUST BE OXIMATELY 12-IN. APA D COMPACT THE TREN PACING SHOULD BE A TONS, THE USE OF STA CESSARY TO PROPERL SHALL BE NORTH AM IT. REFER TO PLAN VIE RODUCT NAME FOR SP DADSIDE SWALE/DITCH NTENANCE S OF TEMPORARY MAT K AND, AS RECOMMEN PRODUCES ½-INCH O IRS IMMEDIATELY. THE GROUND MUST IN THE RECP. CP THAT ARE DAMAGE E REPAIRED AND STAP UE TO POORLY CONTE HE ERODED AREA PRO	ALTERED IF NECESSARY LONG THE CHANNEL SU APLE OR STAKE LENGTH LY SECURE THE RECP'S. IERICAN GREEN OR ENO WORAWINGS FOR NO PECIFIC GRADE OF TEMI H. TTING SHALL BE CONDUNED, WITHIN 24-HOU WR MORE OF PRECIPITAT BE MAINTAINED, AND F ED OR NOT IN CLOSE CO PLED. ROLLED DRAINAGE, THE	GERED 4-IN. EL. DW OF 6-IN. WIDE TO ALLOW URFACE. IS GREATER GINEER RTH PORARY UCTED ONCE RS AFTER EACH TON. MAKE EROSION MUST ONTACT WITH E PROBLEM	DETAILS (SHEET 1 OF 4)		enoree development site, e≻ plan - initial phase Luck stone corporation	STOLTH CAROLIN
<u>HIGH FLOW CHANNEL</u> 75 STAPLES PER SQ.YD. <u>S</u>								DJECT NU		
_	4 CHANNEL M 3 SCALE: N.T.S.	<u>ATTING</u>						61-19- WING NU		



3


- COMPACTION EQUIPMENT OR CONSTRUCTION EQUIPMENT.
- DETAIL 10.

SEDIMENT CLEANOUT STAKE.

AND POOL AREA.

						SEDIM	ENT BASIN S	UMMARY TA	BLE					
	А	В	С	D	Е	F	G	н	I	J	К	L	М	N
SEDIMENT BASIN ID	BOTTOM OF BASIN ELEVATION (FT.)	TOP OF RISER ELEVATION (FT.)	EMERGENCY SPILLWAY CREST ELEVATION (FT.)	TOP OF BERM ELEVATION (FT.)	TOP OF BERM WIDTH (FT.)	CLEAN OUT ELEVATION (FT.)	RISER SHAPE (FT. X FT.)	OUTLET PIPE DIAMETER (DO) (FT.)	OUTLET PIPE UPSTREAM INV. ELEVATION (FT.)	OUTLET PIPE DOWNSTREAM INV. ELEVATION (FT.)	LENGTH OF OUTLET PIPE (FT.)	SLOPE OF OUTLET PIPE (%)	INTERIOR SIDE SLOPES (Z FT. X 1 FT.)	EMERGENCY SPILLWAY INTERIOR SII SLOPES (Z FT. 1 FT.)
P1-SB-1	558.0	564.4	565.4	567.0	12	561.5	3x3	2	558.0	557.0	100	1.0	3 :1	3 :1
P1-SB-2	548.0	554.4	555.4	557.0	12	551.5	3x3	2	548.0	547.0	100	1.0	3 :1	3 :1
P2-SB-1	620.0	627.3	628.3	630.0	12	624.4	3x3	2	620.0	619.0	100	1.0	3 :1	3 :1
E-SB-1	608.0	614.5	615.5	617.0	12	611.8	3x3	2	608.0	607.0	100	1.0	3 :1	3 :1
E-SB-2	588.0	592.8	593.8	595.0	12	590.6	3x3	2	588.0	587.0	100	1.0	3 :1	3 :1
E-SB-3	596.0	600.5	601.5	603.0	12	598.4	3x3	2	596.0	595.0	100	1.0	3 :1	3 :1
SE-SB-1	558.0	565.6	566.6	568.0	12	562.7	3x3	2	558.0	557.0	100	1.0	3 :1	3 :1
SE-SB-2	545.0	552.2	553.2	555.0	12	549.1	3x3	2	545.0	544.0	100	1.0	3 :1	3 :1
W-SB-1	540.0	547.3	548.3	550.0	12	544.0	3x3	2	540.0	539.0	100	1.0	3 :1	3 :1
W-SB-2	567.0	574.3	575.3	577.0	12	571.1	3x3	2	567.0	566.0	100	1.0	3 :1	3 :1

	PLUNGE POOL SIZING SUMMARY TABLE													
ID	Α	В	С	D	Е	F	G	Н						
P1-SB-1	1.6	3.0	3.0	2.0	13.4	9.4	1.5	2.0						
P1-SB-2	1.6	3.0	3.0	2.0	13.8	9.7	1.6	2.0						
P2-SB-1	1.3	3.0	3.0	1.6	11.1	7.8	1.2	2.0						
E-SB-1	1.3	3.0	3.0	1.6	11.0	7.8	1.2	2.0						
E-SB-2	1.4	3.0	3.0	1.7	11.8	8.3	1.3	2.0						
E-SB-3	1.2	3.0	3.0	1.6	10.6	7.5	1.2	2.0						
SE-SB-1	1.2	3.0	3.0	1.5	10.4	7.3	1.2	2.0						
SE-SB-2	1.6	3.0	3.0	2.0	13.8	9.7	1.6	2.0						
W-SB-1	2.6	3.0	3.0	3.2	21.9	15.4	2.5	2.0						
W-SB-2	1.6	3.0	3.0	2.0	13.9	9.8	1.6	2.0						

POROUS BAFFLE POSTS MUST BE 60-IN. TO 96-IN. LONG STEEL POSTS THAT MEET, AT A MINIMUM, THE

- COMPOSED OF A HIGH STRENGTH STEEL WITH A MINIMUM YIELD STRENGTH OF 50,000 PSI.
- INCLUDE A STANDARD "T" SECTION WITH A NOMINAL FACE WIDTH OF 1.38-IN. AND A NOMINAL "T" LENGTH
- WEIGH 1.25 POUNDS PER FOOT (± 8%)
- 2. POSTS SHALL BE EQUIPPED WITH PROJECTIONS TO AID IN FASTENING OF BAFFLE MATERIAL.
- 3. 3. INSTALL POSTS TO A MINIMUM OF 24-IN. A MINIMUM HEIGHT OF 1-IN. TO 2-IN. ABOVE THE FABRIC
- SHALL BE MAINTAINED, AND A MAXIMUM HEIGHT OF 3-FT. SHALL BE MAINTAINED ABOVE THE GROUND.
- 4. POST SPACING SHALL BE AT A MAXIMUM OF 4-FT. ON
- 1. BAFFLE MATERIAL MUST BE COMPOSED OF COIR-BASED MATERIALS OR TURF REINFORCEMENT MATTING (TRM) THAT CONSISTS OF THE FOLLOWING REQUIREMENTS: HAVE A LIGHT PENETRATION (% OPENINGS) BETWEEN
- FREE OF LOOSE STRAW MATERIAL;
- HAVE A MINIMUM TENSILE STRENGTH OF 145 LB/FT;
- HAVE A MINIMUM WIDTH OF 48-IN.
- 2. 12-IN. OF THE FABRIC SHOULD BE PLACED WITHIN EXCAVATED TRENCH AND TOED IN WHEN THE TRENCH IS BACKFILLED OR BAFFLE MATERIAL MAY BE STAPLED INTO GROUND BY USING 12-IN. STAPLES WITH A MAXIMUM
- 3. BAFFLE MATERIAL SHALL BE PURCHASED IN CONTINUOUS ROLLS AND CUT TO THE WIDTH OF THE SEDIMENT BASIN
- 4. ATTACH BAFFLE TO THE STEEL POSTS USING HEAVY-DUTY PLASTIC TIES THAT ARE EVENLY SPACED ALONG THE ABOVE GROUND PORTION OF EACH POST.
- 5. INSTALL THE BAFFLE ROWS PERPENDICULAR TO THE DIRECTION OF THE STORMWATER FLOW AND PLACE EACH BAFFLE THE PROPER DISTANCE FROM INLET AND OUTLETS TO ALLOW ACCESS FOR MAINTENANCE AND

CONTROL PRODUCTS (RECPS), INCLUDING ANY NECESSARY

IN A 6-IN. DEEP X 6-IN. WIDE TRENCH WITH APPROXIMATELY

12-IN. OF RECPS EXTENDED BEYOND THE UP-SLOPE PORTION

OF THE TRENCH. ANCHOR THE RECPS WITH A ROW OF

STAPLES/STAKES APPROXIMATELY 12-IN. APART IN THE

BOTTOM OF THE TRENCH. BACKFILL AND COMPACT THE TRENCH AFTER STAPLING. APPLY SEED TO THE COMPACTED

SOIL AND FOLD THE REMAINING 12-IN. PORTION OF RECPS

BACK OVER THE SEED AND COMPACTED SOIL. SECURE RECPS OVER COMPACTED SOIL WITH A ROW OF STAPLES/STAKES

SPACED APPROXIMATELY 12-IN. APART ACROSS THE WIDTH

SLOPE BASED ON ENVIRONMENT INSPECTOR. RECPS WILL

PLACING STAPLES/STAKES IN APPROPRIATE LOCATIONS AS

APPROXIMATELY 2 TO 5-IN. OVERLAP DEPENDING ON THE

OVER END (SHINGLE STYLE) WITH AN APPROXIMATE 3-IN.

LENGTHS GREATER THAN 6-IN. MAY BE NECESSARY TO

BIONET SC150BN OR ENGINEER APPROVED EQUIVALENT.

24 HOURS OF THE END OF A STORM EVENT OF 0.5-IN. OR

GOOD CONTACT WITH THE GROUND MUST BE MAINTAINED,

CLOSE CONTACT WITH THE GROUND SHALL BE REPAIRED AND

DRAINAGE, THE PROBLEM SHALL BE FIXED AND THE ERODED

AND EROSION MUST NOT OCCUR BENEATH THE RECP.

INSPECT AT LEAST ONCE EVERY CALENDAR WEEK AND WITHIN

APPROXIMATELY 12-IN. APART ACROSS ENTIRE RECPS WIDTH.

OVERLAP. STAPLE THROUGH OVERLAPPED AREA,

SHOWN IN THE STAPLE PATTERN GUIDE.

PROPERLY SECURE THE RECP'S.

UNROLL WITH APPROPRIATE SIDE AGAINST THE SOIL SURFACE.

ALL RECPS MUST BE SECURELY FASTENED TO SOIL SURFACE BY

APPLICATION OF LIME, FERTILIZER, AND SEED.

6. EXTEND BAFFLE TO A MINIMUM OF 3 FEET.

OF THE RECPS.

RECPS TYPE.

GREATER.

STAPLED.

AREA PROTECTED.

GROUND COVER IS ESTABLISHED.

BAFFLES - INSPECTION & MAINTENANCE

- . THE KEY TO FUNCTIONAL POROUS BAFFLES IS WEEKLY INSPECTION, ROUTINE MAINTENANCE, AND REGULAR SEDIMENT REMOVAL.
- 2. REGULAR INSPECTIONS OF POROUS BAFFLES SHALL BE CONDUCTED ONCE EVERY CALENDAR WEEK AND, AS RECOMMENDED, WITHIN 24-HOURS AFTER EACH RAINFALL EVEN THAT PRODUCES 1/2-IN. OR MORE OF PRECIPITATION.
- 3. ATTENTION TO SEDIMENT ACCUMULATIONS ALONG EACH ROW OF BAFFLES IS EXTREMELY IMPORTANT. ACCUMULATED SEDIMENT SHOULD BE CONTINUALLY MONITORED AND REMOVED WHEN NECESSARY.
- 4. REMOVE ACCUMULATED SEDIMENT WHEN IT REACHES 1/3 THE HEIGHT OF THE BAFFLE ROW OR WHEN IT REACHES THE CLEAN-OUT HEIGHT OF THE SEDIMENT BASIN OR TRAP, WHICHEVER IS REACHED FIRST.
- 5. REMOVED SEDIMENT SHALL BE PLACED IN STOCKPILE STORAGE AREAS OR SPREAD THINLY ACROSS DISTURBED AREA. STABILIZE THE REMOVED SEDIMENT AFTER IT IS RELOCATED.
- 6. CHECK FOR AREAS WHERE STORMWATER RUNOFF HAS ERODED A CHANNEL BENEATH EACH ROW OF BAFFLES, OR WHERE THE BAFFLE HAS SAGGED OR COLLAPSED DUE TO RUNOFF OVERTOPPING THE BAFFLE.
- 7. CHECK FOR TEARS/RIPS WITHIN THE BAFFLES, AREAS WHERE THE BAFFLE HAS BEGUN TO DECOMPOSE, AND FOR ANY OTHER CIRCUMSTANCE THAT MAY RENDER THE BAFFLE INEFFECTIVE. REMOVED DAMAGED BAFFLES AND REINSTALL NEW BAFFLES IMMEDIATELY.
- 8. POROUS BAFFLES SHOULD BE REMOVED WITHIN 30 DAYS AFTER FINAL STABILIZATION IS ACHIEVED AND ONCE IT IS REMOVED, THE RESULTING DISTURBED AREA SHALL BE PERMANENTLY STABILIZED.
- 9. REMOVE ANY ACCUMULATED SEDIMENT UPON BAFFLE REMOVAL. DISPOSE OF SEDIMENT OFF-SITE ACCORDING TO STATE AND LOCAL REGULATIONS.

	CHARTER OF	H FF		RIONELL		HH HH	
							APV
							CHK
							ΒY
							DESCRIPTION
							DATE
							ÖN
	DETAILS (SHEET 3 OF 4)			enoree development site, e≻ plan - initial phase	ILICK STONE CORPORATION	ENOREE, SOUTH CAROLINA	
F		OJEC 261					
		\WI				٢	
4			1				

5

h

2016 AYRSLEY TOWN BLVD.

SUITE 2-A

CHARLOTTE, NC 28273

(704) 523-4726

ENGINEERING FIRM

LICENSE NUMBER: F-0176

E	ER TABLE								
	SIZE (IN.)	ORIFICE SIZE (IN.)							
	8"	8"							
	8"	8"							
	8"	6"							
	8"	6"							
	8"	7"							
	8"	6"							
	6"	5"							
	8"	8"							
	8"	8"							
	8"	8"							

	,	CH E	AR (7 NG	SU] LO] 704) INE	EY T ITE ITE 523 ERI	COV 2-A 3-47 IBEI	C 2 26 FIR	827 M	3	
	and the second se	LE CHARTER		H E O O H		RIGULE		AHL AND		
										CHK APV
										BY CH
										DESCRIPTION
										DATE
										NO.
DETAILS (SHEET 4 OF 4)						enoree development site, e≻ plan - initial phase	ILICK STONE CORPORATION		ENOREE, SOUTH CAROLINA	
			42	261	-19	1UM 9-1	56	2		
		6						6		

Appendix II – Sediment Basin Calculations

Comprehensive Stormwater Pollution Prevention Plan (C-SWPPP) Luck Stone Corporation | Enoree Quarry – Initial Phase Sediment Basin and Plunge Pool Calculation

S&ME Project No. 4261-19-156

COMPUTATIONS BY:	Signature	Justin C. Condon	Date	4/6/2021
	Name	Justin C. Condon	_	
	Title	Staff Professional		
ASSUMPTIONS	Signature	ana 3. Vite	Date	4/6/2021
AND PROCEDURES	Name	Andrew E. Wilmer, E.I.		
CHECKED BY:	Title	Staff Professional		
		the Killer		
COMPUTATIONS	Signature	mitten Jenth	Date	4/6/2021
CHECKED BY:	Name	Matthew H. Kunkle, P.E.		
	Title	Project Engineer		
REVIEWED BY:	Signature	(H/SAU	Date	4/6/2021
	Name	Christopher J.L. Stahl, P.E.		
	Title	Principal Engineer		

REVIEW NOTES / COMMENTS:

OBJECTIVE

This Sediment Basin Calculation package (package) was developed to evaluate the hydrologic and hydraulic characteristics of proposed development areas at the Luck Stone Corporation – Enoree Quarry (Site) to design proposed sediment basins intended to manage stormwater and sediment. Each sediment basin at the Site was designed in accordance with the design criteria presented in the South Carolina Department of Health and Environmental Control (SC DHEC) Stormwater Best Management Practice (BMP) Handbook. Meanwhile, plunge pools at each sediment basin outlet were designed based on guidance provided by the Natural Resources Conservation Service (NRCS) guidance to dissipate flows and resist erosion from each sediment basin.

SUMMARY

Site development activities were anticipated to disturb large surface areas; as such, sediment basins were designed to manage sediment and peak stormwater flows during anticipated construction conditions for the 10-year (yr), 25-yr, and 100-yr, 24-hour (hr) storm events. Proposed sediment basins were designed in general accordance with the SC DHEC Stormwater BMP Handbook and the selected design criteria were summarized subsequently within this package. Plunge pools were designed to dissipate flows from each sediment basin and each plunge pool was designed in accordance with the NRCS "Riprap Lined Plunge Pool for Cantilever Outlet" spreadsheet, which was developed by the United States Department of Agriculture (USDA) Soil Conservation Service (SCS) as described within Design Note No. 6.

***** REFERENCES

The following references were utilized during the development of this calculation package.

- <u>SC DHEC Stormwater BMP Handbook</u>, Appendix F South Carolina Rainfall Data, SC DHEC, Revised July 2005.
- 2. TR-55 Urban Hydrology for Small Watersheds, USDA-NRCS, June 1986.
- 3. NRCS Soil Figures, S&ME Inc., March 2021.
- 4. Drainage Area Figures, S&ME Inc., March 2021.
- 5. *Compiled HydroCAD Report*, S&ME Inc., March 2021.
- 6. Compiled SEDIMOT IV Report, S&ME Inc., March 2021.
- <u>SC DHEC Stormwater BMP Handbook, Sediment Control BMPs Sediment Basins</u>, SC DHEC, Revised March 2014.
- 8. <u>Design Hydrology and Sedimentology for Small Catchments</u>, Haan, C.T., Barfield, and Hayes, 1994. Pg. 147-148.
- 9. <u>Determining the Skimmer Size and the Required Orifice</u>, Faircloth Skimmer, November 2007.
- **10.** <u>SC DHEC Stormwater BMP Handbook</u>, Appendix E South Carolina Soils, SC DHEC, Revised July 2005.
- **11.** <u>SC DHEC Stormwater BMP Handbook</u>, Appendix K Figures, SC DHEC, Revised July 2005.
- <u>ENG Riprap Lined Plunge Pool for Cantilever Outlet</u>, USDA SCS Design Note. No. 6, 2nd Ed. March 5, 1986.
- 13. <u>Riprap Lined Plunge Pool for Cantilever Outlet</u>, NRCS Plunge Pool Sheets, March 2021.

***** DEFINITION OF VARIABLES

The following variables are defined or used as a part of this calculation package.

- Q = flow rate (cfs)
- CN = curve number (unitless)
- i = rainfall intensity (in./hr)
- A = drainage area (acres)
- T_c = time of concentration (min)
- $T_x = T_c$ component number (min)
- L = spillway length, length of pipe (ft)
- a = cross-sectional area of the pipe (ft^2)
- $g = gravity (ft/s^2)$
- W_{AB} = weight of anti-flotation block (lbs)
- L_{AB} = length of anti-flotation block (ft)
- H_{AB} = height of anti-flotation block (ft)
- R = hydraulic radius (ft)
- d = depth (ft) or orifice diameter (in.)
- S = max. retention after rainfall begins (in.)
- K_e = entrance head loss coefficient (unitless)
- K_b = bend head loss coefficient (unitless)

***** KNOWN AND ASSUMED VARIABLES

 $\begin{array}{l} g = 32.2 \ ft/s^2 \\ P_2 = 3.7 \ in., \ P_{10} = 5.4 \ in., \ P_{25} = 6.7 \ in., \ P_{100} = 9.4 \ in. \\ y_w = 62.4 \ lb/ft^3 \\ y_c = 150 \ lb/ft^3 \end{array}$

- γ_c = unit weight of concrete (lb/ft³)
- γ_w = unit weight of water (lb/ft³)
- U_{riser} = uplift force acting on riser (lbs)
- H = height of spillway or riser (ft)
- A_r = area of riser (ft²)
- A_o = skimmer orifice area (ft²)
- V_{req} = required sediment storage volume (ft³)
- K_v = velocity factor (ft/sec)
- $P_2 = 2$ -year, 24-hour rainfall (in.)
- P = rainfall intensity (in.)
 - Manning's roughness coefficient (unitless)
- v = velocity (ft/s)

n

S

- D_o = outlet pipe diameter (ft)
- d_{50} = riprap size (ft)
 - = slope (ft/ft)
- K_c = frictional head loss coefficient (unitless)
 - [assumed] [**Reference 1**] [assumed] [assumed]

*** DESIGN CRITERIA**

Each sediment basin was designed in accordance with the SC DHEC Stormwater BMP Handbook with the following criteria:

- Total Suspended Solids (TSS) removal efficiency is greater than or equal to 80% or peak settable solids concentration is less than 0.5 milliliters per liter;
- Maximum drainage area is limited to 30 acres unless alternate sediment capture methodology is utilized (i.e., SEDIMOT IV software);
- Principal spillway discharge capacity developed for the 10-yr, 24-hr storm event;
- Emergency spillway capacity developed for the 100-yr, 24-hour storm event;
- Top of embankment elevation crest selected to be at least 2 ft height above the principal spillway crest and 1 ft above the emergency spillway crest;
- Maintain 0.5 ft of freeboard within the emergency spillway during 100-yr storm;
- Minimum sediment storage capacity of 3,600 cubic feet (ft³) per drainage area acre;
- Dewatering time is maintained between 48 and 120 hours;
- Sediment basin designed with a bottom slope of at least 0.5%;
- Sediment basin length is at least two times the basin width;
- Sediment basin side slopes are constructed at 2 horizontal to 1 vertical (2H:1V) or flatter;
- 20 percent of the basin volume is maintained within the basin forebay; and
- Basin maintains a geometry that is accessible by maintenance equipment.

♦ 1.0 SEDIMENT BASIN DESIGN CALCULATIONS

1.1 Compute flow into point of interest for 10-yr, 25-yr, and 100-yr, 24-hr design storms

Each sediment basin was located based on existing topographic features and the proposed Site development plan for the facility. Drainage areas that contribute stormwater runoff to each proposed sediment basin were delineated considering development or construction conditions during initial site clearing. From the existing and proposed drainage features on site, a point of interest (POI) was selected at the inlet to each proposed sediment basin. A point of interest was considered to be the analysis point of a contributing watershed or group of sub-catchments to which the disturbed areas route stormwater. **Reference 4** presents the proposed sediment basin locations and the contributing drainage areas.

Runoff volumes for the 10-yr, 24-hr and 100-yr, 24-hr design storms were calculated using the Soil Conservation Service (SCS) Curve Number (CN) Method, presented as follows:

$$Q = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 $S = \frac{1000}{CN}$ [Reference 2]

The curve number "CN" is an empirical parameter used to predict direct runoff (Q, in inches) from rainfall of a drainage area and was developed based on the surface cover type of a drainage area. Drainage areas at the Site consisted of multiple soil and cover types. NRCS Web Soil Survey (**Reference 3**) was queried to identify the hydrologic soil groups on site and the preliminary site development plan was referenced to select cover types during construction conditions. As summarized in **Table 1** shown below, S&ME assumed that each drainage area consisted entirely of bare soil during construction conditions and curve numbers were selected accordingly.

Table 1: Curve Number Summary Table										
Drainage Area	Total A	Area	Combined Curve Number							
	(sq.ft.)	(acres)								
P1-SB-1	819,548	18.81	91							
P1-SB-2	908,446	20.86	91							
P2-SB-1	437,891	10.05	91							
E-SB-1	437,294	10.04	91							
E-SB-2	594,248	13.64	91							
E-SB-3	458,785	10.53	91							
SE-SB-1	350,298	8.04	91							
SE-SB-2	760,254	17.45	91							
W-SB-1	1,674,458	38.44	91							
W-SB-2	911,980	20.94	91							

The time of concentration (T_c) is the time for stormwater flow to travel from the most hydrologically remote point in a drainage area to leave the watershed or to reach the point of interest. The time of concentration was estimated using the Technical Release 55 (TR-55) method (**Reference 2**). TR-55 provides guidance to compute the T_c for sheet flow, shallow concentrated flow, and open channel flow components of a drainage area or watershed. The first component of stormwater runoff is sheet flow, which can be estimated by the following equation for drainage lengths less than or equal to 300 ft:

$$T_{t} = \frac{0.007(nL)^{0.8}}{(P_{2})^{0.5} s^{0.4}}$$
 [Reference 2]

The estimated sheet flow travel time to each basin was calculated, as shown in **Table 2** below:

	Table 2: Drainage Area Sheet Flow Summary									
Location ID	Manning's Roughness Coefficient { <i>n</i> }	Length {L} (ft)	Slope {s} (ft/ft)	2-Yr, 24-Hr Rainfall (in) [Ref. 1]	Travel Time {Tu} (min)					
P1-SB-1	0.050	300	0.0813	3.70	5.2					
P1-SB-2	0.050	300	0.0769	3.70	5.3					
P2-SB-1	0.050	300	0.0473	3.70	6.5					
E-SB-1	0.050	300	0.0455	3.70	6.6					
E-SB-2	0.050	300	0.0432	3.70	6.7					
E-SB-3	0.050	300	0.1013	3.70	4.8					
SE-SB-1	0.050	300	0.0331	3.70	7.4					
SE-SB-2	0.050	300	0.0727	3.70	5.4					
W-SB-1	0.050	300	0.0378	3.70	7.1					
W-SB-2	0.050	300	0.0716	3.70	5.5					

The second component of the estimated time of concentration for each drainage area was shallow concentrated flow. Shallow concentrated flow was computed using the following equations:

$$V_{unpaved} = K_v * (s)^{0.5}$$
 [Reference 2]
$$T_t = \frac{L}{V*60} \text{ (min)}$$
 [Reference 2]

For disturbed/construction conditions, the ground surface condition of "Nearly Bare and Untilled" was considered and a K_v of 10 ft/sec was selected. The estimated shallow concentrated flow travel time to each sediment basin was calculated, as shown in **Table 3** below.

Tabl	Table 3: Drainage Area Shallow Concentrated Flow Summary									
Location ID	Surface Description	Length {L} (ft)	Slope {s} (ft/ft)	Average Velocity {V} (ft/s)	Travel Time {T ₁₂ } (min)					
P1-SB-1	Nearly Bare & Untilled	819	0.0569	2.4	5.7					
P1-SB-2	Nearly Bare & Untilled	721	0.0618	2.5	4.8					
P2-SB-1	Nearly Bare & Untilled	165	0.0658	2.6	1.1					
E-SB-1	5B-1 Nearly Bare & Untilled		0.0436	2.1	4.6					
E-SB-2	Nearly Bare & Untilled	488	0.0380	1.9	4.2					
E-SB-3	Nearly Bare & Untilled	553	0.0481	2.2	4.2					
SE-SB-1	Nearly Bare & Untilled	324	0.0515	2.3	2.4					
SE-SB-2	Nearly Bare & Untilled	763	0.0461	2.1	5.9					
W-SB-1	Nearly Bare & Untilled	1340	0.0692	2.6	8.5					
W-SB-2	Nearly Bare & Untilled	1050	0.0350	1.9	9.4					

Once the stormwater runoff reaches a channel, swale or ditch, the estimated flow velocity to each sedimentation basin was calculated by Manning's equation and utilized to compute flow velocity and subsequently the time of concentration.

$$V = \frac{1.49(R^{\frac{2}{3}} \times s^{\frac{1}{2}})}{n}$$

[Reference 2]

Table 4: Drainage Area Open Channel Flow Summary										
Location ID	Slope {s} (ft/ft)	Manning's Roughness Coefficient { <i>n</i> }	Length {L} (ft)	Travel Time {T ₁₃ } (min)						
P1-SB-1	0.1138	0.022	202	0.1						
P1-SB-2	0.0244	0.022	1373	1.5						
P2-SB-1	0.0517	0.022	77	0.1						
E-SB-1	0.0145	0.022	69	0.1						
E-SB-2	0.0481	0.022	655	0.5						
E-SB-3	-	-	-	-						
SE-SB-1	0.0165	0.022	1183	1.6						
SE-SB-2	-	_	_	-						
W-SB-1	0.0459	0.022	172	0.1						
W-SB-2	-	-	-	-						

Table 4, below, summarizes the open channel flow calculations.

The total time of concentration is computed by summing each travel time component of a drainage area and the results are summarized in **Table 5** below.

Table 5: Estimated Time of Concentration Summary									
Location ID	Sheet Flow Travel Time (min) [Ref.2]	Shallow Concentrated Flow Travel Time (min) [Ref.2]	Channel Flow Travel Time (min) [Ref.2]	Pipe Flow Travel Time (min)	Time of Concentration (min) [Ref.2]				
P1-SB-1	5.2	5.7	0.1	-	11.0				
P1-SB-2	5.3	4.8	1.5	-	11.6				
P2-SB-1	6.5	1.1	0.1	-	7.7				
E-SB-1	6.6	4.6	0.1	-	11.3				
E-SB-2	6.7	4.2	0.5	-	11.4				
E-SB-3	4.8	4.2	_	_	9.0				
SE-SB-1	7.4	2.4	1.6	-	11.4				
SE-SB-2	5.4	5.9	_	_	11.3				
W-SB-1	7.1	8.5	0.1	_	15.7				
W-SB-2	5.5	9.4	_	-	14.9				

Runoff peak flow rates were computed for the 10-yr, 25-yr, and 100-yr design storms for initial construction conditions and a Type II rainfall distribution using HydroCAD[®], the output file is provided as **Attachment I. Table 6** summarizes each of the flow rates for each design storm below.

	Table 6: Stormwater Flow Rate Summary (Construction Conditions)										
Sediment Basin ID	Drainage Area {A} (acres)	Curve Number {CN}	Time of Concentration {T _c }	10-Year Storm Runoff {Q10} (cfs)	25-Year Storm Runoff {Q25} (cfs)	100-Year Storm Runoff {Q100} (cfs)					
P1-SB-1	18.8	91.0	11.0	112.62	143.20	206.07					
P1-SB-2	20.9	91.0	11.6	122.88	156.23	224.81					
P2-SB-1	10.1	91.0	7.7	67.16	85.29	122.57					
E-SB-1	10.0	91.0	11.3	59.49	75.65	108.87					
E-SB-2	13.6	91.0	11.4	80.84	102.48	147.49					
E-SB-3	10.5	91.0	9.0	67.55	85.83	123.43					
SE-SB-1	8.0	91.0	11.4	47.65	60.41	86.94					
SE-SB-2	17.5	91.0	11.3	103.43	131.52	189.28					
W-SB-1	38.4	91.0	15.7	200.28	254.92	367.28					
W-SB-2	20.9	91.0	14.9	111.85	142.35	205.05					

1.2 Confirm basin length-to-width ratio

As stated within the Design Criteria section, SC DHEC requires that sediment basins be designed with a minimum length-to-width ratio of 2:1 (**Reference 7**). As shown in **Reference 4**, sedimentation basin footprints were positioned and evaluated to confirm that the minimum length to width ratios are sufficient. **Table 7**, below, summarizes the dimensions of each sediment basin proposed for the Site.

	Table 7: Sediment Basin Geometry Summary									
Sediment Basin ID	Basin Length (ft)	Basin Width (ft)	Ratio Provided (L:W)	Ratio Provided > Ratio Required						
P1-SB-1	361	155	2 :1	YES						
P1-SB-2	356	173	2 :1	YES						
P2-SB-1	295	116	3 :1	YES						
E-SB-1	277	113	2 :1	YES						
E-SB-2	332	160	2 :1	YES						
E-SB-3	320	145	2 :1	YES						
SE-SB-1	238	92	3 :1	YES						
SE-SB-2	318	148	2 :1	YES						
W-SB-1	451	176	3 :1	YES						
W-SB-2	393	146	3 :1	YES						

1.3 Estimate Sediment Storage Volume

SCDHEC requires the minimum sediment storage volume for a sediment basin to be equal to 3,600 cubic feet of sediment storage volume per acre of drainage area (**Reference 7**). Furthermore, twenty percent (20%) of the sediment storage volume is to be provided within the sediment forebay(s). Stage-storage volumes for each sediment basin were developed from the bottom of basin to the crest perimeter berm or dike. Stage-storage volumes were estimated using the prismatic stage-storage volume calculation method developed from preliminary design surfaces developed within AutoCAD® Civil 3D®. Stage-storage information was input into HydroCAD® at one-foot contour intervals to model each sediment basin as a pond. The estimated required sediment storage volume using the disturbed area and the total storage volume are shown below within **Table 8**.

Table 8: Sediment Basin Volume Summary								
Sediment Basin ID	Drainage Area {A} (acres)	{A} Required P		Volume Provided > Volume Required				
P1-SB-1	18.81	67731	308221	YES				
P1-SB-2	20.86	75078	345791	YES				
P2-SB-1	10.05	36189	165593	YES				
E-SB-1	10.04	36140	162907	YES				
E-SB-2	13.64	49111	218775	YES				
E-SB-3	10.53	37916	190522	YES				
SE-SB-1	8.04	28950	131085	YES				
SE-SB-2	17.45	62831	281796	YES				
W-SB-1	38.44	138385	617073	YES				
W-SB-2	20.94	75370	346179	YES				

1.4 Principal Spillway Design

Stormwater runoff for the 10-yr and 25-yr design storms were calculated within Section 1.1 of this calculation package. To compute, the full culvert pipe flow from the principal riser, the following equation was used:

$$Q = a(2gH)^{\frac{1}{2}}/(1 + K_e + K_b + K_cL)^{\frac{1}{2}}$$
 [Reference 8]

Stormwater flow through the top of the principal riser or spillway was modeled as a weir and was calculated using the weir equation where $Q=CLH^{3/2}$, as implemented within HydroCAD®. The estimated water surface elevations for the 10-yr and 25-yr design storms for each basin were calculated and summarized in **Table 9** below.

	Table 9: Sediment Basin Principal Spillway Design											
Sediment Basin ID (ft)		Top of Dam Elevation (ft)	Riser Dimensions (ft)	Culvert Pipe Diameter (in.)	10-Year Water Surface Elevation (ft)	25-Year Water Surface Elevation (ft)	Freeboard* (ft)					
P1-SB-1	564.4	558.0	567.0	3x3	24	564.31	564.69	2.31				
P1-SB-2	554.4	548.0	557.0	3x3	24	554.34	554.70	2.30				
P2-SB-1	627.3	620.0	630.0	3x3	24	627.26	627.52	2.48				
E-SB-1	614.5	608.0	617.0	3x3	24	614.45	614.71	2.29				
E-SB-2	592.8	588.0	595.0	3x3	24	592.76	593.04	1.96				
E-SB-3	600.5	596.0	603.0	3x3	24	600.40	600.69	2.31				
SE-SB-1	565.6	558.0	568.0	3x3	24	565.57	565.78	2.22				
SE-SB-2	552.2	545.0	555.0	3x3	24	552.14	552.50	2.50				
W-SB-1	547.3	540.0	550.0	3x3	24	547.28	547.74	2.26				
W-SB-2	574.3	567.0	577.0	3x3	24	574.22	574.61	2.39				
*Freeboard r	neasure	d from 2	25-year water	surface elevation	to the top of	dam elevatior	า					

As shown above, each sediment basin contains the 10-year design storm without activating the principal spillway riser.

1.5 Emergency Spillway Design for a 100-Year Design Storm.

Weir flow through the emergency spillway was calculated using the weir equation Q=CLH^{3/2} as implemented within HydroCAD®. The discharge to each sediment basin during the 100-year design storm was calculated in HydroCAD® as recorded in **Table 6**. North American Green EroNet P300 matting (Manning's number of 0.034) was proposed to line the emergency spillway and down slope area to resist erosive forces, if the emergency spillway were to be activated. Although the 100-yr storm does not activate the emergency spillways of each sediment basin, these sediment basins were designed to maintain a minimum 0.5 foot freeboard during the 100-yr storm (**Reference 7**). The emergency spillways of P1-SB-1, P1-SB-2, P2-SB-1, E-SB-1, E-SB-2, SE-SB-2, W-SB-1, and W-SB-2 are activated during the 100-year storm and continue to maintain a minimum 0.5 ft freeboard. The emergency spillway design is shown below in **Table 10**.

	Table 10: Emergency Spillway Design									
Sediment Basin ID	Top of Riser Elevation (ft)	Emergency Spillway Crest Elevation (ft)	Top of Dam Elevation (ft)	Emergency Spillway Slope (ft/ft)	Emergency Spillway Length (ft)	Emergency Spillway Breadth (ft)	Emergency Spillway Depth (ft)	100 Year Storm Water Elevation (ft)	Emergency Spillway Freeboard (ft)	
P1-SB-1	564.4	565.4	567.0	0.02	20	12.0	1.6	565.8	1.2	
P1-SB-2	554.4	555.4	557.0	0.02	20	12.0	1.6	555.8	1.2	
P2-SB-1	627.3	628.3	630.0	0.02	20	12.0	1.7	628.5	1.5	
E-SB-1	614.5	615.5	617.0	0.02	20	12.0	1.5	615.6	1.4	
E-SB-2	592.8	593.8	595.0	0.02	20	12.0	1.2	593.9	1.1	
E-SB-3	600.5	601.5	603.0	0.02	20	12.0	1.5	601.4	1.6	
SE-SB-1	565.6	566.6	568.0	0.02	20	12.0	1.4	566.6	1.5	
SE-SB-2	552.2	553.2	555.0	0.02	20	12.0	1.8	553.7	1.3	
W-SB-1	547.3	548.3	550.0	0.02	20	12.0	1.7	549.1	0.9	
W-SB-2	574.3	575.3	577.0	0.02	20	12.0	1.7	575.7	1.3	

1.6 Size Anti-Flotation Block

An anti-flotation block was designed for each sediment basin such that the weight of the anti-flotation block (including the riser concrete walls) was at least 10% more than the weight of the water displaced (**Reference 7**) (or uplift force on the riser). The anti-flotation block was estimated based on a rectangular base and thickness as shown below:

 $W_{AB} = L_{AB1} x L_{AB2} x H_{AB} x \gamma_c$

The uplift pressure was computed as:

$$U_{riser} = [H x A_r x \gamma_w] + [L_{AB} x L_{AB1} x H_{AB2} x \gamma_w]$$

The anti-flotation block sizing was designed as shown in **Table 11** below. For construction purposes, each anti-floatation block was considered equivalent to a 3-ft \times 3-ft precast concrete riser with a 6-in. thick concrete floor.

	Table 11: Anti-Flotation Block Design										
Sediment Basin ID	Bottom of Basin Elevation (ft)	Top of Riser Elevation (ft)	Riser Height {H} (ft)	Riser Area {Ar} (ft²)	Uplift Force on Riser {Uriser} (lb)	Height of Anti- Flotation Block {H _{AB} } (ft)	Anti- Flotation Block Area {Ar} (ft ²)	Weight of Anti- Flotation Block {W _{AB} } (Ib)	Weight of Concrete Walls (lb)	Weight of Concrete Total (lb)	Safety Factor Against Uplift
P1-SB-1	558.0	564.4	6.4	9.00	3,594	0.50	9.00	675	6,720	7,395	2.06
P1-SB-2	548.0	554.4	6.4	9.00	3,594	0.50	9.00	675	6,720	7,395	2.06
P2-SB-1	620.0	627.3	7.3	9.00	4,100	0.50	9.00	675	7,665	8,340	2.03
E-SB-1	608.0	614.5	6.5	9.00	3,650	0.50	9.00	675	6,825	7,500	2.05
E-SB-2	588.0	592.8	4.8	9.00	2,696	0.50	9.00	675	5,040	5,715	2.12
E-SB-3	596.0	600.5	4.5	9.00	2,527	0.50	9.00	675	4,725	5,400	2.14
SE-SB-1	558.0	565.6	7.6	9.00	4,268	0.50	9.00	675	7,980	8,655	2.03
SE-SB-2	545.0	552.2	7.2	9.00	4,044	0.50	9.00	675	7,560	8,235	2.04
W-SB-1	540.0	547.3	7.3	9.00	4,100	0.50	9.00	675	7,665	8,340	2.03
W-SB-2	567.0	574.3	7.3	9.00	4,100	0.50	9.00	675	7,665	8,340	2.03

1.7 Estimate Skimmer Sizes

Skimmers were designed to drain the storage volume of water contained during a 10-yr, 24-hr storm event within two to five days (48-120 hours) (**Reference 7**). Sediment basin volumes are provided in **Table 8**.

To select the orifice sizes required to drain the proposed sediment storage volume in two to five days, the following equations were applied:

$$A_o = \frac{V_{required}}{Factor}$$
 [Reference 9]

With the known orifice area required, the orifice diameter is calculated using the follow equation:

$$d = \sqrt{\frac{A_o}{\pi}} * 2$$
 [Reference 9]

The estimated skimmer sizes, orifice diameters, and drain times were calculated as shown in **Table 12** below.

Table 12: Skimmer Size and Orifice Diameter Summary								
Sediment Basin ID	Volume Below Principal Crest {V _{necessary} } (ft ³)	Skimmer Size [Ref. 9] (in.)	Factor [Ref. 9]	Required Orifice Area {A ₀ } (in. ²)	Orifice Diameter* (in.)	Number of Skimmers	Orifice flow (cfs)	Drain Time (hr)
P1-SB-1	298,532	8.0	5,961	50.08	8.00	1.00	1.168	71.0
P1-SB-2	330,915	8.0	5,961	55.51	8.00	1.00	1.168	78.7
P2-SB-1	159,508	8.0	5,961	26.76	6.00	1.00	0.600	73.9
E-SB-1	159,291	8.0	5,961	26.72	6.00	1.00	0.600	73.8
E-SB-2	216,464	8.0	5,961	36.31	7.00	1.00	0.894	67.2
E-SB-3	167,119	8.0	5,961	28.04	6.00	1.00	0.600	77.4
SE-SB-1	127,601	6.0	5,442	23.45	5.00	1.00	0.373	95.1
SE-SB-2	276,934	8.0	5,961	46.46	8.00	1.00	1.168	65.9
W-SB-1	609,946	8.0	5,961	102.32	8.00	2.00	2.336	72.5
W-SB-2	332,202	8.0	5,961	55.73	8.00	1.00	1.168	79.0
*Orifice diameter has been rounded up to the nearest inch.								

HydroCAD[®] was utilized to compute the drawdown time for the 10-year, 24-hour storm scenario. As such, different diameter skimmers with different orifice diameters will be installed in each sediment basin with an invert of the basin floor.

1.8 Determine Trapping Efficiency.

SCDHEC requires that each sediment basin must have an 80% trapping efficiency of Total Suspended Solids (TSS) (**Reference 7**). Since each basin except W-SB-1 receive less than the drainage area limitation of 30 acres, the eroded particle size, settling velocity, surface area of the basin at riser, and the 10-year, 24-hour design storm peak outflow from the basin were utilized to calculate a Basin Ratio. The trapping efficiencies were calculated using information obtained from SC DHEC Appendix E (**Reference 10**) and the Basin Ratio to compute the trapping efficiency from SC DHEC Appendix K (**Reference 11**). Calculated findings for each of the sediment basins are summarized in **Table 13** below.

	Table 13. Trapping Efficiency of a Sediment Basin (<30 Acres)								
Sediment Basin ID	Watershed Area (acres)	Peak Outflow Rate {Q10} (cfs)	Surface Area at Riser Crest (acres)	Soil Classification	Soil Characteristic Diameter {D15} (mm)	Soil Characteristic Settling Velocity {V15} (fps)	Basin Ratio	Trapping Efficiency Acceptable?	
P1-SB-1	18.8	1.168	1.01	Cecil	0.0066	1.22E-04	9439	>80% - GOOD	
P1-SB-2	20.9	1.168	1.13	Cecil	0.0066	1.22E-04	8480	>80% - GOOD	
P2-SB-1	10.1	0.600	0.54	Cecil	0.0066	1.22E-04	9084	>80% - GOOD	
E-SB-1	10.0	0.600	0.57	Cecil	0.0066	1.22E-04	8625	>80% - GOOD	
E-SB-2	13.6	0.894	0.94	Cecil	0.0066	1.22E-04	7810	>80% - GOOD	
E-SB-3	10.5	0.600	0.80	Cecil	0.0066	1.22E-04	6094	>80% - GOOD	
SE-SB-1	8.0	0.373	0.45	Cecil	0.0066	1.22E-04	6762	>80% - GOOD	
SE-SB-2	17.5	1.168	0.85	Cecil	0.0066	1.22E-04	11233	>80% - GOOD	
W-SB-1	38.4	-	-	Cecil	-	-	-	-	
W-SB-2	20.9	1.168	1.05	Cecil	0.0066	1.22E-04	9095	>80% - GOOD	

Since W-SB-1 contained a larger watershed (>30 acres) the computer model SEDIMOT IV was used to calculate the corresponding trapping efficiency. **Reference 6** contains the output from the computer model. **Table 14** below summarizes the trapping efficiencies.

Table 14: Trapping Efficiency of a Sediment Basin (Drainage Area > 30 acres)							
Sediment Basin ID	Watershed Area (acres)	Sediment Trapping Efficiency (%)	Clay Trapping Efficiency (%)	Silt Trapping Efficiency (%)	Sand Trapping Efficiency (%)	Average Trapping Efficiency (%)	Trapping Efficiency Acceptable?
W-SB-1	38.4	98.5%	53.5%	95.3%	100.0%	86.8%	>80% - GOOD

1.9 Determine Anti-Seep Collar Size.

An anti-seep collar will be installed along the principal spillway culvert downstream of the sediment basin (**Reference 7**). The anti-seep collar size was calculated to project at least 1.5 feet from the culvert pipe as shown in **Table 15** below.

Table 15: Anti-Seep Collar Design								
Sediment Basin ID	Outlet Pipe Diameter (in)	Anti-Seep Collar Size (ft)						
P1-SB-1	24	5						
P1-SB-2	24	5						
P2-SB-1	24	5						
E-SB-1	24	5						
E-SB-2	24	5						
E-SB-3	24	5						
SE-SB-1	24	5						
SE-SB-2	24	5						
W-SB-1	24	5						
W-SB-2	24	5						

1.10 Compute Peak Water Elevations during design storms.

For each design storm, HydroCAD[®] was used to calculate the peak inflow, outflow, and peak stage elevations, these are summarized in **Tables 16A and 16B** below.

Table 16A: Sediment Basin Design Storm Elevations						
Design Storm	Peak Inflow (cfs)	Inflow Outflow				
P1-SB-1						
2-yr	72.25	1.17	561.95			
10-yr	112.62	1.17	564.31			
25-yr	143.20	7.33	564.69			
100-yr	206.07	52.58	565.80			
P1-SB-2						
2-yr	78.85	1.17	551.97			
10-yr	122.88	1.17	554.34			
25-yr	156.23	7.68	554.70			
100-yr	224.81	54.29	555.83			
	P2-5	SB-1				
2-yr	43.21	0.60	624.84			
10-yr	67.16	0.60	627.26			
25-yr	85.29	4.59	627.52			
100-yr	122.57	45.40	628.47			
	E-S	5 B-1				
2-yr	38.28	0.60	612.18			
10-yr	59.49	0.60	614.45			
25-yr	75.65	4.48	614.71			
100-yr	108.87	39.74	615.57			
	E-S	B-2				
2-yr	51.87	0.89	590.94			
10-yr	80.84	0.89	592.76			
25-yr	102.48	5.58	593.04			
100-yr	147.49	36.39	593.94			

Table 16B: Sediment Basin Design Storm Elevations						
Design Storm	Peak Inflow (cfs)	Peak Outflow (cfs)	Peak Water Elevation (ft)			
E-SB-3						
2-yr	43.40	0.60	598.73			
10-yr	67.55	0.60	600.40			
25-yr	85.83	3.77	600.69			
100-yr	123.43	31.81	601.42			
SE-SB-1						
2-yr	30.58	0.37	563.20			
10-yr	47.65	0.37	565.57			
25-yr	60.41	3.40	565.78			
100-yr	86.94	36.49	566.55			
	SE-S	SB-2				
2-yr	66.55	1.17	549.55			
10-yr	103.43	1.17	552.14			
25-yr	131.52	7.71	552.50			
100-yr	189.28	58.23	553.66			
	W-9	5B-1				
2-yr	128.16	2.34	544.58			
10-yr	200.28	2.34	547.28			
25-yr	254.92	13.84	547.74			
100-yr	367.28	84.00	549.14			
	W-9	5B-2				
2-yr	71.61	1.17	571.63			
10-yr	111.85	1.17	574.22			
25-yr	142.35	7.80	574.61			
100-yr	205.05	56.48	575.72			

***** 2.0 PLUNGE POOL SIZING

The riprap plunge pool design was developed using NRCS's "Riprap Lined Plunge Pool for Cantilever Outlet" excel spreadsheet (**Reference 12**). The plunge pools were designed based on the peak outflow during the 25-yr, 24-hr storm event and the calculation spreadsheets are provided in **Reference 13**.

DISCUSSION

As a result of the proposed grading and construction on the project site, ten (10) separate drainage areas were delineated for 'during construction' conditions. Subsequently, ten (10) sediment basins were designed and will be implemented as a means to control peak stormwater flows from the 10-yr, 25-yr, and 100-yr, 24-hr storm event. Sediment basin designs were found to meet the requirements outlined in **Reference 7**.

References

Reference 1

SC DHEC Stormwater BMP Handbook, Appendix F – South Carolina Rainfall Data, SC DHEC, Revised July 2005.

APPENDIX F

SOUTH CAROLINA RAINFALL DATA

ADAPTED FROM

"Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 2, Version 2 (draft) G.M. Bonnin, D. Todd, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2004

NOTE: Rainfall data for counties listed were averaged when multiple or no rainfall station data was available.

RETURN PERIOD 24 HOUR STORM EVENT (INCHES)

Abbeville3.23.54.45.26.57.79Aiken3.23.74.65.36.57.48Allendale3.43.85.16.07.07.88Anderson3.33.64.55.56.67.99Bamberg3.43.64.65.56.88.19Barnwell3.33.64.55.36.47.38Berufort3.74.55.86.98.49.711Berkeley (North)3.53.85.05.97.28.29Berkeley (South)3.64.05.26.27.58.69Calhoun3.33.54.55.46.77.99Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38Chester2.93.64.65.36.37.18Chesterfield3.13.54.55.36.67.79Colleton (North)3.53.54.55.46.77.99Colleton (South)3.64.05.26.17.58.69Darlington3.23.54.55.46.78.09Dillon3.33.64.75.56.88.810	.4 350 .8 350 .3 275 .4 400 .1 275 .0 250 .0 275 .5 300 .2 350
Aiken3.23.74.65.36.57.48.Allendale3.43.85.16.07.07.88.Anderson3.33.64.55.56.67.99.Bamberg3.43.64.65.56.88.19.Barnwell3.33.64.55.36.47.38.Beaufort3.74.55.86.98.49.711Berkeley (North)3.53.85.05.97.28.29.Berkeley (South)3.64.05.26.27.58.69.Calhoun3.33.54.55.46.77.99.Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38.Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.Darlington3.23.54.55.46.78.09.	$\begin{array}{c cccc} .4 & 250 \\ .9 & 300 \\ .4 & 275 \\ .4 & 300 \\ .4 & 275 \\ .0 & 400 \\ .4 & 350 \\ .8 & 350 \\ .3 & 275 \\ .4 & 400 \\ .1 & 275 \\ .0 & 250 \\ .0 & 275 \\ .5 & 300 \\ .2 & 350 \end{array}$
Allendale3.43.85.16.07.07.88.Anderson3.33.64.55.56.67.99.Bamberg3.43.64.65.56.88.19.Barnwell3.33.64.55.36.47.38.Beaufort3.74.55.86.98.49.711Berkeley (North)3.53.85.05.97.28.29.Berkeley (South)3.64.05.26.27.58.69.Calhoun3.33.54.55.46.77.99.Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38.Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Clarendon3.43.74.75.67.08.29.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.Darlington3.33.64.75.56.88.810	.9 300 .4 275 .4 300 .4 275 .0 400 .4 350 .8 350 .3 275 .4 400 .1 275 .0 250 .0 275 .5 300 .2 350
Anderson3.33.64.55.56.67.99.Bamberg3.43.64.65.56.88.19.Barnwell3.33.64.55.36.47.38.Beaufort3.74.55.86.98.49.711Berkeley (North)3.53.85.05.97.28.29.Berkeley (South)3.64.05.26.27.58.69.Calhoun3.33.54.55.46.77.99.Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38.Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.Dillon3.33.64.75.56.88.810	$\begin{array}{cccc} .4 & 275 \\ .4 & 300 \\ .4 & 275 \\ .0 & 400 \\ .4 & 350 \\ .8 & 350 \\ .3 & 275 \\ .4 & 400 \\ .1 & 275 \\ .0 & 250 \\ .0 & 275 \\ .5 & 300 \\ .2 & 350 \end{array}$
Bamberg3.43.64.65.56.88.19.Barnwell3.33.64.55.36.47.38.Beaufort3.74.55.86.98.49.711Berkeley (North)3.53.85.05.97.28.29.Berkeley (South)3.64.05.26.27.58.69.Calhoun3.33.54.55.46.77.99.Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38.Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.	.4 300 .4 275 .0 400 .4 350 .8 350 .3 275 .4 400 .1 275 .0 250 .0 275 .5 300 .2 350
Barnwell3.33.64.55.36.47.38.Beaufort3.74.55.86.98.49.711Berkeley (North)3.53.85.05.97.28.29.Berkeley (South)3.64.05.26.27.58.69.Calhoun3.33.54.55.46.77.99.Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38.Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Clarendon3.43.74.75.67.08.29.Colleton (North)3.53.54.55.46.77.99.Darlington3.23.54.55.46.78.09.Darlington3.33.64.75.56.88.810	.4 275 .0 400 .4 350 .8 350 .3 275 .4 400 .1 275 .0 250 .0 275 .5 300 .2 350
Beaufort3.74.55.86.98.49.711Berkeley (North)3.53.85.05.97.28.29.Berkeley (South)3.64.05.26.27.58.69.Calhoun3.33.54.55.46.77.99.Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38.Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Clarendon3.43.74.75.67.08.29.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.	.4 350 .8 350 .3 275 .4 400 .1 275 .0 250 .0 275 .5 300 .2 350
Berkeley (North)3.53.85.05.97.28.29.Berkeley (South)3.64.05.26.27.58.69.Calhoun3.33.54.55.46.77.99.Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38.Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Clarendon3.43.74.75.67.08.29.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.	.4 350 .8 350 .3 275 .4 400 .1 275 .0 250 .0 275 .5 300 .2 350
Berkeley (South)3.64.05.26.27.58.69.0Calhoun3.33.54.55.46.77.99.0Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38.0Chester2.93.64.65.36.37.18.0Chesterfield3.13.54.55.36.67.79.0Clarendon3.43.74.75.67.08.29.0Colleton (North)3.53.54.55.46.77.99.0Darlington3.23.54.55.46.78.09.0Dillon3.33.64.75.56.88.810	.8 350 .3 275 .4 400 .1 275 .0 250 .0 275 .5 300 .2 350
Calhoun3.33.54.55.46.77.99.Charleston3.84.35.56.68.09.210Cherokee3.03.74.75.46.47.38.Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Clarendon3.43.74.75.67.08.29.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.Dillon3.33.64.75.56.88.810	.3 275 .4 400 .1 275 .0 250 .0 275 .5 300 .2 350
Cherokee3.03.74.75.46.47.38.Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Clarendon3.43.74.75.67.08.29.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.Dillon3.33.64.75.56.88.810	.1 275 .0 250 .0 275 .5 300 .2 350
Chester2.93.64.65.36.37.18.Chesterfield3.13.54.55.36.67.79.Clarendon3.43.74.75.67.08.29.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.Dillon3.33.64.75.56.88.810	.0 250 .0 275 .5 300 .2 350
Chesterfield3.13.54.55.36.67.79.Clarendon3.43.74.75.67.08.29.Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.Dillon3.33.64.75.56.88.810	.0 275 .5 300 .2 350
Clarendon3.43.74.75.67.08.29.0Colleton (North)3.53.54.55.46.77.99.0Colleton (South)3.64.05.26.17.58.69.0Darlington3.23.54.55.46.78.09.0Dillon3.33.64.75.56.88.810	.5 300 .2 350
Colleton (North)3.53.54.55.46.77.99.Colleton (South)3.64.05.26.17.58.69.Darlington3.23.54.55.46.78.09.Dillon3.33.64.75.56.88.810	.2 350
Colleton (South)3.64.05.26.17.58.69.0Darlington3.23.54.55.46.78.09.0Dillon3.33.64.75.56.88.810	8
Darlington3.23.54.55.46.78.09.0Dillon3.33.64.75.56.88.810	7 350
Dillon 3.3 3.6 4.7 5.5 6.8 8.8 10	
	.3 300
	.3 325
Dorchester(South) 3.6 4.2 5.4 6.4 7.8 8.9 10	
Edgefield 3.2 3.1 4.5 5.2 6.3 7.2 8.	
Fairfield 3.0 3.5 4.4 5.1 6.2 7.1 8.	
	.2 325
	.6 325
Georgetown (East) 3.6 4.6 5.9 7.0 8.5 9.8 11	
	.6 350
	.3 300
	.1 300
	.0 250
	.3 325
Hampton (South) 3.4 4.2 5.4 6.4 7.8 9.0 10	
Horry (North) 3.4 4.1 5.3 6.3 7.9 9.3 10	
	.2 350
Jasper 3.5 4.2 5.4 6.4 7.8 9.0 10 Variables 2.1 2.5 4.4 5.1 5.2 7.1 0	
Kershaw3.13.54.45.16.27.18.Lancaster3.03.54.45.26.27.07.	-
	.9 250 .2 250
	.2 250
	.3 250 .1 325
	.1 325
	.5 300
	.9 250
	.4 250
	.8 300
	.6 300
	.3 275
	.3 275
	.6 300
	.8 300
	.3 275
	.2 250
	.5 300
	.3 275
	.3 275
	.4 275
	.5 275
	.1 250
	.9 325
	.9 250

Reference 2

TR-55 Urban Hydrology for Small Watersheds, USDA-NRCS, June 1986.

Chapter 2

SCS runoff curve number method

The SCS Runoff Curve Number (CN) method is described in detail in NEH-4 (SCS 1985). The SCS runoff equation is

$$Q = \frac{\left(P - I_a\right)^2}{\left(P - I_a\right) + S} \qquad [eq. 2-1]$$

where

Q = runoff(in)

P = rainfall (in)

S = potential maximum retention after runoff begins (in) and

 I_a = initial abstraction (in)

Initial abstraction (I_a) is all losses before runoff begins. It includes water retained in surface depressions, water intercepted by vegetation, evaporation, and infiltration. I_a is highly variable but generally is correlated with soil and cover parameters. Through studies of many small agricultural watersheds, I_a was found to be approximated by the following empirical equation:

$$I_a = 0.2S$$
 [eq. 2-2]

By removing I_a as an independent parameter, this approximation allows use of a combination of S and P to produce a unique runoff amount. Substituting equation 2-2 into equation 2-1 gives:

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$
 [eq. 2-3]

S is related to the soil and cover conditions of the watershed through the CN. CN has a range of 0 to 100, and S is related to CN by:

$$S = \frac{1000}{CN} - 10$$
 [eq. 2-4]

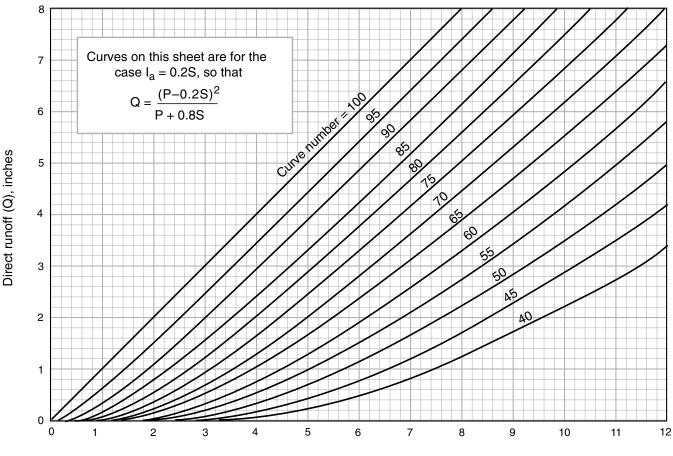
Figure 2-1 and table 2-1 solve equations 2-3 and 2-4 for a range of CN's and rainfall.

Factors considered in determining runoff curve numbers

The major factors that determine CN are the hydrologic soil group (HSG), cover type, treatment, hydrologic condition, and antecedent runoff condition (ARC). Another factor considered is whether impervious areas outlet directly to the drainage system (connected) or whether the flow spreads over pervious areas before entering the drainage system (unconnected). Figure 2-2 is provided to aid in selecting the appropriate figure or table for determining curve numbers.

CN's in table 2-2 (a to d) represent average antecedent runoff condition for urban, cultivated agricultural, other agricultural, and arid and semiarid rangeland uses. Table 2-2 assumes impervious areas are directly connected. The following sections explain how to determine CN's and how to modify them for urban conditions.


Hydrologic soil groups


Infiltration rates of soils vary widely and are affected by subsurface permeability as well as surface intake rates. Soils are classified into four HSG's (A, B, C, and D) according to their minimum infiltration rate, which is obtained for bare soil after prolonged wetting. Appendix A defines the four groups and provides a list of most of the soils in the United States and their group classification. The soils in the area of interest may be identified from a soil survey report, which can be obtained from local SCS offices or soil and water conservation district offices.

Most urban areas are only partially covered by impervious surfaces: the soil remains an important factor in runoff estimates. Urbanization has a greater effect on runoff in watersheds with soils having high infiltration rates (sands and gravels) than in watersheds predominantly of silts and clays, which generally have low infiltration rates.

Any disturbance of a soil profile can significantly change its infiltration characteristics. With urbanization, native soil profiles may be mixed or removed or fill material from other areas may be introduced. Therefore, a method based on soil texture is given in appendix A for determining the HSG classification for disturbed soils.

Technical Release 55 Urban Hydrology for Small Watersheds

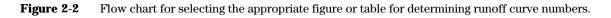
Rainfall (P), inches

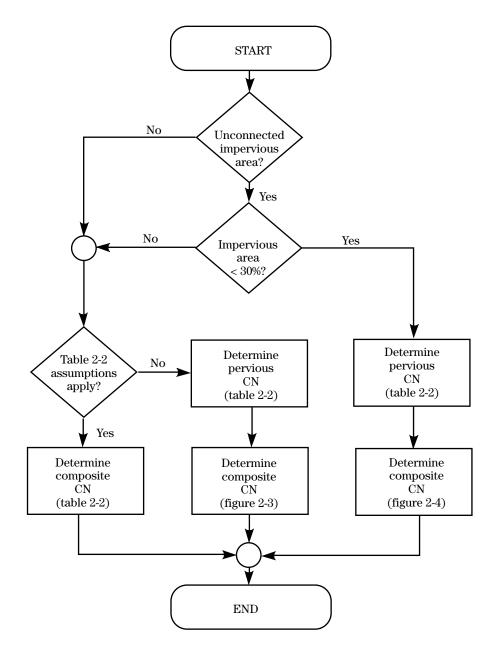
Cover type

Table 2-2 addresses most cover types, such as vegetation, bare soil, and impervious surfaces. There are a number of methods for determining cover type. The most common are field reconnaissance, aerial photographs, and land use maps.

Treatment

Treatment is a cover type modifier (used only in table 2-2b) to describe the management of cultivated agricultural lands. It includes mechanical practices, such as contouring and terracing, and management practices, such as crop rotations and reduced or no tillage.


Hydrologic condition


Hydrologic condition in dicates the effects of cover type and treatment on infiltration and runoff and is generally estimated from density of plant and residue cover on sample areas. *Good* hydrologic condition indicates that the soil usually has a low runoff potential for that specific hydrologic soil group, cover type, and treatment. Some factors to consider in estimating the effect of cover on infiltration and runoff are (a) canopy or density of lawns, crops, or other vegetative areas; (b) amount of year-round cover; (c) amount of grass or close-seeded legumes in rotations; (d) percent of residue cover; and (e) degree of surface roughness.

					Runo	ff depth f	or curve n	umber of					
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
							-inches						
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.00	.00	.00	.00	.00	.00	.03	.07	.15	.27	.46	.74	.99
1.4	.00	.00	.00	.00	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.00	.00	.00	.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.77
3.5	.02	.08	.20	.35	.53	.75	1.01	1.30	1.64	2.02	2.45	2.94	3.27
4.0	.06	.18	.33	.53	.76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.77
4.5	.14	.30	.50	.74	1.02	1.33	1.67	2.05	2.46	2.91	3.40	3.92	4.26
5.0	.24	.44	.69	.98	1.30	1.65	2.04	2.45	2.89	3.37	3.88	4.42	4.76
6.0	.50	.80	1.14	1.52	1.92	2.35	2.81	3.28	3.78	4.30	4.85	5.41	5.76
7.0	.84	1.24	1.68	2.12	2.60	3.10	3.62	4.15	4.69	5.25	5.82	6.41	6.76
8.0	1.25	1.74	2.25	2.78	3.33	3.89	4.46	5.04	5.63	6.21	6.81	7.40	7.76
9.0	1.71	2.29	2.88	3.49	4.10	4.72	5.33	5.95	6.57	7.18	7.79	8.40	8.76
10.0	2.23	2.89	3.56	4.23	4.90	5.56	6.22	6.88	7.52	8.16	8.78	9.40	9.76
11.0	2.78	3.52	4.26	5.00	5.72	6.43	7.13	7.81	8.48	9.13	9.77	10.39	10.76
12.0	3.38	4.19	5.00	5.79	6.56	7.32	8.05	8.76	9.45	10.11	10.76	11.39	11.76
13.0	4.00	4.89	5.76	6.61	7.42	8.21	8.98	9.71	10.42	11.10	11.76	12.39	12.76
14.0	4.65	5.62	6.55	7.44	8.30	9.12	9.91	10.67	11.39	12.08	12.75	13.39	13.76
15.0	5.33	6.36	7.35	8.29	9.19	10.04	10.85	11.63	12.37	13.07	13.74	14.39	14.76

Table 2-1 Runoff depth for selected CN's and rainfall amounts 1

 $\underline{1}/$ Interpolate the values shown to obtain runoff depths for CN's or rainfall amounts not shown.

Table 2-2aRunoff curve numbers for urban areas 1/2

Cover description			Curve numbers for hydrologic soil group				
	Average percent		• 0	01			
Cover type and hydrologic condition i	mpervious area ²		В	С	D		
Fully developed urban areas (vegetation established)							
Open space (lawns, parks, golf courses, cemeteries, etc.) 와:							
Poor condition (grass cover < 50%)		68	79	86	89		
Fair condition (grass cover 50% to 75%)		49	69	79	84		
Good condition (grass cover > 75%)		39	61	74	80		
Impervious areas:	•••••	50	01	• •	00		
Paved parking lots, roofs, driveways, etc.							
(excluding right-of-way)		98	98	98	98		
Streets and roads:	•••••	50	50	50	50		
Paved; curbs and storm sewers (excluding							
right-of-way)		98	98	98	98		
Paved; open ditches (including right-of-way)		83	38 89	92	93		
		85 76	85	92 89	95 91		
Gravel (including right-of-way)		76 72	89 82	89 87	91 89		
Dirt (including right-of-way)	•••••	12	82	81	89		
Western desert urban areas:		60	88	05	00		
Natural desert landscaping (pervious areas only) 4/		63	77	85	88		
Artificial desert landscaping (impervious weed barrier,							
desert shrub with 1- to 2-inch sand or gravel mulch							
and basin borders)		96	96	96	96		
Urban districts:							
Commercial and business		89	92	94	95		
Industrial	72	81	88	91	93		
Residential districts by average lot size:							
1/8 acre or less (town houses)		77	85	90	92		
1/4 acre		61	75	83	87		
1/3 acre		57	72	81	86		
1/2 acre	25	54	70	80	85		
1 acre	20	51	68	79	84		
2 acres	12	46	65	77	82		
Developing urban areas							
Newly graded areas							
(pervious areas only, no vegetation) ^{5/}		77	86	91	94		
dle lands (CN's are determined using cover types							
similar to those in table 2-2c).							

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Table 2-2bRunoff curve numbers for cultivated agricultural lands 1/2

	Cover description			Curve num hydrologic s			
	eover description	Hydrologic		nyurologic s	on group		
Cover type	Treatment ^{2/}	condition $\frac{3}{2}$	А	В	С	D	
Fallow	Bare soil		77	86	91	94	
1 anow	Crop residue cover (CR)	Poor	76	85	90	93	
	crop residue cover (or)	Good	74	83	88	90	
Row crops	Straight row (SR)	Poor	72	81	88	91	
-	0	Good	67	78	85	89	
	SR + CR	Poor	71	80	87	90	
		Good	64	75	82	85	
	Contoured (C)	Poor	70	79	84	88	
		Good	65	75	82	86	
	C + CR	Poor	69	78	83	87	
		Good	64	74	81	85	
	Contoured & terraced (C&T)	Poor	66	74	80	82	
		Good	62	71	78	81	
	C&T+ CR	Poor	65	73	79	81	
		Good	61	70	77	80	
Small grain	SR	Poor	65	76	84	88	
-		Good	63	75	83	87	
	SR + CR	Poor	64	75	83	86	
		Good	60	72	80	84	
	С	Poor	63	74	82	85	
		Good	61	73	81	84	
	C + CR	Poor	62	73	81	84	
		Good	60	72	80	83	
	C&T	Poor	61	72	79	82	
		Good	$\overline{59}$	70	78	81	
	C&T+ CR	Poor	60	71	78	81	
		Good	58	69	77	80	
Close-seeded	SR	Poor	66	77	85	89	
or broadcast		Good	58	72	81	85	
legumes or	С	Poor	64	75	83	85	
rotation		Good	55	69	78	83	
meadow	C&T	Poor	63	73	80	83	
		Good	51	67	76	80	

 $^{\rm 1}$ Average runoff condition, and $\rm I_a{=}0.2S$

 2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Table 2-2c Runoff curve numbers for other agricultural lands $1\!\!/$

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition	А	B	C	D	
Pasture, grassland, or range—continuous	Poor	68	79	86	89	
forage for grazing. 2	Fair Good	$\frac{49}{39}$	$\begin{array}{c} 69 \\ 61 \end{array}$	79 74	84 80	
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78	
Brush—brush-weed-grass mixture with brush the major element. ${}^{3\!/}$	Poor Fair Good	48 35 30 4⁄	$67 \\ 56 \\ 48$	77 70 65	83 77 73	
Woods—grass combination (orchard or tree farm). 5/	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79	
Woods. 6/	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	—	59	74	82	86	

1 Average runoff condition, and $I_a = 0.2S$.

 $\mathbf{2}$ *Poor:* <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed. 3

Poor: <50% ground cover.

50 to 75% ground cover. Fair:

Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

5CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Table 2-2dRunoff curve numbers for arid and semiarid rangelands 1/2

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition ^{2/}	A 3⁄	В	С	D	
Herbaceous-mixture of grass, weeds, and	Poor		80	87	93	
low-growing brush, with brush the	Fair		71	81	89	
minor element.	Good		62	74	85	
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79	
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63	
and other brush.	Good		30	41	48	
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89	
grass understory.	Fair		58	73	80	
	Good		41	61	71	
Sagebrush with grass understory.	Poor		67	80	85	
	Fair		51	63	70	
	Good		35	47	55	
Desert shrub—major plants include saltbush,	Poor	63	77	85	88	
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86	
palo verde, mesquite, and cactus.	Good	49	68	79	84	

 1 $\,$ Average runoff condition, and $I_a,$ = 0.2S. For range in humid regions, use table 2-2c.

 2 $\,$ Poor: <30% ground cover (litter, grass, and brush overstory).

Fair: 30 to 70% ground cover.

Good: > 70% ground cover.

³ Curve numbers for group A have been developed only for desert shrub.

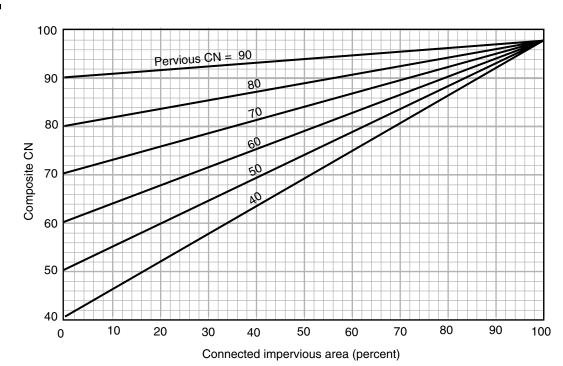
Technical Release 55 Urban Hydrology for Small Watersheds

Antecedent runoff condition

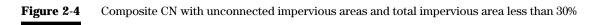
The index of runoff potential before a storm event is the antecedent runoff condition (ARC). ARC is an attempt to account for the variation in CN at a site from storm to storm. CN for the average ARC at a site is the median value as taken from sample rainfall and runoff data. The CN's in table 2-2 are for the average ARC, which is used primarily for design applications. See NEH-4 (SCS 1985) and Rallison and Miller (1981) for more detailed discussion of storm-to-storm variation and a demonstration of upper and lower enveloping curves.

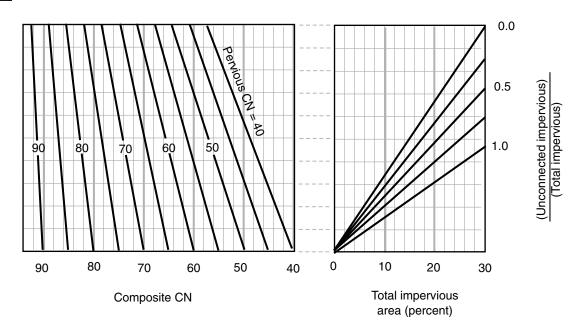
Urban impervious area modifications

Several factors, such as the percentage of impervious area and the means of conveying runoff from impervious areas to the drainage system, should be considered in computing CN for urban areas (Rawls et al., 1981). For example, do the impervious areas connect directly to the drainage system, or do they outlet onto lawns or other pervious areas where infiltration can occur?


Connected impervious areas — An impervious area is considered connected if runoff from it flows directly into the drainage system. It is also considered connected if runoff from it occurs as concentrated shallow flow that runs over a pervious area and then into the drainage system.

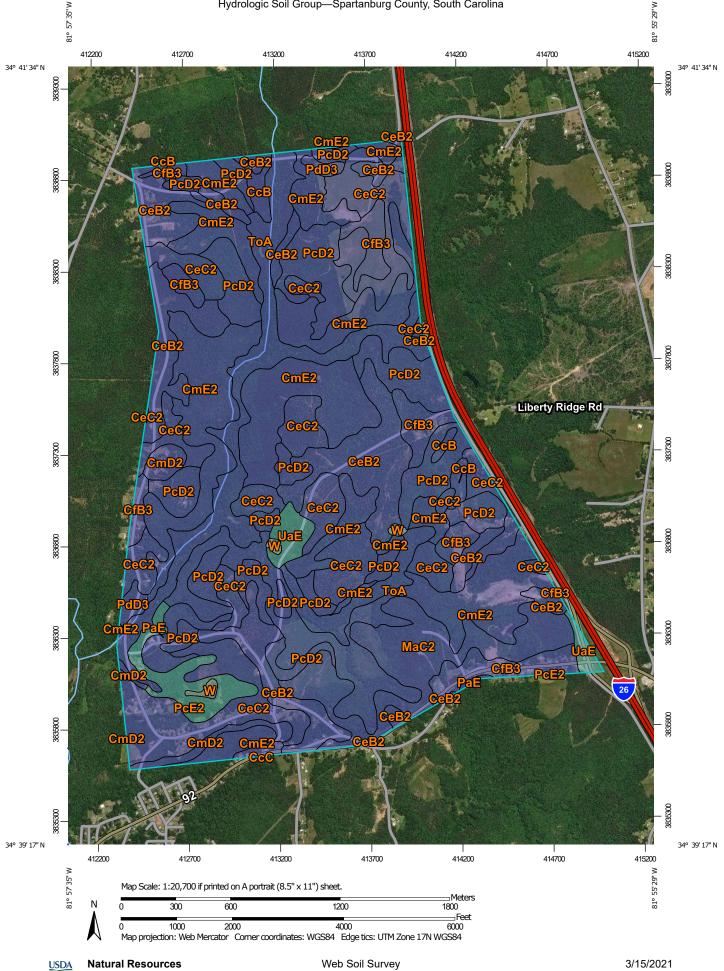
Urban CN's (table 2-2a) were developed for typical land use relationships based on specific assumed percentages of impervious area. These CN vales were developed on the assumptions that (a) pervious urban areas are equivalent to pasture in good hydrologic condition and (b) impervious areas have a CN of 98 and are directly connected to the drainage system. Some assumed percentages of impervious area are shown in table 2-2a

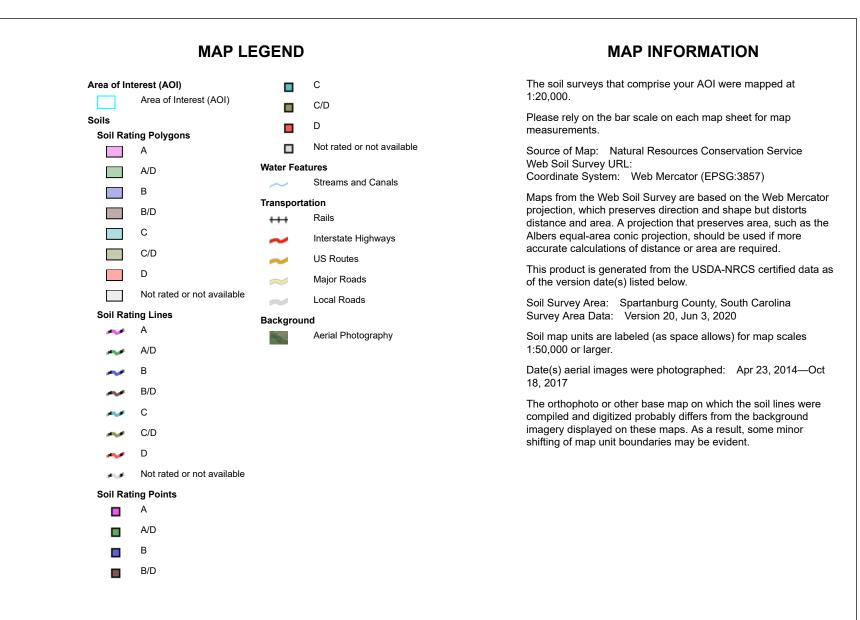

If all of the impervious area is directly connected to the drainage system, but the impervious area percentages or the pervious land use assumptions in table 2-2a are not applicable, use figure 2-3 to compute a composite CN. For example, table 2-2a gives a CN of 70 for a 1/2-acre lot in HSG B, with assumed impervious area of 25 percent. However, if the lot has 20 percent impervious area and a pervious area CN of 61, the composite CN obtained from figure 2-3 is 68. The CN difference between 70 and 68 reflects the difference in percent impervious area.


Unconnected impervious areas — Runoff from these areas is spread over a pervious area as sheet flow. To determine CN when all or part of the impervious area is not directly connected to the drainage system, (1) use figure 2-4 if total impervious area is less than 30 percent or (2) use figure 2-3 if the total impervious area is equal to or greater than 30 percent, because the absorptive capacity of the remaining pervious areas will not significantly affect runoff.

When impervious area is less than 30 percent, obtain the composite CN by entering the right half of figure 2-4 with the percentage of total impervious area and the ratio of total unconnected impervious area to total impervious area. Then move left to the appropriate pervious CN and read down to find the composite CN. For example, for a 1/2-acre lot with 20 percent total impervious area (75 percent of which is unconnected) and pervious CN of 61, the composite CN from figure 2-4 is 66. If all of the impervious area is connected, the resulting CN (from figure 2-3) would be 68.

Figure 2-3 Composite CN with connected impervious area.





Reference 3

NRCS Soil Figures, S&ME Inc., March 2021.

Hydrologic Soil Group—Spartanburg County, South Carolina

Hydrologic Soil Group—Spartanburg County, South Carolina

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
СсВ	Cecil sandy loam, 2 to 6 percent slopes	В	14.3	1.0%
CcC	Cecil sandy loam, 6 to 10 percent slopes	В	3.8	0.3%
CeB2	Cecil sandy clay loam, 2 to 6 percent slopes, moderately eroded	В	188.8	12.7%
CeC2	Cecil sandy clay loam, 6 to 10 percent slopes, moderately eroded	В	259.9	17.5%
CfB3	Cecil clay loam, 2 to 6 percent slopes, severely eroded	В	77.9	5.3%
CmD2	Cecil-Bethlehem complex, 10 to 15 percent slopes, moderately eroded	В	19.7	1.3%
CmE2	Cecil-Bethlehem complex, 15 to 25 percent slopes, moderately eroded	В	415.9	28.0%
MaC2	Madison sandy clay loam, 6 to 10 percent slopes, moderately eroded	В	101.1	6.8%
PaE	Pacolet sandy loam, 15 to 25 percent slopes	В	15.9	1.1%
PcD2	Pacolet sandy clay loam, 10 to 15 percent slopes, moderately eroded	В	193.4	13.0%
PcE2	Pacolet sandy clay loam, 15 to 25 percent slopes, moderately eroded	С	31.5	2.1%
PdD3	Pacolet clay loam, 10 to 15 percent slopes, severely eroded	В	9.1	0.6%
ТоА	Toccoa fine sandy loam, 0 to 2 percent slopes, frequently flooded	В	129.6	8.7%
UaE	Udorthents loamy, 6 to 20 percent slopes	С	18.8	1.3%
W	Water		4.7	0.3%
Totals for Area of Inter	rest		1,484.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

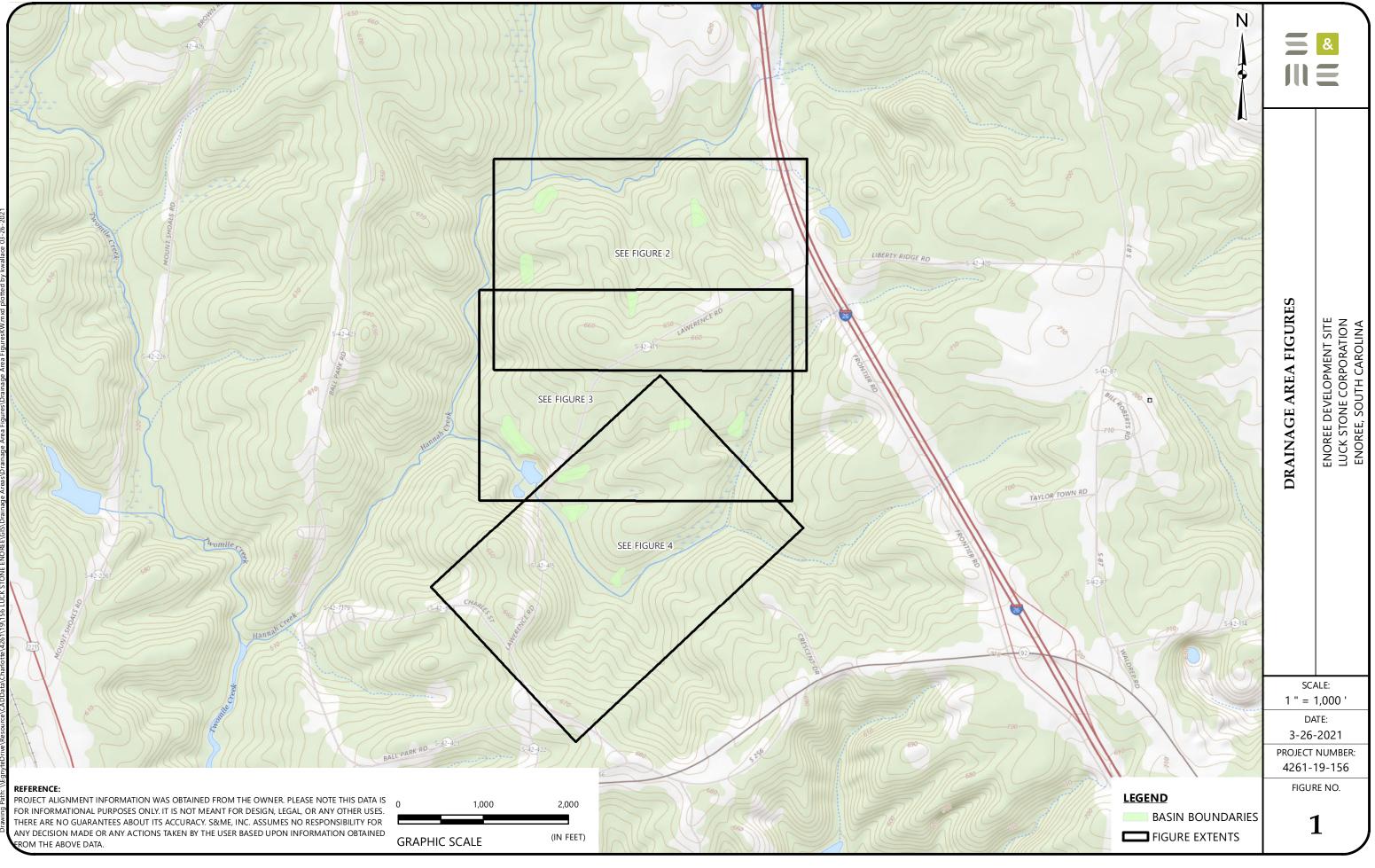
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

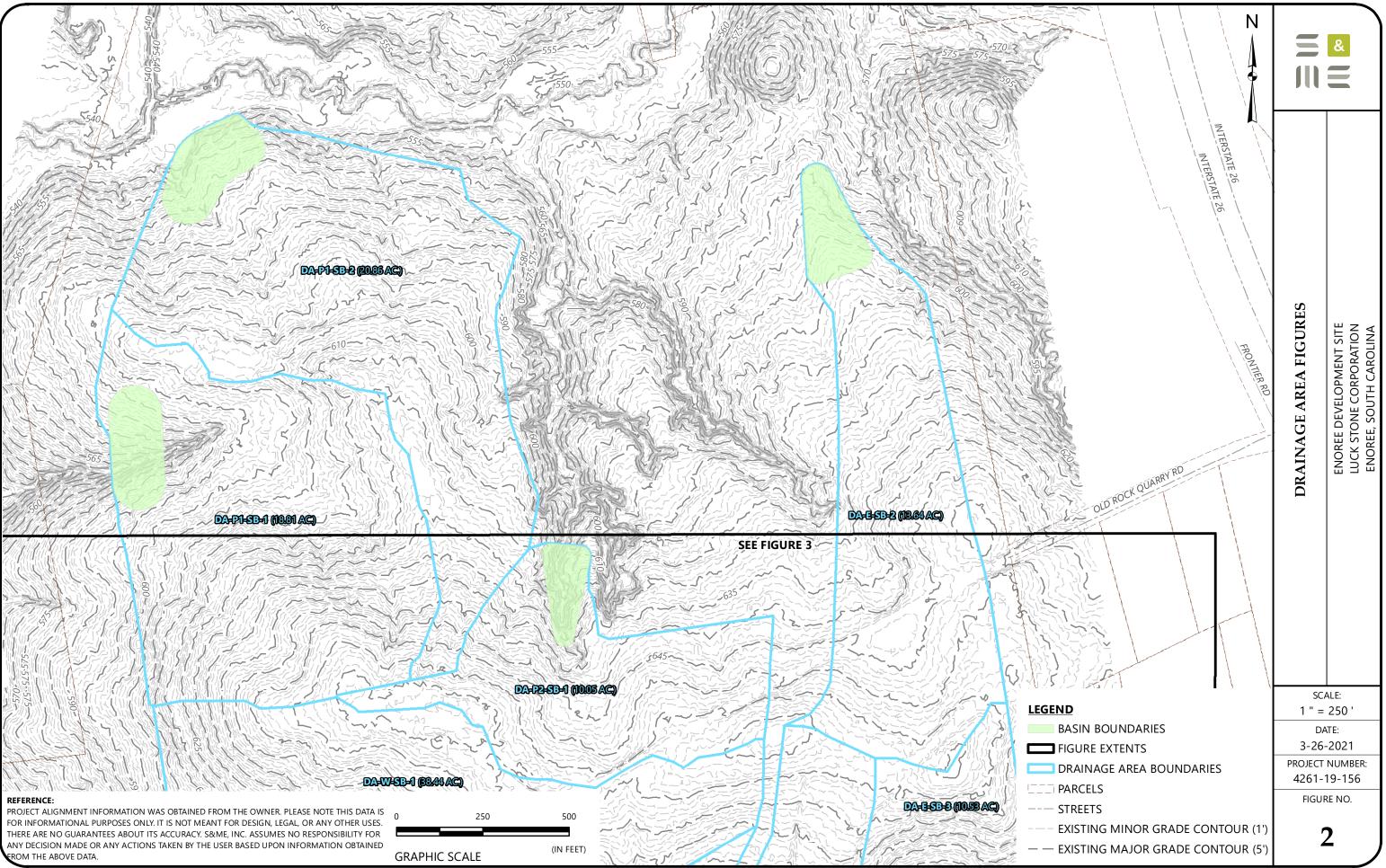
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

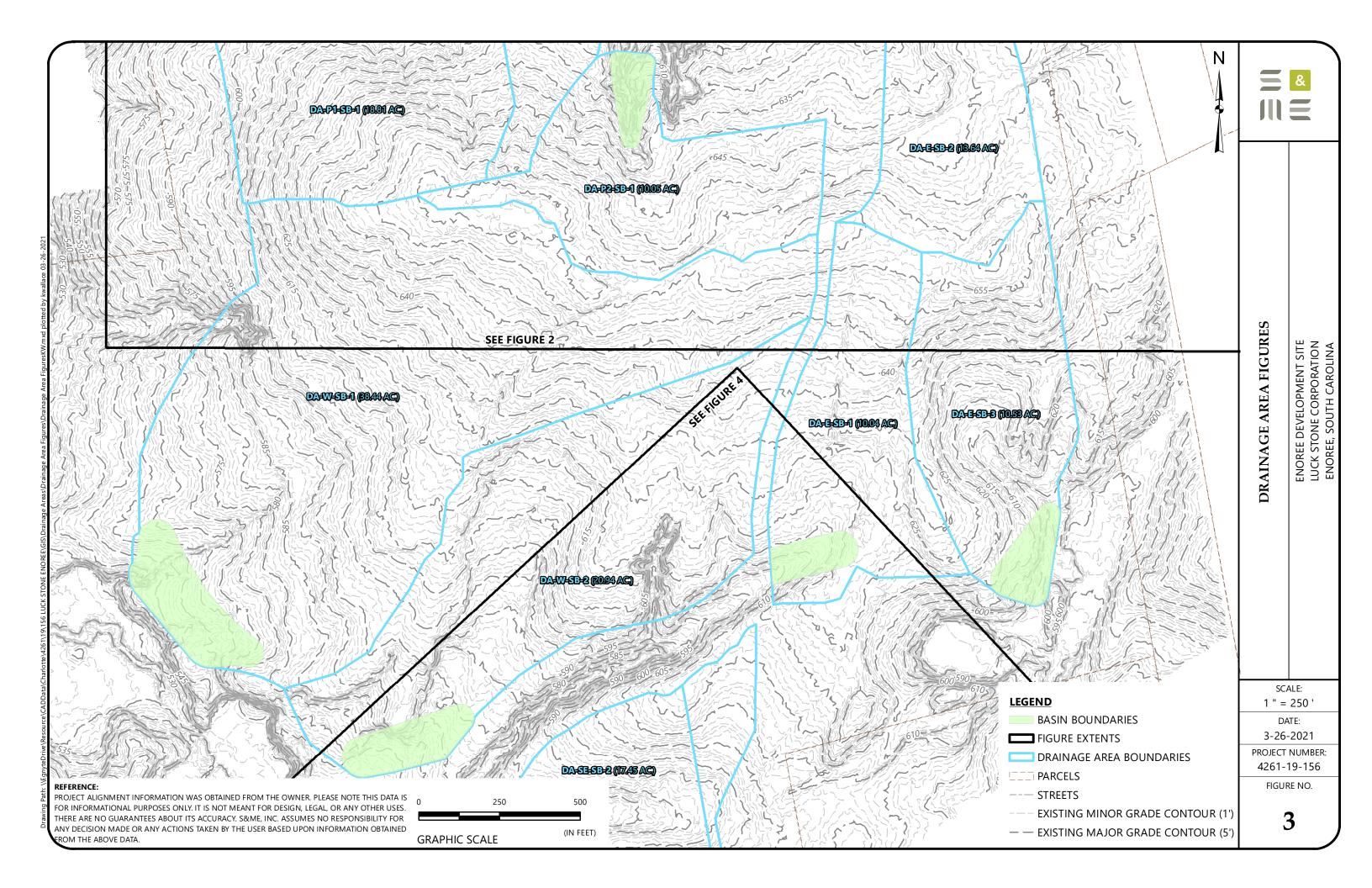
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

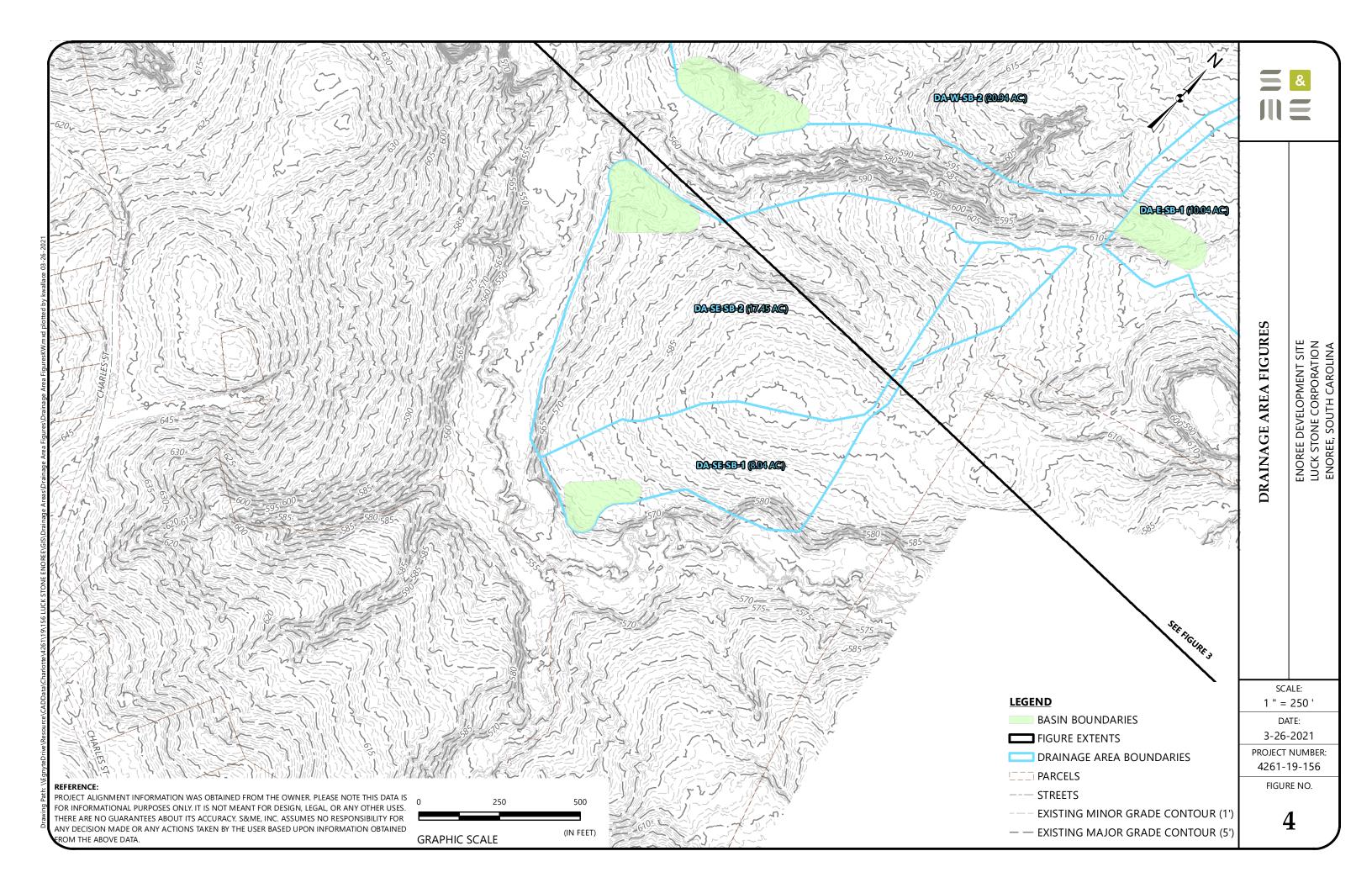
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

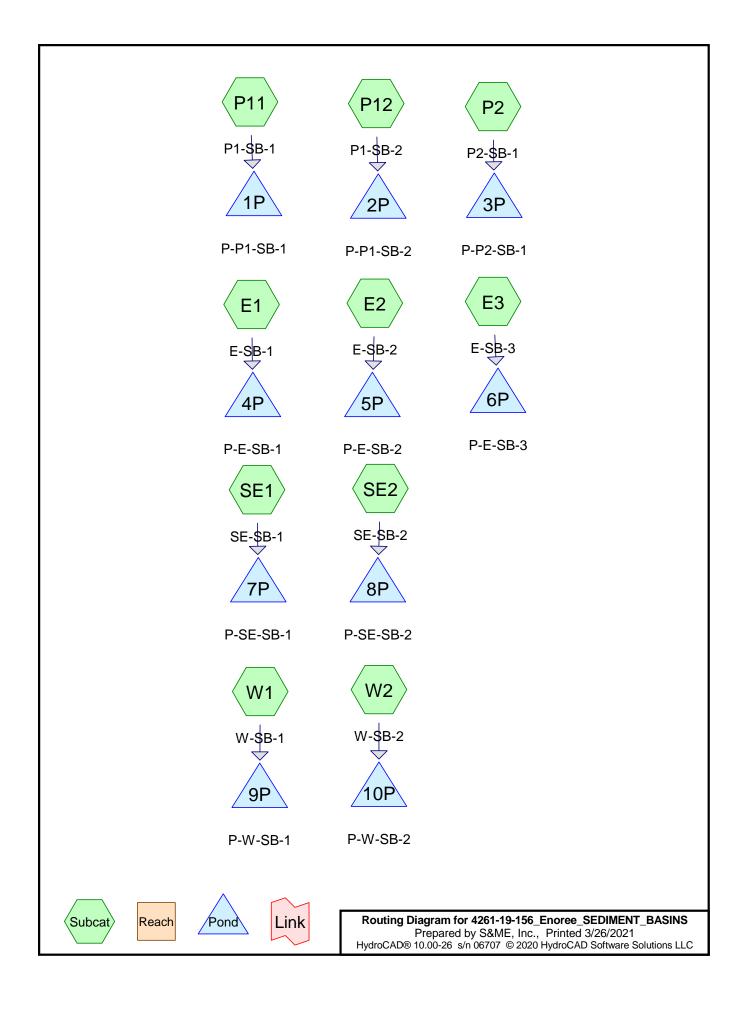

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options


Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher


Reference 4

Drainage Area Figures, S&ME Inc., March 2021.



Reference 5

Compiled HydroCAD Report, S&ME Inc., March 2021.

Project Notes

Defined 7 rainfall events from South Carolina Rainfall Data

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
168.806	91	Newly graded area, HSG C (E1, E2, E3, P11, P12, P2, SE1, SE2, W1, W2)
168.806	91	TOTAL AREA

4261-19-156_Enoree_SEDIMENT_BASINS

Prepared by S&ME, Inc. HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
168.806	HSG C	E1, E2, E3, P11, P12, P2, SE1, SE2, W1, W2
0.000	HSG D	
0.000	Other	
168.806		TOTAL AREA

Prepared by S&ME, Inc. HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Ground Covers (all nodes)							
 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	168.806	0.000	0.000	168.806	Newly graded area	E1, E2, E3, P11, P12, P2, SE1, SE2, W1, W2
0.000	0.000	168.806	0.000	0.000	168.806	TOTAL AREA	

Ground Covers (all nodes)

4261-19-156_Enoree_SEDIMENT_BASINS

Prepared by S&ME, Inc. HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Printed 3/26/2021 Page 6

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1P	558.00	557.00	100.0	0.0100	0.012	24.0	0.0	0.0
2	2P	548.00	547.00	100.0	0.0100	0.012	24.0	0.0	0.0
3	3P	620.00	619.00	100.0	0.0100	0.012	24.0	0.0	0.0
4	4P	608.00	607.00	100.0	0.0100	0.012	24.0	0.0	0.0
5	5P	588.00	587.00	100.0	0.0100	0.012	24.0	0.0	0.0
6	6P	596.00	595.00	100.0	0.0100	0.012	24.0	0.0	0.0
7	7P	558.00	557.00	100.0	0.0100	0.012	24.0	0.0	0.0
8	8P	545.00	544.00	100.0	0.0100	0.012	24.0	0.0	0.0
9	9P	540.00	539.00	100.0	0.0100	0.012	24.0	0.0	0.0
10	10P	567.00	566.00	100.0	0.0100	0.012	24.0	0.0	0.0

Pipe Listing (all nodes)

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: E-SB-	1Runoff Area=437,294 sf0.00% ImperviousRunoff Depth>2.55"Flow Length=950'Tc=11.3 minCN=91Runoff=38.28 cfs2.137 af
Subcatchment E2: E-SB-	2 Runoff Area=594,248 sf 0.00% Impervious Runoff Depth>2.55" Flow Length=1,443' Tc=11.4 min CN=91 Runoff=51.87 cfs 2.904 af
Subcatchment E3: E-SB-	3 Runoff Area=458,785 sf 0.00% Impervious Runoff Depth>2.56" Flow Length=853' Tc=9.0 min CN=91 Runoff=43.40 cfs 2.244 af
Subcatchment P11: P1-S	B-1 Runoff Area=819,548 sf 0.00% Impervious Runoff Depth>2.56" Flow Length=1,321' Tc=11.0 min CN=91 Runoff=72.25 cfs 4.006 af
Subcatchment P12: P1-S	B-2 Runoff Area=908,446 sf 0.00% Impervious Runoff Depth>2.55" Flow Length=2,394' Tc=11.6 min CN=91 Runoff=78.85 cfs 4.440 af
Subcatchment P2: P2-SE	Runoff Area=437,891 sf 0.00% Impervious Runoff Depth>2.56" Flow Length=542' Tc=7.7 min CN=91 Runoff=43.21 cfs 2.142 af
Subcatchment SE1: SE-S	B-1 Runoff Area=350,298 sf 0.00% Impervious Runoff Depth>2.55" Flow Length=1,807' Tc=11.4 min CN=91 Runoff=30.58 cfs 1.712 af
Subcatchment SE2: SE-S	B-2 Runoff Area=760,254 sf 0.00% Impervious Runoff Depth>2.55" Flow Length=1,063' Tc=11.3 min CN=91 Runoff=66.55 cfs 3.716 af
Subcatchment W1: W-SE	B-1 Runoff Area=1,674,458 sf 0.00% Impervious Runoff Depth>2.55" Flow Length=1,812' Tc=15.7 min CN=91 Runoff=128.16 cfs 8.174 af
Subcatchment W2: W-SE	B-2 Runoff Area=911,980 sf 0.00% Impervious Runoff Depth>2.55" Flow Length=1,350' Tc=14.9 min CN=91 Runoff=71.61 cfs 4.453 af
Pond 1P: P-P1-SB-1	Peak Elev=561.95' Storage=133,190 cf Inflow=72.25 cfs 4.006 af Primary=1.17 cfs 0.968 af Secondary=0.00 cfs 0.000 af Outflow=1.17 cfs 0.968 af
Pond 2P: P-P1-SB-2	Peak Elev=551.97' Storage=151,635 cf Inflow=78.85 cfs 4.440 af Primary=1.17 cfs 0.966 af Secondary=0.00 cfs 0.000 af Outflow=1.17 cfs 0.966 af
Pond 3P: P-P2-SB-1	Peak Elev=624.84' Storage=69,719 cf Inflow=43.21 cfs 2.142 af Primary=0.60 cfs 0.550 af Secondary=0.00 cfs 0.000 af Outflow=0.60 cfs 0.550 af
Pond 4P: P-E-SB-1	Peak Elev=612.18' Storage=70,331 cf Inflow=38.28 cfs 2.137 af Primary=0.60 cfs 0.530 af Secondary=0.00 cfs 0.000 af Outflow=0.60 cfs 0.530 af
Pond 5P: P-E-SB-2	Peak Elev=590.94' Storage=96,123 cf Inflow=51.87 cfs 2.904 af Primary=0.89 cfs 0.719 af Secondary=0.00 cfs 0.000 af Outflow=0.89 cfs 0.719 af
Pond 6P: P-E-SB-3	Peak Elev=598.73' Storage=76,457 cf Inflow=43.40 cfs 2.244 af Primary=0.60 cfs 0.493 af Secondary=0.00 cfs 0.000 af Outflow=0.60 cfs 0.493 af

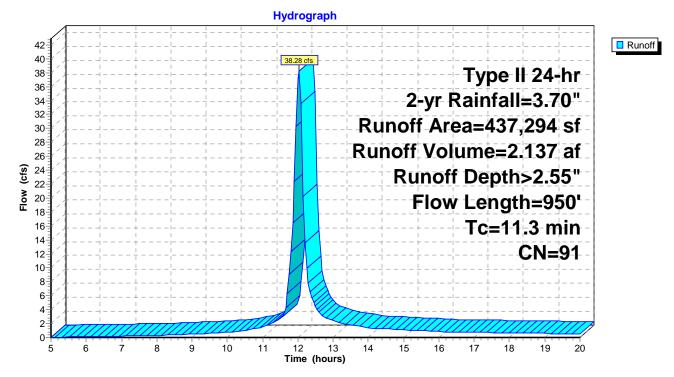
4261-19-156_Enoree_SEDIMENT_BASINS Type II 24-hr 2-yr Rainfall=3.70" Prepared by S&ME, Inc. Printed 3/26/2021 HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC Page 8					
Pond 7P: P-SE-SB-1		ge=59,071 cf Inflow=30.58 cfs 1.712 af			
	Primary=0.37 cfs 0.356 af Secondary=0.00	cfs 0.000 af Outflow=0.37 cfs 0.356 af			
Pond 8P: P-SE-SB-2		e=120,021 cf Inflow=66.55 cfs 3.716 af			
	Primary=1.17 cfs 0.992 af Secondary=0.00	cfs 0.000 af Outflow=1.17 cfs 0.992 af			
Pond 9P: P-W-SB-1		=276,360 cf Inflow=128.16 cfs 8.174 af			
	Primary=2.34 cfs 1.860 af Secondary=0.00	cfs 0.000 af Outflow=2.34 cfs 1.860 af			
Pond 10P: P-W-SB-2	•	e=151,066 cf Inflow=71.61 cfs 4.453 af			
	Primary=1.17 cfs 0.991 af Secondary=0.00	cfs 0.000 af Outflow=1.17 cfs 0.991 af			
Total Pupo	ff Aron - 169 906 no - Dunoff Volumo - 25 0	29 of Average Buneff Depth - 2.55"			

Total Runoff Area = 168.806 acRunoff Volume = 35.928 af
100.00% Pervious = 168.806 acAverage Runoff Depth = 2.55"
0.00% Impervious = 0.000 ac

Prepared by S&ME, Inc.

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: E-SB-1


Runoff = 38.28 cfs @ 12.03 hrs, Volume= 2.137 af, Depth> 2.55"

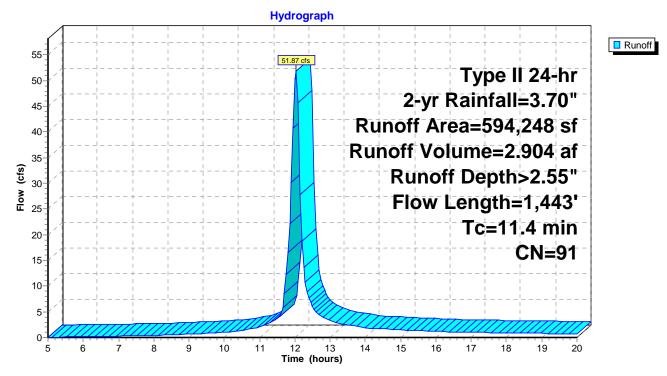
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

_	A	rea (sf)	CN [Description		
_	4	37,294	91 N	Vewly grad	ed area, HS	SG C
	437,294		1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.6	300	0.0455	0.76		Sheet Flow,
	4.6	581	0.0436	2.09		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	69	0.0145	11.81	413.40	Channel Flow, Area= 35.0 sf Perim= 20.0' r= 1.75'
_						n= 0.022 Earth, clean & straight

11.3 950 Total

Subcatchment E1: E-SB-1

Summary for Subcatchment E2: E-SB-2


Runoff = 51.87 cfs @ 12.03 hrs, Volume= 2.904 af, Depth> 2.55"

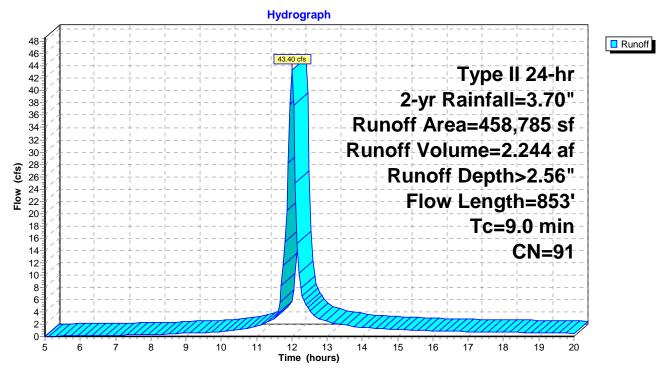
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

_	A	rea (sf)	CN E	Description		
_	5	94,248	91 N	Vewly grad	ed area, HS	SG C
	594,248		1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.7	300	0.0432	0.75		Sheet Flow,
	4.2	488	0.0380	1.95		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.5	655	0.0481	21.51	752.94	Channel Flow, Area= 35.0 sf Perim= 20.0' $r= 1.75'$ n= 0.022 Earth, clean & straight

11.4 1,443 Total

Subcatchment E2: E-SB-2

Summary for Subcatchment E3: E-SB-3


No Channel Flow

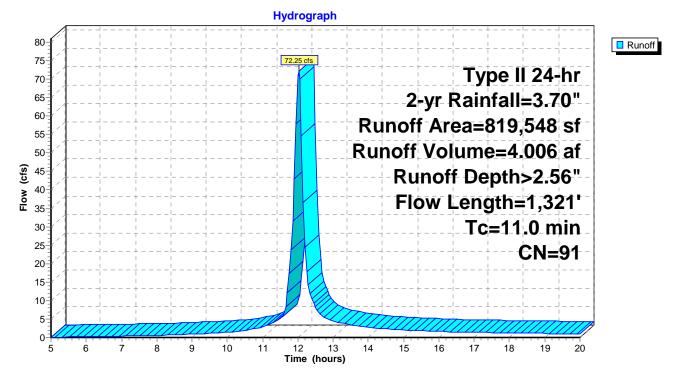
Runoff = 43.40 cfs @	12.00 hrs, Volume=	2.244 af, Depth> 2.56"
----------------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

_	А	rea (sf)	CN E	Description		
	4	58,785	91 N	lewly grad	ed area, HS	SG C
	4	58,785	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	4.8	300	0.1013	1.05		Sheet Flow,
	4.2	553	0.0481	2.19		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	9.0	853	Total			

Subcatchment E3: E-SB-3

Summary for Subcatchment P11: P1-SB-1


Runoff = 72.25 cfs @ 12.02 hrs, Volume= 4.006 af, Depth> 2.56"

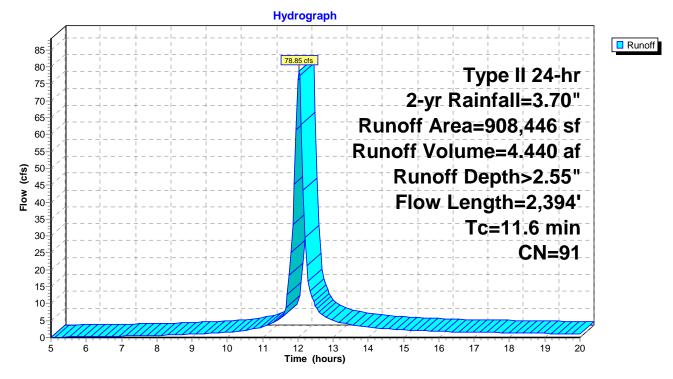
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

	A	rea (sf)	CN [Description		
	8	19,548	91 N	lewly grad	ed area, HS	SG C
	819,548		100.00% Pervious Area			a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.2	300	0.0813	0.96		Sheet Flow,
	5.7	819	0.0569	2.39		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	202	0.1138	33.09	1,158.14	, , , , , , , , , , , , , , , , , , , ,
_						n= 0.022 Earth, olean & straight

11.0 1,321 Total

Subcatchment P11: P1-SB-1

Summary for Subcatchment P12: P1-SB-2


Runoff = 78.85 cfs @ 12.03 hrs, Volume= 4.440 af, Depth> 2.55"

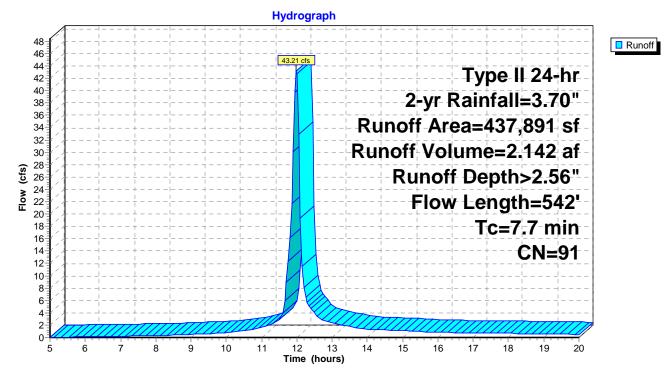
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

_	A	rea (sf)	CN [Description		
	g	08,446	91 N	Newly grad	ed area, HS	SG C
	908,446			100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description
	5.3	300	0.0769	0.94		Sheet Flow,
	4.8	721	0.0618	2.49		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	1.5	1,373	0.0244	15.32	536.27	Channel Flow, Area= 35.0 sf Perim= 20.0' r= $1.75'$ n= 0.022 Earth, clean & straight
_						

11.6 2,394 Total

Subcatchment P12: P1-SB-2

Summary for Subcatchment P2: P2-SB-1


Runoff = 43.21 cfs @ 11.99 hrs, Volume= 2.142 af, Depth> 2.56"

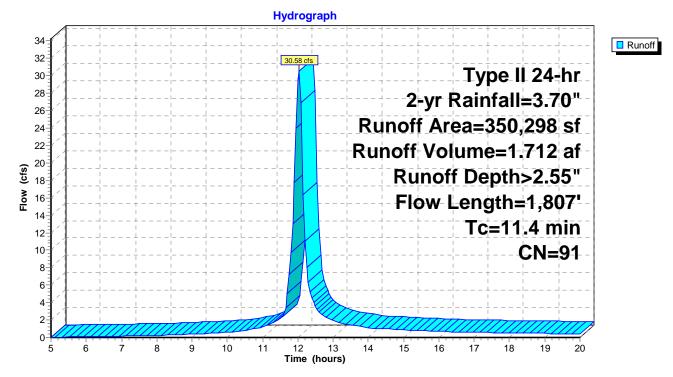
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

_	A	rea (sf)	CN [Description		
	437,891 91 Newly graded area, HSC				ed area, HS	SG C
	437,891		1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.5	300	0.0473	0.77		Sheet Flow, Fallow n= 0.050 P2= 3.70"
	1.1	165	0.0658	2.57		Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	77	0.0517	22.30	780.61	Channel Flow, Area= 35.0 sf Perim= 20.0' r= 1.75'
_						n= 0.022 Earth, clean & straight

7.7 542 Total

Subcatchment P2: P2-SB-1

Summary for Subcatchment SE1: SE-SB-1

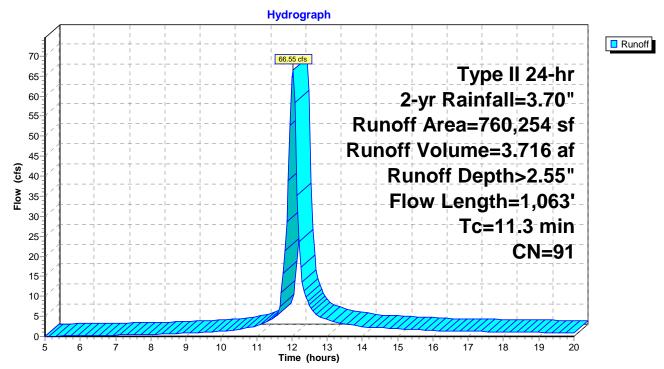

Runoff = 30.58 cfs @ 12.03 hrs, Volume= 1.712 af, Depth> 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

_	A	rea (sf)	CN [Description		
_	350,298 91 Newly graded area, HSC					SG C
	350,298		100.00% Pervious Area			а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.4	300	0.0331	0.67		Sheet Flow,
	2.4	324	0.0515	2.27		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	1.6	1,183	0.0165	12.60	440.99	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$
_						n= 0.022 Latur, ocari & sudiyili

11.4 1,807 Total

Subcatchment SE1: SE-SB-1


Summary for Subcatchment SE2: SE-SB-2

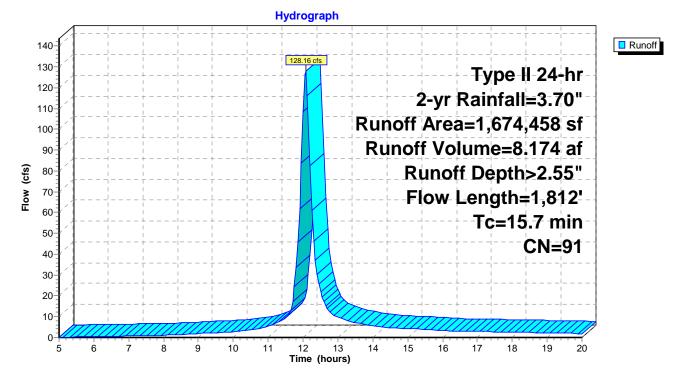
No Channel Flow

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

A	rea (sf)	CN D	Description		
7	60,254	91 N	lewly grad	ed area, HS	SG C
7	60,254	100.00% Pervious Area			a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.4	300	0.0727	0.92		Sheet Flow,
5.9	763	0.0461	2.15		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
11.3	1,063	Total			

Subcatchment SE2: SE-SB-2

Summary for Subcatchment W1: W-SB-1


Runoff = 128.16 cfs @ 12.07 hrs, Volume= 8.174 af, Depth> 2.55"

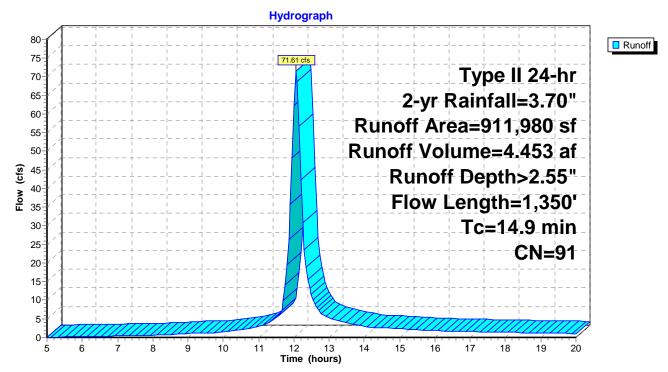
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

_	A	rea (sf)	CN E	Description		
_	1,6	74,458	91 N	lewly grad	ed area, HS	SG C
	1,674,458		1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.1	300	0.0378	0.71		Sheet Flow,
	8.5	1,340	0.0692	2.63		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	172	0.0459	21.01	735.52	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$

15.7 1,812 Total

Subcatchment W1: W-SB-1

Summary for Subcatchment W2: W-SB-2


No Channel Flow

Runoff	=	71.61 cfs @	12.06 hrs, Volume=	4.453 af, Depth> 2.55"
--------	---	-------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.70"

A	rea (sf)	CN D	Description		
9	11,980	91 N	lewly grad	ed area, HS	SG C
9	11,980	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.5	300	0.0716	0.91		Sheet Flow,
9.4	1,050	0.0350	1.87		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
14.9	1,350	Total			

Subcatchment W2: W-SB-2

Summary for Pond 1P: P-P1-SB-1

Inflow Area Inflow Outflow Primary Secondary	= 72.25 = 1.17 = 1.17	cfs @ 12 cfs @ 1 ⁻ cfs @ 1 ⁻	00% Impervious, Inflow Depth > 2.56" for 2-yr event 2.02 hrs, Volume= 4.006 af 1.15 hrs, Volume= 0.968 af, Atten= 98%, Lag= 0.0 min 1.15 hrs, Volume= 0.968 af 5.00 hrs, Volume= 0.000 af
			Span= 5.00-20.00 hrs, dt= 0.05 hrs Surf.Area= 38,526 sf Storage= 133,190 cf
Center-of-	Mass det. time	= 134.6 r	nin calculated for 0.965 af (24% of inflow) nin (897.4 - 762.8)
Volume			rage Storage Description
#1	558.00'	358,76	67 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation		rea	Inc.Store Cum.Store
(feet)	(so	l-tt)	(cubic-feet) (cubic-feet)
558.00	28,8	366	0 0
567.00	50,8	360	358,767 358,767
Device F	Routing	Invert	Outlet Devices
#1 C	Device 2	558.00'	1.168 cfs Constant Flow/Skimmer
#2 F	Primary	558.00'	24.0" Round Culvert
	,		L= 100.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 558.00' / 557.00' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#3 E	Device 2	564.40'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4 S	Secondary	565.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
Primary O	DutFlow Max=	1.17 cfs @	@ 11.15 hrs HW=558.46' (Free Discharge)
· · ·			1.25 cfs potential flow)

-2=Culvert (Passes 1.17 cfs of 1.25 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=558.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 72.25 cfs Inflow Area=18.814 ac 80 Peak Elev=561.95' 75 70 Storage=133,190 cf 65 60-55 50 (cfs) 45 40 Flow 35 30-25 20-15 1.17 cfs 10-0.0 0 5 6 Ż 8 ģ 10 11 12 13 14 15 16 17 18 19 20 Time (hours)

Pond 1P: P-P1-SB-1

Summary for Pond 2P: P-P1-SB-2

Inflow A Inflow Outflow Primary Seconda	= 78.85 = 1.17 = 1.17	5 cfs @ 12 7 cfs @ 1 7 cfs @ 1	00% Impervious 2.03 hrs, Volum 1.15 hrs, Volum 1.15 hrs, Volum 5.00 hrs, Volum	e= 4. e= 0. e= 0.	440 af	for 2-yr event en= 99%, Lag= 0.0 min
			Span= 5.00-20. Surf.Area= 43,2			cf
			nin calculated fo nin (898.0 - 763		?% of inflow)	1
Volume	Invert	Avail.Sto	rage Storage [Description		
#1	548.00'	401,56	67 cf Custom	Stage Data (P	rismatic) ∟	isted below (Recalc)
Elevatio		Area sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
548.0)0 33	,085	0	C)	
557.0	00 56	5,152	401,567	401,567	7	
Device	Routing	Invert	Outlet Devices			
#1	Device 2	548.00'	1.168 cfs Cons	stant Flow/Sk	kimmer	
#2	Primary	548.00'	24.0" Round			
	•		L= 100.0' CM	P, square edg	ge headwall	, Ke= 0.500
						S= 0.0100 '/' Cc= 0.900
						/ Area= 3.14 sf
#3	Device 2	554.40'	36.0" x 36.0" H			0.600
щл	Coccedent		Limited to weir			ted Destancy Jer Main
#4	Secondary	555.40'				ted Rectangular Weir 1.20 1.40 1.60
						2.66 2.67 2.66 2.64
	Primary OutFlow Max=1.17 cfs @ 11.15 hrs HW=548.46' (Free Discharge)					

1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)

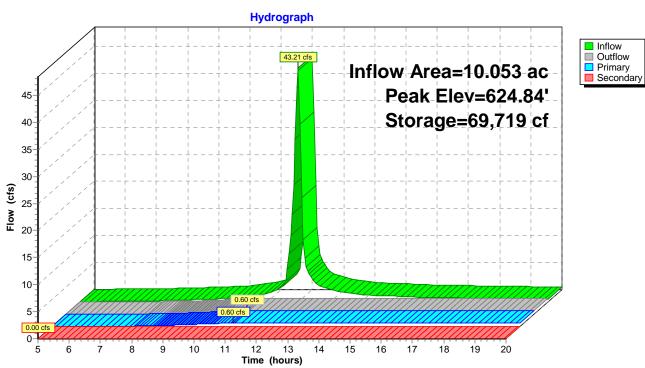
-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=548.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 78.85 cfs Inflow Area=20.855 ac 85 Peak Elev=551.97' 80 75 Storage=151,635 cf 70 65 60-55-(cfs) 50-45 Flow 40 35-30-25 20 15 1.17 cfs 10-0.0 0-5 Ż 8 10 11 12 14 15 16 17 18 19 6 9 13 20 Time (hours)

Pond 2P: P-P1-SB-2

Summary for Pond 3P: P-P2-SB-1


Inflow = 43.21 cfs @ 1 Outflow = 0.60 cfs @ 1 Primary = 0.60 cfs @ 1	.00% Impervious, Inflow Depth > 2.56" for 2-yr event 1.99 hrs, Volume= 2.142 af 0.80 hrs, Volume= 0.550 af, Atten= 99%, Lag= 0.0 min 0.80 hrs, Volume= 0.550 af 5.00 hrs, Volume= 0.000 af			
	e Span= 5.00-20.00 hrs, dt= 0.05 hrs Surf.Area= 19,189 sf Storage= 69,719 cf			
Center-of-Mass det. time= 105.3				
	orage Storage Description 35 cf Custom Stage Data (Prismatic) Listed below (Recalc)			
#1 620.00 195,1	35 cf Custom Stage Data (Prismatic) Listed below (Recalc)			
Elevation Surf.Area	Inc.Store Cum.Store			
(feet) (sq-ft)	(cubic-feet) (cubic-feet)			
620.00 9,645	0 0			
630.00 29,382	195,135 195,135			
Device Routing Invert				
#1 Device 2 620.00'				
#2 Primary 620.00'	24.0" Round Culvert			
	L= 100.0' CMP, square edge headwall, Ke= 0.500			
	Inlet / Outlet Invert= 620.00' / 619.00' S= 0.0100 '/' Cc= 0.900			
#3 Device 2 627.30'	n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf 36.0" x 36.0" Horiz. Orifice/Grate C= 0.600			
#3 Device 2 027.30	Limited to weir flow at low heads			
#4 Secondary 628.30'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir			
	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60			
	Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64			
Primary OutFlow Max=0.60 cfs @ 10.80 hrs HW=620.41' (Free Discharge)				

Primary OutFlow Max=0.60 cfs @ 10.80 hrs HW=620.41' (Free Discharge) **2=Culvert** (Passes 0.60 cfs of 1.00 cfs potential flow)

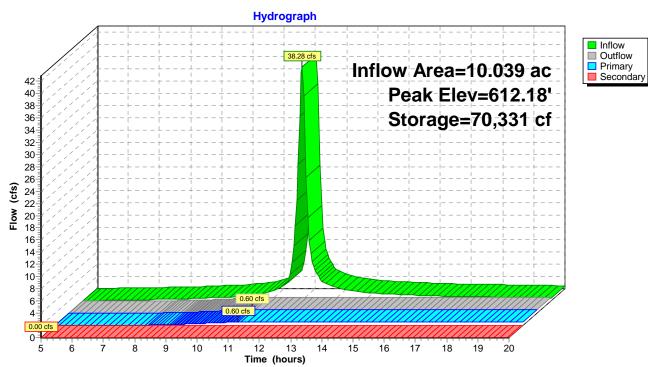
-1=Constant Flow/Skimmer (Constant Controls 0.60 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=620.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: P-P2-SB-1

Summary for Pond 4P: P-E-SB-1


Inflow Area = 10.039 ac, 0.00% Impervious, Inflow Depth > 2.55" for 2-yr event Inflow = 38.28 cfs @ 12.03 hrs, Volume= 2.137 af Outflow = 0.60 cfs @ 10.85 hrs, Volume= 0.530 af, Atten= 98%, Lag= 0.0 min Primary = 0.60 cfs @ 10.85 hrs, Volume= 0.530 af Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 612.18' @ 18.60 hrs Surf.Area= 20,830 sf Storage= 70,331 cf
Plug-Flow detention time= 231.5 min calculated for 0.530 af (25% of inflow) Center-of-Mass det. time= 114.1 min (877.2 - 763.1)
Volume Invert Avail.Storage Storage Description
#1 608.00' 193,037 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation Surf.Area Inc.Store Cum.Store
(feet) (sq-ft) (cubic-feet) (cubic-feet)
608.00 12,851 0 0
617.00 30,046 193,037 193,037
Device Routing Invert Outlet Devices
#1 Device 2 608.00' 0.600 cfs Constant Flow/Skimmer
#2 Primary 608.00' 24.0" Round Culvert
L= 100.0' CMP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 608.00' / 607.00' S= 0.0100 '/' Cc= 0.900
n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#3 Device 2 614.50' 36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4 Secondary 615.50' 20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
Primary OutFlow Max=0.60 cfs @ 10.85 hrs HW=608.37' (Free Discharge)

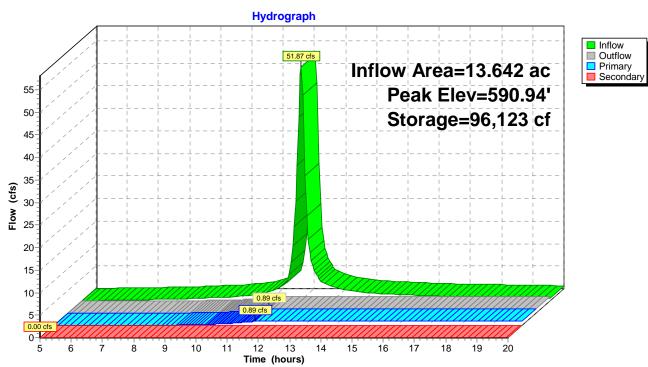
rimary OutFlow Max=0.60 cfs @ 10.85 hrs HW=608.37' (Free Discharge)

2=Culvert (Passes 0.60 cfs of 0.81 cfs potential flow) **1=Constant Flow/Skimmer** (Constant Controls 0.60 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=608.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 4P: P-E-SB-1


Summary for Pond 5P: P-E-SB-2

Inflow A Inflow Outflow Primary Seconda	= 51.87 = 0.89 = 0.89	′ cfs @ 1:) cfs @ 1) cfs @ 1	00% Impervious, Inflow Depth > 2.55" for 2-yr event 2.03 hrs, Volume= 2.904 af 1.45 hrs, Volume= 0.719 af, Atten= 98%, Lag= 0.0 min 1.45 hrs, Volume= 0.719 af 5.00 hrs, Volume= 0.000 af
			Span= 5.00-20.00 hrs, dt= 0.05 hrs Surf.Area= 36,392 sf Storage= 96,123 cf
•		e= 143.1 r	nin calculated for 0.717 af (25% of inflow) nin(906.2 - 763.1) rage Storage Description
<u>volume</u> #1	588.00'	264,58	
#1	500.00	204,30	Custom Stage Data (Frismatic) Listed below (Recald)
Elevatio	on Surf.A	Area	Inc.Store Cum.Store
(fee	et) (s	sq-ft)	(cubic-feet) (cubic-feet)
588.0	0 29	,044	0 0
595.0	0 46	,552	264,586 264,586
Device	Routing	Invert	Outlet Devices
<u>Device</u> #1	Device 2	588.00'	0.894 cfs Constant Flow/Skimmer
#2	Primary	588.00'	24.0" Round Culvert
11 2	i iiiiaiy	000.00	L= 100.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 588.00' / 587.00' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#3	Device 2	592.80'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Secondary	593.80'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
Primary OutFlow Max=0.89 cfs @ 11.45 hrs HW=588.43' (Free Discharge)			

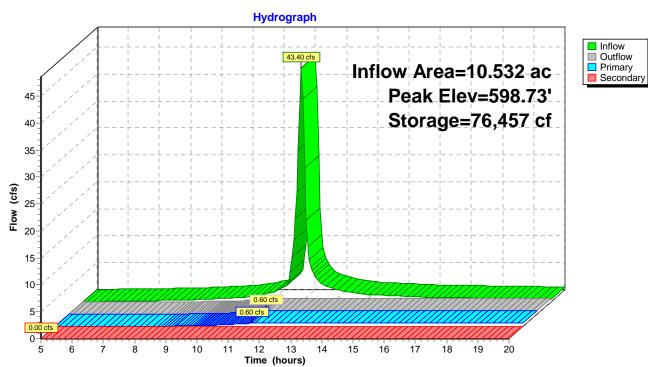
2=Culvert (Passes 0.89 cfs of 1.08 cfs potential flow) 1=Constant Flow/Skimmer (Constant Controls 0.89 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=588.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 5P: P-E-SB-2

Summary for Pond 6P: P-E-SB-3


Inflow A Inflow Outflow Primary Seconda	= 43.40 = 0.60 = 0.60	cfs @ 12 cfs @ 11 cfs @ 11	00% Impervious, Inflow Depth > 2.56" for 2-yr event 2.00 hrs, Volume= 2.244 af 1.30 hrs, Volume= 0.493 af, Atten= 99%, Lag= 0.0 min 1.30 hrs, Volume= 0.493 af 5.00 hrs, Volume= 0.000 af	
			Span= 5.00-20.00 hrs, dt= 0.05 hrs Surf.Area= 31,205 sf Storage= 76,457 cf	
		e= 138.4 n	nin calculated for 0.493 af (22% of inflow) nin (899.6 - 761.2)	
-			rage Storage Description	
#1	596.00'	231,03	39 cf Custom Stage Data (Prismatic) Listed below (Recalc)	
Elevatio	on Surf.A	Area	Inc.Store Cum.Store	
(fee		q-ft)	(cubic-feet) (cubic-feet)	
596.0		,837	0 0	
603.00 41,174		,	231,039 231,039	
		,		
Device	Routing	Invert	Outlet Devices	
#1	Device 2	596.00'	0.600 cfs Constant Flow/Skimmer	
#2	Primary	596.00'	24.0" Round Culvert	
			L= 100.0' CMP, square edge headwall, Ke= 0.500	
			Inlet / Outlet Invert= 596.00' / 595.00' S= 0.0100 '/' Cc= 0.900	
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#3	Device 2	600.50'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600	
	O a a a a da ma		Limited to weir flow at low heads	
#4	Secondary	601.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir	
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
			OUGI. (LINGHISH) 2.31 2.02 2.10 2.01 2.00 2.01 2.00 2.04	
Primary	Primary OutFlow Max=0.60 cfs @ 11.30 hrs HW=596.35' (Free Discharge)			

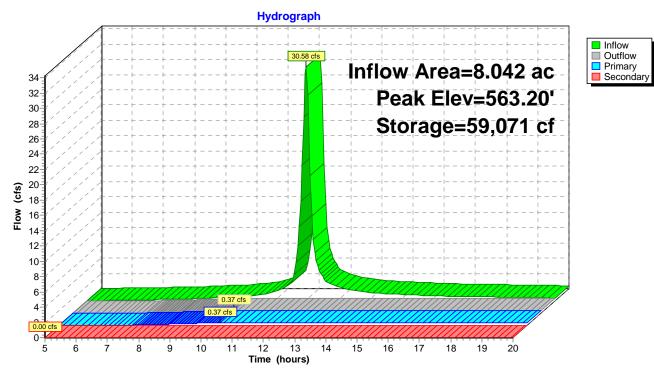
Primary OutFlow Max=0.60 cfs @ 11.30 hrs HW=596.35' (Free Discharge) **2=Culvert** (Passes 0.60 cfs of 0.76 cfs potential flow)

-1=Constant Flow/Skimmer (Constant Controls 0.60 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=596.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 6P: P-E-SB-3


Summary for Pond 7P: P-SE-SB-1

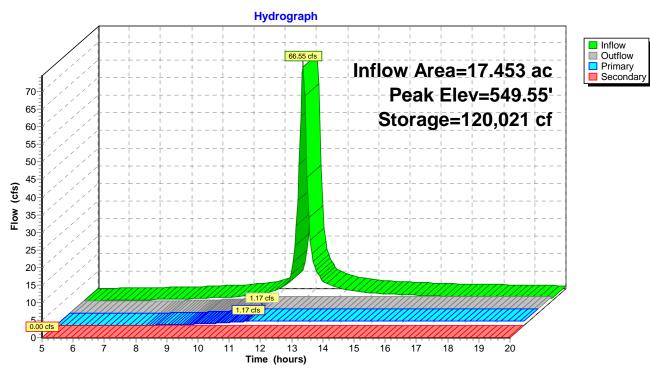
Inflow A Inflow Outflow Primary Seconda	= 30.58 = 0.37 = 0.37	cfs @ 12 cfs @ 10 cfs @ 10	00% Impervious, Inflow Depth > 2.55" for 2-yr event 2.03 hrs, Volume= 1.712 af 0.15 hrs, Volume= 0.356 af, Atten= 99%, Lag= 0.0 min 0.15 hrs, Volume= 0.356 af 5.00 hrs, Volume= 0.000 af	
			Span= 5.00-20.00 hrs, dt= 0.05 hrs Surf.Area= 15,915 sf Storage= 59,071 cf	
Center-o	of-Mass det. tim	e= 88.5 m	nin calculated for 0.355 af (21% of inflow) in (851.7 - 763.1)	
Volume	Invert		rage Storage Description	
#1	558.00'	155,68	35 cf Custom Stage Data (Prismatic) Listed below (Recalc)	
_		_		
Elevatio			Inc.Store Cum.Store	
(fee	/	q-ft)	(cubic-feet) (cubic-feet)	
558.0	00 6	,814	0 0	
568.0	0 24	,323	155,685 155,685	
Device	Routing	Invert	Outlet Devices	
#1	Device 2	558.00'	0.373 cfs Constant Flow/Skimmer	
#2	Primary	558.00'	24.0" Round Culvert	
=			L= 100.0' CMP, square edge headwall, Ke= 0.500	
			Inlet / Outlet Invert= 558.00' / 557.00' S= 0.0100 '/' Cc= 0.900	
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#3	Device 2	565.60'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600	
110	Donico Z	000.00	Limited to weir flow at low heads	
#4	Secondary	566.60'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir	
11-4	Coolinaary	000.00	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
			0001. (Englion) 2.01 2.02 2.10 2.01 2.00 2.01 2.00 2.04	
Primary OutFlow Max=0.37 cfs @ 10.15 hrs HW=558.30' (Free Discharge)				
			2 10.15 IIIS HW=556.50 (Field Discharge)	

2=Culvert (Passes 0.37 cfs of 0.56 cfs potential flow) **1=Constant Flow/Skimmer** (Constant Controls 0.37 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=558.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 7P: P-SE-SB-1


Summary for Pond 8P: P-SE-SB-2

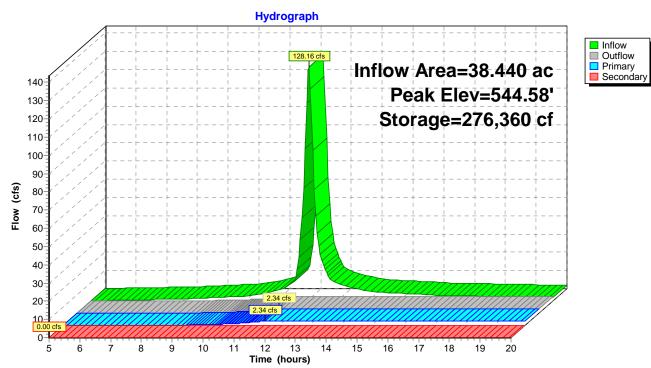
Inflow A Inflow Outflow Primary Seconda	= 66.5 = 1.1 = 1.1	55 cfs @ 12 7 cfs @ 1 ⁻ 7 cfs @ 1 ⁻	00% Impervious, Inflow Depth > 2.55" for 2-yr event 2.03 hrs, Volume= 3.716 af 1.15 hrs, Volume= 0.992 af, Atten= 98%, Lag= 0.0 min 1.15 hrs, Volume= 0.992 af 5.00 hrs, Volume= 0.000 af
			Span= 5.00-20.00 hrs, dt= 0.05 hrs Surf.Area= 31,550 sf Storage= 120,021 cf
Center-c	of-Mass det. tir	me= 126.5 n	nin calculated for 0.989 af (27% of inflow) nin(889.5 - 763.1)
Volume	Invert		rage Storage Description
#1	545.00'	325,74	40 cf Custom Stage Data (Prismatic) Listed below (Recalc)
El su setta			
Elevatio		Area	Inc.Store Cum.Store
(fee	/	(sq-ft)	(cubic-feet) (cubic-feet)
545.0		1,213	
555.0	0 4	3,935	325,740 325,740
Device	Routing	Invert	Outlet Devices
#1	Device 2	545.00'	1.168 cfs Constant Flow/Skimmer
#2	Primary	545.00'	24.0" Round Culvert
	•		L= 100.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 545.00' / 544.00' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#3	Device 2	552.20'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Secondary	553.20'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
Primary OutFlow Max=1.17 cfs @ 11.15 hrs HW=545.51' (Free Discharge)			

2=Culvert (Passes 1.17 cfs of 1.52 cfs potential flow) 1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=545.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 8P: P-SE-SB-2


Summary for Pond 9P: P-W-SB-1

Inflow = 128.16 cfs @ Outflow = 2.34 cfs @	0.00% Impervious, Inflow Depth > 2.55" for 2-yr event 12.07 hrs, Volume= 8.174 af 11.55 hrs, Volume= 1.860 af, Atten= 98%, Lag= 0.0 min 11.55 hrs, Volume= 1.860 af 5.00 hrs, Volume= 0.000 af		
	e Span= 5.00-20.00 hrs, dt= 0.05 hrs Surf.Area= 68,972 sf Storage= 276,360 cf		
Center-of-Mass det. time= 142.7	min calculated for 1.854 af (23% of inflow) min(909.2 - 766.6) orage Storage Description		
	635 cf Custom Stage Data (Prismatic) Listed below (Recalc)		
#1 540.00 703,0	So di Custom Stage Data (Frismatic) Listed Below (Necalo)		
Elevation Surf.Area	Inc.Store Cum.Store		
(feet) (sq-ft)	(cubic-feet) (cubic-feet)		
540.00 51,836	0 0		
550.00 89,291	705,635 705,635		
Device Devices Invest	Outlat Daviage		
	Outlet Devices		
#1 Device 2 540.00 #2 Primary 540.00			
#2 Primary 540.00	L= 100.0' CMP, square edge headwall, Ke= 0.500		
	Inlet / Outlet Invert= $540.00' / 539.00'$ S= $0.0100 '/$ Cc= 0.900		
	n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf		
#3 Device 2 547.30			
	Limited to weir flow at low heads		
#4 Secondary 548.30			
	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60		
	Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64		
Primary OutFlow Max=2.34 cfs @ 11.55 hrs HW=540.71' (Free Discharge)			

2=Culvert (Passes 2.34 cfs of 2.84 cfs potential flow) 1=Constant Flow/Skimmer (Constant Controls 2.34 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=540.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 9P: P-W-SB-1

Summary for Pond 10P: P-W-SB-2

Inflow Are Inflow Outflow Primary Secondary	= 71.61 = 1.17 = 1.17	cfs @ 12 cfs @ 11 cfs @ 11	00% Impervious, Inflow Depth > 2.55" for 2-yr event 2.06 hrs, Volume= 4.453 af .15 hrs, Volume= 0.991 af, Atten= 98%, Lag= 0.0 min .15 hrs, Volume= 0.991 af .00 hrs, Volume= 0.000 af	
			Span= 5.00-20.00 hrs, dt= 0.05 hrs Surf.Area= 38,955 sf Storage= 151,066 cf	
Center-of-	-Mass det. time	e= 124.1 m	nin calculated for 0.988 af (22% of inflow) nin (890.0 - 765.9)	
Volume	Invert		age Storage Description	
#1	567.00'	399,620	0 cf Custom Stage Data (Prismatic) Listed below (Recalc)	
Elevation	n Surf.A	roo	Inc.Store Cum.Store	
(feet)			(cubic-feet) (cubic-feet)	
		264		
567.00	,			
577.00	577.00 53,660 399,620 399,620			
Device I	Routing	Invert	Outlet Devices	
#1 [Device 2	567.00'	1.168 cfs Constant Flow/Skimmer	
#2 F	Primary	567.00'	24.0" Round Culvert	
	,		L= 100.0' CMP, square edge headwall, Ke= 0.500	
			Inlet / Outlet Invert= 567.00' / 566.00' S= 0.0100 '/' Cc= 0.900	
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#3 [Device 2	574.30'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	
#4 \$	Secondary	575.30'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir	
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
Primary OutFlow Max=1.17 cfs @ 11.15 hrs HW=567.51' (Free Discharge)				

2=Culvert (Passes 1.17 cfs of 1.54 cfs potential flow) 1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=567.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 71.61 cfs Inflow Area=20.936 ac 80 Peak Elev=571.63' 75 70 Storage=151,066 cf 65 60 55 50-(cfs) 45 40 Flow 35 30 25 20 15 1.17 cfs 1.17 cfs 10-0.0 0 7 5 6 8 10 11 12 13 14 15 16 17 18 19 9 20 Time (hours)

Pond 10P: P-W-SB-2

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: E-SB-	1Runoff Area=437,294 sf0.00% ImperviousRunoff Depth>4.09"Flow Length=950'Tc=11.3 minCN=91Runoff=59.49 cfs3.425 af
Subcatchment E2: E-SB-	2 Runoff Area=594,248 sf 0.00% Impervious Runoff Depth>4.09" Flow Length=1,443' Tc=11.4 min CN=91 Runoff=80.84 cfs 4.654 af
Subcatchment E3: E-SB-	3 Runoff Area=458,785 sf 0.00% Impervious Runoff Depth>4.10" Flow Length=853' Tc=9.0 min CN=91 Runoff=67.55 cfs 3.595 af
Subcatchment P11: P1-S	B-1 Runoff Area=819,548 sf 0.00% Impervious Runoff Depth>4.09" Flow Length=1,321' Tc=11.0 min CN=91 Runoff=112.62 cfs 6.420 af
Subcatchment P12: P1-S	B-2 Runoff Area=908,446 sf 0.00% Impervious Runoff Depth>4.09" Flow Length=2,394' Tc=11.6 min CN=91 Runoff=122.88 cfs 7.115 af
Subcatchment P2: P2-SE	Runoff Area=437,891 sf 0.00% Impervious Runoff Depth>4.10" Flow Length=542' Tc=7.7 min CN=91 Runoff=67.16 cfs 3.432 af
Subcatchment SE1: SE-S	B-1Runoff Area=350,298 sf0.00% ImperviousRunoff Depth>4.09"Flow Length=1,807'Tc=11.4 minCN=91Runoff=47.65 cfs2.744 af
Subcatchment SE2: SE-S	B-2 Runoff Area=760,254 sf 0.00% Impervious Runoff Depth>4.09" Flow Length=1,063' Tc=11.3 min CN=91 Runoff=103.43 cfs 5.955 af
Subcatchment W1: W-SE	B-1 Runoff Area=1,674,458 sf 0.00% Impervious Runoff Depth>4.09" Flow Length=1,812' Tc=15.7 min CN=91 Runoff=200.28 cfs 13.104 af
Subcatchment W2: W-SE	B-2 Runoff Area=911,980 sf 0.00% Impervious Runoff Depth>4.09" Flow Length=1,350' Tc=14.9 min CN=91 Runoff=111.85 cfs 7.138 af
Pond 1P: P-P1-SB-1	Peak Elev=564.31' Storage=230,872 cf Inflow=112.62 cfs 6.420 af Primary=1.17 cfs 1.119 af Secondary=0.00 cfs 0.000 af Outflow=1.17 cfs 1.119 af
Pond 2P: P-P1-SB-2	Peak Elev=554.34' Storage=261,211 cf Inflow=122.88 cfs 7.115 af Primary=1.17 cfs 1.118 af Secondary=0.00 cfs 0.000 af Outflow=1.17 cfs 1.118 af
Pond 3P: P-P2-SB-1	Peak Elev=627.26' Storage=122,078 cf Inflow=67.16 cfs 3.432 af Primary=0.60 cfs 0.630 af Secondary=0.00 cfs 0.000 af Outflow=0.60 cfs 0.630 af
Pond 4P: P-E-SB-1	Peak Elev=614.45' Storage=122,616 cf Inflow=59.49 cfs 3.425 af Primary=0.60 cfs 0.610 af Secondary=0.00 cfs 0.000 af Outflow=0.60 cfs 0.610 af
Pond 5P: P-E-SB-2	Peak Elev=592.76' Storage=166,553 cf Inflow=80.84 cfs 4.654 af Primary=0.89 cfs 0.831 af Secondary=0.00 cfs 0.000 af Outflow=0.89 cfs 0.831 af
Pond 6P: P-E-SB-3	Peak Elev=600.40' Storage=131,763 cf Inflow=67.55 cfs 3.595 af Primary=0.60 cfs 0.570 af Secondary=0.00 cfs 0.000 af Outflow=0.60 cfs 0.570 af

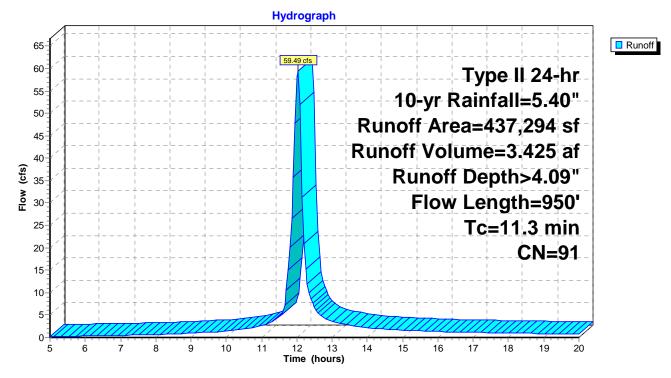
4261-19-156_Enoree_SEDIMENT_BASINS Type II 24-hr 10-yr Rainfall=5.40 Prepared by S&ME, Inc. Printed 3/26/2027 HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC Page 40							
Pond 7P: P-SE-SB-1	Peak Elev=565.57' Storag Primary=0.37 cfs 0.406 af Secondary=0.00	ge=101,833 cf Inflow=47.65 cfs 2.744 af cfs 0.000 af Outflow=0.37 cfs 0.406 af					
Pond 8P: P-SE-SB-2	Peak Elev=552.14' Storage Primary=1.17 cfs 1.145 af Secondary=0.00	e=209,498 cf Inflow=103.43 cfs 5.955 af cfs 0.000 af Outflow=1.17 cfs 1.145 af					
Pond 9P: P-W-SB-1	Peak Elev=547.28' Storage= Primary=2.34 cfs 2.153 af Secondary=0.00	=476,977 cf Inflow=200.28 cfs 13.104 af cfs 0.000 af Outflow=2.34 cfs 2.153 af					
Pond 10P: P-W-SB-2	Peak Elev=574.22' Storage Primary=1.17 cfs 1.146 af Secondary=0.00	e=260,971 cf Inflow=111.85 cfs 7.138 af cfs 0.000 af Outflow=1.17 cfs 1.146 af					
Total Dunat	if Area - 169 906 an Dunoff Valuma - 57 b	592 of Average Buneff Depth - 4.00"					

Total Runoff Area = 168.806 acRunoff Volume = 57.582 af
100.00% Pervious = 168.806 acAverage Runoff Depth = 4.09"
0.00% Impervious = 0.000 ac

Prepared by S&ME, Inc.

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: E-SB-1


Runoff = 59.49 cfs @ 12.02 hrs, Volume= 3.425 af, Depth> 4.09"

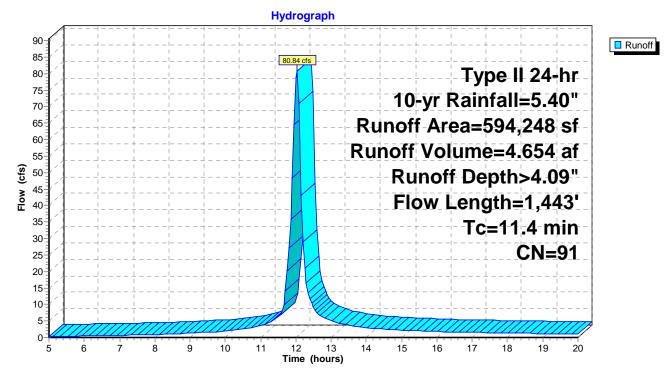
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

_	A	rea (sf)	CN E	Description		
437,294 91 Newly graded area, HSG C						SG C
	4	37,294	100.00% Pervious Area			a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.6	300	0.0455	0.76		Sheet Flow,
	4.6	581	0.0436	2.09		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	69	0.0145	11.81	413.40	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$
_						

11.3 950 Total

Subcatchment E1: E-SB-1

Summary for Subcatchment E2: E-SB-2


Runoff = 80.84 cfs @ 12.03 hrs, Volume= 4.654 af, Depth> 4.09"

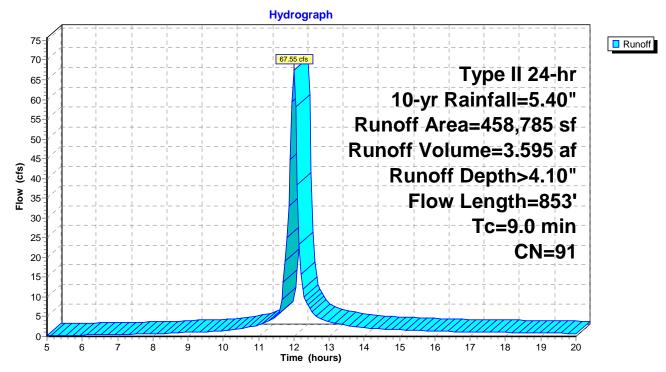
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

	A	rea (sf)	CN E	Description			
	594,248 91 Newly graded area, HSG C						
	5	94,248	100.00% Pervious Area			a	
	Tc nin)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
(6.7	300	0.0432	0.75		Sheet Flow,	
4	4.2	488	0.0380	1.95		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps	
	0.5	655	0.0481	21.51	752.94	Channel Flow, Area= 35.0 sf Perim= 20.0' r= 1.75' n= 0.022 Earth, clean & straight	

11.4 1,443 Total

Subcatchment E2: E-SB-2

Summary for Subcatchment E3: E-SB-3


No Channel Flow

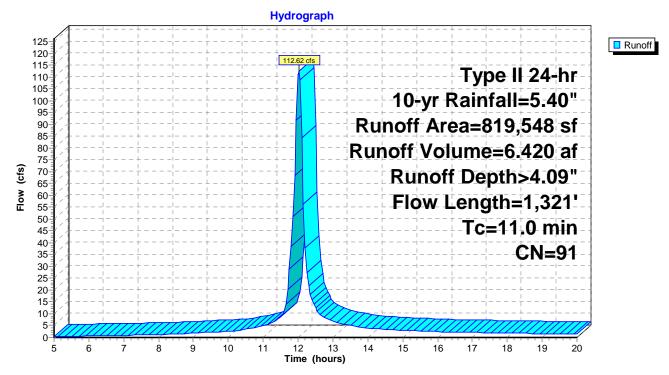
Runoff	=	67.55 cfs @	12.00 hrs, Volume=	3.595 af, Depth> 4.10"
rtarion	_			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

_	А	rea (sf)	CN E	Description			
	458,785 91 Newly graded area, HSG C						
	458,785 100.00% Pervious Area					a	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
-	4.8	300	0.1013	1.05		Sheet Flow,	
	4.2	553	0.0481	2.19		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps	
	9.0	853	Total				

Subcatchment E3: E-SB-3

Summary for Subcatchment P11: P1-SB-1


Runoff = 112.62 cfs @ 12.02 hrs, Volume= 6.420 af, Depth> 4.09"

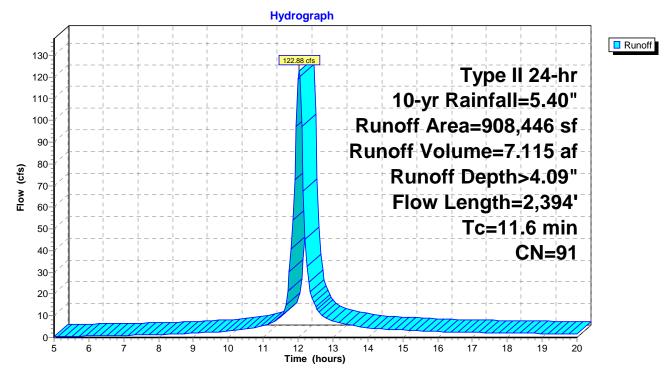
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

_	A	rea (sf)	CN [Description		
	8	19,548	91 N	Vewly grad	ed area, HS	SG C
	819,548			00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.2	300	0.0813	0.96		Sheet Flow,
	5.7	819	0.0569	2.39		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	202	0.1138	33.09	1,158.14	
_						n= 0.022 Lattin, clean & straight

11.0 1,321 Total

Subcatchment P11: P1-SB-1

Summary for Subcatchment P12: P1-SB-2


Runoff = 122.88 cfs @ 12.03 hrs, Volume= 7.115 af, Depth> 4.09"

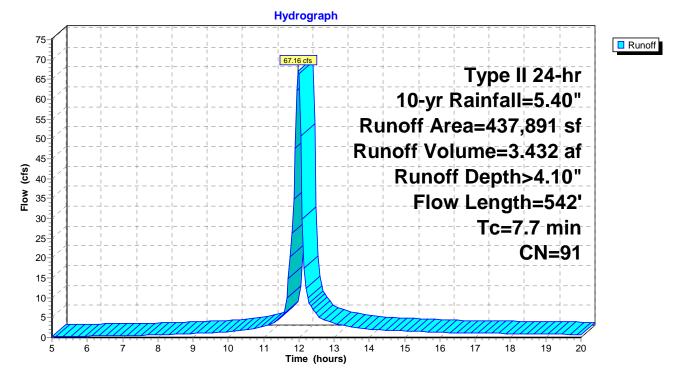
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

_	A	rea (sf)	CN [Description		
908,446 91 Newly graded area, HSG C						SG C
	g	08,446		100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description
	5.3	300	0.0769	0.94		Sheet Flow,
	4.8	721	0.0618	2.49		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	1.5	1,373	0.0244	15.32	536.27	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$
_						

11.6 2,394 Total

Subcatchment P12: P1-SB-2

Summary for Subcatchment P2: P2-SB-1


Runoff = 67.16 cfs @ 11.99 hrs, Volume= 3.432 af, Depth> 4.10"

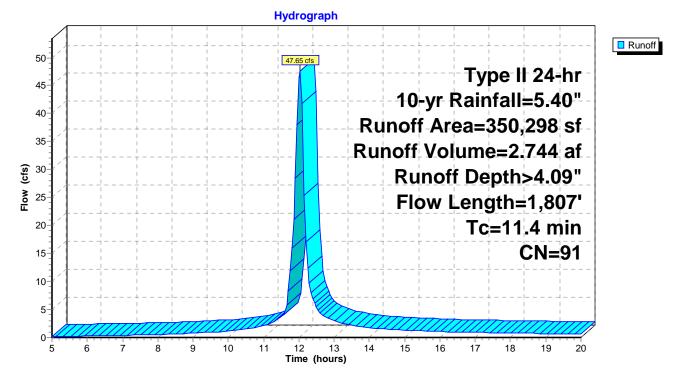
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

_	A	rea (sf)	CN E	Description		
	4	37,891	91 N	lewly grad	ed area, HS	SG C
	4	37,891	1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.5	300	0.0473	0.77		Sheet Flow, Fallow n= 0.050 P2= 3.70"
	1.1	165	0.0658	2.57		Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	77	0.0517	22.30	780.61	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$
_						n= 0.022 Earth, oldar a straight

7.7 542 Total

Subcatchment P2: P2-SB-1

Summary for Subcatchment SE1: SE-SB-1


Runoff = 47.65 cfs @ 12.03 hrs, Volume= 2.744 af, Depth> 4.09"

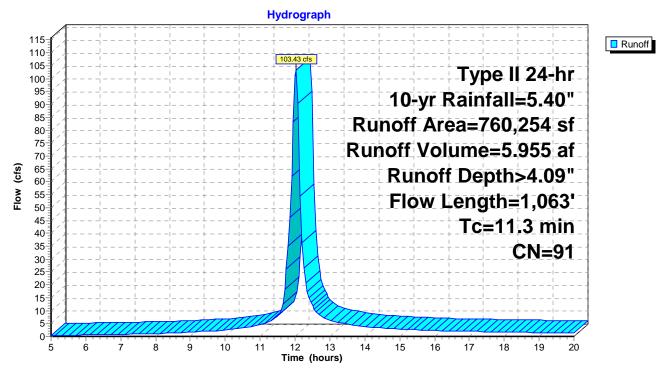
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

_	A	rea (sf)	CN [Description		
_	3	50,298	91 N	Newly grad	ed area, HS	SG C
	350,298		100.00% Pervious Area			a
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description
	7.4	300	0.0331	0.67		Sheet Flow,
	2.4	324	0.0515	2.27		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	1.6	1,183	0.0165	12.60	440.99	Channel Flow, Area= 35.0 sf Perim= 20.0' $r= 1.75'$ n= 0.022 Earth, clean & straight

11.4 1,807 Total

Subcatchment SE1: SE-SB-1

Summary for Subcatchment SE2: SE-SB-2


No Channel Flow

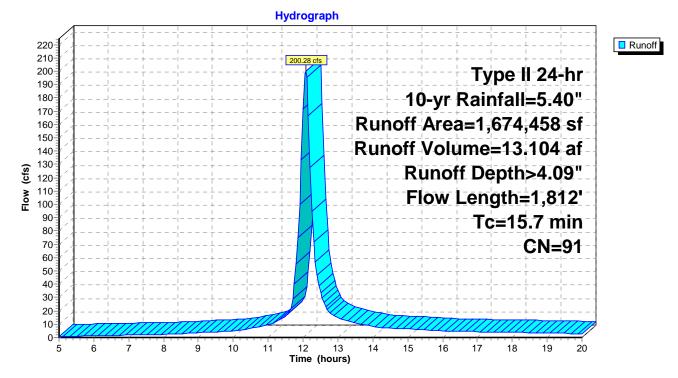
Runoff	_	103.43 cfs @	12 02 hrs	Volume-	5 955 af	Depth> 4.09"	•
RUHUH	=	103.43 015 @	12.02 1115,	volume=	0.900 al,	Deptit > 4.09	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

_	A	rea (sf)	CN E	Description		
	7	60,254	91 N	lewly grad	ed area, HS	SG C
	7	60,254	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	5.4	300	0.0727	0.92		Sheet Flow,
	5.9	763	0.0461	2.15		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	11.3	1,063	Total			

Subcatchment SE2: SE-SB-2

Summary for Subcatchment W1: W-SB-1


Runoff = 200.28 cfs @ 12.07 hrs, Volume= 13.104 af, Depth> 4.09"

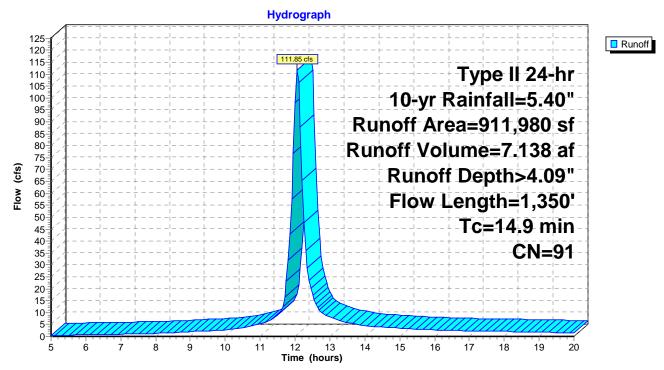
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

_	A	rea (sf)	CN E	Description		
_	1,6	74,458	91 N	lewly grad	ed area, HS	SG C
	1,6	74,458	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.1	300	0.0378	0.71		Sheet Flow,
	8.5	1,340	0.0692	2.63		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	172	0.0459	21.01	735.52	Channel Flow, Area= 35.0 sf Perim= 20.0' r= 1.75' n= 0.022 Earth, clean & straight

15.7 1,812 Total

Subcatchment W1: W-SB-1

Summary for Subcatchment W2: W-SB-2


No Channel Flow

Runoff	=	111.85 cfs @	12.06 hrs,	Volume=	7.138 af,	Depth> 4.09)"
1 Controlli			121001110,	Volumo	71100 aij	D op and not	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=5.40"

A	rea (sf)	CN D	escription				
g	911,980	91 N	lewly grad	ed area, HS	SG C		
g	911,980	100.00% Pe		ervious Are	vious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
5.5	300	0.0716	0.91	. ,	Sheet Flow,		
9.4	1,050	0.0350	1.87		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps		
14.9	1,350	Total					

Subcatchment W2: W-SB-2

Summary for Pond 1P: P-P1-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	18.814 ac,	0.00% Impervious, Inflow	Depth > 4.09" for 10-yr event
Inflow =	112.62 cfs @	12.02 hrs, Volume=	6.420 af
Outflow =	1.17 cfs @	9.80 hrs, Volume=	1.119 af, Atten= 99%, Lag= 0.0 min
Primary =	1.17 cfs @	9.80 hrs, Volume=	1.119 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 564.31' @ 20.00 hrs Surf.Area= 44,290 sf Storage= 230,872 cf

Plug-Flow detention time= 263.5 min calculated for 1.119 af (17% of inflow) Center-of-Mass det. time= 97.8 min (850.9 - 753.1)

Volume	Invert	Avail.Sto	prage Storage Description
#1	558.00'	358,76	767 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevatio		f.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)
558.0		28,866	0 0
567.0	00 8	50,860	358,767 358,767
Device	Routing	Invert	Outlet Devices
#1	Device 2	558.00'	1.168 cfs Constant Flow/Skimmer
#2	Primary	558.00'	24.0" Round Culvert
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 558.00' / 557.00' S= 0.0100 '/' Cc= 0.900
#3	Device 2	564.40'	n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf 36.0" x 36.0" Horiz, Orifice/Grate C= 0.600
#3	Device 2	504.40	Limited to weir flow at low heads
#4	Secondary	565.40'	
	2		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
Primary	OutFlow Ma		@ 9.80 hrs HW=558.45' (Free Discharge)

2=Culvert (Passes 1.17 cfs of 1.23 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 1.17 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=558.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 112.62 cfs Inflow Area=18.814 ac 120 Peak Elev=564.31' 110 Storage=230,872 cf 100 90 80-Flow (cfs) 70 60-50-40-30-20-1.17 cfs 10-0.0 0-10 11 6 Ż 8 ģ 12 14 15 16 17 18 19 20 5 13 Time (hours)

Pond 1P: P-P1-SB-1

Summary for Pond 2P: P-P1-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.855 ac,	0.00% Impervious, Inflow	Depth > 4.09" for 10-yr event
Inflow =	122.88 cfs @	12.03 hrs, Volume=	7.115 af
Outflow =	1.17 cfs @	9.75 hrs, Volume=	1.118 af, Atten= 99%, Lag= 0.0 min
Primary =	1.17 cfs @	9.75 hrs, Volume=	1.118 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 554.34' @ 20.00 hrs Surf.Area= 49,331 sf Storage= 261,211 cf

Plug-Flow detention time= 274.9 min calculated for 1.117 af (16% of inflow) Center-of-Mass det. time= 97.9 min (851.4 - 753.6)

Volume	Invert	Avail.Sto	prage Storage Description				
#1	548.00'	401,56	67 cf Custom Stage Data (Prismatic) Listed below (Recalc)				
Elevatio (fee		f.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)				
548.0	00 ;	33,085	0 0				
557.0	00 50	56,152	401,567 401,567				
Device	Routing	Invert	Outlet Devices				
#1	Device 2	548.00'	1.168 cfs Constant Flow/Skimmer				
#2	Primary	548.00'	24.0" Round Culvert				
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 548.00' / 547.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf				
#3	Device 2	554.40'					
			Limited to weir flow at low heads				
#4	Secondary	555.40'	5				
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60				
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64				
Primary	Primary OutFlow Max=1.17 cfs @ 9.75 hrs HW=548.45' (Free Discharge)						

-2=Culvert (Passes 1.17 cfs of 1.21 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 1.17 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=548.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 122.88 cfs Inflow Area=20.855 ac 130-Peak Elev=554.34' 120 Storage=261,211 cf 110 100 90 80-Flow (cfs) 70 60 50 40-30-1.17 cfs 20 10-0-10 11 6 Ż 8 ģ 12 14 15 16 17 18 19 20 5 13 Time (hours)

Pond 2P: P-P1-SB-2

Summary for Pond 3P: P-P2-SB-1

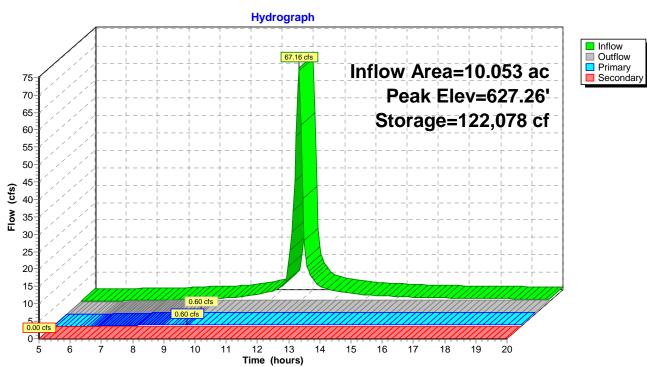
[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.053 ac,	0.00% Impervious, Inflow D	Pepth > 4.10" for 10-yr event
Inflow =	67.16 cfs @	11.99 hrs, Volume=	3.432 af
Outflow =	0.60 cfs @	9.30 hrs, Volume=	0.630 af, Atten= 99%, Lag= 0.0 min
Primary =	0.60 cfs @	9.30 hrs, Volume=	0.630 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 627.26' @ 20.00 hrs Surf.Area= 23,977 sf Storage= 122,078 cf

Plug-Flow detention time= 227.9 min calculated for 0.629 af (18% of inflow) Center-of-Mass det. time= 67.9 min (818.4 - 750.5)

Volume	Invert	Avail.Stor	prage Storage Description
#1	620.00'	195,13	35 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevatio (fee 620.0	et) (.Area (sq-ft) 9,645	Inc.StoreCum.Store(cubic-feet)(cubic-feet)00
630.0	0 2	9,382	195,135 195,135
Device	Routing	Invert	Outlet Devices
#1	Device 2	620.00'	0.600 cfs Constant Flow/Skimmer
#2	Primary	620.00'	24.0" Round Culvert
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 620.00' / 619.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#3	Device 2	627.30'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Secondary	628.30'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64


Primary OutFlow Max=0.60 cfs @ 9.30 hrs HW=620.41' (Free Discharge)

-2=Culvert (Passes 0.60 cfs of 0.99 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 0.60 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=620.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Pond 3P: P-P2-SB-1

Summary for Pond 4P: P-E-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.039 ac,	0.00% Impervious, Inflow D	epth > 4.09" for 10-yr event
Inflow =	59.49 cfs @	12.02 hrs, Volume=	3.425 af
Outflow =	0.60 cfs @	9.35 hrs, Volume=	0.610 af, Atten= 99%, Lag= 0.0 min
Primary =	0.60 cfs @	9.35 hrs, Volume=	0.610 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 614.45' @ 20.00 hrs Surf.Area= 25,173 sf Storage= 122,616 cf

Plug-Flow detention time= 239.9 min calculated for 0.610 af (18% of inflow) Center-of-Mass det. time= 76.6 min (829.9 - 753.3)

Volume	Invert	Avail.Sto	prage Storage Description	
#1	608.00'	193,03	37 cf Custom Stage Data (Prismatic) Listed below (Recalc)	
Elevatio	et)	f.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)	
608.0		2,851	0 0	
617.0	JU 3	80,046	193,037 193,037	
Device	Routing	Invert	Outlet Devices	
#1	Device 2	608.00'	0.600 cfs Constant Flow/Skimmer	
#2	Primary	608.00'	24.0" Round Culvert	
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 608.00' / 607.00' S= 0.0100 '/' Cc= 0.900	
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#3	Device 2	614.50'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600	
_			Limited to weir flow at low heads	
#4	Secondary	615.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir	
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
Primary OutFlow May 0.60 of a @ 0.25 hrs. LIM 609.27' (Free Discharge)				

Primary OutFlow Max=0.60 cfs @ 9.35 hrs HW=608.37' (Free Discharge)

-2=Culvert (Passes 0.60 cfs of 0.81 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 0.60 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=608.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 59.49 cfs Inflow Area=10.039 ac 65 Peak Elev=614.45' 60 Storage=122,616 cf 55-50-45 40 (sj) 35 **N** 30-25 20 15 10-0.60 cfs 0.60 cfs 5 0.0 0 ż 10 5 6 8 ģ 11 12 14 15 16 17 18 19 13 20 Time (hours)

Pond 4P: P-E-SB-1

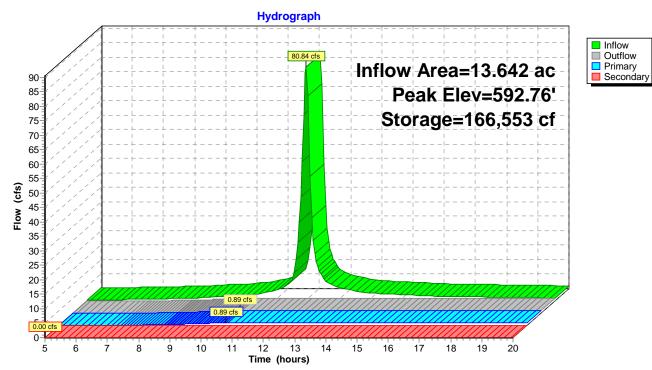
Summary for Pond 5P: P-E-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	13.642 ac,	0.00% Impervious, Inflow D	epth > 4.09" for 10-yr event
Inflow =	80.84 cfs @	12.03 hrs, Volume=	4.654 af
Outflow =	0.89 cfs @	10.35 hrs, Volume=	0.831 af, Atten= 99%, Lag= 0.0 min
Primary =	0.89 cfs @	10.35 hrs, Volume=	0.831 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 592.76' @ 20.00 hrs Surf.Area= 40,948 sf Storage= 166,553 cf

Plug-Flow detention time= 270.0 min calculated for 0.828 af (18% of inflow) Center-of-Mass det. time= 107.7 min (861.1 - 753.4)


Volume	Invert	Avail.Stor	rage Storage Description	
#1	588.00'	264,58	B6 cf Custom Stage Data (Prismatic) Listed below (Recalc)	
Elevatio (fee 588.0	et) 00 2	f.Area (sq-ft) 9,044	Inc.Store Cum.Store (cubic-feet) (cubic-feet) 0 0	
595.0)0 4	6,552	264,586 264,586	
Device	Routing	Invert	Outlet Devices	
#1	Device 2	588.00'	0.894 cfs Constant Flow/Skimmer	
#2	Primary	588.00'	24.0" Round Culvert	
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 588.00' / 587.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#3	Device 2	592.80'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	
#4	Secondary	593.80'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
Drimony OutFlow May 0.00 of a 2.40.25 km LIM/ 500.421 (Erec Discharge)				

Primary OutFlow Max=0.89 cfs @ 10.35 hrs HW=588.43' (Free Discharge)

-2=Culvert (Passes 0.89 cfs of 1.09 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 0.89 cfs) 3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=588.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 5P: P-E-SB-2

Summary for Pond 6P: P-E-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.532 ac,	0.00% Impervious, Inflow D	epth > 4.10" for 10-yr event
Inflow =	67.55 cfs @	12.00 hrs, Volume=	3.595 af
Outflow =	0.60 cfs @	10.10 hrs, Volume=	0.570 af, Atten= 99%, Lag= 0.0 min
Primary =	0.60 cfs @	10.10 hrs, Volume=	0.570 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 600.40' @ 20.00 hrs Surf.Area= 35,099 sf Storage= 131,763 cf

Plug-Flow detention time= 278.2 min calculated for 0.570 af (16% of inflow) Center-of-Mass det. time= 102.2 min (853.8 - 751.5)

Volume	Invert	Avail.Sto	prage Storage Description	
#1	596.00'	231,03	39 cf Custom Stage Data (Prismatic) Listed below (Recalc)	
Elevatio	et)	f.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)	
596.0		4,837	0 0	
603.0	JU 4	1,174	231,039 231,039	
Device	Routing	Invert	Outlet Devices	
#1	Device 2	596.00'	0.600 cfs Constant Flow/Skimmer	
#2	Primary	596.00'	24.0" Round Culvert	
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 596.00' / 595.00' S= 0.0100 '/' Cc= 0.900	
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#3	Device 2	600.50'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	
#4	Secondary	601.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir	
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
Brimary OutFlow Max-0.60 of $@$ 10.10 hrs. $HW/=506.26'$ (Erec Discharge)				

Primary OutFlow Max=0.60 cfs @ 10.10 hrs HW=596.36' (Free Discharge)

-2=Culvert (Passes 0.60 cfs of 0.77 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 0.60 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=596.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow Outflow
 Primary
 Secondary 67.55 cfs Inflow Area=10.532 ac 75 Peak Elev=600.40' 70 65 Storage=131,763 cf 60 55 50 45 (\$j) 45-40-**M** 35 30-25 20-15 0.60 cfs 10-0 5 6 Ż 8 10 11 12 14 15 16 17 18 19 9 13 20 Time (hours)

Pond 6P: P-E-SB-3

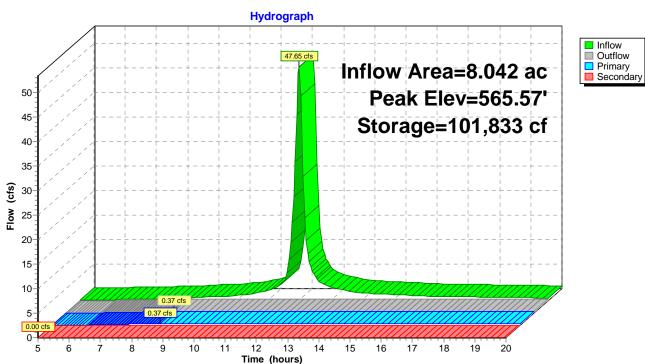
Summary for Pond 7P: P-SE-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	8.042 ac,	0.00% Impervious, Inflow I	Depth > 4.09" for 10-yr event
Inflow =	47.65 cfs @	12.03 hrs, Volume=	2.744 af
Outflow =	0.37 cfs @	8.45 hrs, Volume=	0.406 af, Atten= 99%, Lag= 0.0 min
Primary =	0.37 cfs @	8.45 hrs, Volume=	0.406 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 565.57' @ 20.00 hrs Surf.Area= 20,076 sf Storage= 101,833 cf

Plug-Flow detention time= 235.5 min calculated for 0.405 af (15% of inflow) Center-of-Mass det. time= 51.7 min (805.1 - 753.4)


Volume	Invert	Avail.Stor	rage Storage Description	
#1	558.00'	155,68	85 cf Custom Stage Data (Prismatic) Listed below (Recalc)	
Elevatio (fee 558.0	et)	f.Area (sq-ft) 6,814	Inc.Store Cum.Store (cubic-feet) (cubic-feet) 0 0	
568.0		4,323	155,685 155,685	
Device	Routing	Invert	Outlet Devices	
#1	Device 2	558.00'	0.373 cfs Constant Flow/Skimmer	
#2	Primary	558.00'	24.0" Round Culvert	
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 558.00' / 557.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#3	Device 2	565.60'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	
#4	Secondary	566.60'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
Drimony QuitFlow May 0.27 of a @ 0.45 hrs. LIN/ 550.201 (Free Discharge)				

Primary OutFlow Max=0.37 cfs @ 8.45 hrs HW=558.30' (Free Discharge)

-2=Culvert (Passes 0.37 cfs of 0.55 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 0.37 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=558.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 7P: P-SE-SB-1

Summary for Pond 8P: P-SE-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	17.453 ac,	0.00% Impervious, Inflow	Depth > 4.09" for 10-yr event
Inflow =	103.43 cfs @	12.02 hrs, Volume=	5.955 af
Outflow =	1.17 cfs @	9.85 hrs, Volume=	1.145 af, Atten= 99%, Lag= 0.0 min
Primary =	1.17 cfs @	9.85 hrs, Volume=	1.145 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 552.14' @ 20.00 hrs Surf.Area= 37,444 sf Storage= 209,498 cf

Plug-Flow detention time= 243.8 min calculated for 1.141 af (19% of inflow) Center-of-Mass det. time= 89.4 min (842.7 - 753.3)

Volume	Invert	Avail.Sto	prage Storage Description		
#1	545.00'	325,74	740 cf Custom Stage Data (Prismatic) Listed below (Recalc)		
Elevatio (fee					
545.0	0 2	21,213	0 0		
555.0	0 4	3,935	325,740 325,740		
Device	Routing	Invert	Outlet Devices		
#1	Device 2	545.00'	1.168 cfs Constant Flow/Skimmer		
#2	Primary	545.00'	24.0" Round Culvert		
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 545.00' / 544.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf		
#3	Device 2	552.20'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600		
#4	Secondary	Limited to weir flow at low heads ndary 553.20' 20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.64			
Primary OutFlow Max=1.17 cfs @ 9.85 hrs HW=545.50' (Free Discharge)					

2=Culvert (Passes 1.17 cfs of 1.50 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)

3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=545.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

4261-19-156_Enoree_SEDIMENT_BASINS Prepared by S&ME, Inc.

Hydrograph Inflow
 Outflow
 Primary
 Secondary 103.43 cfs Inflow Area=17,453 ac 115 110 Peak Elev=552.14' 105 100-Storage=209,498 cf 95 90-85 80 75 70-65-Flow (cfs) 60-55-50-45 40 35 30 25 20 1.17 cfs 15-1.17 cfs 10-0.0 0 10 8 ģ 11 14 15 16 17 18 19 5 6 7 12 13 20 Time (hours)

Pond 8P: P-SE-SB-2

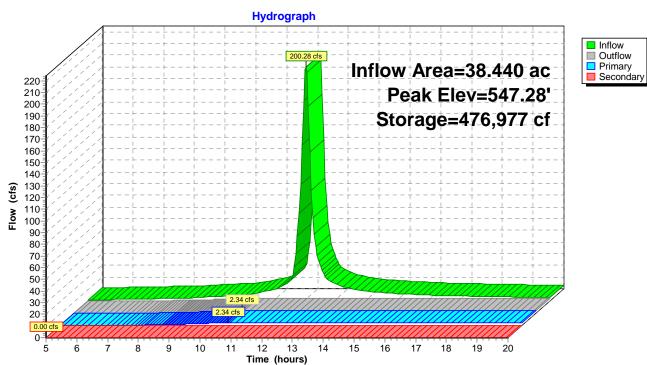
Summary for Pond 9P: P-W-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	38.440 ac,	0.00% Impervious, Inflov	v Depth > 4.09" for 10-yr event
Inflow =	200.28 cfs @	12.07 hrs, Volume=	13.104 af
Outflow =	2.34 cfs @	10.45 hrs, Volume=	2.153 af, Atten= 99%, Lag= 0.0 min
Primary =	2.34 cfs @	10.45 hrs, Volume=	2.153 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 547.28' @ 20.00 hrs Surf.Area= 79,120 sf Storage= 476,977 cf

Plug-Flow detention time= 278.6 min calculated for 2.144 af (16% of inflow) Center-of-Mass det. time= 107.1 min (863.8 - 756.7)


Volume	Invert	Avail.Stor	age Storage	Description			
#1	540.00'	705,63	5 cf Custom	Stage Data (Prismatic) Listed below (Recalc)			
		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
540.0		51,836	0	0			
550.0	JU 6	9,291	705,635	705,635			
Device	Routing	Invert	Outlet Devices	S			
#1	Device 2	540.00'	1.168 cfs Constant Flow/Skimmer X 2.00				
#2	Primary	540.00'	24.0" Round Culvert				
		L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 540.00' / 539.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf					
#3	#3 Device 2 547.30'		36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				
#4 Secondary 548.30'		20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64					
Drimery OutFlow , Max 2.24 of @ 10.45 hrs. LIM/ 540.71' (Free Discharge)							

Primary OutFlow Max=2.34 cfs @ 10.45 hrs HW=540.71' (Free Discharge)

-2=Culvert (Passes 2.34 cfs of 2.85 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 2.34 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=540.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 9P: P-W-SB-1

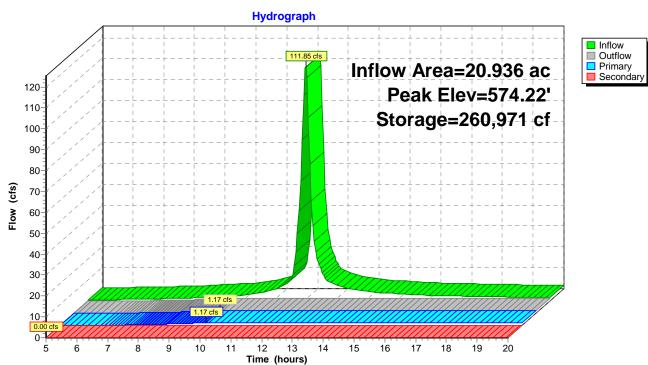
Summary for Pond 10P: P-W-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.936 ac,	0.00% Impervious, Inflov	w Depth > 4.09" for 10-yr event
Inflow =	111.85 cfs @	12.06 hrs, Volume=	7.138 af
Outflow =	1.17 cfs @	9.75 hrs, Volume=	1.146 af, Atten= 99%, Lag= 0.0 min
Primary =	1.17 cfs @	9.75 hrs, Volume=	1.146 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 574.22' @ 20.00 hrs Surf.Area= 46,040 sf Storage= 260,971 cf

Plug-Flow detention time= 260.5 min calculated for 1.142 af (16% of inflow) Center-of-Mass det. time= 86.5 min (842.6 - 756.1)


Volume	Invert	Avail.Sto	prage Storage Description				
#1 567.00' 399,62		399,62	20 cf Custom Stage Data (Prismatic) Listed below (Recalc)				
Elevation Surf.Area (feet) (sq-ft)			Inc.Store Cum.Store (cubic-feet) (cubic-feet)				
567.00 26,264		26,264	0 0				
577.0	00	53,660	399,620 399,620				
Device	Device Routing Inv		Outlet Devices				
#1	Device 2	567.00'	1.168 cfs Constant Flow/Skimmer				
#2	Primary	567.00'	24.0" Round Culvert				
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 567.00' / 566.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf				
#3	Device 2	574.30'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600				
			Limited to weir flow at low heads				
#4	#4 Secondary 575.30		5				
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60				
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64				
Primary OutFlow Max=1.17 cfs @ 9.75 hrs HW=567.51' (Free Discharge)							

2=Culvert (Passes 1.17 cfs of 1.51 cfs potential flow)

-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=567.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Pond 10P: P-W-SB-2

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

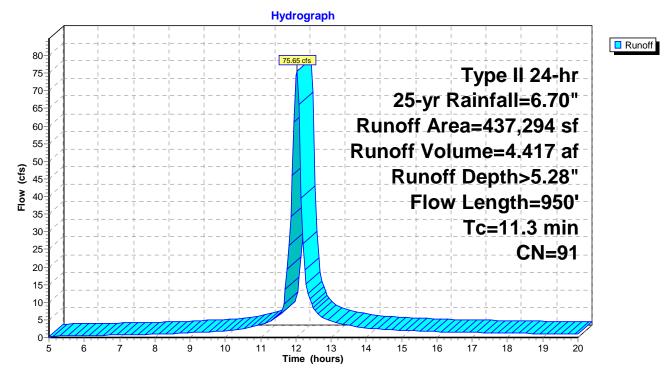
Subcatchment E1: E-SB-	1Runoff Area=437,294 sf0.00% ImperviousRunoff Depth>5.28"Flow Length=950'Tc=11.3 minCN=91Runoff=75.65 cfs4.417 af
Subcatchment E2: E-SB-	2 Runoff Area=594,248 sf 0.00% Impervious Runoff Depth>5.28" Flow Length=1,443' Tc=11.4 min CN=91 Runoff=102.48 cfs 6.003 af
Subcatchment E3: E-SB-	3 Runoff Area=458,785 sf 0.00% Impervious Runoff Depth>5.28" Flow Length=853' Tc=9.0 min CN=91 Runoff=85.83 cfs 4.636 af
Subcatchment P11: P1-S	B-1 Runoff Area=819,548 sf 0.00% Impervious Runoff Depth>5.28" Flow Length=1,321' Tc=11.0 min CN=91 Runoff=143.20 cfs 8.279 af
Subcatchment P12: P1-S	B-2 Runoff Area=908,446 sf 0.00% Impervious Runoff Depth>5.28" Flow Length=2,394' Tc=11.6 min CN=91 Runoff=156.23 cfs 9.176 af
Subcatchment P2: P2-SE	Runoff Area=437,891 sf 0.00% Impervious Runoff Depth>5.28" Flow Length=542' Tc=7.7 min CN=91 Runoff=85.29 cfs 4.426 af
Subcatchment SE1: SE-S	B-1Runoff Area=350,298 sf0.00% ImperviousRunoff Depth>5.28"Flow Length=1,807'Tc=11.4 minCN=91Runoff=60.41 cfs3.539 af
Subcatchment SE2: SE-S	B-2 Runoff Area=760,254 sf 0.00% Impervious Runoff Depth>5.28" Flow Length=1,063' Tc=11.3 min CN=91 Runoff=131.52 cfs 7.680 af
Subcatchment W1: W-SE	Runoff Area=1,674,458 sf 0.00% Impervious Runoff Depth>5.28" Flow Length=1,812' Tc=15.7 min CN=91 Runoff=254.92 cfs 16.902 af
Subcatchment W2: W-SE	B-2 Runoff Area=911,980 sf 0.00% Impervious Runoff Depth>5.28" Flow Length=1,350' Tc=14.9 min CN=91 Runoff=142.35 cfs 9.207 af
Pond 1P: P-P1-SB-1	Peak Elev=564.69' Storage=247,778 cf Inflow=143.20 cfs 8.279 af Primary=7.33 cfs 2.819 af Secondary=0.00 cfs 0.000 af Outflow=7.33 cfs 2.819 af
Pond 2P: P-P1-SB-2	Peak Elev=554.70' Storage=279,218 cf Inflow=156.23 cfs 9.176 af Primary=7.68 cfs 3.018 af Secondary=0.00 cfs 0.000 af Outflow=7.68 cfs 3.018 af
Pond 3P: P-P2-SB-1	Peak Elev=627.52' Storage=128,252 cf Inflow=85.29 cfs 4.426 af Primary=4.59 cfs 1.586 af Secondary=0.00 cfs 0.000 af Outflow=4.59 cfs 1.586 af
Pond 4P: P-E-SB-1	Peak Elev=614.71' Storage=129,276 cf Inflow=75.65 cfs 4.417 af Primary=4.48 cfs 1.551 af Secondary=0.00 cfs 0.000 af Outflow=4.48 cfs 1.551 af
Pond 5P: P-E-SB-2	Peak Elev=593.04' Storage=178,248 cf Inflow=102.48 cfs 6.003 af Primary=5.58 cfs 2.094 af Secondary=0.00 cfs 0.000 af Outflow=5.58 cfs 2.094 af
Pond 6P: P-E-SB-3	Peak Elev=600.69' Storage=142,024 cf Inflow=85.83 cfs 4.636 af Primary=3.77 cfs 1.488 af Secondary=0.00 cfs 0.000 af Outflow=3.77 cfs 1.488 af

Prepared by S&ME,	e_SEDIMENT_BASINS nc. /n 06707 © 2020 HydroCAD Software	Type II 24-hr 25-yr Rainfall=6.70" Printed 3/26/2021 Solutions LLC Page 72
Pond 7P: P-SE-SB-1		.78' Storage=105,978 cf Inflow=60.41 cfs 3.539 af ndary=0.00 cfs 0.000 af Outflow=3.40 cfs 1.174 af
	Fillinary=3.40 crs 1.174 al Secol	10ary=0.00 crs 0.000 ar Outhow=3.40 crs 1.174 ar
Pond 8P: P-SE-SB-2		50' Storage=223,107 cf Inflow=131.52 cfs 7.680 af
	Primary=7.71 cfs 2.778 af Secon	ndary=0.00 cfs 0.000 af Outflow=7.71 cfs 2.778 af
Pond 9P: P-W-SB-1		V Storage=513,403 cf Inflow=254.92 cfs 16.902 af
	Primary=13.84 cfs 5.702 af Second	dary=0.00 cfs 0.000 af Outflow=13.84 cfs 5.702 af
Pond 10P: P-W-SB-2	Peak Elev=574.6	31' Storage=278,970 cf Inflow=142.35 cfs 9.207 af
	Primary=7.80 cfs 3.044 af Secon	ndary=0.00 cfs 0.000 af Outflow=7.80 cfs 3.044 af
Total Run	off Area = 168.806 ac Runoff Volu 100.00% Pervio	ume = 74.265 af Average Runoff Depth = 5.28" us = 168.806 ac 0.00% Impervious = 0.000 ac

Prepared by S&ME, Inc.

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: E-SB-1


Runoff = 75.65 cfs @ 12.02 hrs, Volume= 4.417 af, Depth> 5.28"

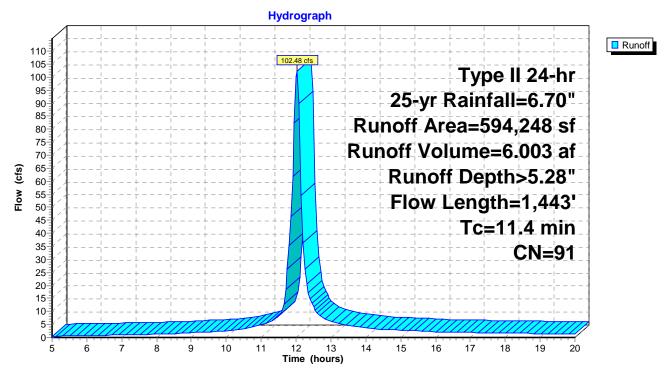
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

_	A	rea (sf)	CN E	Description		
	4	37,294	91 N	lewly grad	ed area, HS	SG C
	437,294		100.00% Pervious Area			а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.6	300	0.0455	0.76		Sheet Flow,
	4.6	581	0.0436	2.09		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	69	0.0145	11.81	413.40	Channel Flow, Area= 35.0 sf Perim= 20.0' r= $1.75'$ n= 0.022 Earth, clean & straight
_						

11.3 950 Total

Subcatchment E1: E-SB-1

Summary for Subcatchment E2: E-SB-2

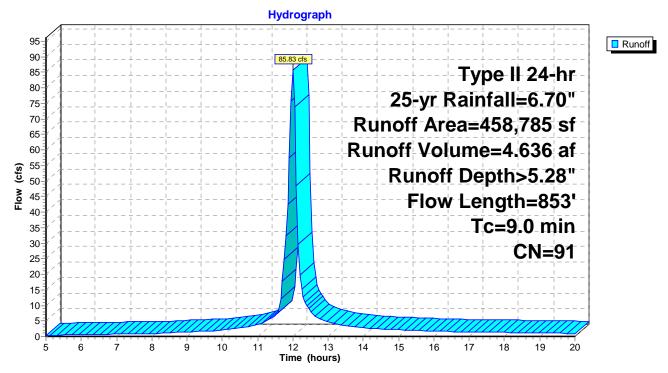

Runoff = 102.48 cfs @ 12.02 hrs, Volume= 6.003 af, Depth> 5.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

_	A	rea (sf)	CN E	Description		
	5	94,248	91 N	lewly grad	ed area, HS	SG C
	594,248		100.00% Pervious Area			а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.7	300	0.0432	0.75		Sheet Flow,
	4.2	488	0.0380	1.95		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.5	655	0.0481	21.51	752.94	Channel Flow, Area= 35.0 sf Perim= 20.0' r= 1.75' n= 0.022 Earth, clean & straight

11.4 1,443 Total

Subcatchment E2: E-SB-2


Summary for Subcatchment E3: E-SB-3

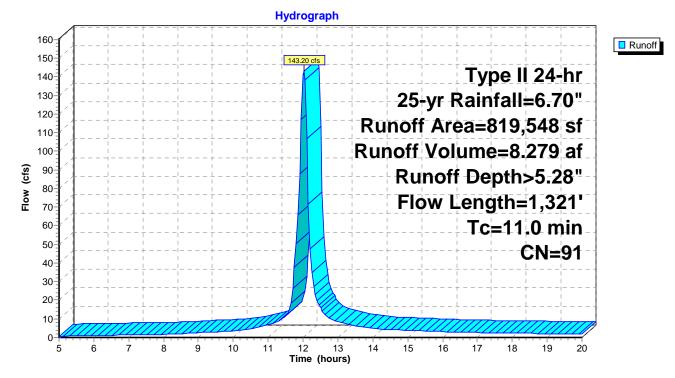
No Channel Flow

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

A	rea (sf)	CN D	Description		
4	58,785	91 N	lewly grad	ed area, HS	SG C
4	458,785 100.00% Pervious Area			ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.8	300	0.1013	1.05		Sheet Flow,
4.2	553	0.0481	2.19		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
9.0	853	Total			

Subcatchment E3: E-SB-3

Summary for Subcatchment P11: P1-SB-1


Runoff = 143.20 cfs @ 12.02 hrs, Volume= 8.279 af, Depth> 5.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

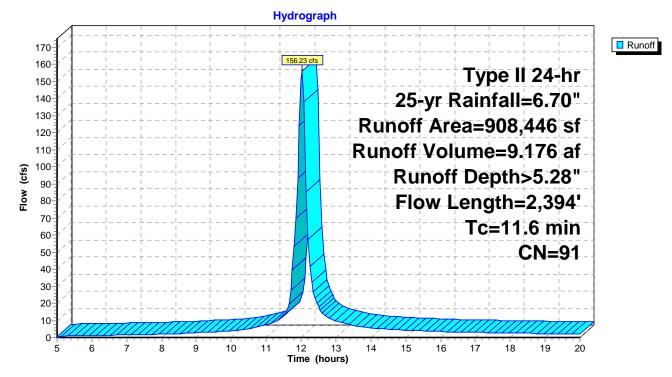
_	A	rea (sf)	CN E	Description		
_	8	19,548	91 N	lewly grad	ed area, HS	SG C
	8	19,548	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.2	300	0.0813	0.96		Sheet Flow, Fallow n= 0.050 P2= 3.70"
	5.7	819	0.0569	2.39		Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	202	0.1138	33.09	1,158.14	,
_						

11.0 1,321 Total

Subcatchment P11: P1-SB-1

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment P12: P1-SB-2


Runoff = 156.23 cfs @ 12.03 hrs, Volume= 9.176 af, Depth> 5.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

_	A	rea (sf)	CN [Description		
	9	08,446	91 N	Newly grad	ed area, HS	SG C
	9	08,446	1	100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	5.3	300	0.0769	0.94		Sheet Flow,
	4.8	721	0.0618	2.49		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	1.5	1,373	0.0244	15.32	536.27	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$
_						n= 0.022 Latur, ocar & sudigit

11.6 2,394 Total

Subcatchment P12: P1-SB-2

Summary for Subcatchment P2: P2-SB-1

Runoff = 85.29 cfs @ 11.99 hrs, Volume= 4.426 af, Depth> 5.28"

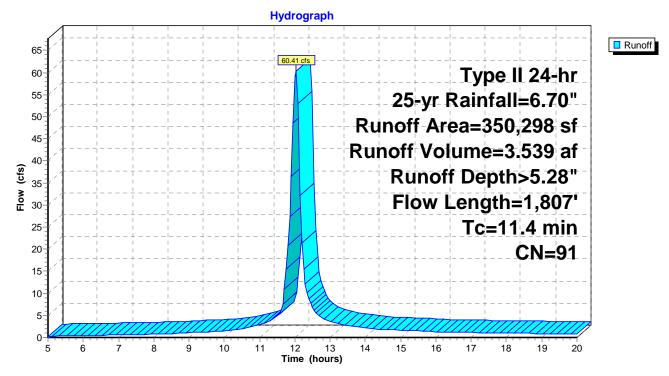
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

_	A	rea (sf)	CN [Description				
_	4	37,891	91 N	91 Newly graded area, HSG C				
	437,891		1	100.00% Pe	ervious Are	а		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	6.5	300	0.0473	0.77		Sheet Flow, Fallow n= 0.050 P2= 3.70"		
	1.1	165	0.0658	2.57		Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps		
	0.1	77	0.0517	22.30	780.61	Channel Flow, Area= 35.0 sf Perim= 20.0' r= 1.75'		
_						n= 0.022 Earth, clean & straight		

7.7 542 Total

Subcatchment P2: P2-SB-1

Summary for Subcatchment SE1: SE-SB-1


Runoff = 60.41 cfs @ 12.02 hrs, Volume= 3.539 af, Depth> 5.28"

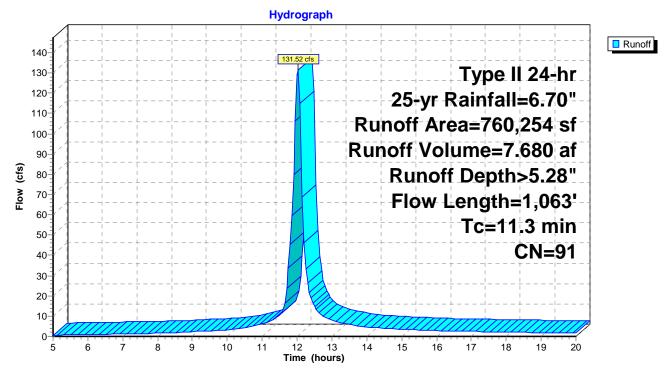
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

_	A	rea (sf)	CN [Description			
_	3	50,298	91 Newly graded area, HSG C				
	350,298		1	100.00% Pe	ervious Are	а	
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description	
	7.4	300	0.0331	0.67		Sheet Flow,	
	2.4	324	0.0515	2.27		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps	
	1.6	1,183	0.0165	12.60	440.99	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$	
_						n= 0.022 Latur, ocari & sudiyili	

11.4 1,807 Total

Subcatchment SE1: SE-SB-1

Summary for Subcatchment SE2: SE-SB-2


No Channel Flow

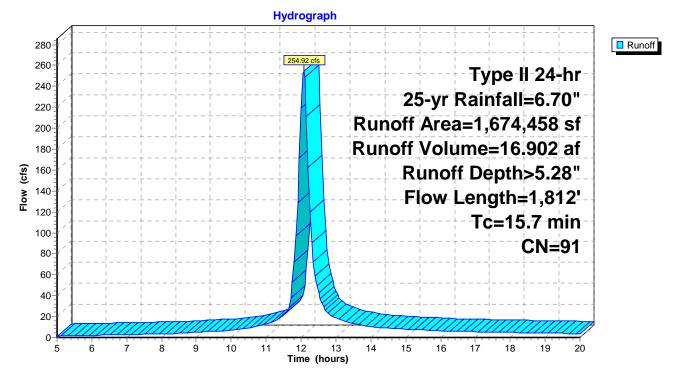
Runoff = 131.52 cfs @ 12.02 hrs, Volume= 7.680 af, Depth> 5.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

Α	Area (sf) CN Description					
7	60,254	91 N	lewly grad	ed area, HS	SG C	
7	60,254	1	00.00% Pe	ervious Are	a	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.4	300	0.0727	0.92		Sheet Flow,	
5.9	763	0.0461	2.15		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps	
11.3	1,063	Total				

Subcatchment SE2: SE-SB-2

Summary for Subcatchment W1: W-SB-1


Runoff = 254.92 cfs @ 12.07 hrs, Volume= 16.902 af, Depth> 5.28"

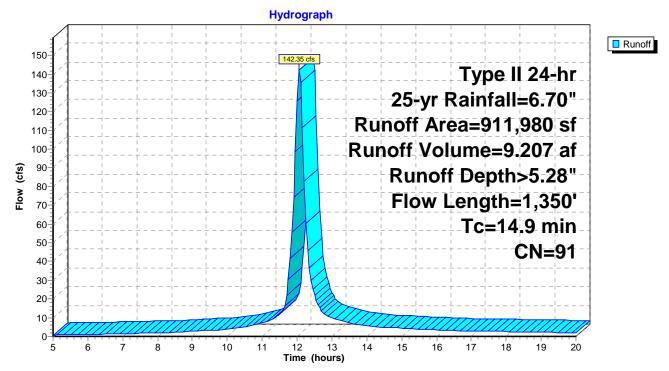
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

_	A	rea (sf)	CN E	Description		
_	1,6	74,458	91 N	lewly grad	ed area, HS	SG C
	1,6	74,458	1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.1	300	0.0378	0.71		Sheet Flow,
	8.5	1,340	0.0692	2.63		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	172	0.0459	21.01	735.52	Channel Flow, Area= 35.0 sf Perim= 20.0' $r= 1.75'$ n= 0.022 Earth, clean & straight

15.7 1,812 Total

Subcatchment W1: W-SB-1

Summary for Subcatchment W2: W-SB-2


No Channel Flow

Runoff	=	142.35 cfs @	12.06 hrs, Volume=	9.207 af, Depth> 5.28"
1 Carlon		1 12.00 010 0		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=6.70"

_	А	rea (sf)	CN E	Description		
911,980 91 Newly graded area, HSG C					SG C	
	911,980 100.00% Pervious Area			00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	5.5	300	0.0716	0.91	(/ /	Sheet Flow,
	9.4	1,050	0.0350	1.87		Fallow n= 0.050 P2= 3.70 " Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	14.9	1,350	Total			

Subcatchment W2: W-SB-2

Summary for Pond 1P: P-P1-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	18.814 ac,	0.00% Impervious, Inflow D	epth > 5.28" for 25-yr event
Inflow =	143.20 cfs @	12.02 hrs, Volume=	8.279 af
Outflow =	7.33 cfs @	13.24 hrs, Volume=	2.819 af, Atten= 95%, Lag= 73.5 min
Primary =	7.33 cfs @	13.24 hrs, Volume=	2.819 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 564.69' @ 13.24 hrs Surf.Area= 45,214 sf Storage= 247,778 cf

Plug-Flow detention time= 232.1 min calculated for 2.809 af (34% of inflow) Center-of-Mass det. time= 123.0 min (871.6 - 748.6)

Volume	Invert	Avail.Sto	rage Stor	age Description		
#1	558.00'	358,76	67 cf Cus	tom Stage Data (Prismatic) Listed below (Recalc)		
Elevatio (fee		f.Area (sq-ft)	Inc.Stor (cubic-feet			
558.0	00	28,866		0 0		
567.0	00	50,860	358,76	7 358,767		
Device	Routing	Invert	Outlet De	evices		
#1	Device 2	558.00'	1.168 cfs	Constant Flow/Skimmer		
#2	Primary	558.00'		ound Culvert		
			Inlet / Out	CMP, square edge headwall, Ke= 0.500 tlet Invert= 558.00' / 557.00' S= 0.0100 '/' Cc= 0.900 Concrete pipe, finished, Flow Area= 3.14 sf		
#3	Device 2	564.40'		6.0" Horiz. Orifice/Grate C= 0.600		
#4	Secondary	565.40'		g x 12.0' breadth Broad-Crested Rectangular Weir		
	-		Head (fee	et) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60		
			Coef. (En	nglish) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64		
Primary OutFlow Max=7.28 cfs @ 13.24 hrs HW=564.69' (Free Discharge)						

-2=Culvert (Passes 7.28 cfs of 36.08 cfs potential flow)

-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)

-3=Orifice/Grate (Weir Controls 6.11 cfs @ 1.76 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=558.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

4261-19-156_Enoree_SEDIMENT_BASINS Prepared by S&ME, Inc.

Hydrograph Inflow
 Outflow
 Primary
 Secondary 143.20 cfs Inflow Area=18.814 ac 160 Peak Elev=564.69' 150 140 Storage=247,778 cf 130 120 110 100 Flow (cfs) 90 80 70 60 50-40 30 7.33 cfs 7.33 cfs 20-10.0 0-14 ģ 10 11 15 16 17 18 19 20 5 6 7 8 12 13 Time (hours)

Pond 1P: P-P1-SB-1

Summary for Pond 2P: P-P1-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.855 ac,	0.00% Impervious, Inflow D	epth > 5.28" for 25-yr event
Inflow =	156.23 cfs @	12.03 hrs, Volume=	9.176 af
Outflow =	7.68 cfs @	13.36 hrs, Volume=	3.018 af, Atten= 95%, Lag= 80.0 min
Primary =	7.68 cfs @	13.36 hrs, Volume=	3.018 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 554.70' @ 13.36 hrs Surf.Area= 50,258 sf Storage= 279,218 cf

Plug-Flow detention time= 241.9 min calculated for 3.006 af (33% of inflow) Center-of-Mass det. time= 130.0 min (879.0 - 749.0)

Volume	Invert	Avail.Sto	rage Sto	torage Description		
#1	548.00'	401,56	67 cf Cu	ustom Stage Data (Prismatic) Listed below (Recalc)		
Elevatio (fee		rf.Area (sq-ft)	Inc.Sto (cubic-fee			
548.0	00	33,085		0 0		
557.0	00	56,152	401,5	567 401,567		
Device	Routing	Invert	Outlet D	Devices		
#1	Device 2	548.00'	1.168 cf	fs Constant Flow/Skimmer		
#2	Primary	548.00'	-	Round Culvert		
			Inlet / O	.0' CMP, square edge headwall, Ke= 0.500 Dutlet Invert= 548.00' / 547.00' S= 0.0100 '/' Cc= 0.900 2 Concrete pipe, finished, Flow Area= 3.14 sf		
#3	Device 2	554.40'		36.0" Horiz. Orifice/Grate C= 0.600 to weir flow at low heads		
#4	Secondary	555.40'	20.0' lor Head (fe	ing x 12.0' breadth Broad-Crested Rectangular Weir feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64		
Primary OutFlow Max=7.63 cfs @ 13.36 hrs HW=554.70' (Free Discharge)						

-2=Culvert (Passes 7.63 cfs of 36.12 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 1.17 cfs) **3=Orifice/Grate** (Weir Controls 6.46 cfs @ 1.79 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=548.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph ÷ – – Inflow Outflow
 Primary
 Secondary 156.23 cfs Inflow Area=20.855 ac 170 Peak Elev=554.70' 160 150 Storage=279,218 cf 140 130 120 110 (cfs) 100 90 Flow 80 70 60-50 40 7.68 cfs 30 7.68 cfs 20 0.0 0ģ 10 11 14 15 16 17 18 19 5 6 7 8 12 13 20 Time (hours)

Pond 2P: P-P1-SB-2

Summary for Pond 3P: P-P2-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.053 ac,	0.00% Impervious, Inflow D	Pepth > 5.28" for 25-yr event
Inflow =	85.29 cfs @	11.99 hrs, Volume=	4.426 af
Outflow =	4.59 cfs @	12.96 hrs, Volume=	1.586 af, Atten= 95%, Lag= 58.2 min
Primary =	4.59 cfs @	12.96 hrs, Volume=	1.586 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 627.52' @ 12.96 hrs Surf.Area= 24,480 sf Storage= 128,252 cf

Plug-Flow detention time= 212.1 min calculated for 1.585 af (36% of inflow) Center-of-Mass det. time= 106.1 min (852.1 - 746.0)

Volume	Invert	Avail.Stor	brage Storage Description
#1	620.00'	195,13	35 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevatio	et) (.Area sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)
620.0		9,645	
630.0	0 29	9,382	195,135 195,135
Device	Routing	Invert	Outlet Devices
#1	Device 2	620.00'	0.600 cfs Constant Flow/Skimmer
#2	Primary	620.00'	24.0" Round Culvert
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $620.00'$ / $619.00'$ S= $0.0100'$ /' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#3	Device 2	627.30'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Secondary	628.30'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
D.'			@ 40.00 http://// 007.50/ (Ease Discharms)

Primary OutFlow Max=4.55 cfs @ 12.96 hrs HW=627.52' (Free Discharge)

-2=Culvert (Passes 4.55 cfs of 38.61 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 0.60 cfs) **3=Orifice/Grate** (Weir Controls 3.95 cfs @ 1.52 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=620.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 85.29 cfs Inflow Area=10.053 ac 95 90-Peak Elev=627.52' 85 Storage=128,252 cf 80-75 70-65 60 (cj) 55 50 **8** 45 **1** 40 40 35-30-25-20 4.59 cfs 15 4.59 cfs 10-0.0 0 5 Ż ģ 10 11 12 13 14 15 16 17 18 19 6 8 20 Time (hours)

Pond 3P: P-P2-SB-1

Summary for Pond 4P: P-E-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.039 ac,	0.00% Impervious, Inflow D	epth > 5.28" for 25-yr event
Inflow =	75.65 cfs @	12.02 hrs, Volume=	4.417 af
Outflow =	4.48 cfs @	13.04 hrs, Volume=	1.551 af, Atten= 94%, Lag= 61.3 min
Primary =	4.48 cfs @	13.04 hrs, Volume=	1.551 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 614.71' @ 13.04 hrs Surf.Area= 25,673 sf Storage= 129,276 cf

Plug-Flow detention time= 217.3 min calculated for 1.545 af (35% of inflow) Center-of-Mass det. time= 110.5 min (859.3 - 748.8)

Volume	Invert	Avail.Stor	prage Storage Description				
#1	608.00'	193,03	37 cf Custom Stage Data (Prismatic) Listed below (Recalc)				
Elevatio (fee 608.0	et)	f.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet) 0 0				
617.0		12,851 30,046	0 0 193,037 193,037				
017.0		0,040	133,037 133,037				
Device	Routing	Invert	Outlet Devices				
#1	Device 2	608.00'	0.600 cfs Constant Flow/Skimmer				
#2	Primary	608.00'	24.0" Round Culvert				
	-		L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $608.00' / 607.00'$ S= $0.0100 '/$ ' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf				
#3	Device 2	614.50'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				
#4	Secondary	615.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64				
	Primery OutFlow May 4 41 of @ 12.04 hrs. LIN/ 614.71' (Free Discharge)						

Primary OutFlow Max=4.41 cfs @ 13.04 hrs HW=614.71' (Free Discharge)

-2=Culvert (Passes 4.41 cfs of 36.15 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 0.60 cfs) **3=Orifice/Grate** (Weir Controls 3.81 cfs @ 1.50 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=608.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

4261-19-156_Enoree_SEDIMENT_BASINS Prepared by S&ME, Inc.

Hydrograph Inflow
 Outflow
 Primary
 Secondary 75.65 cfs Inflow Area=10.039 ac 80-Peak Elev=614.71' 75 Storage=129,276 cf 70-65 60 55 50 (sj) 50-45-**8** 40 **1** 35 35 30-25 20-4.48 cfs 15 10-0.0 0 18 5 6 Ż 8 ģ 10 11 12 13 14 15 16 17 19 20 Time (hours)

Pond 4P: P-E-SB-1

Summary for Pond 5P: P-E-SB-2

[82] Warning: Early inflow requires earlier time span

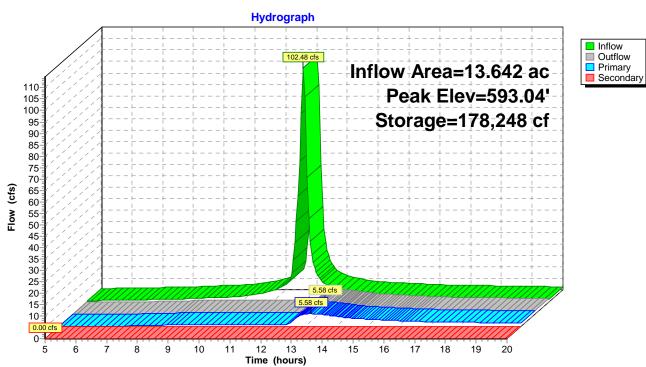
Inflow Area =	13.642 ac,	0.00% Impervious, Inflow I	Depth > 5.28" for 25-yr event
Inflow =	102.48 cfs @	12.02 hrs, Volume=	6.003 af
Outflow =	5.58 cfs @	13.17 hrs, Volume=	2.094 af, Atten= 95%, Lag= 68.5 min
Primary =	5.58 cfs @	13.17 hrs, Volume=	2.094 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 593.04' @ 13.17 hrs Surf.Area= 41,656 sf Storage= 178,248 cf

Plug-Flow detention time= 231.7 min calculated for 2.093 af (35% of inflow) Center-of-Mass det. time= 123.5 min (872.4 - 748.9)

Volume	Invert	Avail.Stor	rage Storage Description
#1	588.00'	264,58	B6 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevatio (fee 588.0 595.0	et) 00 2	f.Area (sq-ft) 29,044 46,552	Inc.Store (cubic-feet)Cum.Store (cubic-feet)00264,586264,586
Device	Routing	Invert	Outlet Devices
#1	Device 2	588.00'	0.894 cfs Constant Flow/Skimmer
#2	Primary	588.00'	24.0" Round Culvert
	-		L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 588.00' / 587.00' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#3	Device 2	592.80'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Secondary	593.80'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
Drimon		w EEZ ofo (@ 12.17 bro = HW(-502.04) (Erop Disphered)

Primary OutFlow Max=5.57 cfs @ 13.17 hrs HW=593.04' (Free Discharge)


-2=Culvert (Passes 5.57 cfs of 30.41 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 0.89 cfs) **3=Orifice/Grate** (Weir Controls 4.68 cfs @ 1.61 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=588.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

4261-19-156_Enoree_SEDIMENT_BASINS Prepared by S&ME, Inc.

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Pond 5P: P-E-SB-2

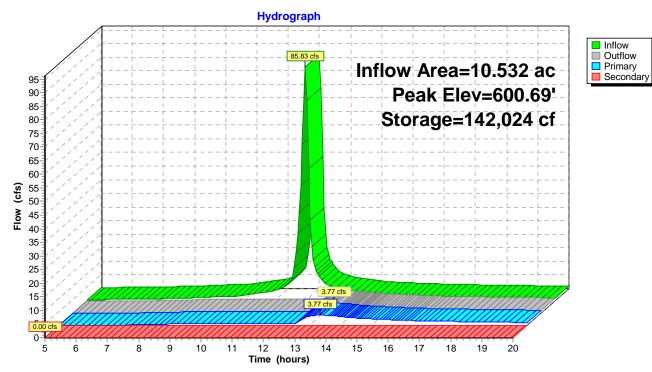
Summary for Pond 6P: P-E-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.532 ac,	0.00% Impervious, Inflow D	Depth > 5.28" for 25-yr event
Inflow =	85.83 cfs @	12.00 hrs, Volume=	4.636 af
Outflow =	3.77 cfs @	13.38 hrs, Volume=	1.488 af, Atten= 96%, Lag= 82.7 min
Primary =	3.77 cfs @	13.38 hrs, Volume=	1.488 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 600.69' @ 13.38 hrs Surf.Area= 35,774 sf Storage= 142,024 cf

Plug-Flow detention time= 246.7 min calculated for 1.487 af (32% of inflow) Center-of-Mass det. time= 132.1 min (879.1 - 747.0)


Volume	Invert	Avail.Sto	rage Storage Description
#1	596.00'	231,03	39 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevatio	et)	f.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)
596.0 603.0		24,837 41,174	0 0 231,039 231,039
003.0		+1,174	231,039 231,039
Device	Routing	Invert	Outlet Devices
#1	Device 2	596.00'	0.600 cfs Constant Flow/Skimmer
#2	Primary	596.00'	24.0" Round Culvert
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 596.00' / 595.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#3	Device 2	600.50'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600
	0		Limited to weir flow at low heads
#4	Secondary	601.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
Primary	OutFlow Ma	ax=3.76 cfs @	@ 13.38 hrs HW=600.69' (Free Discharge)

2=Culvert (Passes 3.76 cfs of 29.04 cfs potential flow)

-1=Constant Flow/Skimmer (Constant Controls 0.60 cfs)

-3=Orifice/Grate (Weir Controls 3.16 cfs @ 1.41 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=596.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

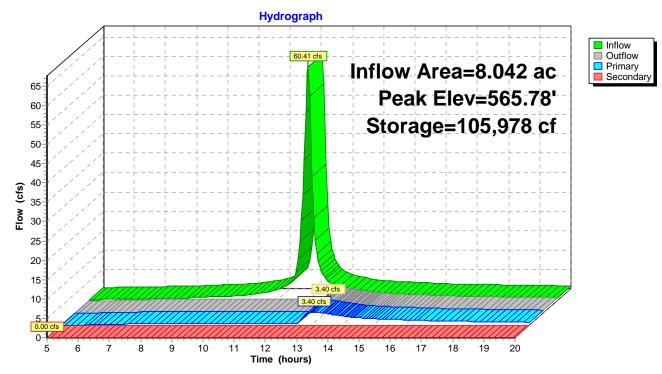
Pond 6P: P-E-SB-3

Summary for Pond 7P: P-SE-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	8.042 ac,	0.00% Impervious, Inflow D	epth > 5.28" for 25-yr event
Inflow =	60.41 cfs @	12.02 hrs, Volume=	3.539 af
Outflow =	3.40 cfs @	13.12 hrs, Volume=	1.174 af, Atten= 94%, Lag= 65.6 min
Primary =	3.40 cfs @	13.12 hrs, Volume=	1.174 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 565.78' @ 13.12 hrs Surf.Area= 20,434 sf Storage= 105,978 cf


Plug-Flow detention time= 227.6 min calculated for 1.173 af (33% of inflow) Center-of-Mass det. time= 115.5 min (864.4 - 748.9)

Volume	Invert	Avail.Sto	rage Storage	e Description
#1	558.00'	155,68	35 cf Custom	n Stage Data (Prismatic) Listed below (Recalc)
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
558.0	00	6,814	0	0
568.0	00 2	24,323	155,685	155,685
Device	Routing	Invert	Outlet Device	es
#1	Device 2	558.00'	0.373 cfs Co	onstant Flow/Skimmer
#2	Primary	558.00'	24.0" Round	
			Inlet / Outlet I	CMP, square edge headwall, Ke= 0.500 Invert= 558.00' / 557.00' S= 0.0100 '/' Cc= 0.900 Dincrete pipe, finished, Flow Area= 3.14 sf
#3	Device 2	565.60'		" Horiz. Orifice/Grate C= 0.600 eir flow at low heads
#4	Secondary	566.60'	20.0' long x	12.0' breadth Broad-Crested Rectangular Weir
			· · · ·	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 sh) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
· · ·			@ 13.12 hrs H	HW=565.78' (Free Discharge)

-2=Culvert (Passes 3.34 cfs of 39.38 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 0.37 cfs) **3=Orifice/Grate** (Weir Controls 2.96 cfs @ 1.38 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=558.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 7P: P-SE-SB-1

Summary for Pond 8P: P-SE-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	17.453 ac,	0.00% Impervious, Inflow	Depth > 5.28"	for 25-yr event
Inflow =	131.52 cfs @	12.02 hrs, Volume=	7.680 af	
Outflow =	7.71 cfs @	13.06 hrs, Volume=	2.778 af, Atte	n= 94%, Lag= 62.0 min
Primary =	7.71 cfs @	13.06 hrs, Volume=	2.778 af	
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 552.50' @ 13.06 hrs Surf.Area= 38,261 sf Storage= 223,107 cf

Plug-Flow detention time= 216.8 min calculated for 2.777 af (36% of inflow) Center-of-Mass det. time= 111.4 min (860.2 - 748.8)

Volume	Invert	Avail.Sto	rage Sto	prage Description			
#1	545.00'	325,74	40 cf Cu s	stom Stage Data (Prismatic) Listed below (Recalc)			
Elevatio (fee		rf.Area (sq-ft)	Inc.Stor (cubic-fee				
545.0 555.0		21,213 43,935	325,74	0 0 40 325,740			
Device	Routing	Invert	Outlet De	evices			
#1	Device 2	545.00'	1.168 cfs	s Constant Flow/Skimmer			
#2	Primary	545.00'		ound Culvert			
			Inlet / Ou	 CMP, square edge headwall, Ke= 0.500 utlet Invert= 545.00' / 544.00' S= 0.0100 '/' Cc= 0.900 Concrete pipe, finished, Flow Area= 3.14 sf 			
#3	Device 2	552.20'	36.0" x 3	36.0" Horiz. Orifice/Grate C= 0.600 to weir flow at low heads			
#4	Secondary	553.20'	20.0' Ion Head (fe	bg x 12.0' breadth Broad-Crested Rectangular Weir bet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60			
·	Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64 Primary OutFlow Max=7.70 cfs @ 13.06 hrs HW=552.50' (Free Discharge) Primary OutFlow Max=7.70 cfs of 38 57 cfs potential flow)						

-2=Culvert (Passes 7.70 cfs of 38.57 cfs potential flow)

1=Constant Flow/Skimmer (Constant Controls 1.17 cfs) **3=Orifice/Grate** (Weir Controls 6.53 cfs @ 1.80 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=545.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 131.52 cfs Inflow Area=17.453 ac 140 Peak Elev=552.50' 130 Storage=223,107 cf 120 110 100 90-Flow (cfs) 80 70 60 50 40-30-- 7.71 cfs 7.71 cfs 20 10 0-6 Ż 8 ģ 10 11 13 14 15 16 17 18 19 20 5 12 Time (hours)

Pond 8P: P-SE-SB-2

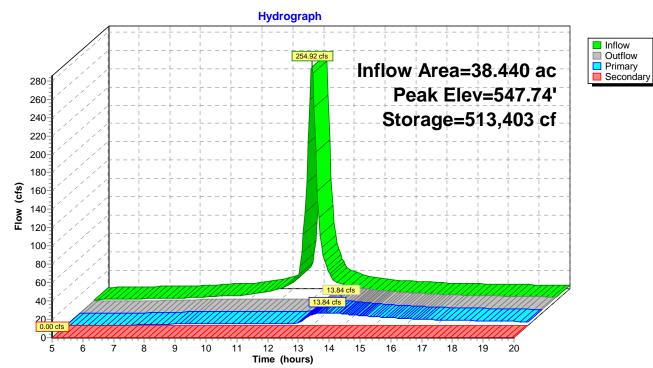
Summary for Pond 9P: P-W-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	38.440 ac,	0.00% Impervious, Inflow	/ Depth > 5.28" f	for 25-yr event
Inflow =	254.92 cfs @	12.07 hrs, Volume=	16.902 af	
Outflow =	13.84 cfs @	13.47 hrs, Volume=	5.702 af, Atten	n= 95%, Lag= 84.0 min
Primary =	13.84 cfs @	13.47 hrs, Volume=	5.702 af	
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 547.74' @ 13.47 hrs Surf.Area= 80,826 sf Storage= 513,403 cf

Plug-Flow detention time= 242.6 min calculated for 5.680 af (34% of inflow) Center-of-Mass det. time= 132.4 min (884.6 - 752.2)


Volume	Invert	Avail.Sto	rage St	rage Description			
#1	540.00'	705,63	35 cf C ι	stom Stage Data (Prismatic) Listed below (F	≀ecalc)		
Elevatio (fee		f.Area (sq-ft)	Inc.Sto (cubic-fe				
540.0		51,836		0 0			
550.0	3 00	39,291	705,6	35 705,635			
Device	Routing	Invert	Outlet D	evices			
#1	Device 2	540.00'	1.168 cf	s Constant Flow/Skimmer X 2.00			
#2	Primary	540.00'	-	ound Culvert			
			Inlet / O	' CMP, square edge headwall, Ke= 0.500 utlet Invert= 540.00' / 539.00' S= 0.0100 '/' Concrete pipe, finished, Flow Area= 3.14 s			
#3	Device 2	547.30'		6.0" Horiz. Orifice/Grate C= 0.600 o weir flow at low heads			
#4	Secondary	548.30'		g x 12.0' breadth Broad-Crested Rectangu	lar Weir		
			· ·	et) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1			
			Coef. (E	nglish) 2.57 2.62 2.70 2.67 2.66 2.67 2.6	6 2.64		
· · ·	Primary OutFlow Max=13.79 cfs @ 13.47 hrs HW=547.74' (Free Discharge)						

-**2=Culvert** (Passes 13.79 cfs of 39.27 cfs potential flow)

-1=Constant Flow/Skimmer (Constant Controls 2.34 cfs)

-3=Orifice/Grate (Weir Controls 11.45 cfs @ 2.17 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=540.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 9P: P-W-SB-1

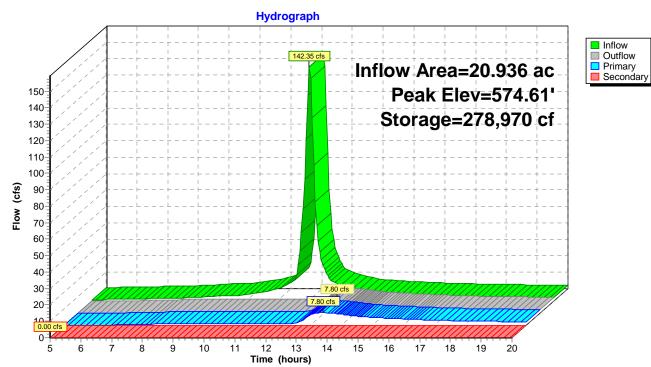
Summary for Pond 10P: P-W-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.936 ac,	0.00% Impervious, Inflow D	epth > 5.28" for 25-yr event
Inflow =	142.35 cfs @	12.06 hrs, Volume=	9.207 af
Outflow =	7.80 cfs @	13.39 hrs, Volume=	3.044 af, Atten= 95%, Lag= 80.0 min
Primary =	7.80 cfs @	13.39 hrs, Volume=	3.044 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 574.61' @ 13.39 hrs Surf.Area= 47,099 sf Storage= 278,970 cf

Plug-Flow detention time= 237.2 min calculated for 3.042 af (33% of inflow) Center-of-Mass det. time= 124.7 min (876.2 - 751.6)


Volume	Invert	Avail.Sto	prage Storage Description
#1	567.00'	399,62	20 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevatio		f.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)
567.0		26,264	0 0
577.0	00 5	53,660	399,620 399,620
Device	Routing	Invert	Outlet Devices
#1	Device 2	567.00'	1.168 cfs Constant Flow/Skimmer
#2	Primary	567.00'	24.0" Round Culvert
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 567.00' / 566.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#3	Device 2	574.30'	
#4	Secondary	575.30'	Limited to weir flow at low heads 20.0' long x 12.0' breadth Broad-Crested Rectangular Weir
<i>π</i>-	Secondary	575.50	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64
Primary	OutFlow Ma	ax=7.78 cfs	@ 13.39 hrs HW=574.61' (Free Discharge)

2=Culvert (Passes 7.78 cfs of 38.88 cfs potential flow)

-1=Constant Flow/Skimmer (Constant Controls 1.17 cfs)

-3=Orifice/Grate (Weir Controls 6.61 cfs @ 1.81 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=567.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 10P: P-W-SB-2

4261-19-156_Enoree_SEDIMENT_BASINSTypePrepared by S&ME, Inc.HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: E-	SB-1	Runoff Ar Flow Length=9	ea=437,294 sf 50' Tc=11.3 r			
Subcatchment E2: E-	-	Runoff Ar Flow Length=1,4	ea=594,248 sf 43' Tc=11.4 r			
Subcatchment E3: E-	SB-3		ea=458,785 sf 853' Tc=9.0 r			
Subcatchment P11: P		Runoff Ar ow Length=1,32	ea=819,548 sf 1' Tc=11.0 m			
Subcatchment P12: P		Runoff Ar ow Length=2,39	ea=908,446 sf 4' Tc=11.6 m		•	
Subcatchment P2: P2	2-SB-1		ea=437,891 sf 542' Tc=7.7 r			
Subcatchment SE1: S	SE-SB-1	Runoff Ar Flow Length=1,	ea=350,298 sf 807' Tc=11.4			
Subcatchment SE2: S		Runoff Ar ow Length=1,06	ea=760,254 sf 3' Tc=11.3 m			
Subcatchment W1: W		Runoff Area ow Length=1,81	a=1,674,458 sf 2' Tc=15.7 m			
Subcatchment W2: W		Runoff Ar ow Length=1,35	ea=911,980 sf 0' Tc=14.9 m			
Pond 1P: P-P1-SB-1	Primary=39.43 cfs		5.80' Storage: ondary=13.15			
Pond 2P: P-P1-SB-2	Primary=39.53 cfs		5.83' Storage: ondary=14.76	,		
Pond 3P: P-P2-SB-1	Primary=41.29 c		28.47' Storage condary=3.39			
Pond 4P: P-E-SB-1	Primary=38.77 c		15.57' Storage condary=0.97			
Pond 5P: P-E-SB-2	Primary=33.63 c		93.94' Storage condary=2.76			
Pond 6P: P-E-SB-3	Primary=31.81 c		01.42' Storage condary=0.00			

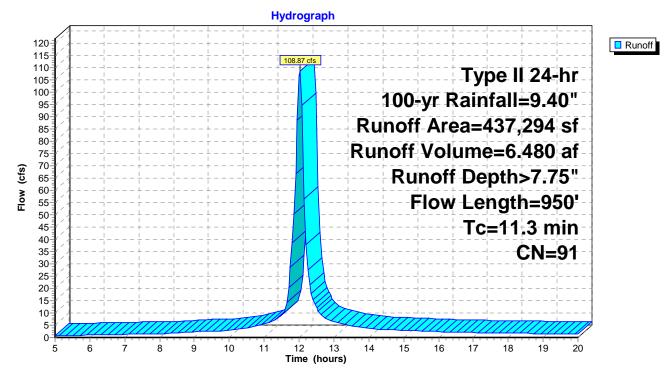
Prepared by S&ME,	ee_SEDIMENT_BASINS Inc. s/n 06707 © 2020 HydroCAD		<i>hr 100-yr Rainfall=9.40"</i> Printed 3/26/2021 Page 104
Pond 7P: P-SE-SB-1		Elev=566.55' Storage=122,163 cf Secondary=0.00 cfs 0.000 af	
Pond 8P: P-SE-SB-2		v=553.66' Storage=268,809 cf I Secondary=16.37 cfs 0.289 af	
Pond 9P: P-W-SB-1 P		v=549.14' Storage=629,904 cf I Secondary=40.85 cfs 1.754 af C	
Pond 10P: P-W-SB-2		v=575.72' Storage=333,259 cf I Secondary=14.45 cfs 0.334 af	

Total Runoff Area = 168.806 acRunoff Volume = 108.944 af
100.00% Pervious = 168.806 acAverage Runoff Depth = 7.74"
0.00% Impervious = 0.000 ac

Prepared by S&ME, Inc.

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: E-SB-1


Runoff = 108.87 cfs @ 12.02 hrs, Volume= 6.480 af, Depth> 7.75"

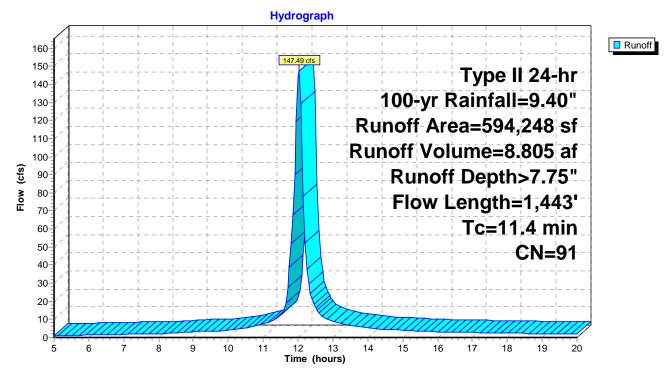
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

_	A	rea (sf)	CN [Description		
	4	37,294	91 N	lewly grad	ed area, HS	SG C
	4	37,294	1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.6	300	0.0455	0.76		Sheet Flow,
	4.6	581	0.0436	2.09		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	69	0.0145	11.81	413.40	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$
_						

11.3 950 Total

Subcatchment E1: E-SB-1

Summary for Subcatchment E2: E-SB-2


Runoff = 147.49 cfs @ 12.02 hrs, Volume= 8.805 af, Depth> 7.75"

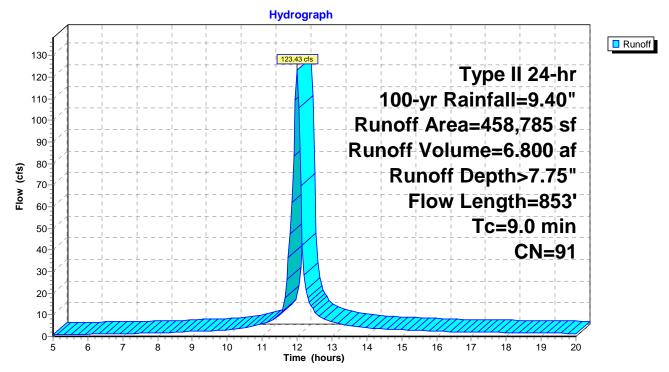
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

_	A	rea (sf)	CN E	Description		
_	5	94,248	91 N	Vewly grad	ed area, HS	SG C
	594,248 100.00% Pervious Area					a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.7	300	0.0432	0.75		Sheet Flow,
	4.2	488	0.0380	1.95		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.5	655	0.0481	21.51	752.94	Channel Flow, Area= 35.0 sf Perim= 20.0' $r= 1.75'$ n= 0.022 Earth, clean & straight

11.4 1,443 Total

Subcatchment E2: E-SB-2

Summary for Subcatchment E3: E-SB-3


No Channel Flow

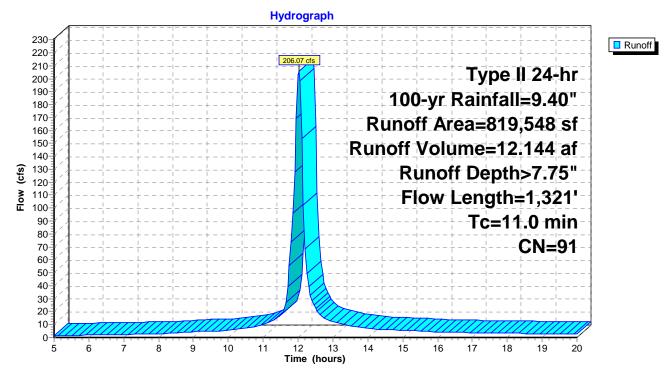
Runoff = 123.43 cfs @ 12.00 hrs, Volume= 6.800 af, Depth> 7.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

_	А	rea (sf)	CN D	Description		
	4	58,785	91 N	lewly grad	ed area, HS	SG C
	4	58,785	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	4.8	300	0.1013	1.05		Sheet Flow,
	4.2	553	0.0481	2.19		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	9.0	853	Total			

Subcatchment E3: E-SB-3

Summary for Subcatchment P11: P1-SB-1


Runoff = 206.07 cfs @ 12.02 hrs, Volume= 12.144 af, Depth> 7.75"

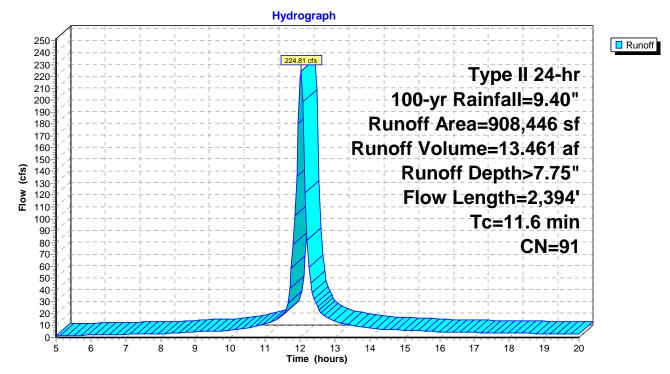
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

_	A	rea (sf)	CN [Description		
	8	19,548	91 N	Newly grad	ed area, HS	SG C
819,548 100.00% Pervious Area						а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.2	300	0.0813	0.96		Sheet Flow,
	5.7	819	0.0569	2.39		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	202	0.1138	33.09	1,158.14	, , , , , , , , , , , , , , , , , , ,
_						· · · · · · · · · · · · · · · · · · ·

11.0 1,321 Total

Subcatchment P11: P1-SB-1

Summary for Subcatchment P12: P1-SB-2


Runoff = 224.81 cfs @ 12.03 hrs, Volume= 13.461 af, Depth> 7.75"

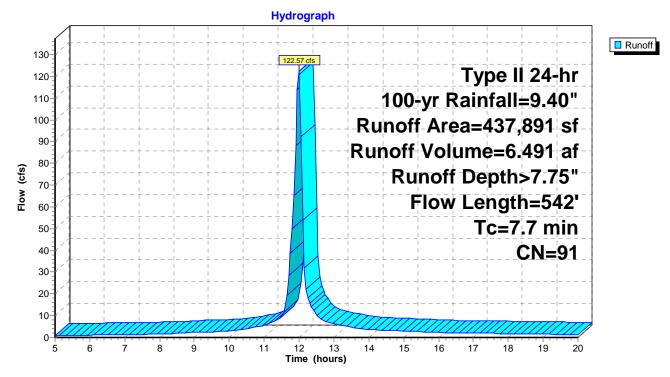
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

<i>H</i>	Area (sf)	CN E	Description		
	908,446	91 N	lewly grad	ed area, HS	SG C
	908,446	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	300	0.0769	0.94		Sheet Flow,
4.8	721	0.0618	2.49		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
1.5	1,373	0.0244	15.32	536.27	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$

11.6 2,394 Total

Subcatchment P12: P1-SB-2

Summary for Subcatchment P2: P2-SB-1


Runoff = 122.57 cfs @ 11.98 hrs, Volume= 6.491 af, Depth> 7.75"

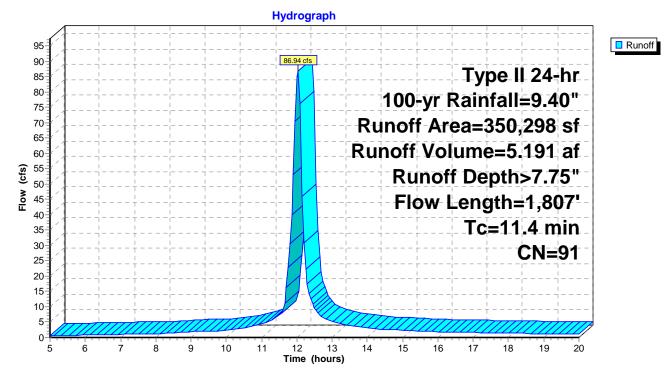
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

_	A	rea (sf)	CN E	Description		
	4	37,891	91 N	lewly grad	ed area, HS	SG C
	4	37,891	1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.5	300	0.0473	0.77		Sheet Flow, Fallow n= 0.050 P2= 3.70"
	1.1	165	0.0658	2.57		Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	77	0.0517	22.30	780.61	Channel Flow, Area= $35.0 \text{ sf Perim} = 20.0' \text{ r} = 1.75'$ n= $0.022 \text{ Earth, clean & straight}$
_						

7.7 542 Total

Subcatchment P2: P2-SB-1

Summary for Subcatchment SE1: SE-SB-1


Runoff = 86.94 cfs @ 12.02 hrs, Volume= 5.191 af, Depth> 7.75"

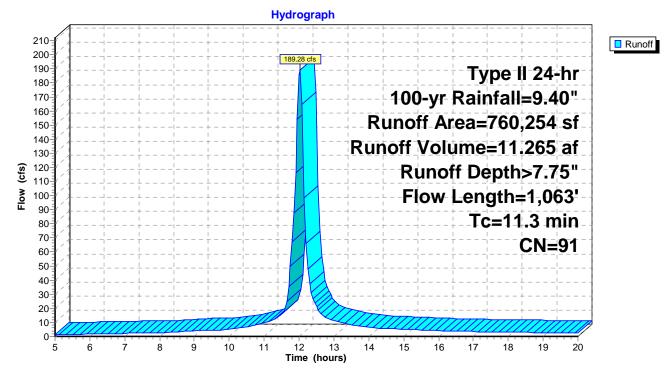
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

_	A	rea (sf)	CN [Description		
_	3	50,298	91 N	Newly grad	ed area, HS	SG C
350,298 100.00% Pervious /						а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.4	300	0.0331	0.67		Sheet Flow,
	2.4	324	0.0515	2.27		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	1.6	1,183	0.0165	12.60	440.99	Channel Flow, Area= 35.0 sf Perim= 20.0' $r= 1.75'$ n= 0.022 Earth, clean & straight
_						

11.4 1,807 Total

Subcatchment SE1: SE-SB-1

Summary for Subcatchment SE2: SE-SB-2


No Channel Flow

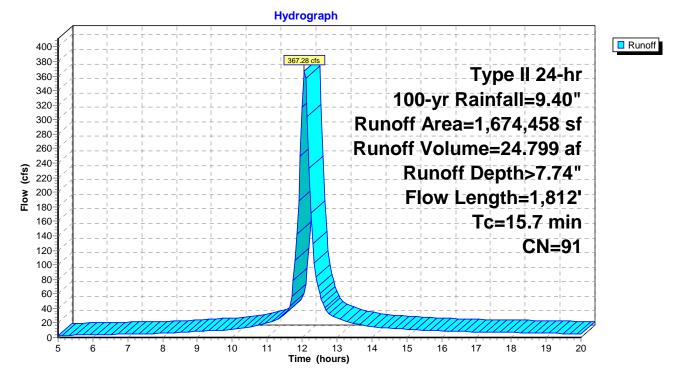
Runoff = 189.28 cfs @ 12.02 hrs, Volume= 11.265 af, Depth> 7.7	189.28 cfs @ 12.02 hrs, Volume= 11.265 af, De	oth> 7.75"
--	---	------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

Α	rea (sf)	CN D	Description		
7	60,254	91 N	lewly grad	ed area, HS	SG C
760,254 100.00% Pervious Area				ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.4	300	0.0727	0.92		Sheet Flow,
5.9	763	0.0461	2.15		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
11.3	1,063	Total			

Subcatchment SE2: SE-SB-2

Summary for Subcatchment W1: W-SB-1


Runoff = 367.28 cfs @ 12.07 hrs, Volume= 24.799 af, Depth> 7.74"

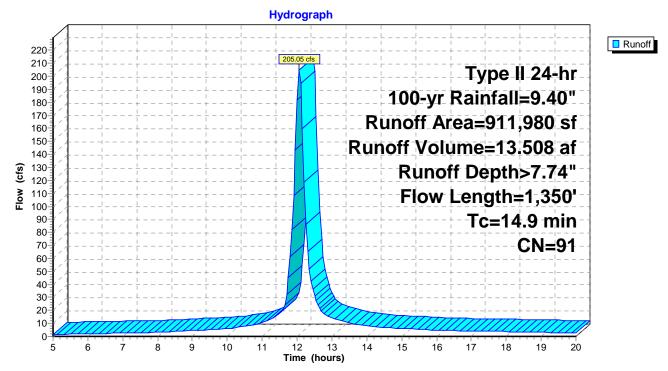
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

_	A	rea (sf)	CN E	Description		
_	1,6	74,458	91 N	lewly grad	ed area, HS	SG C
1,674,458 100.00% Pervious A				00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.1	300	0.0378	0.71		Sheet Flow,
	8.5	1,340	0.0692	2.63		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
	0.1	172	0.0459	21.01	735.52	Channel Flow, Area= 35.0 sf Perim= 20.0' $r= 1.75'$ n= 0.022 Earth, clean & straight

15.7 1,812 Total

Subcatchment W1: W-SB-1

Summary for Subcatchment W2: W-SB-2


No Channel Flow

Runoff = 205.05 cfs @ 12.06 hrs, Volume= 13.508 af, Depth> 7.7	Runoff	2.06 hrs, Volume=	= 205.05 cfs @	13.508 af, Depth> 7.74"
--	--------	-------------------	----------------	-------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=9.40"

Α	rea (sf)	CN Description			
ę	911,980	91 Newly graded area, HSG C			
ç	911,980	100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.5	300	0.0716	0.91		Sheet Flow,
9.4	1,050	0.0350	1.87		Fallow n= 0.050 P2= 3.70" Shallow Concentrated Flow, Nearly Bare & Untilled Kv= 10.0 fps
14.9	1,350	Total			

Subcatchment W2: W-SB-2

Summary for Pond 1P: P-P1-SB-1

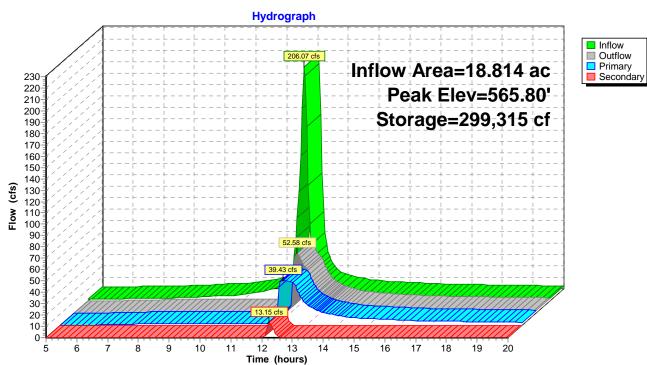
[82] Warning: Early inflow requires earlier time span

Inflow Area =	18.814 ac,	0.00% Impervious, Inflow	Depth > 7.75" for 100-yr event
Inflow =	206.07 cfs @	12.02 hrs, Volume=	12.144 af
Outflow =	52.58 cfs @	12.25 hrs, Volume=	6.644 af, Atten= 74%, Lag= 13.8 min
Primary =	39.43 cfs @	12.25 hrs, Volume=	6.375 af
Secondary =	13.15 cfs @	12.25 hrs, Volume=	0.270 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 565.80' @ 12.25 hrs Surf.Area= 47,918 sf Storage= 299,315 cf

Plug-Flow detention time= 159.7 min calculated for 6.642 af (55% of inflow) Center-of-Mass det. time= 79.1 min (821.9 - 742.8)

Volume	Invert	Avail.Sto	prage Storage Description	
#1	558.00'	358,76	67 cf Custom Stage Data (Prismatic) Listed below (Recalc)	
Elevatio		f.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)	
558.0	00 2	28,866	0 0	
567.0	00 8	50,860	358,767 358,767	
Device	Routing	Invert	Outlet Devices	
#1	Device 2	558.00'	1.168 cfs Constant Flow/Skimmer	
#2	Primary	558.00'	24.0" Round Culvert	
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $558.00' / 557.00'$ S= $0.0100 '/'$ Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf	
#3	Device 2	564.40'		
			Limited to weir flow at low heads	
#4	Secondary	565.40'	5	
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
Primary OutFlow Max=39.43 cfs @ 12.25 hrs HW=565.80' (Free Discharge)				


2=Culvert (Inlet Controls 39.43 cfs @ 12.55 fps)

1=Constant Flow/Skimmer (Passes < 1.17 cfs potential flow) **3=Orifice/Grate** (Passes < 51.19 cfs potential flow)

Secondary OutFlow Max=13.04 cfs @ 12.25 hrs HW=565.80' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 13.04 cfs @ 1.65 fps)

4261-19-156_Enoree_SEDIMENT_BASINS

Prepared by S&ME, Inc. HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Pond 1P: P-P1-SB-1

Summary for Pond 2P: P-P1-SB-2

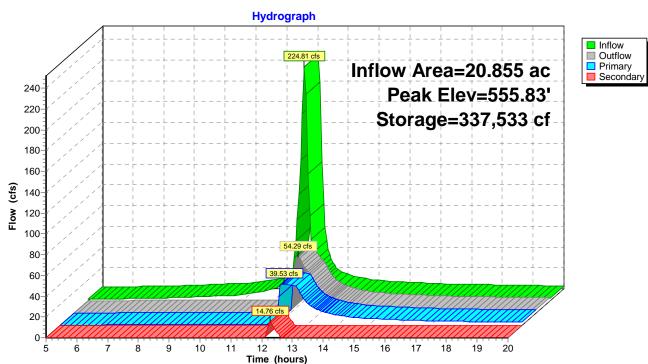
[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.855 ac,	0.00% Impervious, Inflow	Depth > 7.75" for 100-yr event
Inflow =	224.81 cfs @	12.03 hrs, Volume=	13.461 af
Outflow =	54.29 cfs @	12.27 hrs, Volume=	7.255 af, Atten= 76%, Lag= 14.7 min
Primary =	39.53 cfs @	12.27 hrs, Volume=	6.912 af
Secondary =	14.76 cfs @	12.27 hrs, Volume=	0.342 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 555.83' @ 12.27 hrs Surf.Area= 53,149 sf Storage= 337,533 cf

Plug-Flow detention time= 163.5 min calculated for 7.228 af (54% of inflow) Center-of-Mass det. time= 83.1 min (826.3 - 743.2)

Volume	Invert	Avail.Sto	prage Storage Description			
#1	548.00'	401,56	67 cf Custom Stage Data (Prismatic) Listed below (Recalc)			
Elevatio (fee		f.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)			
548.0	00 3	33,085	0 0			
557.0	00 5	56,152	401,567 401,567			
Device	Routing	Invert	Outlet Devices			
#1	Device 2	548.00'	1.168 cfs Constant Flow/Skimmer			
#2	Primary	548.00'	24.0" Round Culvert			
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 548.00' / 547.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf			
#3	Device 2	554.40'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600			
	_		Limited to weir flow at low heads			
#4	Secondary	555.40'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64			
Primary OutFlow Max=39.50 cfs @ 12.27 hrs HW=555.82' (Free Discharge)						


-2=Culvert (Inlet Controls 39.50 cfs @ 12.57 fps)

1=Constant Flow/Skimmer (Passes < 1.17 cfs potential flow) **3=Orifice/Grate** (Passes < 51.64 cfs potential flow)

Secondary OutFlow Max=14.31 cfs @ 12.27 hrs HW=555.82' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 14.31 cfs @ 1.70 fps)

4261-19-156_Enoree_SEDIMENT_BASINS Prepared by S&ME, Inc.

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Pond 2P: P-P1-SB-2

Summary for Pond 3P: P-P2-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.053 ac,	0.00% Impervious, Inflow E	Depth > 7.75" for 100-yr event
Inflow =	122.57 cfs @	11.98 hrs, Volume=	6.491 af
Outflow =	45.40 cfs @	12.12 hrs, Volume=	3.633 af, Atten= 63%, Lag= 8.3 min
Primary =	41.29 cfs @	12.10 hrs, Volume=	3.606 af
Secondary =	3.39 cfs @	12.12 hrs, Volume=	0.027 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 628.47' @ 12.12 hrs Surf.Area= 26,371 sf Storage= 152,614 cf

Plug-Flow detention time= 146.9 min calculated for 3.619 af (56% of inflow) Center-of-Mass det. time= 68.9 min (809.2 - 740.3)

Volume	Invert	Avail.Stor	rage Storage	e Description	
#1	620.00'	195,13	35 cf Custom	n Stage Data (Prismatic) Listed below (Recalc)	
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
620.0	00	9,645	0	0	
630.0	00	29,382	195,135	195,135	
Device	Routing	Invert	Outlet Device	es	
#1	Device 2	620.00'	0.600 cfs Co	nstant Flow/Skimmer	
#2	Primary	620.00'	24.0" Round	d Culvert	
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 620.00' / 619.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf		
#3	Device 2	627.30'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		
#4	Secondary	628.30'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64		
Primary OutFlow Max=41.29 cfs @ 12.10 hrs HW=628.45' (Free Discharge)					

-2=Culvert (Inlet Controls 41.29 cfs @ 13.14 fps)

1=Constant Flow/Skimmer (Passes < 0.60 cfs potential flow) **3=Orifice/Grate** (Passes < 46.47 cfs potential flow)

Secondary OutFlow Max=2.86 cfs @ 12.12 hrs HW=628.45' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 2.86 cfs @ 0.98 fps)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 122.57 cfs Inflow Area=10.053 ac 130 Peak Elev=628.47' 120 Storage=152,614 cf 110 100 90 80-Flow (cfs) 70 45.40 cfs 60 41.29 cf 50 40-30-20 10 0 ģ 10 11 12 13 14 15 16 17 18 19 5 6 7 8 20 Time (hours)

Pond 3P: P-P2-SB-1

Summary for Pond 4P: P-E-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.039 ac,	0.00% Impervious, Inflow D	Pepth > 7.75" for 100-yr event
Inflow =	108.87 cfs @	12.02 hrs, Volume=	6.480 af
Outflow =	39.74 cfs @	12.20 hrs, Volume=	3.594 af, Atten= 64%, Lag= 10.8 min
Primary =	38.77 cfs @	12.20 hrs, Volume=	3.588 af
Secondary =	0.97 cfs @	12.20 hrs, Volume=	0.006 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 615.57' @ 12.20 hrs Surf.Area= 27,311 sf Storage= 151,986 cf

Plug-Flow detention time= 150.3 min calculated for 3.593 af (55% of inflow) Center-of-Mass det. time= 70.6 min (813.7 - 743.0)

Volume	Invert	Avail.Sto	brage Storage Description		
#1	608.00'	193,03	37 cf Custom Stage Data (Prismatic) Listed below (Recalc)		
Elevatio (fee		rf.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)		
608.0		12,851	0 0		
617.0	00	30,046	193,037 193,037		
Device	Routing	Invert	Outlet Devices		
#1	Device 2	608.00'	0.600 cfs Constant Flow/Skimmer		
#2	Primary	608.00'	24.0" Round Culvert		
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 608.00' / 607.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf		
#3	Device 2	614.50'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600		
			Limited to weir flow at low heads		
#4	Secondary	615.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir		
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64		
Primary OutFlow Max=38.76 cfs @ 12.20 hrs HW=615.57' (Free Discharge)					

-2=Culvert (Inlet Controls 38.76 cfs @ 12.34 fps)

1=Constant Flow/Skimmer (Passes < 0.60 cfs potential flow) **3=Orifice/Grate** (Passes < 43.22 cfs potential flow)

Secondary OutFlow Max=0.89 cfs @ 12.20 hrs HW=615.57' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 0.89 cfs @ 0.66 fps)

Hydrograph Inflow Outflow
 Primary
 Secondary 108.87 cfs Inflow Area=10.039 ac 120 Peak Elev=615.57' 110 Storage=151,986 cf 100 90 80 70 Flow (cfs) 60-39.74 cfs 38.77 cfs 50 40 30 20-10 0.97 0ģ 10 11 12 13 14 15 16 17 18 19 20 5 6 7 8 Time (hours)

Pond 4P: P-E-SB-1

Summary for Pond 5P: P-E-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	13.642 ac,	0.00% Impervious, Inflow D	epth > 7.75" for 100-yr event
Inflow =	147.49 cfs @	12.02 hrs, Volume=	8.805 af
Outflow =	36.39 cfs @	12.26 hrs, Volume=	4.862 af, Atten= 75%, Lag= 14.4 min
Primary =	33.63 cfs @	12.26 hrs, Volume=	4.825 af
Secondary =	2.76 cfs @	12.26 hrs, Volume=	0.037 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 593.94' @ 12.26 hrs Surf.Area= 43,904 sf Storage= 216,708 cf

Plug-Flow detention time= 158.1 min calculated for 4.844 af (55% of inflow) Center-of-Mass det. time= 79.2 min (822.3 - 743.1)

Volume	Invert	Avail.Sto	ge Storage Description		
#1	588.00'	264,58	cf Custom Stage Data (Pri	smatic) Listed below (Recalc)	
Elevatio (fee		f.Area (sq-ft)	Inc.Store Cum.Store cubic-feet) (cubic-feet)		
588.0	00	29,044	0 0		
595.0	00 4	46,552	264,586 264,586		
Device	Routing	Invert	Outlet Devices		
#1	Device 2	588.00'	0.894 cfs Constant Flow/Skin	nmer	
#2	Primary	588.00'	24.0" Round Culvert		
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 588.00' / 587.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf		
#3	Device 2	592.80'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600		
			Limited to weir flow at low heads		
#4	Secondary	593.80'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64		
Primary OutFlow Max=33.61 cfs @ 12.26 hrs HW=593.94' (Free Discharge)					

2=Culvert (Inlet Controls 33.61 cfs @ 10.70 fps)

1=Constant Flow/Skimmer (Passes < 0.89 cfs potential flow) **3=Orifice/Grate** (Passes < 46.20 cfs potential flow)

Secondary OutFlow Max=2.59 cfs @ 12.26 hrs HW=593.94' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 2.59 cfs @ 0.95 fps)

Hydrograph Inflow Outflow
 Primary
 Secondary 147.49 cfs Inflow Area=13.642 ac Peak Elev=593.94' Storage=216,708 cf (cfs) Flow 36.39 cfs 30-ģ Time (hours)

Pond 5P: P-E-SB-2

Summary for Pond 6P: P-E-SB-3

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10.532 ac,	0.00% Impervious, Inflow I	Depth > 7.75" for 100-yr event
Inflow =	123.43 cfs @	12.00 hrs, Volume=	6.800 af
Outflow =	31.81 cfs @	12.19 hrs, Volume=	3.631 af, Atten= 74%, Lag= 11.3 min
Primary =	31.81 cfs @	12.19 hrs, Volume=	3.631 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 601.42' @ 12.19 hrs Surf.Area= 37,482 sf Storage= 168,827 cf

Plug-Flow detention time= 163.6 min calculated for 3.630 af (53% of inflow) Center-of-Mass det. time= 81.6 min (822.9 - 741.3)

Volume	Invert	Avail.Sto	rage Storag	ge Description	
#1	596.00'	231,03	39 cf Custo	m Stage Data (Prismatic) Listed below (Recalc)	
Elevatio		.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
596.0	0 2	4,837	0	0	
603.0	0 4	1,174	231,039	231,039	
Device	Routing	Invert	Outlet Devic	ces	
#1	Device 2	596.00'	0.600 cfs C	onstant Flow/Skimmer	
#2	Primary	596.00'	24.0" Roun	nd Culvert	
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 596.00' / 595.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf		
#3	Device 2	600.50'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		
#4	Secondary	601.50'	20.0' long x 12.0' breadth Broad-Crested Rectangular Weir		
			· · ·	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 ish) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
Primary OutFlow Max=31.78 cfs @ 12.19 hrs HW=601.41' (Free Discharge)					

-1=Constant Flow/Skimmer (Passes < 0.60 cfs potential flow)

-3=Orifice/Grate (Passes < 34.21 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=596.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Hydrograph Inflow
 Outflow
 Primary
 Secondary 123.43 cfs Inflow Area=10.532 ac Peak Elev=601.42' 130 120 Storage=168,827 cf 110 100 90 80 Flow (cfs) 70 60 31.81 cfs 50 31.81 cfs 40-30-20 10-0-6 ģ 10 14 15 16 17 18 19 5 7 8 11 12 13 20 Time (hours)

Pond 6P: P-E-SB-3

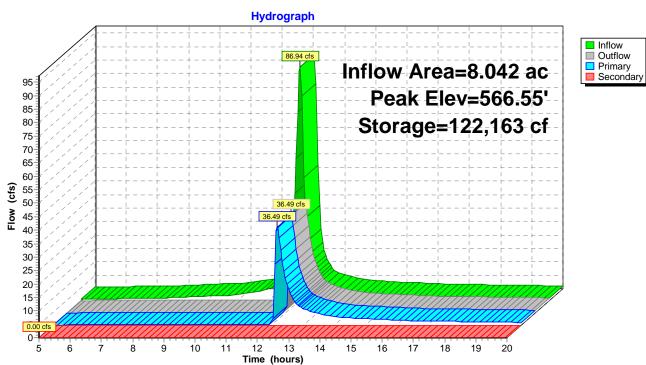
Summary for Pond 7P: P-SE-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	8.042 ac,	0.00% Impervious, Inflow D	epth > 7.75" for 100-yr event
Inflow =	86.94 cfs @	12.02 hrs, Volume=	5.191 af
Outflow =	36.49 cfs @	12.19 hrs, Volume=	2.814 af, Atten= 58%, Lag= 9.8 min
Primary =	36.49 cfs @	12.19 hrs, Volume=	2.814 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 566.55' @ 12.19 hrs Surf.Area= 21,777 sf Storage= 122,163 cf

Plug-Flow detention time= 153.2 min calculated for 2.803 af (54% of inflow) Center-of-Mass det. time= 73.2 min (816.3 - 743.1)


Volume	Invert	Avail.Stor	rage Storage D	escription		
#1	558.00'	155,68	35 cf Custom S	Stage Data (Pr	ismatic) Listed below (Recalc)	
Elevatio		f.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
558.0		6,814	0	0		
568.0	00	24,323	155,685	155,685		
Device	Routing	Invert	Outlet Devices			
#1	Device 2	558.00'	0.373 cfs Cons	tant Flow/Ski	mmer	
#2	Primary	558.00'	24.0" Round C			
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 558.00' / 557.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf			
#3	Device 2	565.60'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			
#4	Secondary	566.60'			oad-Crested Rectangular Weir	
			· · ·		0.80 1.00 1.20 1.40 1.60	
			Coef. (English)	2.57 2.62 2.	70 2.67 2.66 2.67 2.66 2.64	
Primary OutFlow Max=35.99 cfs @ 12.19 hrs HW=566.54' (Free Discharge)						

-2=Culvert (Passes 35.99 cfs of 41.53 cfs potential flow)

-1=Constant Flow/Skimmer (Constant Controls 0.37 cfs)

-3=Orifice/Grate (Weir Controls 35.62 cfs @ 3.17 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=558.01' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 7P: P-SE-SB-1

Summary for Pond 8P: P-SE-SB-2

[82] Warning: Early inflow requires earlier time span

Inflow Area =	17.453 ac,	0.00% Impervious, Inflow	Depth > 7.75" for 100-yr event
Inflow =	189.28 cfs @	12.02 hrs, Volume=	11.265 af
Outflow =	58.23 cfs @	12.22 hrs, Volume=	6.322 af, Atten= 69%, Lag= 12.1 min
Primary =	41.86 cfs @	12.22 hrs, Volume=	6.032 af
Secondary =	16.37 cfs @	12.22 hrs, Volume=	0.289 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 553.66' @ 12.22 hrs Surf.Area= 40,885 sf Storage= 268,809 cf

Plug-Flow detention time= 150.3 min calculated for 6.298 af (56% of inflow) Center-of-Mass det. time= 72.4 min (815.4 - 743.0)

Volume	Invert	Avail.Sto	prage Storage Description		
#1	545.00'	325,74	40 cf Custom Stage Data (Prismatic) Listed below (Recalc)		
Elevatio		rf.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)		
545.0		21,213	0 0		
555.0	00 4	43,935	325,740 325,740		
Device	Routing	Invert	Outlet Devices		
#1	Device 2	545.00'	1.168 cfs Constant Flow/Skimmer		
#2	Primary	545.00'	24.0" Round Culvert		
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 545.00' / 544.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf		
#3	Device 2	552.20'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600		
#1	Socondary	553 20'	Limited to weir flow at low heads 20.0' long x 12.0' breadth Broad-Crested Rectangular Weir		
#4	#4 Secondary 553.20' 20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64				
Primary	OutFlow Ma	ax=41.82 cfs	s @ 12.22 hrs HW=553.64' (Free Discharge)		

2=Culvert (Inlet Controls 41.82 cfs @ 13.31 fps)

—1=Constant Flow/Skimmer (Passes < 1.17 cfs potential flow)

3=Orifice/Grate (Passes < 52.04 cfs potential flow)

Secondary OutFlow Max=15.49 cfs @ 12.22 hrs HW=553.64' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 15.49 cfs @ 1.75 fps) 4261-19-156_Enoree_SEDIMENT_BASINS Prepared by S&ME, Inc.

Hydrograph Inflow
 Outflow
 Primary
 Secondary 189.28 cfs Inflow Area=17.453 ac 210 200-Peak Elev=553.66' 190 180 Storage=268,809 cf 170 160-150 140 130-120-(cfs) 110-100-Flow 90 58.23 cfs 80-70 60-41.86 cfs 50-40-30-20 10 0 ģ 10 11 12 14 15 16 17 18 19 5 6 7 8 13 20 Time (hours)

Pond 8P: P-SE-SB-2

Summary for Pond 9P: P-W-SB-1

[82] Warning: Early inflow requires earlier time span

Inflow Area =	38.440 ac,	0.00% Impervious, Inflow	Depth > 7.74" for 100-yr event
Inflow =	367.28 cfs @	12.07 hrs, Volume=	24.799 af
Outflow =	84.00 cfs @	12.41 hrs, Volume=	13.474 af, Atten= 77%, Lag= 20.2 min
Primary =	43.15 cfs @	12.41 hrs, Volume=	11.719 af
Secondary =	40.85 cfs @	12.41 hrs, Volume=	1.754 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 549.14' @ 12.41 hrs Surf.Area= 86,056 sf Storage= 629,904 cf

Plug-Flow detention time= 169.4 min calculated for 13.468 af (54% of inflow) Center-of-Mass det. time= 88.3 min (834.7 - 746.3)

Volume	Invert	Avail.Sto	rage Stor	rage Description	
#1	540.00'	705,63	35 cf Cus	stom Stage Data (Prismatic) Listed below (Recalc)	
Elevatio (fee		f.Area (sq-ft)	Inc.Stor (cubic-feet		
540.0		51,836		0 0	
550.0	3 00	39,291	705,63	5 705,635	
Device	Routing	Invert	Outlet De	evices	
#1	Device 2	540.00'	1.168 cfs	Constant Flow/Skimmer X 2.00	
#2	Primary	540.00'	24.0" Round Culvert		
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 540.00' / 539.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf		
#3	Device 2	547.30'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads		
#4					
			· ·	et) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			Coef. (En	nglish) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64	
Primary OutFlow Max=43.14 cfs @ 12.41 hrs HW=549.13' (Free Discharge)					

-2=Culvert (Inlet Controls 43.14 cfs @ 13.73 fps)

1=Constant Flow/Skimmer (Passes < 2.34 cfs potential flow) **3=Orifice/Grate** (Passes < 58.70 cfs potential flow)

Secondary OutFlow Max=40.69 cfs @ 12.41 hrs HW=549.13' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 40.69 cfs @ 2.44 fps)

Prepared by S&ME, Inc.

Hydrograph Inflow Outflow
 Primary
 Secondary 367.28 cfs Inflow Area=38.440 ac 400 Peak Elev=549.14' 380 360 Storage=629,904 cf 340 320 300 280 260 240 (sj) 240 220 Flow 200 180 160 140-120-100-80-43.15 cfs 60 40.85 cfs 40 20 0 ģ 10 11 14 15 16 17 18 19 20 5 6 7 8 12 13 Time (hours)

Pond 9P: P-W-SB-1

4261-19-156_Enoree_SEDIMENT_BASINS

Summary for Pond 10P: P-W-SB-2

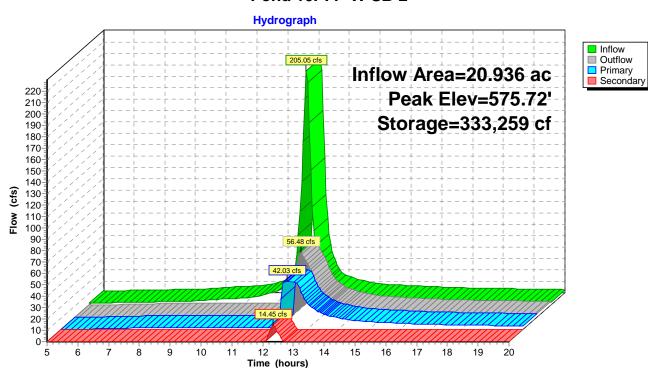
[82] Warning: Early inflow requires earlier time span

Inflow Area =	20.936 ac,	0.00% Impervious, Inflow	Depth > 7.74" for 100-yr event
Inflow =	205.05 cfs @	12.06 hrs, Volume=	13.508 af
Outflow =	56.48 cfs @	12.34 hrs, Volume=	7.299 af, Atten= 72%, Lag= 16.6 min
Primary =	42.03 cfs @	12.34 hrs, Volume=	6.966 af
Secondary =	14.45 cfs @	12.34 hrs, Volume=	0.334 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 575.72' @ 12.34 hrs Surf.Area= 50,158 sf Storage= 333,259 cf

Plug-Flow detention time= 160.8 min calculated for 7.272 af (54% of inflow) Center-of-Mass det. time= 80.4 min (826.2 - 745.7)

Volume	Invert	Avail.Sto	rage S	Storage D	Description	
#1	567.00'	399,62	20 cf 🕻	Custom S	Stage Data (Pri	ismatic) Listed below (Recalc)
Elevatio (fee		rf.Area (sq-ft)	Inc.S (cubic-	Store feet)	Cum.Store (cubic-feet)	
567.0	00	26,264		0	0	
577.0	00	53,660	399	9,620	399,620	
Device	Routing	Invert	Outlet	t Devices		
#1	Device 2	567.00'	1.168	cfs Cons	stant Flow/Skir	mmer
#2	Primary	567.00'	24.0"	24.0" Round Culvert		
			L= 100.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 567.00' / 566.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf			
#3	Device 2	574.30'	36.0" x 36.0" Horiz. Orifice/Grate C= 0.600			
#4	Secondary	575.30'	Limited to weir flow at low heads 20.0' long x 12.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.57 2.62 2.70 2.67 2.66 2.67 2.66 2.64			
Primary OutFlow Max=42.02 cfs @ 12.34 hrs HW=575.72' (Free Discharge)						


-2=Culvert (Inlet Controls 42.02 cfs @ 13.38 fps)

1=Constant Flow/Skimmer (Passes < 1.17 cfs potential flow) **3=Orifice/Grate** (Passes < 51.60 cfs potential flow)

Secondary OutFlow Max=14.19 cfs @ 12.34 hrs HW=575.72' (Free Discharge) 4=Broad-Crested Rectangular Weir (Weir Controls 14.19 cfs @ 1.70 fps)

4261-19-156_Enoree_SEDIMENT_BASINS Prepared by S&ME, Inc.

HydroCAD® 10.00-26 s/n 06707 © 2020 HydroCAD Software Solutions LLC

Pond 10P: P-W-SB-2

Reference 6

Compiled SEDIMOT IV Report, S&ME Inc., March 2021.

Location Text Results

Inputs

Name	Value
Location	Northern Greenville County, SC
Region	Greenville Spartanburg

Design Storm Text Results

Inputs

Name	Value
Return Period (yr)	10
Туре	Type II
Precipitation (in.)	5.4
Duration (hrs.)	24.0

W-SB-1 Text Results

Hydrology

Name	Value
Peak Flow (cfs)	145.2
Total Runoff Volume (ac-ft)	13.0

Sediment

Name	Value
Total Sediment Yield (lb)	1847914.8
Average Sediment Discharge Concentration (mg/l)	52372.6
Peak Sediment Discharge Concentration (mg/l)	139793.3
Average Sediment Discharge Turbidity (NTU)	14074.4
Peak Sediment Discharge Turbidity (NTU)	37567.5

W-SB-1 Text Results

Hydrology

Name	Value
Total Inflow Volume (ft^3)	565143.9
Total Outflow Volume (ft^3)	395821
Total Infiltration Volume (ft^3)	169328.8
Peak Outflow (cfs)	7.1
Drain Time (Hours)	8.07
Peak Stage Elevation (ft)	4.75

Sediment

Total Sediment Mass Inflow (lb)	1847914.8
Clay Mass Inflow (lb)	57654.9
Silt Mass Inflow (lb)	29722.7
Sand Mass Inflow (lb)	643634.4
SmAgg Mass Inflow (lb)	376818.5
LgAgg Mass Inflow (Ib)	740084.2
Total Sediment Mass Trapped (lb)	1819708.9
Total Sediment Mass Discharged (lb)	28205.9
Clay Mass Discharged (lb)	26799
Silt Mass Discharged (lb)	1406.9
Sand Mass Discharged (lb)	0
SmAgg Mass Discharged (lb)	0
LgAgg Mass Discharged (lb)	0
Sediment Trapping Efficiency (%)	98.5
Clay Trapping Efficiency (%)	53.5
Silt Trapping Efficiency (%)	95.3
Sand Trapping Efficiency (%)	100
SmAgg Trapping Efficiency (%)	100
LgAgg Trapping Efficiency (%)	100
Average Sediment Discharge Concentration (mg/l)	1141.4
Peak Sediment Discharge Concentration (mg/l)	4385.1
Average Sediment Discharge Turbidity (NTU)	875.4
Peak Sediment Discharge Turbidity (NTU)	4802.1

Reference 7

SC DHEC Stormwater BMP Handbook, Sediment Control BMPs – Sediment Basins, SC DHEC, Revised March 2014.

SC DHEC Stormwater BMP Handbook Sediment Control BMPs – Sediment Basins

Sediment Basins

Introduction

Sediment Basins are a Best Management Practice (BMP) used to collect and impound stormwater runoff from disturbed areas (typically 5 acres or more) at construction sites to restrict sediments and other pollutants from being discharged off-site. These basins may also be used to control the volume and velocity of the runoff through a timed release by utilizing multiple spillways. It is through this attenuation of runoff that sediment basins may be capable of meeting South Carolina's Design Requirements, specifically the Total Suspended Solids (TSS) removal efficiency of 80%.

These basins work most effectively in conjunction with additional sediment and erosion control BMPs installed and maintained up gradient of the basins.

Guidance Disclaimer

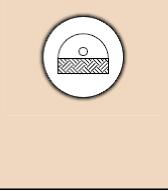
This is a guidance document and may not be feasible in all situations. Alternative means and methods for sediment basin design and construction also may be employed.

All means and methods must comply with the DHEC South Carolina NPDES General Permit for Stormwater Discharges from Construction Activities (Permit). Approved means and methods include those published and approved by an MS4 in compliance with the Permit.

In addition, a licensed Professional Engineer may design a sediment basin that, when constructed, accommodates the anticipated sediment loading from the land-disturbing activity and meets a removal efficiency of 80% suspended solids or 0.5 ML/L peak settable solids concentration, whichever is less, while remaining in compliance with the Permit.

FEATURES

- Sediment Control
- Volume Control
- Velocity Control


SECTIONS

- General Design
- Forebays
- Porous Baffles
- Basin Dewatering
- Skimmers
- Spillways
- Permanent Pools
- Maintenance
- Design Aids

ALSO ADDRESSED

- Inlet Protection
- Basin Safety
- Sediment Storage
- Slope Stabilization
- Rock Berms
- Outlet Protection
- Basin Removal

PLAN SYMBOL

General Information

Located near the site's perimeters, sediment basins can be created by the building of an embankment or through excavation, when the topography is relatively flat. Careful planning is necessary, during both design and construction phases, to ensure that sediment basins are not placed within Waters of the State (WoS) and are installed prior to the implementation of mass clearing, grubbing, and grading activities.

As runoff discharges into a sediment basin, specific mechanisms are used to reduce the velocity and turbulence of the runoff to allow for settling of suspended particles, a process known as sedimentation. Examples of these mechanisms include sediment forebays, porous baffles, and spillways with outlet structures that only discharge water from near the surface of the water column impounded within the basin.

After construction of the basin, routine inspection and maintenance of sediment basins along with the implementation of additional sediment and erosion control BMPs up gradient of the basin is essential to maintain the required trapping efficiency.

Design Requirements

<u>TSS Removal Efficiency</u>* – \geq 80% <u>Peak Settleable Solids Conc.</u>* – \leq 0.5 mL/L <u>Discharge Capacity</u> – 10-yr, 24-hr Storm Event Inspections and Maintenance** – Weekly Image Source: Alabama NRCS

Internal Components*** <u>Sediment Forebay</u> – Basin Inlets <u>Porous Baffles</u> – Between Inlets & Outlets <u>Water Surface Dewatering</u> – Basin Outlets

* Whichever is less. ** Maintenance as necessary per inspection. ***Unless Infeasible.

The above requirements shall serve as a baseline for all sediment basin design within the state of South Carolina. For further reference see SC State Regulations 72.300 Standards for Stormwater Management and Sediment Reduction (Section 72-307.C.5) and the SC NPDES General Permit for Stormwater Discharges from Construction Activities SCR100000 (Section 3.2.6.II).

The following sections of this guidance can be used to aid in the design of a sediment basin capable of meeting, if not exceeding, the above requirements. The selection and implementation of these practices should be based on the best professional judgment and the conditions expected at the construction site during the lifespan of each sediment basin.

March 2014

Additional Design Considerations

<u>Drainage Area</u> – 5-30 Acres* <u>Sediment Storage</u> – 3600 ft³/Acre Draining <u>Min Dewatering Time</u> – 2 days (48 hours) <u>Max Dewatering Time</u> – 5 days (120 hours) <u>Basin Shape</u> - L = 2W (Minimum) <u>Cleanout Height</u> - 1/2 Sediment Storage <u>Forebay Volume</u> – 20% Sediment Storage <u>Porous Baffles</u> –3 Rows (Minimum) <u>Basin Inlets</u> – Stabilized to Prevent Scour <u>Basin's Bottom Slope</u> – 0.5% or Steeper <u>Embankments</u> – 2H:1V or Flatter

*30 Acre Limitation – Based off Design Aids Section. Larger drainage areas may be acceptable when using an alternative methodology to calculated trapping efficiencies.

Location

The location of sediment basins at a construction site will vary due to site-specific conditions, but the following items should be used as guidance to determine the most appropriate location:

- Not within Waters of the State: It is prohibited to construct in or use Waters of the State as a sediment basin.
- **Down Gradient from Major Grading Activities:** Locations down gradient of large scale grading operations will promote sediment control during construction activities.
- **Near Identified Outfalls:** Locations near the determined site outfall will allow sediment basins to collect the majority of the runoff from the disturbed area.
- **Multipurpose Use:** Many construction sites will utilize a sediment basin as a detention pond after construction activities are completed. Selection of an area that allows for the installation of a sediment basin that can be converted to a detention pond post-construction is recommended.
- Exclude Runoff from Off-Site and Undisturbed Areas: The placement of sediment basins are recommended at a location that restricts the amount of stormwater runoff impounded from off-site and other undisturbed areas. Placement of temporary diversions berms, swales, or other conveyance measures may be required to divert the "clean" stormwater runoff away from the basin. This practice will minimize the drainage area being served by the sediment basin and may decrease the surface area required by the sediment basin.

<u>Safety</u>

Incorporate all possible safety precautions, such as signs and fencing, for sediment basins that are readily accessible to populated areas. For Example, a lateral shelf that is located above the sediment cleanout elevation may prevent entry onto the accumulated sediment and may also help with maintenance of the basin. In some circumstances, vector control may be necessary for sediment basins that routinely have a standing pool of water. This is especially important around residential areas to inhibit a rise in mosquito populations and the spread of disease. Maintaining a water depth of at least 3 feet within basins with permanent pools may also help prevent a rise in mosquito populations.

All other applicable safety criteria as outlined by the USDA Soil Conservation Service (previously the Natural Resources Conservation Service), the U.S. Army Corps of Engineers, and state Dam Safety Regulations should also be followed during design and construction of sediment basins.

<u>Basin Design Criteria</u>

Properly sizing a sediment basin is crucial to improving sediment control during construction conditions. When designing a basin the following criteria should be addressed:

- **Storage Volume:** The minimum sediment storage volume recommended within a sediment basin is equal to 3,600 cubic feet per acre draining to the basin. Twenty percent (20%) of this volume should be provided within the sediment forebay. (*Basin Volumes of 50 ac-ft or more may be subject to Dam Safety Regulations and Permits.*)
- **Shape:** Sediment basins should be designed to maximize the flow length between the basins' inlets and outlets. To accomplish this, the minimum length-to-width ratio of each basin should be no less than 2:1. This results with an effective flow length that is at least twice the width of the basin. Additional (non-porous) baffling may be required if site constraints prevents the basin from meeting this minimum ratio. In each circumstance, measures must be taken to prevent short-circuiting of the sediment basin. Length and width measurements may be measured from top of embankment.
- **Surface Area:** The surface area within a sediment basin can have a substantial impact on the basin's trapping efficiency. Maximizing the surface area may lead to higher trapping efficiencies and may prove to be very beneficial when employed with multiple rows of porous baffles.
- **Depth:** The provided depth in a sediment basin will be directly linked to the required storage volumes and the appropriate surface area. It is recommended that a depth of 5 10 ft be provided in order to maximize surface area within the basin. (*Basin Depths resulting in an embankment height of 25 ft or more may be subject to Dam Safety Regulations and Permits.*)
- **Slope:** The sediment basin's bottom must be graded to have a slope of not less than 0.5%.

Basin Dewatering

Sediment basins must be designed to have the capability to discharge the 10-yr, NRCS 24-hr storm event through the principle spillway while under <u>during construction</u> conditions. This spillway must employ a mechanism to withdraw the impounded stormwater runoff from near the surface of the water column impounded within a basin.

This volume of water should discharge through the principle spillway within a time frame of 2-5 days, with 3 days being the recommended target. Meeting this recommended dewatering time allows for finer particulates to fall from suspension, improving the trapping efficiency of the sediment basin.

Embankments

Proper construction and stabilization of basin embankments are important factors of sediment basin design. When designing a basin the following criteria on embankments should be addressed:

- **Construction:** The foundation of the embankment should be stripped and grubbed of all vegetation, stumps, topsoil and other organic matter prior to construction of the dam. Machine compact the soil material used to construct the dam.
- Minimum Width: The top width of the embankment should be no less than 5 feet.
- **Side Slopes**: All side slopes, including those located within basin areas that are not part of the embankment, shall be 2:1 (H:V) or flatter. The recommended slope is 3:1 to allow for ease of maintenance.

- **Penetrations**: Any penetrations, including conduits, through the embankment shall be equipped with anti-seep mechanisms, such as anti-seep collars or a core/key trench.
- **Top of Embankment:** Keep the top of the embankment at a minimum of 2 feet above the crest of the principle spillway's riser. (This minimum elevation provides an emergency spillway that is at least 1 foot in height and has a 1-foot separation between its crest and the principle spillway's crest.)
- **Stabilization:** Promptly stabilize all areas disturbed by the construction of the embankment including embankment side slopes and access areas. Temporary or permanent stabilization measures should be conducted as necessary.

Excavations

All sediment basins created or expanded through excavation shall retain side slopes of 2:1 or flatter, and all side slopes should be promptly stabilized to prevent the formation of rills and gullies. The recommended slope is 3:1 (H:V) to allow for ease of maintenance.

Inlet Protection

Inlets into a sediment basin shall be equipped with energy dissipation measures to prevent scour by reducing runoff velocities and/or shall be equipped with stabilization measures designed to handle peak flow conditions. This can be accomplished through the selection and use of BMPs such as riprap aprons, turf reinforcement matting, and plunge pools.

These BMPs should be provided at all inlets into the basin, including inlets that are submerged, and it is recommended that the invert of each inlet is cited to be at the bottom of the sediment basin to prevent erosion along side slopes. When an invert of a basin inlet is not cited at the bottom of the basin, proper conveyance measures should be proposed to allow runoff to enter the basin without eroding the basin's side slopes.

Sediment Forebay

Each sediment basin should be designed to incorporate the use of a sediment forebay, a settling area or impoundment constructed at the incoming points of stormwater runoff that promotes the settling of coarse particulates away from the basin's outlets. Inclusion of a sediment forebay may also help ease maintenance by allowing for the deposition of the larger suspended particles into an easily accessible area away from the principle spillway.

Proper design, construction, and stabilization of each sediment forebay will promote the required functions of sediment basins. When designing a basin the following criteria on forebays should be addressed:

- **Construction:** A riprap berm, gabion, or an earthen berm with a rock filled outlet should be constructed across the bottom of the sediment basin to create a cell within the basin for use as the sediment forebay. The location and height of this berm should be designed to meet the appropriate sediment forebay volume and depth criteria. Alternatively, plunge pools or rock berms may be constructed around each inlet to create a combined volume behind the berms equal to the minimum sediment forebay volume recommendation.
- **Volume:** The minimum volume provided within the forebay(s) should be twenty percent (20%) of the provided sediment storage volume of the basin.

- **Depth:** The depth of the forebay will be dependent upon the required volume. It is recommended to keep the depth between 2 and 4 feet.
- Accessibility: Direct access to the forebay will be necessary to allow for routine cleanout of the accumulated sediment. Side slopes adjacent to the forebay may be graded to create a safe path for equipment to access the forebay, or a maintenance ramp or shelf can be incorporated into the basin's design to allow for direct and easy access to all areas of the sediment basin.
- **Clean Out:** A fixed cleanout stake, solely for use within the sediment forebay is recommended near the forebay berm. This cleanout stake is beneficial since the forebay may become inundated with sediment faster than the rest of the basin. The recommended cleanout height for sediment forebays is 1/2 the height of the forebay's berm.

Photo: Sediment Forebay

Porous Baffles

Located between the sediment forebay and the basin's spillways (outlets), porous baffles must be installed to aid in the dispersion of runoff across the entire width of the basin and to promote sedimentation by reducing turbulence. Baffles function in basins with or without permanent pools.

Proper design, construction, and stabilization of porous baffles will promote the required functions of sediment basins. When designing a basin the following criteria on porous baffles should be addressed:

- **Height:** The recommended height of each baffle is 3 feet. When possible, the height of each baffle should be equal to or above the 10-yr, 24-hour NRCS Storm's design water surface elevation within the sediment basin.
- Width: The width of each baffle shall be equal to the entire width of the sediment basin, including the side slopes up to where the height of the baffle intersects the slope.
- **Spacing:** The minimum spacing between baffles should be 10 feet. Baffles should ultimately be placed to maximize the space between each of the rows of baffles and the basin's sediment forebay/spillways and the adjacent baffle row.
- **Materials:** All porous baffles not composed of turf reinforcement matting (TRM) material should consist of materials derived from coir (coconut fibers) products. An example is coir woven

matting. TRMs should consist of materials that do not have loose Straw fibers. The selected material should have a light penetration (open space) between 10-30%. **Silt Fence may not be used.**

- **Posts:** The posts used to install porous baffles should be steel posts with a minimum weight of 1.25 lb. per liner foot. Install steel posts at a maximum of 4-feet on center.
- **Rows:** A minimum of three (3) porous baffle rows should be installed across the width of the entire basin (including side slopes) where the basin length is greater than 50 feet. For basins with a length of 50 ft or less, only two rows of (2) porous baffles are necessary to be installed.
- **Installation:** All baffles are to be trenched or anchored into the basin's bottom and tied into side slopes to prevent bypass. A rope or wire can be used along the top of the baffle to prevent excessive sagging between the posts.

Photo: Porous Baffles

Rock Berm

A rock berm, typically provided in a horseshoe orientation around the principle spillway, may be provided to restrict the deposition of sediment within the area directly adjacent to the principle spillway. Restriction of sedimentation within this area will promote proper skimmer function. This rock berm is not recommended when a permanent pool of water is designed to remain within the basin during construction.

Proper design and construction of a rock berm around the principle spillway will promote the desired functions of sediment basins. When designing a basin the following criteria on rock berms should be addressed:

• **Installation:** The rock berm is to be installed outside the scopes of the skimmer and associated mechanisms required for proper skimmer performance, such as skimmer pits and/or skimmer rock pads. The berm should completely surround the principle spillway and should be installed upon the sediment basin's embankment slopes up to the elevation where the height of the berm intersects the slope.

March 2014

- Width: The width along the crest of the rock berm should be at a minimum of 2 feet. Wider rock berms may be necessary in larger basins.
- **Height:** The height of a rock berm should range between 2-4 feet, dependent upon the height of the basin.

Photo: Horseshoe Rock Berm Around Principle Spillway with Skimmer

Skimmers

The most common devices used to meet a sediment basin's surface water dewatering requirements are floating skimmers. These skimmers allow for the dewatering of a basin from the top of the water column up to a specified design elevation, which in South Carolina is the 10-yr, NRCS 24-hr Storm's design Water Surface Elevation (WSE).

The discharge through skimmers will approach a somewhat constant flow rate as the water surface elevation rises within the basin. As the elevation of water rises, the skimmer will remain at the top of the water's surface due to a floatation mechanisms incorporated into skimmer designs by the manufacturer. This floatation is typically designed to keep the depth of water above the skimmer's orifice constant as the water surface elevation rises.

Proper design and installation of skimmers will promote the desired functions of sediment basins. When designing a basin the following criteria on skimmers should be addressed:

- **Installation:** All skimmers should be installed based on manufacturer's recommendation. The skimmer should also be installed prior to clearing and grading of a basin's drainage area.
- **Discharge Capacity:** Each skimmer must be designed/selected to allow the sediment basin to have the capacity to pass the 10-yr, NRCS 24-hr storm event within the recommended time of 2-5 days.
- Skimmer Size: The size of the skimmer device, which typically reflects the skimmer's orifice size, should be selected to meet the basin discharge capacity requirements. Most skimmer manufacturers provided skimmer sizes ranging from 1.5" up to 8". Orifice size and associated flow rates are product specific and should be based off product-specific testing.

- **Skimmer Orifice Sizing:** In addition to skimmer size, some skimmer manufacturers provide the option to modify the intake orifice of a skimmer through the use of a plug or flap. These modifications are place within or over the skimmer's orifice to provide a smaller orifice size.
- Additional Options: Dependent on the skimmer manufacturer's recommendations, additional measures may need to be implemented around, near, or under the skimmer to prevent the skimmer from becoming clogged or stuck within deposited sediment. These additional measures included, and may not be limited to, skimmer pits, rock pads, and rope that is attached to the skimmer and then tied to a secure point along the basin's embankment.

A detail of the selected skimmer should be included on the construction site plans that should reference the skimmer's manufacturer, the Daily Discharge Capacity (ft³/day), the Average Discharge Rate (cfs), and the Dewatering Time (days). Listing these parameters for each proposed skimmer allows the selection of an equivalent skimmer from an alternative manufacturer, when the need arises.

When selecting an equivalent skimmer, from what was specified on the approved plans, it is important to comply with the following guidance to ensure an "equivalent" skimmer is selected.

- The Average Discharge Rate (cfs) from the selected skimmer should be equal to or greater than that discharge rate of the approved skimmer. Any skimmer with a lower Average Discharge Rate would case the peak water surface elevation within the basin to rise during a given storm event.
- The Daily Discharge Capacity (ft³/day) from the selected skimmer should be equal to or greater than the discharge capacity of the approved skimmer. Any skimmer with a Daily Discharge Capacity lower than the approved skimmer would case the peak water surface elevation within the basin to rise during a given storm event.
- The Dewatering Time should remain within a time frame of 2-5 days. It is recommended to keep the dewatering time as close to possible to that of the approved skimmer, but complying with this item keeps the basin from dewatering too quickly. The Dewatering Time is equal to the time it takes the skimmer(s) to completely dewater the basin.

Any rise in water surface elevation may allow for more water to flow over the riser crest, increasing the discharge rate of the basin. This potential for increased discharge may reduce the trapping efficiency below the required 80% efficiency.

Failing to follow this guidance would require review and approval of the "equivalent" skimmer prior to implementation (in most cases requiring a Major Modification of the approved plans). All skimmer data should be based off product-specific testing.

Photo: Skimmer with Attached Rope for Ease of Maintenance

March 2014

Principle Spillway

The Principle Spillway is the primary discharge mechanism for sediment basins. This spillway consists of a riser structure, a barrel (outlet pipe), and surface water dewatering mechanisms (typically a skimmer). The riser structure should also be equipped with a trash rack, an anti-vortex device, and an anti-floatation mechanism.

Proper design and installation of the principle spillway will promote the desired functions of sediment basins. When designing a basin the following criteria on principle spillways should be addressed:

- **Riser:** May be provided as a concrete box/pipe or corrugated pipe. Recommended heights range between 3 and 6 feet.
- **Barrel:** The barrel connects into the riser structure and extends through the basin's embankment to allow impounded stormwater runoff to discharge from the basin. Anti-seep mechanisms must be provided along the barrel to prevent embankment failure.
- **Orifices:** Limit orifices on the riser to those necessary to connect the skimmer device(s). Orifices along the riser in which a skimmer is not connected are not considered to meet the water surface dewatering requirements.
- Weirs: Limit the use of weirs along the riser to within 1-foot of the riser crest. Weirs below this elevation are not considered to meet the water surface dewatering requirements.
- **Trash Rack and Anti-Vortex Device:** Equip the riser structure with a trash rack and anti-vortex device to prevent clogging of the principle spillway and non-weir flow over the riser crest.
- Anti-Floatation Mechanism: Provide an anchor to prevent floatation of the riser structure. Recommended weight of the anti-floatation mechanism is 1.1 times greater than the weight of the volume of water displaced by the riser structure.
- **10-Yr Design WSE:** The 10-yr design WSE should target the crest of the riser. The maximum head above the riser crest should be limited to 1 foot to maintain water surface dewatering requirements. Basins with permanent pools subject to high ground water tables may be accepted with the 10-yr design WSE more than 1 foot above the riser crest.

Photo: Principle Spillway's Riser Structure with Skimmer

March 2014

Emergency Spillway

The Emergency Spillway is the secondary discharge mechanism for the sediment basin designed to discharge larger storm events, such as the 100-yr, NRCS 24-hr storm event, from the basin. This spillway consists of a stabilized, open channel along the top of the basin's embankment.

Proper design and installation of the emergency spillway will promote the desired functions of sediment basins. When designing a basin the following criteria on emergency spillways should be addressed:

- Location: Where feasible, construct the emergency spillway in natural ground and not over fill material.
- **Elevation:** The crest of the emergency spillway should be at least 1 foot below the top of the basin's embankment. This spillway should also be located 1 foot above the crest of the principle spillway's riser or the 10-yr design WSE whichever is higher.
- **Height:** The height should be at least 1 foot and should be designed to successfully pass the 100-yr, NRCS 24-hr storm event with a freeboard of no less than 0.5 feet between the maximum water surface elevation from this storm event and the basin's embankment.
- Width: The width of the emergency spillway should be at a minimum of 10 feet.
- Side Slopes: The side slopes of the emergency spillway should be no steeper than a 2:1 slope.
- **Stabilization:** The entirety of the emergency spillway, including side slopes and the embankment's slopes, should be properly stabilized. When located on fill material, this stabilization should consist of rip-rap with underlying geotextile fabric or erosion prevention BMPs capable of conveying the expected velocities without failure.

Outlet Protection

Each of the sediment basin's outlets shall be designed to prevent scour and to reduce velocities during peak flow conditions. This can be accomplished through the selection and design of energy dissipation structures such as riprap aprons. Each outlet should also be directed towards pre-existing point source discharges or be equipped with a mechanism to release the discharge as close to sheet flow as possible, to prevent the creation of new point source discharges. Try to restrict the outlets from being placed within 20 linear feet of adjacent properties lines.

Photo: Principle Spillway's Barrel (Outlet Pipe) with Plunge Pool and Level Spreader

Permanent Pools

Sediment basins located in low-lying areas or areas with high ground water tables may be incapable of avoiding a standing pool of water within the basin. These conditions may result in a permanent pool of water within the basin during the course of construction activities. Under such conditions, the following design criteria will need to be re-evaluated:

- Sediment Forebay: The forebay should be located above the permanent pool elevation when possible. If site-specific constraints are limiting, a forebay may not be capable of being provided. Forebays may not be beneficial when the basin's inlets are submerged and there is little to no overland flow to basin during construction.
- **Rock Berm:** The rock berm may prove ineffective under these circumstances and is not recommended to be provided.
- **Cleanout Height:** Sediment should be removed when approximately ½ of the sediment storage volume is lost due to accumulated sediment. Removal of sediment will also need to be conducted when the skimmer mechanism fails to rise and fall with the water surface elevation due to sediment accumulation along riser structure.

Additionally many other aspects, including baffles and skimmers, of a sediment basin may prove challenging or infeasible to provide and may require other solutions to design a basin that remains in compliance with South Carolina requirements. This is especially true along the coastal regions of South Carolina where relatively flat topography and high water tables limit the depth of basins.

One option to address such circumstances is the use of a single weir as water surface dewatering mechanism. Allowance of this practice may be dependent upon the following:

- The basin's length-to-width ratio;
- The prevention of short-circuiting between the basin's inlets and outlets;
- Whether or not the basin's inlets are submerged;
- The dispersion of flow within the basin;
- The depth of the permanent pool; and
- The maximum head on the weir crest during the 10-yr, NRCS 24-hr storm event.

Another practice to consider when designing a sediment basin with a permanent pool is turbidity curtains. This practice provides an impermeable liner along the entirety of the water column and only allows flow to discharge near the top of the water surface. Upon proper selection and implementation, turbidity curtains may be capable of enhancing the sedimentation process, dispersion of flow, dewatering from the top of the water surface, and restricting the accumulation of sediment near or around the outlet structure.

The use of these suggested practices must be approved prior to being implemented at the construction site.

Inspections & Maintenance

The key to a functional sediment basin is continual inspections, routine maintenance and regular sediment removal. Each sediment basin should be inspected at a minimum of once every calendar week. It is also recommended to inspect sediment basins within 24 hours of a storm event producing 0.5" of precipitation or greater.

Any deficiencies noted during an inspection of the basin must be addressed within 7 calendar days, before the next scheduled inspection, or before the next storm event.

Over the course of the construction project, accumulated sediment will need to be removed from the basin. Ultimately, the accumulated sediment will need to be removed once it reaches ½ of the provided sediment storage volume within the sediment basin but it is recommended to cleanout certain sections of the sediment basin (such as the sediment forebay and the cells between the porous baffles) more frequently. For this reason the following sediment removal procedures may be necessary.

- **Sediment Forebay:** Accumulated sediment should be removed from the forebay when the elevation of the deposited sediment reaches 1/2 the height of the forebay's berm.
- **Porous Baffles' Cells:** Accumulated sediment should be removed from the cells created by each row of baffles when the elevation of the deposited sediment reaches 1/2 the height of the baffles or the cleanout mark located on the cleanout stake, whichever is lower.
- **Rock Berm:** Accumulated sediment should be removed from in front of the rock berm when the elevation of the deposited sediment reaches 1/2 the height of the berm or the cleanout mark located on the cleanout stake, whichever is lower.

When accumulated sediment is removed from a sediment basin, it should be placed in designated stockpile storage areas or spread thinly across the disturbed area and promptly stabilized.

Accumulate sediment is not the only issue that may prevent proper sediment basin functions. Additional maintenance issues that are commonly required to maintain sediment basins are listed in the table located on the following page.

Identified Sediment Basin Condition	Maintenance Measures To Be Taken
Outlet pipe (barrel) is clogged with debris.	Remove debris. Modify trash rack at top of riser structure to restrict larger debris particles from entering the outlet pipe.
Emergency Spillway has eroded due to high discharge velocities during recent storm event.	Stabilize spillway with Erosion Control Blankets (ECBs) or Turf Reinforcement Mats (TRMs) with higher sheer stress capabilities. Alternatively, stabilize spillway with Rip-Rap sized to address anticipated velocities. Extend stabilization down the embankment's interior and exterior
	slopes, if not already provided.
Basin's side slopes are eroding. The formation of rills and gullies are evident.	 Re-grade slopes and provide proper tracking techniques. Seed slopes and stabilize with ECBs, TRMs, or equivalent erosion prevention BMPs, as necessary. Ensure that the slopes are graded correctly. Do not fill rills/gullies with rip-rap. Inspect upland areas for evidence of concentrated flows towards slopes. If evident provide a stabilized conveyance method to prevent further erosion along the slope.
Excessive accumulated sediment identified in basin.	Remove sediment to the elevations as denoted on the plans. Place removed sediment in stockpiles or across disturbed areas.
Principle Spillway and Embankment Failure.	Contact regulatory inspection agency. Install temporary BMP measures and stabilize disturbed areas to keep additional impacts to a minimum. Removal of any off-site sediment impacts should be done so at adjacent property owner's consent.
Skimmer is stuck or is clogged with debris.	Use rope to free skimmer from mud. Clear debris from skimmer orifice and install anti-clog mechanism.
Inlets of basin cited for scouring which is increasing erosion within basin.	Stabilize each inlet with Rip-Rap Aprons. Be sure to extend rip-rap above inlet pipe or into inlet channel.

<u>Basin Removal</u>

Sediment Basin may be removed when all areas discharging to the basin have reached final stabilization or when the conditions listed within the approved On-Site SWPPP have been met. In most circumstances, the basin will not be removed but converted to a detention pond to serve the site post-construction.

When a basin is to be removed, it should be completed within 30 days after final site stabilization is achieved or when the approved conditions indicate removal requirements have been met. All areas disturbed as a result of the sediment basin removal will need to be permanently stabilized. Additional BMPs, such as silt fence may need to be utilized to accept runoff from this area until final stabilization is reached.

<u>Design Aids</u>

The following design methodology (Hayes et al. 1995) may be used to design sediment basins to meet the 80 percent trapping efficiency requirements for TSS, which has a drainage area limitation of 30 acres. Alternatively computer models that utilize eroded particle size distributions to calculate a corresponding trapping efficiency may also be used; these models may allow larger drainage areas.

The listed methodology utilizes an eroded particle diameter from on-site soils to determine the settling velocity associated with the soil's specified particle diameter, the surface area of the basin at the riser crest, and the 10-yr, NRCS 24-hr peak outflow from the basin. These three parameters will then be used to calculate a Basin Ratio that can then be used to determine the trapping efficiency from **Figure SB-1** or **SB-2** located in **Appendix K** of SC DHEC's Stormwater BMP Handbook.

Unfortunately, the majority of the available methodologies and computer models may not take into account the anticipated benefits of the various components of the sediment basin, such as water surface withdrawal, porous baffles, and the sediment forebay.

The suggested procedure to determine the trapping efficiency is outlined below.

Calculating the Trapping Efficiency of a Sediment Basin

- Determine on-site soils' characteristic eroded particle diameter. Each soil has a unique eroded particle diameter and the D₁₅ (the particle diameter in which only 15% of the soil particle diameters are less than). To determine the D₁₅ use Appendix E of SC DHEC's Stormwater BMP Handbook to look up the smallest D₁₅ listed for all soils identified on-site.
- Determine the characteristic settling velocity of on-site soils. Use Figure SV-1, found in Appendix K, which plots eroded particle diameter (D₁₅) versus settling velocity (V₁₅), to determine the value of the settling velocity. This unit is provided in feet per second (fps).
- 3. Calculate the Basin Ratio. Use the provided formula to calculate the Basin Ratio (BR).

Basin Ratio =
$$\frac{q_{po}}{A V_{15}}$$

Where:

q_{po} = Peak Outflow Rate from the Basin for the 10-yr, NRCS 24-hr Storm Event (cfs),
 A = Surface Area of the Basin at the Riser Crest (acres),
 V₁₅ = Characteristic Settling Velocity (fps) of the Characteristic D₁₅ Eroded Particle (mm).

March 2014

- 4. **Determine Trapping Efficiency.** Use **Figure SB-1** or **Figure SB-2** to determine the trapping efficiency with the Basin Ratio calculated in step 3. These figures plot trapping efficiency versus the basin ratio, and each figure is for separate conditions identified as follows:
 - **Figure SB-1** is for basins not located in low lying areas and/or not having a high water table.
 - **Figure SB-2** is for basin located in low lying areas and/or having a high water table. This figure is appropriate for Hydrologic Soil Group (HSG) D soils classified as such due to the presence of a high water table. HSGs A/D, B/D, and C/D are also considered to have high water tables based upon the characteristics of dual hydrologic soil groups.

When using this methodology the following design constraints must be considered:

- Drainage Area to the Sediment Basin must be less than or equal to 30 Acres.
- Overland slope of this drainage area must be less than or equal to 20 percent.
- The sediment basin's Barrel (outlet pipe) must be less than or equal to 6 feet in diameter.
- Any Basin Ratios above the design curves on **Figures SB-1** and **SB-2** are not recommended for any application of the design aids.
- This methodology is not applicable to sediment basins in series.

Additional design guidance on this methodology is as follows:

- If the Basin Ratio intersects the design curve at a point having a trapping efficiency of less than the desired value, the design is inadequate and must be revised.
- A basin, <u>not</u> located in low lying area and not having a high water table, has a basin ratio equal to 2.20 E5 at 80 percent trapping efficiency as shown in **Figure SB-1**.
- A basin that <u>is</u> located in low lying area and does not have a high water table, has a basin ratio equal to 4.7 E3 at 80 percent trapping efficiency as shown in **Figure SB-2**.

Design Example

Design a sediment basin to accept stormwater runoff from a 14-acre (0.0219 mi2) construction site during construction conditions. Assume the entire area is disturbed and discharges into the sediment basin. (There are no additional discharges to the basin.) The proposed location of the sediment basin is not located in low-lying areas and does not have a high water table. The only constraint on the size of the basin is to limit the surface area at the basin's riser crest to 0.75 acres. Soil Maps indicate that both Cecil and Edisto soil types are found on-site. Calculate the trapping efficiency of the basin for a 10-year, NRCS 24-hour storm event with and without the use of a skimmer. (The peak discharge from the basin is 8.5 cfs when a skimmer is not employed. Assume that no weir flow occurs across riser crest when skimmer is employed.)

Skimmer Size	1.5"	2"	2.5"	3"	4"	5"	6"	8"
3 Day Discharge Capacity (Cubic Feet)	5500	10200	19500	31250	64500	102250	165580	298500

Skimmer Manufacturer Information

Trapping Efficiency with Skimmer

Trapping Efficiency without Skimmer

Design Example's Given and Find Information

Given:

Find:

- Drainage Area = 14 Acres (0.0219 mi2)
- A = 0.75 Acres (at Riser Crest)
- Cecil and Edisto Soil Types
- Not in Low-Lying Areas.
- There is not a High Water Table.
- Peak Discharge without Skimmer = 8.5 cfs

Solution 1 (No Skimmer):

- **1. Determine D**₁₅. From Appendix E, determine the smallest D₁₅ for both Cecil and Edisto Type Soils.
 - **a.** For Cecil Soils, $D_{15} = 0.0043$ mm
 - **b.** For Edisto Soils, $D_{15} = 0.0093$ mm

Since Cecil has the smallest D_{15} , use **0.0043 mm**.

2. **Determine V**₁₅. From Appendix K, use Figure SV-1 to determine the V₁₅. From this figure and use a D₁₅ = 0.0043 mm (from step 1), the V₁₅ will be approximately **5.19 E-05 fps**.

Alternatively, this may be calculated from the following equation $V_{15}=2.81(D_{15})^2$. (This equation may only be used if D_{15} is less than 0.01 mm.)

3. Calculate Basin Ratio. Calculate the Basin Ratio using the given information and the V_{15} determined is step 2.

BR = (8.5 cfs) (0.75 Acres)(5.19 E-05 fps)

BR = 218,368.65

4. Determine Trapping Efficiency. Determine the trapping efficiency using the calculated BR from step 3 and Figure SB-1 from Appendix K.

Trapping Efficiency = ~80%

Solution 2 (Skimmer):

1. **Discharge Volume.** The discharge volume could be estimated using the recommended sediment storage volume (3600 cubic feet per acre draining) as the discharge volume but, when known, the volume beneath the riser crest should be used as the discharge volume. For this example the sediment storage volume will be used.

Calculate the required volume that the skimmer must have the capacity to discharge.

Discharge Volume = $\frac{3600 \text{ ft}^3}{\text{Acre}} \times 14 \text{ Acres} = 50,400 \text{ ft}^3$

2. Calculate 3-Day Skimmer Dewatering Discharge. Use the calculated discharge volume to select a skimmer based off the provided manufacturer's 3-Day Discharge Capacity. In order to

discharge 50,400 cubic feet within 3 days, select the 4" skimmer since it can discharge 64,500 cubic feet in 3 days.

Determine the average discharge rate through the skimmer in cubic feet per second (cfs) using the 4" skimmer's discharge capacity. (The manufacturer may directly cite the average discharge rate.)

 $\frac{64,500 \text{ ft3}}{3 \text{ days}} \times \frac{1 \text{ day}}{24 \text{ hrs}} \times \frac{1 \text{ hour}}{60 \text{ mins}} \times \frac{1 \text{ min}}{60 \text{ secs}} = 0.249 \text{ cfs}$

Note: This average discharge rate of 0.249 cfs assumes that water does not overtop the riser crest during the 10-yr storm event. Basin routing should be conducted to confirm this. The peak discharge from the basin will be greater if the Water Surface Elevation (WSE) during this storm event overtops the riser crest. If the WSE is more than 1 foot above the riser crest, a larger or multiple skimmers may be necessary.

- **3. Determine D15.** From Appendix E, determine the smallest D₁₅ for both Cecil and Edisto Type Soils.
 - **a.** For Cecil Soils, $D_{15} = 0.0043$ mm
 - **b.** For Edisto Soils, $D_{15} = 0.0093$ mm

Since Cecil has the smallest D_{15} , use **0.0043 mm**.

4. **Determine V15.** From Appendix K, use Figure SV-1 to determine the V_{15} . From this figure and use a $D_{15} = 0.0043$ mm (from step 1), the V_{15} will be approximately **5.19 E-05 fps**.

Alternatively, this may be calculated from the following equation $V_{15}=2.81(D_{15})^2$. (This equation may only be used if D_{15} is less than 0.01 mm.)

5. Calculate Basin Ratio. Calculate the Basin Ratio using the given information and the V_{15} determined is step 2.

BR = (0.249 cfs) (0.75 Acres)(5.19 E-05 fps)

BR = 6396.92

6. Determine Trapping Efficiency. Determine the trapping efficiency using the calculated BR from step 3 and Figure SB-1 from Appendix K.

Trapping Efficiency = ~92.5%

References

- 1. Atlanta Regional Commission. Georgia Stormwater Management Manual Volume 2. GPO, 2001. Web.
- 2. Faircloth, J.W. A Manual for Designing, Installing, and Maintaining Skimmer Sediment Basins. J.W. Faircloth & Son. Nov. 2005. Web. 29 Aug. 2013. < <u>http://www.fairclothskimmer.com/</u>>
- 3. Hann, C.T., B.J. Barfield, and J.C. Hayes. Fundamental of Fluid Mechanics Second Edition. Reading, Massachusetts. Addison-Wesley Publishing Company, 1992.
- 4. Hayes, J.C. and B.J. Barfield. "Engineering Aids and Design Guidelines for Control of Sediment in South Carolina." In South Carolina Stormwater and Sediment Control Handbook for Land Disturbance Activities. GPO, 1995. Web.
- 5. Idaho Department of Environmental Quality. IDEQ Storm Water Best Management Practices Catalog. GPO, 2005. Web.
- 6. Iowa Department of Natural Resources. Iowa Stormwater Management Manual. GPO, 2008. Web.
- 7. Jarret, A.R. Controlling the Dewatering of Sedimentation Basins. *Penn State University Publications*. Agricultural and Biological Engineering. Web. 29 Aug. 2013. <<u>http://pubs.cas.psu.edu/freepubs/pdfs/f253.pdf</u>>.
- 8. Jarret, A.R. Selecting a Faircloth Skimmer. *Penn State University Publications*. Agricultural and Biological Engineering. Web. 29 Aug. 2013. <<u>http://pubs.cas.psu.edu/freepubs/pdfs/f252.pdf</u>>.
- 9. Johns, J.P. Baffles and Surface Water Discharge Design. *UpstateForever.org.* Woolpert, 27 Feb. 2013. Web. 29 Aug. 2013. <<u>http://www.upstateforever.org/progCAWdocs/2013.02.27BaffleSkimmer.pdf</u>>.
- 10. Massachusetts Department of Environmental Protection. Erosion and Sediment Control Guidelines for Urban and Suburban Areas. Northampton, MA. GPO, 1997. Web.
- 11. Massachusetts Highway Department. The Mass Highway Storm Water Handbook for Highways and Bridges. Massachusetts: GPO, 2004. Web.
- 12. New Hampshire Department of Environmental Services. NH Stormwater Management Manual Volume 2: Post-Construction Best Management Practices Selection and Design. Concord, NH: GPO, 2008. Web.
- 13. North Carolina Division of Energy, Mineral and Land Resources. North Carolina Erosion and Sediment Control Planning and Design Manual Chapter 6. GPO, 2013. Web.
- 14. Pennsylvania Department of Environmental Protection. Erosion and Sediment Pollution Control Program Manual. GPO, 2012. Web.
- 15. South Carolina Department of Transportation. Supplemental Technical Specification for Porous Baffles. GPO, 2013. Web.
- 16. Tennessee Department of Environment and Conservation. Erosion and Sediment Control Handbook. GPO, 2012. Web.
- 17. Urban Drainage and Flood Control District. Urban Storm Drainage Criteria Manual Volume 3. Denver, CO. GPO, 2010. Web.
- 18. Virginia Department of Conservation and Resources. VA DCR Stormwater Design Specification- Appendix D Sediment Forebay. GPO, 2011. Web.
- 19. Wisconsin Department of Natural Resources. Storm Water Construction Technical Standards Sediment Basins. GPO, 2006. Web.

Reference 8

Design Hydrology and Sedimentology for Small Catchments, Haan, C.T., Barfield and Hayes, 1994. Pg. 147-148.

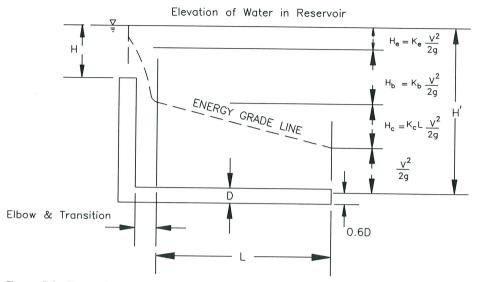


Figure 5.2 Energy losses for flow in a drop inlet spillway considering bend losses and entrance losses separately.

Solution: The discharge under orifice flow will equal

$$Q = C'a(2gH)^{1/2}$$

The area of 24-in. pipe is 3.14 ft². Assuming a value of 0.6 for C' since the riser is corrugated metal pipe and substituting values including the gravitational constant, we have

$$Q = 0.6(3.14)\sqrt{2(32.2)}H,$$

which reduces to

$$Q = 15.1 H^{1/2}.$$

Substituting a head equal to 1 ft into the equation yields Q = 15.1 cfs for orifice flow.

Pipes as Flow Control Devices

A drop inlet spillway consists of a vertical pipe called a riser and a nearly horizontal pipe called a barrel. This spillway can serve as a flow control device, even when operating under pipe flow. A schematic showing energy losses with pipe flow is given in Fig. 5.2. When the water level shown in Fig. 5.2 rises to a point such that the pipe flows full, the total head causing flow is given by H' (as shown in Fig. 5.2) instead of H as it was for weir and orifice control. This head is dissipated as entrance head loss, transition head loss, bend head loss, friction head loss, and velocity head. Frequently, in pipes used to drain detention reservoirs, the only transitions and bends are at the connection between the drop inlet and the bottom pipe. If head losses are given in terms of a head loss coefficient times the velocity head, $V^2/2g$, and the transition and bend head losses are combined into a single head loss term, then the total head H' can be written as

$$H' = \frac{V^2}{2g} (1 + K_{\rm e} + K_{\rm b} + K_{\rm c}L), \qquad (5.4)$$

where H' is the head on the pipe as shown in Fig. 5.2, K_e is the entrance head loss coefficient, K_b is the bend head loss coefficient, K_c is the head loss coefficient due to friction, L is the length of the pipe (including the riser), and V is the mean velocity in the pipe. A schematic showing the head loss terms is given in Fig. 5.2. Since discharge through the pipe is equal to velocity times area, Eq. (5.4) can be solved for discharge as

$$Q = \frac{a(2gH')^{1/2}}{\left(1 + K_{\rm e} + K_{\rm b} + K_{\rm c}L\right)^{1/2}},$$
 (5.5)

where Q is discharge and a is cross-sectional area of the pipe. Values for K_c are given in Tables 5.1 and 5.2 for circular and square pipes. Values for K_e and K_b depend on the configuration of the entrance and the bend. Typical values for K_e and K_b are 1.0 and 0.5, respectively. Brater and King (1976), as well as Hoffman (1974), can be consulted for further details.

For risers with rectangular inlets, the bend head losses are frequently combined with the entrance head losses into one term. The total head dissipated through the riser can then be written as

$$H' = \left(\frac{V^2}{2g}\right) (1 + K'_{\rm e} + K_{\rm c}L)$$
(5.6)

		2000 00			eunur ee		10 w mg 1										
					Н	ead loss o	coefficien	t, $K_{\rm c}$, for = 5087	circular p	oipe flowi	ng full						0
						(N	م lote: Pipe			inches)							
									's coefficie		hness, <i>n</i>						
Pipe diameter (in.)	Flow area (ft ²)	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025
6	0.196	0.0467	0.0565	0.0672	0.0789	0.0914	0.1050	0.1194	0.1348	0.1510	0.1680	0.1870	0.2060	0.2260	0.2470	0.2690	0.2920
8	0.349	0.0318	0.0385	0.0458	0.0537	0.0623	0.0715	0.0814	0.0919	0.1030	0.1148	0.1272	0.1400	0.1540	0.1680	0.1830	0.1990
10	0.545	0.0236	0.0286	0.0340	0.0399	0.0463	0.0531	0.0604	0.0682	0.0765	0.0852	0.0944	0.1041	0.1143	0.1249	0.1360	0.1480
12	0.785	0.0185	0.0224	0.0267	0.0313	0.0363	0.0417	0.0474	0.0535	0.0600	0.0668	0.0741	0.0817	0.0896	0.0980	0.1067	0.1157
14	1.069	0.0151	0.0182	0.0217	0.0255	0.0295	0.0339	0.0386	0.0436	0.0488	0.0544	0.0603	0.0665	0.0730	0.0798	0.0868	0.0942
15	1.230	0.0138	0.0166	0.0198	0.0232	0.0270	0.0309	0.0352	0.0397	0.0446	0.0496	0.0550	0.0606	0.0666	0.0727	0.0792	0.0859
16	1.400	0.0126	0.0153	0.0182	0.0213	0.0247	0.0284	0.0323	0.0365	0.0409	0.0455	0.0505	0.0556	0.0611	0.0667	0.0727	0.0789
18	1.770	0.01078	0.0130	0.0155	0.0182	0.0211	0.0243	0.0276	0.0312	0.0349	0.0389	0.0431	0.0476	0.0522	0.0570	0.0621	0.0674
21	2.410	0.00878	0.01062	0.0126	0.0148	0.0172	0.0198	0.0225	0.0254	0.0284	0.0317	0.0351	0.0387	0.0425	0.0464	0.0506	0.0549
24	3.140	0.00735	0.00889	0.01058	0.0124	0.0144	0.0165	0.0188	0.0212	0.0238	0.0265	0.0294	0.0324	0.0356	0.0389	0.0423	0.0459
27	3.980	0.00628	0.00760	0.00904	0.01061	0.0123	0.0141	0.0161	0.0181	0.0203	0.0227	0.0251	0.0277	0.0304	0.0332	0.0362	0.0393
30	4.910	0.00546	0.00660	0.00786	0.00922	0.01070	0.01228	0.0140	0.0158	0.0177	0.0197	0.0218	0.0241	0.0264	0.0289	0.0314	0.0341
36	7.070	0.00428	0.00518	0.00616	0.00723	0.00839	0.00963	0.01096	0.0124	0.0139	0.0154	0.0171	0.0189	0.0207	0.0226	0.0246	0.0267
42	9.620	0.00348	0.00422	0.00502	0.00589	0.00683	0.00784	0.00892	0.01007	0.01129	0.0126	0.0139	0.0154	0.0169	0.0184	0.0201	0.0218
48	12.570	0.00292	0.00353	0.00420	0.00493	0.00572	0.00656	0.00747	0.00843	0.00945	0.01053	0.01166	0.0129	0.0141	0.0154	0.0168	0.0182
54	15.900	0.00249	0.00302	0.00359	0.00421	0.00488	0.00561	0.00638	0.00720	0.00808	0.00900	0.00997	0.01099	0.0121	0.0132	0.0144	0.0156
60	19.630	0.00217	0.00262	0.00312	0.00366	0.00424	0.00487	0.00554	0.00622	0.00702	0.00782	0.00866	0.00955	0.01048	0.0115	0.0125	0.0135

 Table 5.1
 Head Loss Coefficients for Circular Conduits Flowing Full^a

^aFrom Soil Conservation Service (1951).

or

$$Q = \frac{a(2gH')^{1/2}}{\left(1 + K'_c + K_c L\right)^{1/2}},$$
 (5.7)

where $K'_{\rm e}$ is the combined entrance and bend head loss term. By providing a smooth transition, the value for $K'_{\rm e}$ can be reduced. Typical values of $K'_{\rm e}$ are given in Table 5.3.

Frequently when the drop inlet is the same size as the remainder of the pipe, orifice flow will control, and the pipe will never flow full. In this case, it may be necessary to increase the size of the drop inlet in order to utilize the full capacity of the pipe.

Example Problem 5.3 Pipe flow

An 24-in.-diameter corrugated metal pipe (CMP) is attached to the 24-in. vertical riser described in Problems 5.1 and 5.2. It is being used as the principal spillway for a detention structure. The pipe is 60 ft long and has one 90° bend. The top of the inlet riser is 15 ft above the bottom of the outlet. Assume a free outfall and estimate the discharge under pipe flow if the water elevation 30 ft from the inlet is 1 ft higher than the top of the riser.

Solution: For pipe flow, we have

$$Q = \frac{a(2gH')^{1/2}}{\left(1 + K_{\rm e} + K_{\rm b} + K_{\rm c}L\right)^{1/2}}$$

where $K_e \approx 1.0$ for most entrances of interest and $K_b = 0.5$. Manning's *n* for CMP is approximately 0.024 (see Table 4.1 for a range of values for CMP). Using this value in Table 5.1, $K_e = 0.042$. Head for pipe flow is the distance from the water surface to a point 0.6*D* above the outlet as shown in Fig. 5.2 and 5.3. *H'* then is given in terms of the stage, *H*, by

$$H' = H + 15 - 0.6(2.0) = H + 13.8.$$

Reference 9

Determining the Skimmer Size and the Required Orifice, Faircloth Skimmer, November 2007.

Determining the Skimmer Size and the Required Orifice for the

Faircloth Skimmer[®] Surface Drain

November 2007

Important note: The <u>orifice sizing chart</u> in the Pennsylvania Erosion Control Manual and reproduced in the North Carolina Design Manual **DOES NOT APPLY** to our skimmers. It will give the wrong size orifice and not specify which size skimmer is required. Please use the information below to choose the size skimmer required for the basin volume <u>provided</u> and determine the orifice size required for the drawdown time, typically 4-7 days in Pennsylvania and 3 days in North Carolina.

The **size** of a Faircloth Skimmer[®], for example a 4" skimmer, refers to the maximum diameter of the skimmer inlet. The inlet on each of the 8 sizes offered can be reduced to adjust the flow rate by cutting a hole or *orifice* in a plug using an adjustable cutter (both supplied).

Determining the skimmer size needed and the orifice for that skimmer required to drain the sediment basin's volume in the required time involves two steps: **First**, determining the size skimmer required based on the volume to be drained and the number of days to drain it; and **Second**, calculate the orifice size to adjust the flow rate and "customize" the skimmer for the basin's volume. *The second step is not always necessary* if the flow rate for the skimmer with the inlet wide open equals or is close to the flow rate required for the basin volume and the drawdown time.

Both the skimmer size and the required orifice radius for the skimmer should be shown for each basin on the erosion and sediment control plan. <u>Make it clear that the dimension is either the radius or the diameter.</u> It is also helpful to give the basin volume in case there are questions. During the skimmer installation the required orifice can be cut in the plastic plug using the supplied adjustable cutter and installed in the skimmer using the instructions provided.

The plan review and enforcement authority may require the calculations showing that the skimmer used can drain the basin in the required time.

Determining the Skimmer Size

Step 1. Below are approximate **skimmer maximum flow capacities** based on typical draw down requirements, which can vary between States and jurisdictions and watersheds. If one 6" skimmer does not provide enough capacity, multiple skimmers can be used to drain the basin. For drawdown times not shown, multiply the 24-hour figure by the number of days required.

Example: A basin's volume is 29,600 cubic feet and it must be drained in 3 days. A 3" skimmer with the inlet wide open will work perfectly. (Actually, the chart below gives 29,322 cubic feet but this is well within the accuracy of the calculations and the basin's constructed volume.) **Example:** A basin's volume is 39,000 cubic feet and it must be drained in 3 days. The 3" skimmer is too small; a 4" skimmer has enough capacity but it is too large, so the inlet will need to be reduced using step 2 to adjust the flow rate for the basin's volume. (It needs a 3.2" diameter orifice.)

1½ " skimmer: with a $1\frac{1}{2}$ " head	1,728 cubic feet in 24 hours 3,456 cubic feet in 2 days 5,184 cubic feet in 3 days	6,912 cubic feet in 4 days 12,096 cubic feet in 7 days
2 " skimmer: with a 2" head	3,283 cubic feet in 24 hours 6,566 cubic feet in 2 days 9,849 cubic feet in 3 days	13,132 cubic feet in 4 days 22,982 cubic feet in 7 days
2¹ ⁄₂" skimmer: with a 2.5" head Revised 11-6-07	6,234 cubic feet in 24 hours 12,468 cubic feet in 2 days 18,702 cubic feet in 3 days	24,936 cubic feet in 4 days 43,638 cubic feet in 7 days
3" skimmer: with a 3" head	9,774 cubic feet in 24 hours 19,547 cubic feet in 2 days 29,322 cubic feet in 3 days	39,096 cubic feet in 4 days 68,415 cubic feet in 7 days
4" skimmer: with a 4" head Revised 11-6-07	20,109 cubic feet in 24 hours 40,218 cubic feet in 2 days 60,327 cubic feet in 3 days	80,436 cubic feet in 4 days 140,763 cubic feet in 7 days
5" skimmer: with a 4" head	32,832 cubic feet in 24 hours 65,664 cubic feet in 2 days 98,496 cubic feet in 3 days	131,328 cubic feet in 4 days 229,824 cubic feet in 7 days
6" skimmer: with a 5" head	51,840 cubic feet in 24 hours 103,680 cubic feet in 2 days 155,520 cubic feet in 3 days	207,360 cubic feet in 4 days 362,880 cubic feet in 7 days
8" skimmer: with a 6" head CUSTOM MADE BY ORDER	97,978 cubic feet in 24 hours 195,956 cubic feet in 2 days 293,934 cubic feet in 3 days CALL!	391,912 cubic feet in 4 days 685,846 cubic feet in 7 days

Determining the Orifice

Step 2. To determine the orifice required to reduce the flow rate for the basin's volume and the number of days to drain the basin, simply use the formula volume \div **factor** (from the chart below) for the same size skimmer chosen in the first step and the same number of days. This calculation will give the **area** of the required orifice. Then calculate the orifice radius using Area = πr^2 and solving for *r*, $r = \sqrt{(Area/3.14)}$. The supplied cutter can be adjusted to this radius to cut the orifice in the plug. The instructions with the plug and cutter has a ruler divided into tenths of inches. Again, this step is not always necessary as explained above.

An alternative method is to use the orifice equation with the head for a particular skimmer shown on the previous page and determine the orifice needed to give the required flow for the volume and draw down time. C = 0.59 is used in this chart.

Example: A 4" skimmer is the smallest skimmer that will drain 39,000 cubic feet in 3 days but a 4" inlet will drain the basin too fast (in 1.9 days) To determine the orifice required use the factor of 4,803 from the chart below for a 4" skimmer and a drawdown time of 3 days. 39,000 cubic

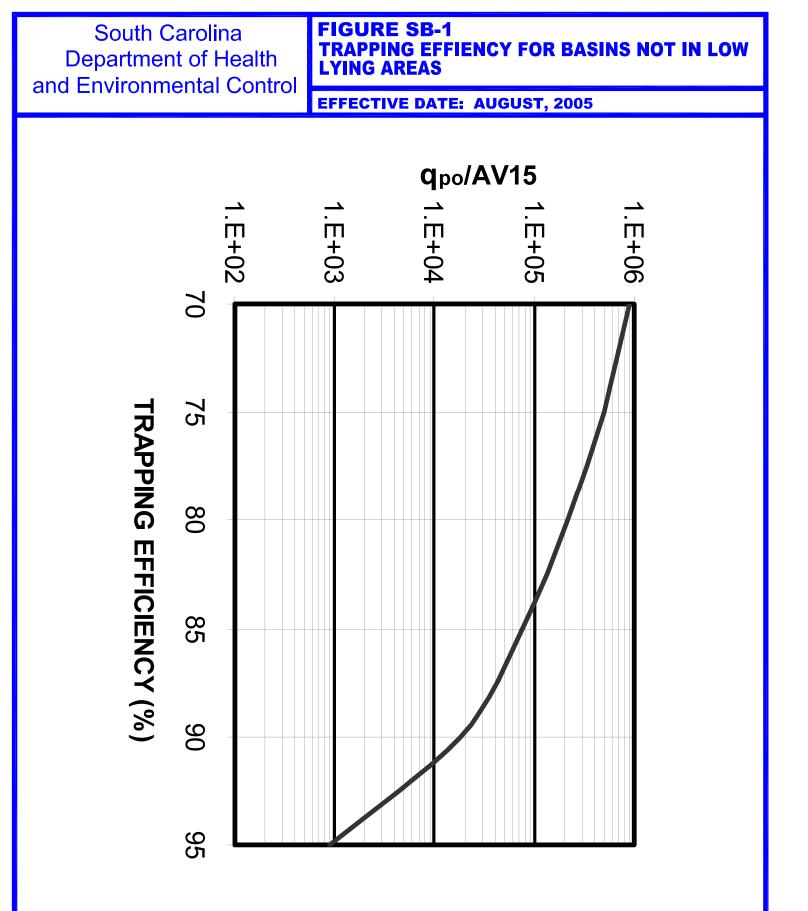
feet ÷ 4,803 = 8.12 square inches of orifice required. Calculate the orifice radius using Area = π r² and solving for r, $r = \sqrt{(8.12/3.14)}$ and r = 1.61". As a practical matter 1.6" is about as close as the cutter can be adjusted and the orifice cut.

Factors (in cubic feet of flow per square inch of opening through a **round** orifice with the head for that skimmer and for the drawdown times shown) for determining the **orifice radius** for a basin's volume to be drained. This quick method works because the orifice is centered and has a constant head (given above in Step 1).

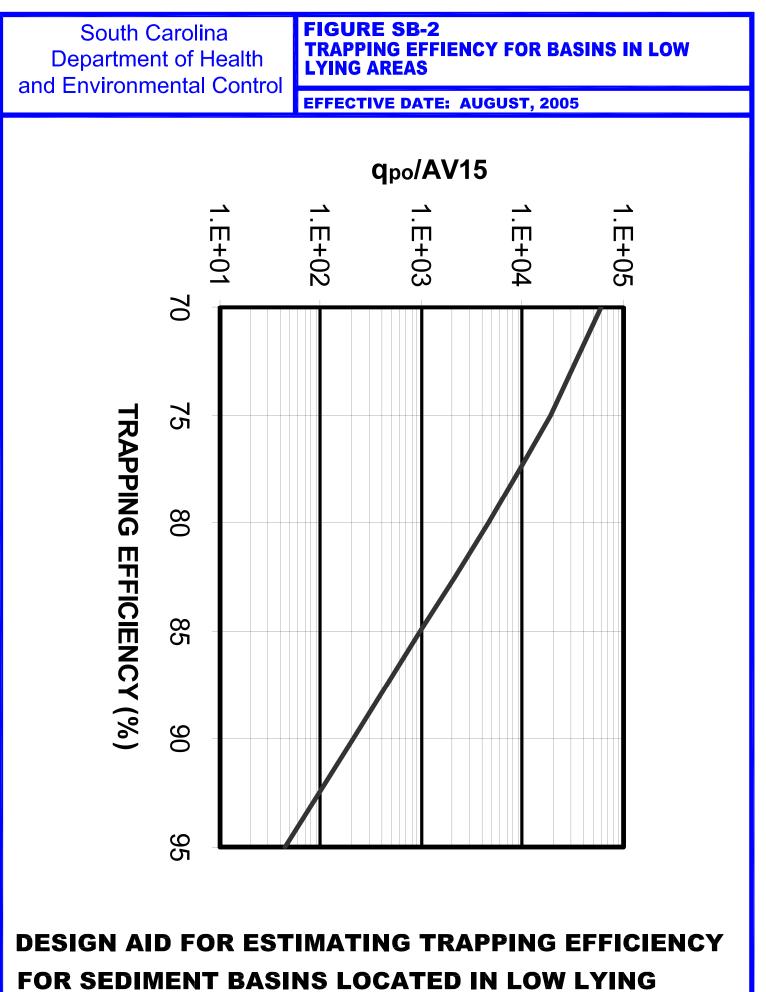
11/2" skimmer:	960 to drain in 24 hours 1,920 to drain in 2 days 2,880 to drain in 3 days	3,840 to drain in 4 days 6,720 to drain in 7 days
2" skimmer:	1,123 to drain in 24 hours 2,246 to drain in 2 days 3,369 to drain in 3 days	4,492 to drain in 4 days 7,861 to drain in 7 days
2¹⁄₂" skimmer: Revised 11-6-07	1,270 to drain in 24 hours 2,540 to drain in 2 days 3,810 to drain in 3 days	5,080 to drain in 4 days 8,890 to drain in 7 days
3" skimmer:	1,382 to drain in 24 hours 2,765 to drain in 2 days 4,146 to drain in 3 days	5,528 to drain in 4 days 9,677 to drain in 7 days
4 " skimmer: Revised 11-6-07	1,601 to drain in 24 hours 3,202 to drain in 2 days 4,803 to drain in 3 days	6,404 to drain in 4 days 11,207 to drain in 7 days
5" skimmer:	1,642 to drain in 24 hours 3,283 to drain in 2 days 4,926 to drain in 3 days	6,568 to drain in 4 days 11,491 to drain in 7 days
6" skimmer:	1,814 to drain in 24 hours 3,628 to drain in 2 days 5,442 to drain in 3 days	7,256 to drain in 4 days 12,701 to drain in 7 days
8" skimmer:	1,987 to drain in 24 hours 3,974 to drain in 2 days 5,961 to drain in 3 days	7,948 to drain in 4 days 13,909 to drain in 7 days

J. W. Faircloth & Son, Inc. Post Office Box 757 412-A Buttonwood Drive Hillsborough, North Carolina 27278 Telephone (919) 732-1244 FAX (919) 732-1266 FairclothSkimmer.com jwfaircloth@embarqmail.com

Orifice sizing Revised 2-2-01; 3-3-05; 2-1-07; 11-6-07

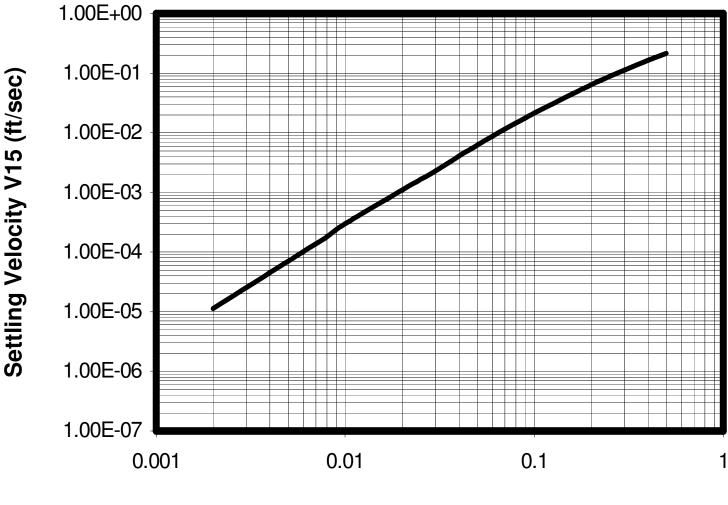

Reference 10

SC DHEC Stormwater BMP Handbook, Appendix E – South Carolina Soils, SC DHEC, Revised July 2005.


				Partic	le Sizes	s (mm) -			
Depth D15(mm)	к่	1.4	1.0	0.063		0.03 8		0.003	0.001
SOIL: CECIL (B)									
0 - 7 0.0066	0.28	100.0	84.1	47.9	39.0	39.0	8.1	5.4	0.0
7 - 11 0.0066	0.28	100.0	84.1	47.9	39.0	39.0	8.1	5.4	0.0
11 - 50 0.0043	0.28	100.0	81.0	37.6	36.1	36.1	14.3	10.2	0.0
SOIL: CENTENARY (A									
0 - 9 0.0465	0.10	100.0	93.3	77.9	3.7	3.7	1.2	0.9	0.0
9 - 58 0.0454	0.10	100.0	93.6	78.9	8.7	8.7	1.4	0.9	0.0
58 - 72 0.0460	0.10	100.0	91.6	72.4	7.1	7.1	1.7	1.2	0.0
SOIL: CHANDLER (B)									
0 - 4 0.0101	0.32	100.0	89.9	66.8	32.7	31.4	3.6	2.2	0.0
4 - 66 0.0101	0.32	100.0	89.9	66.8	32.7	31.4	3.6	2.2	0.0
SOIL: CHARLESTON	(C)								
0 - 16 0.0125	0.15	100.0	88.8	63.0	26.4	26.1	3.6	2.2	0.0
16 - 44 0.0128	0.20	100.0	86.4	55.1	25.1	25.1	4.3	2.7	0.0
44 - 80 0.0458	0.15	100.0	89.0	63.7	8.7	8.7	2.4	1.7	0.0
SOIL: CHASTAIN (C)									
0 - 5 0.0049	0.28	100.0	87.8	59.8	54.7	53.6	11.1	7.5	0.0
5 – 52 0.0044	0.37	100.0	87.0	57.3	52.6	51.3	13.3	9.3	0.0
52 - 72 0.0453	0.10	100.0	91.8	73.2	10.1	10.1	1.8	1.2	0.0
SOIL: CHENNEBYPO	(C)								
0-16 0.0052	0.32	100.0	90.6	69.1	61.8	60.0	9.3	6.0	0.0
16 - 55 0.0056	0.32	100.0	91.5	71.9	61.8	59.9	7.3	4.6	0.0
55 - 72 0.0092	0.24	100.0	84.8	49.9	30.9	30.9	5.7	3.7	0.0
SOIL: CHEWACLA (C))								
0 - 8 0.0056	0.28	100.0	91.1	70.7	59.7	58.8	7.2	4.4	0.0
8 - 24 0.0056	0.32	100.0	88.5	62.1	54.9	54.5	8.2	5.2	0.0
24 - 34 0.0074	0.28	100.0	83.4	45.5	34.6	34.6	7.7	5.2	0.0
34 - 58 0.0056	0.28	100.0	88.5	62.1	54.9	54.5	8.2	5.2	0.0
SOIL: CHIPLEY (C)									
0 - 6 0.0457	0.10	100.0	95.5	85.1	6.6	6.5	0.9	0.6	0.0
6 - 77 0.0459	0.10	100.0	94.1	80.5	6.0	6.0	1.2	0.8	0.0

Reference 11

SC DHEC Stormwater MP Handbook, Appendix K – Figures, SC DHEC, Revised July 2005.



DESIGN AID FOR ESTIMATING TRAPPING EFFICIENCY FOR SEDIMENT BASINS NOT LOCATED IN LOW LYING AREAS AND/OR NOT HAVING A HIGH WATER TABLE

AREAS AND/OR HAVING A HIGH WATER TABLE

FIGURE SV-1 CHARACTERISTIC SETTLING VELOCITY AS A FUNCTION OF ERODED PARTICLE DIAMETER

Eroded Particle Diameter D15 (mm)

Reference 12

ENG – Riprap Lined Plunge Pool for Cantilever Outlet, USDA SCS Design Note. No. 6, 2nd Ed. March 5, 1986.

1

United States Department of Agriculture Soil Conservation Service P.O. Box 2890 Washington, D.C. 20013

March 5, 1986

DESIGN NOTE NO. 6 (Second Edition) 210-VI

SUBJECT: ENG - RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET

Purpose. To distribute Design Note No. 6 (Second Edition), "Riprap Lined Plunge Pool for Cantilever Outlet."

Effective Date. Effective when received.

Explanation. Design Note No. 6 was originally issued in 1969 and was based on research reported in 1967. This second edition was developed based on recently reported research by Fred W. Blaisdell of the Agricultural Research Service. The need for a revision of the original Design Note No. 6 has been identified by several reported situations of riprap being displaced from the plunge pool.

The Blaisdell developed mathematical model is in overall agreement with the experimental data. The purpose of this edition of the design note is to present Blaisdell's final design equations with modifications to facilitate construction and still meet the minimum design requirement.

Filing Instructions. Discard the 1969 edition of Design Note No. 6 and file this second edition with other design notes.

Distribution. The design note should be useful to professionals designing or reviewing the design of an energy dissipator at the downstream end of a conduit spillway. Initial distribution is shown on the reverse side. Additional copies may be obtained from Central Supply.

JOSEPH W. HAAS Deputy Chief for Technology

Enclosure

DIST: DN-6

The Soil Conservation Service is an agency of the United States Department of Agriculture

 $(1,2) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^{-1} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^{-1} \left(\frac{1}{2} \left(\frac{1}{2}$

United States Department of Agriculture Soil Conservation Service Engineering Division

Design Note No. 6 (Second Edition)*

1

Subject: Riprap Lined Plunge Pool for Cantilever Outlet

INTRODUCTION

The energy in flow exiting from a spillway usually requires dissipation before being released to the outlet channel. For flow exiting from a conduit, when an open plunge pool is acceptable, an excavated ripraplined hole at the downstream end of the conduit can be an economical energy dissipator. However, the size of plunge pool, location relative to the conduit outlet, and size of riprap must be properly designed for the plunge pool to operate successfully. Successful operation consists of negligible kinetic energy in the outflow, no erosion or loss of the plunge pool foundation soil due to the turbulence in the process of energy dissipation, and no displacement of the riprap.

Design Note No. 6, originally issued in 1969, was based on research reported in 1967. This second edition was developed based on recently reported research (Blaisdell and Anderson 1984). The need for a revision was identified by several reported situations of riprap being displaced from the plunge pool.

Fred W. Blaisdell, Research Hydraulic Engineer, of the Agricultural Research Service conducted experiments at the Saint Anthony Falls Hydraulic Laboratory of the University of Minnesota in Minneapolis to evaluate the scour at cantilevered pipe spillway outlets. The Blaisdell developed mathematical model indicates an overall agreement with the experimental data. The final equations for the design of plunge pool energy dissipators for cantilevered pipe spillways were presented at the ASCE Hydraulic Division Conference in Coeur d'Alene, Idaho, August, 1984. The purpose of this edition of the design note is to present the final design equations with modifications to facilitate the evaluation of plunge pool shape, length, width, depth, position in relation to the outlet end of the conduit, and plunge pool volumes. Figures 1 and 2 illustrate the plunge pool layout dimensions.

DISCHARGE PARAMETER

The plunge pool dimensions were developed using a discharge parameter. The parameter is based on the design discharge, Q, pipe diameter, D, and combined with the acceleration of gravity, g, resulting in a

*Prepared by H. J. Goon, Design Unit, Engineering Division, Washington, D.C.

(210-VI-DN-6, Second Ed., January 1986)

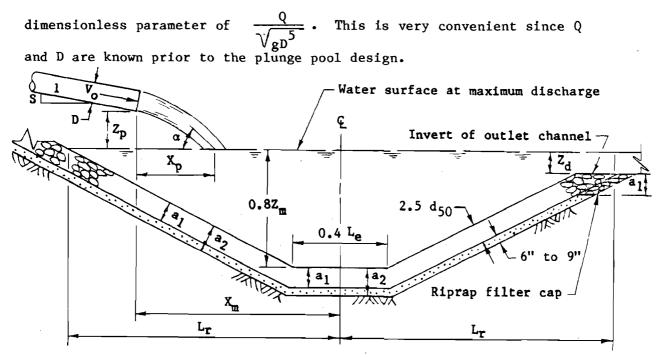


Figure 1 -- Plunge pool definition sketch

DISCHARGE JET TRAJECTORY

The plunge pool location is determined by the discharge jet trajectory. The location of the plunge pool centerline downstream from the discharge end of the pipe is dependent on the jet velocity and angle of impingement with the pool surface as well as the plunge pool depth.

The jet impingement velocity and angle of entry into the pool can be determined from the pipe exit slope, pipe discharge velocity, and height of pipe invert above the water surface. The height of pipe invert above the water surface, Z_p, should be measured from the tailwater elevation for the associated discharge used for the plunge pool design. The $\frac{5}{\sqrt{1-s^2}}$, where S is the sine of the angle whose discharge should be the maximum prior to any secondary spillway flow. The pipe slope is $\frac{S}{S}$ where S is the size of the angle whose The pipe slope is tangent is the slope of the pipe. The discharge velocity, V_0 , is computed based on the design discharge and the conduit cross-sectional The path of the free falling jet is a parabola between the pipe area. exit and tailwater surface where the jet enters the water with the impingement velocity, V_p , and the slope, tan α . The horizontal distance, X_p , from the pipe exit to where the jet plunges into the tailwater with horizontal velocity, V_h , and vertical velocity, V_v , is given in Eq. 5; where

(210-VI-DN-6, Second Ed., January 1986)

$$v_h = v_o \cos(\sin^{-1} S)$$
 Eq. 1

$$V_v = \sqrt{(V_o S)^2 + 2g [Z_p + \frac{D}{2} \cos (\sin^{-1} S)]}$$
 Eq. 2

$$\tan \alpha = \frac{v_{v}}{v_{h}} \qquad \text{Eq. 3}$$

$$v_{p} = \sqrt{v_{h}^{2} + v_{v}^{2}}$$
 Eq. 4

$$x_{p} = \frac{v_{h}}{g} (v_{v} - v_{o}S)$$
 Eq. 5

PLUNGE POOL DEPTH

The depth of erosion created by the discharging jet can be controlled by the bed material size. The bed material is represented by its mean grain size, d_{50} , the size of which 50 percent by weight is finer in diameter. The research tests were run on noncohesive materials. Therefore, this design procedure is appropriate for soil and rock bed material that perform as single grain material in resisting erosion. The d_{50} size for riprap lining material may be varied to adjust the erosion depth. The plunge pool depth is computed using a densimetric Froude number, F_d , as follows:

$$F_{d} = \frac{V_{p}}{\sqrt{gd_{50} (\rho_{s} - \rho)/\rho}}$$
 Eq. 6

where:

ρ = Bed material or riprap particle density
ρ = Water density

For $\frac{p}{D} < 1$, the maximum eroded depth is computed by the equation

$$Z_{m} = 7.5 D \left[1 - e^{-0.6 (F_{d} - 2)} \right]$$
 Eq. 7a

For $\frac{Z_{p}}{D} > 1$, the maximum eroded depth is computed by the equation $Z_{m} = 10.5 D \left[1 - e^{-0.35} (F_{d} - 2) \right]$ Eq. 7b

The effect of a horizontal ledge or a nonerodible layer on the shape of the plunge pool above the layer was tested and found to be a minimal. The dimensions of the plunge pool are functions of $\frac{Z_m}{D}$. When the plunge pool dimensions are based on the value of Z_m , the designed contours above the ledge conform to the plunge pool shape. Therefore, it is acceptable to size and construct the plunge pool to 0.8 of the computed maximum depth, Z_m . However, the full value of the computed Z_m , as determined by equation 7a or 7b, must be used in subsequent equations 9, 10, and 11.

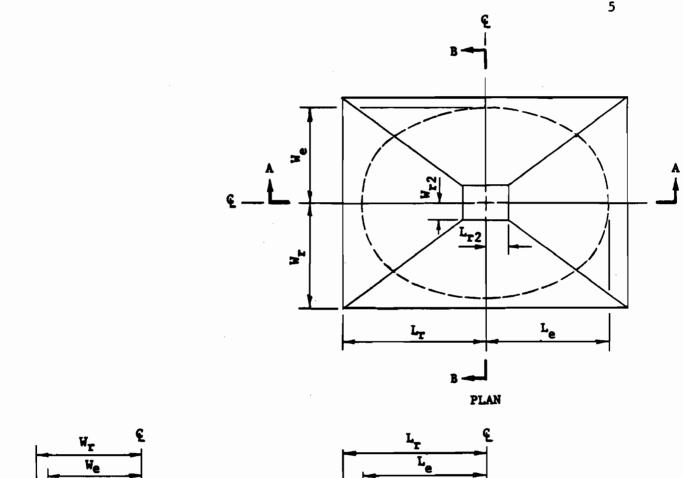
The d_{50} bed material size must be checked to assure that it is adequate to control shallow beach type erosion at the top edge of the plunge pool. High flow rates during research testing caused flow to circulate upstream along both sides of the plunge pool. When these circulating flows exceeded the bed material's critical tractive stress, beach erosion at the top edge of the plunge pool occurred. The check for adequate bed material size up to the tailwater elevation is by equation 8. The d_{50} size is adequate and beach erosion will not occur if

$$\frac{Q}{\sqrt{gD^5}} \le \left[1.0 + 25 \frac{a_{50}}{D}\right]$$
 Eq. 8

If the bed material d_{50} is not large enough, protection will need to be added. In the case of riprap, a larger particle gradation will be required.

LOCATION OF PLUNGE POOL

The horizontal distance, X_m , from the pipe exit to the center of the plunge pool, i.e., where maximum scour depth occurs is


$$X_{m} = \left[X_{p} + \frac{Z_{m}}{\tan \alpha}\right] 1.15 e^{-0.15} \left[Q/(gD^{5})^{1/2}\right]$$
 Eq. 9

DIMENSION OF PLUNGE POOL

The plunge pool natural shape is an ellipse with the greater length parallel to the pipe flow. The minimum size based on laboratory tests is the result of flow turbulence, boundary tractive stresses and submerged angle of repose of granular material. The test material d_{50} sizes ranged from 0.5 to 8 mm. The minimum horizontal distance from the center of the plunge pool to the water surface contour at the upstream end of the pool is equal to L_{a} .

Eq. 10

(210-VI-DN-6, Second Ed., January 1986)

ſ

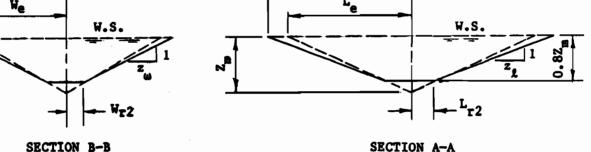


Figure 2 - Plunge Pool

Since the plunge pool shape is that of an ellipse, the distance from the center of the plunge pool to the water surface contour at the projected scour hole slope at the downstream end is also equal to the minimum L_{ρ} .

The minimum width of the plunge pool at the center of the pool is equal to $2W_p$.

$$W_{e} = Z_{m} \left[1.5 + 0.15 \frac{Q}{\sqrt{gD^{5}}} \right]$$
 Eq. 11

(210-VI-DN-6, Second Ed., January 1986)

Once the minimum width, length, depth and the distance from the end of the pipe to the center of the plunge pool are determined for a given spillway layout and d_{50} particle size, the final design shape and dimensions can be established. It is suggested that a comparable rectangular shape with length equal to $2L_e$ and width equal to $2W_e$ be specified thus facilitating construction and still meeting the minimum design requirement. The dimensions of the rectangular base at the bottom of the plunge pool, 0.8 Z_m below the water surface, are length, $2L_{r2}$, and width, $2W_{r2}$ where;

2
$$L_{r2} = 0.4 L_{e}$$
 Eq. 12
2 $W_{r2} = 0.4 W_{e}$ Eq. 13

It is recommended that the excavated side slopes of the plunge pool along the length, z_{ℓ} and along the width, z_{ω} , be adjusted to acceptable grades for layout and riprap placement purposes, e.g., 3 horizontal to 1 vertical. The final length and width of the plunge pool at the water surface are $2L_r$ and $2W_r$, respectively. Where;

$$L_{r} = 0.8Z_{m}z_{\ell} + L_{r2}$$
 Eq. 14
 $W_{r} = 0.8Z_{m}z_{\omega} + W_{r2}$ Eq. 15

If L_r is less than X_m , the water surface contour at the upstream end of the pool is downstream from the end of the conduit. Therefore, L_r should be increased to equal to or greater than X_m .

PLUNGE POOL VOLUMES

The volume, V, in cu. yds. of the plunge pool and lining materials, such as riprap and granular filter, can be determined as frustums of pyramids. For convenience, the appropriate equation is listed below

$$V = \frac{1}{81} \left[A_1 + A_2 + \sqrt{A_1 A_2} \right] Z$$

where

 A_1 is the plan rectangular area of the plunge pool at the invert elevation of the outlet channel, ft² A_2 is the plan rectangular area at the bottom of the plunge pool at a distance Z below the invert elevation of the outlet channel, ft² Z is either equal to $0.8Z_m - Z_d$, $0.8Z_m - Z_d + a_1$, or $0.8Z_m - Z_d + a_2$ below the invert elevation of the outlet channel, ft. a_1 is the thickness of the riprap lining, ft. a_2 is the thickness of the riprap lining and granular filter material, ft. Z_d is the water depth above the invert elevation of the outlet channel, ft.

The volumes of riprap and filter material above the invert elevation of the outlet channel depend on the site topography.

PROCEDURE

The step procedure given below is in a form that can easily be programmed on either programmable calculators or microcomputers.

- 1. Compute $\frac{q}{\sqrt{gD^5}}$
- 2. Compute $V_0 = \frac{4Q}{\pi D^2}$

3. Compute
$$V_h = V_o \cos(\sin^{-1} S)$$
 Eq. 1

$$V_v = \sqrt{(V_o S)^2 + 2g [Z_p + \frac{D}{2} \cos (\sin^{-1} S)]}$$
 Eq. 2

$$\tan \alpha = \frac{V}{V_{h}}$$
 Eq. 3

$$v_{\rm p} = \sqrt{v_{\rm h}^2 + v_{\rm v}^2} \qquad \text{Eq. 4}$$

$$X_{p} = \frac{V_{h}}{g} (V_{v} - V_{o}S) \qquad Eq. 5$$

4. Compute
$$F_d = \frac{V_p}{\sqrt{gd_{50}(\rho_s - \rho)/\rho}}$$
 Eq. 6

5. Compute $\frac{p}{D}$; if < 1, Go to step 6a; if > 1, Go to step 6b

6a. Compute
$$Z_{m} = 7.5 D [1 - e^{-0.6} (F - 2)]$$
; Go to step 7 Eq. 7a

(210-VI-DN-6, Second Ed., January 1986)

7

6b. Compute
$$Z_m = 10.5 D [1 - e^{-0.35} (F_d^{-2})]$$
 Eq.

7Ъ

7. Compute
$$1.0 + 25 \frac{d_{50}}{D}$$
 Eq. 8

8. If $\frac{Q}{\sqrt{gD^5}} < 1.0 + 25 \frac{d_{50}}{D}$, then go to step 9; otherwise, make design adjustments to increase d_{50} and return to step 4.

9. Compute
$$X_m = [X_p + \frac{Z_m}{\tan \alpha}]$$
 1.15 $e^{-0.15} [Q/(gD^5)^{1/2}]$ Eq. 9

- 10. Compute $L_e = Z_m \left[\frac{3}{2} + \frac{1}{3} \frac{Q}{\sqrt{gD^5}} \right]$ Eq. 10 $W_e = Z_m \left[1.5 + 0.15 \frac{Q}{\sqrt{gD^5}} \right]$ Eq. 11
- 11. Determine A_2 , plan rectangular area of the plunge pool bottom at $0.8Z_m$ below the water surface

$$L_{r2} = 0.2 L_{e}$$

 $W_{r2} = 0.2 W_{e}$
 $A_{2} = 4 L_{r2} W_{r2}$

8

12. Check the side slopes of the plunge pool and adjust, if necessary to acceptable grades, z_{ℓ} and z_{ω} . The final length and width of the plunge pool at the water surface are $2L_r$ and $2W_r$, respectively.

 $L_r = 0.8 Z_m z_{\ell} + L_{r2}$ $W_r = 0.8 Z_m z_{\omega} + W_{r2}$

- 13. If $L_r < X_m$, increase side slope, z_e , so that $L_r > X_m$
- 14. Determine A₁, plan rectangular area of the plunge pool at the invert elevation of the outlet channel

$$A_1 = 4 \left(L_r - z_{\mathcal{L}} Z_d \right) \left(W_r - z_{\omega} Z_d \right)$$

(210-VI-DN-6, Second Ed., January 1986)

15. Plunge Pool Volume:

Ļ

The Volume between a horizontal plane at the invert elevation of the outlet channel and the exposed riprap surface is V_{ao} .

$$v_{ao} = \frac{1}{81} [A_1 + A_2 + \sqrt{A_1 A_2}] [0.8Z_m - Z_d], cu. yds.$$

The volume between a horizontal plane at the invert elevation of the outlet channel and a surface at a thickness, a_1 , below the exposed riprap surface is V_{a1} .

$$V_{a1} = \frac{1}{81} \left[A_{1a1} + A_{2a1} + \sqrt{A_{1a1} A_{2a1}} \right] \left[0.8Z_m - Z_d + a_1 \right], \text{ cu. yds.}$$

where $A_{1a1} = 4 \left[L_r - z_{\ell} Z_d + a_1 \sqrt{1 + z_{\ell}^2} \right] \left[W_r - z_{\omega} Z_d + a_1 \sqrt{1 + z_{\omega}^2} \right]$ and

$$A_{2a1} = 4[L_{r2} + a_1 (\sqrt{1 + z_{\ell}^2} - z_{\ell})] [W_{r2} + a_1 (\sqrt{1 + z_{\omega}^2} - z_{\omega})]$$

The volume of riprap at thickness, a_1 , below a horizontal plane at the invert elevation of the outlet channel, exclusive of the volume of the riprap filter cap is $V_{a1} - V_{a0}$, cu. yds.

The volume between a horizontal plane at the invert elevation of the outlet channel and a surface at a thickness, a_2 , below the exposed riprap surface is V_{a2}

$$V_{a2} = \frac{1}{81} \left[A_{1a2} + A_{2a2} + \sqrt{A_{1a2} A_{2a2}} \right] \left[0.8 Z_m - Z_d + A_2 \right], \text{ cu. yds.}$$

where $A_{1a2} = 4 \left[L_r - z_{\ell} Z_d + a_2 \sqrt{1 + z_{\ell}^2} \right] \left[W_r - z_{\omega} Z_d + a_2 \sqrt{1 + z_{\omega}^2} \right]$

and

$$A_{2a2} = 4 \left[L_{r2} + a_2 \left(\sqrt{1 + z_{\ell}^2} - z_{\ell} \right) \right] \left[W_{r2} + a_2 \left(\sqrt{1 + z_{\omega}^2} - z_{\omega} \right) \right]$$

The volume of filter material of thickness, $a_2 - a_1$, below a horizontal plane at the invert elevation of the outlet channel, including the volume of the riprap filter cap, is equal to $V_{a2} - V_{a1}$, cu. yds.

Given: Invert elevation at outlet end of conduit = 102.5 Invert elevation of outlet channel = 100.0 Elevation of tailwater for maximum conduit discharge = 101.5 Q = 147 cfs, D = 2.5 ft., S = 0 Riprap size, $d_{50} = 1.0$ ft., $\rho = 2.64$ Thickness of filter material bed = 0.75 ft.

Determine:

I. Plunge pool position with respect to outlet end of conduit

II. Plunge pool depth, length, and width

III. Plunge pool volumes below the invert elevation of outlet channel

Solution:

1.
$$\frac{Q}{\sqrt{gD^5}} = \frac{147}{\sqrt{32.16(2.5)^5}} = 2.62$$

2. $V_0 = \frac{4Q}{\pi D^2} = \frac{4(147)}{3.14(2.5)^2} = 30$ ft/sec

3.
$$V_h = V_o \cos(\sin^{-1} S) = 30 \text{ ft/sec}$$

$$V_{v} = \left[(V_{o}S)^{2} + 2g(Z_{p} + \frac{D}{2} \cos (\sin^{-1} S)) \right]^{\frac{1}{2}} = \left[0 + 64.32 (1.0 + \frac{2.5}{2}) \right]^{\frac{1}{2}}$$

= 12.0 ft/sec

$$\tan \alpha = \frac{\sqrt{v}}{v_{h}} = \frac{12.0}{30} = 0.40$$
$$v_{p} = \sqrt{v_{h}^{2} + v_{v}^{2}} = \sqrt{(30)^{2} + (12.0)^{2}} = 32.3 \text{ ft/sec}$$

$$X_{p} = \frac{V_{h}}{g} (V_{v} - V_{o}S) = \frac{30}{32.16} (12.0) = 11.2 \text{ ft}$$

4.
$$F_d = \frac{V_p}{\sqrt{gd_{50}(\rho_s - \rho)/\rho}} = \frac{32.3}{\sqrt{32.16(1)(2.64 - 1)/1}} = 4.45$$

5.
$$\frac{2}{D} = \frac{1}{2.5} = 0.4 < 1$$
, therefore use Equation 6a
6. $Z_{\rm m} = 7.5D \left[1 - e^{-0.6} \left(F_{\rm d} - 2\right)\right] = 7.5 (2.5) \left[1 - e^{-1.47}\right] = 14.4 \text{ ft}$

(210-VI-ND-6, Second Ed., January 1986)

7.
$$1.0 + 25 \frac{d_{50}}{D} = 1.0 + 25 \frac{1}{2.5} = 11$$

/*

Ļ

8.
$$\frac{Q}{\sqrt{gD^5}} < [1.0 + 25 \frac{d_{50}}{D}];$$
 therefore riprap size is adequate to prevent significant shallow erosion enlargement at water surface elevation.

9. Plunge pool position from outlet end of pipe to center of pool, X_m

$$X_{\rm m} = \left[X_{\rm p} + \frac{Z_{\rm m}}{\tan \alpha}\right] 1.15 e^{-0.15 (Q/\sqrt{gD^5})}$$
$$X_{\rm m} = \left[11.2 + \frac{14.4}{0.40}\right] 1.15 e^{-0.15(2.62)} = 36.6 \text{ ft}$$

10. Plunge Pool Dimensions
depth at center = 0.8
$$Z_m = 0.8 (14.4) = 11.5$$
 ft
 $L_e = Z_m \left[\frac{3}{2} + \frac{1}{3} \frac{Q}{\sqrt{gp^5}}\right] = 14.4 \left[\frac{3}{2} + \frac{2.62}{3}\right] = 34.2$ ft
 $W_e = Z_m \left[1.5 + 0.15 \frac{Q}{\sqrt{gp^5}}\right] = 14.4 \left[1.5 + 0.15 (2.62)\right] = 27.3$ ft
11. $L_{r2} = 0.2$ $L_e = 0.2(34.2) = 6.8$ ft.
 $W_{r2} = 0.2$ $W_e = 0.2(27.3) = 5.5$ ft.
 $A_2 = 4$ L_{r2} $W_{r2} = 4(6.8)(5.5) = 150$ ft²
12. $Z_g = \frac{L_e - L_{r2}}{0.8Z_m} = \frac{34.2 - 6.8}{11.5} = 2.4$; Adjust Z_g to 3.0
 \therefore $L_r = 0.8Z_m$ $z_g + L_{r2} = 11.5 (3.0) + 6.8 = 41.3$ ft.
 $Z_\omega = \frac{W_e - W_{r2}}{0.8Z_m} = \frac{27.3 - 5.5}{11.5} = 1.9$; Adjust Z_ω to 2.0
 \therefore $W_r = 0.8Z_m$ $z_\omega + W_{r2} = 11.5 (2.0) + 5.5 = 28.5$ ft.
13. $L_r = 41.3 > X_m = 36.6$ 0.K.
14. $A_1 = 4$ $(L_r - Z_g Z_d)$ $(W_r - Z_\omega Z_d) = 4 [41.3 - 3(1.5)] [28.5 - 2(1.5)]$
 $= 3754$ ft²

$$= \frac{1}{81} \left[3754 + 150 + \sqrt{3754 \times 150} \right] \left[11.5 - 1.5 \right] = 574 \text{ cu. yds.}$$

(210-VI-DN-6, Second Ed., January 1986)

12

$$A_{1a1} = 4 \left[L_{r} - z_{g} Z_{d} + a_{1} \sqrt{1 + z_{g}^{2}} \right] \left[W_{r} - z_{\omega} Z_{d} + a_{1} \sqrt{1 + z_{\omega}^{2}} \right]$$

$$= 4 \left[41.3 - 3(1.5) + 2.5 \sqrt{1 + 3^{2}} \right] [28.5 - 2(1.5) + 2.5 \sqrt{1 + 2^{2}}]$$

$$= 5560 \text{ ft}^{2}$$

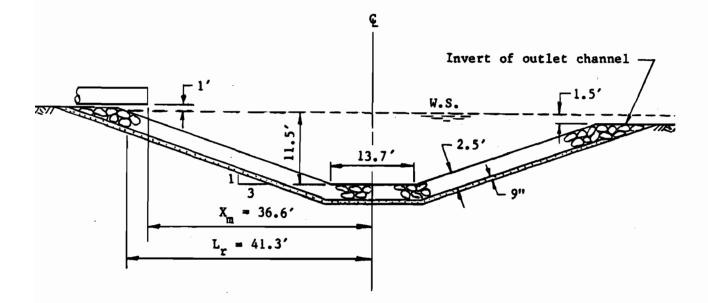
$$A_{2a1} = 4 \left[L_{r2} + a_{1} \left(\sqrt{1 + z_{g}^{2}} - z_{g} \right) \right] \left[W_{r2} + a_{1} \left(\sqrt{1 + z_{\omega}^{2}} - z_{\omega} \right) \right]$$

$$= 4 \left[6.8 + 2.5 \left(\sqrt{1 + 3^{2}} - 3 \right) \right] \left[5.5 + 2.5 \left(\sqrt{1 + 2^{2}} - 2 \right) \right] = 176 \text{ ft}^{2}$$

$$V_{a1} = \frac{1}{81} \left[A_{1a1} + A_{2a1} + \sqrt{A_{1a1}A_{2a1}} \right] \left[0.8z_{m} - z_{d} + a_{1} \right]$$

$$= \frac{1}{81} \left[5560 + 176 + \sqrt{5560 \times 176} \right] \left[11.5 - 1.5 + 2.5 \right] = 1038 \text{ cu. yds.}$$
Volume of riprap = $V_{a1} - V_{a0} = 1038 - 574 = 464 \text{ cu. yds.}$

$$A_{1a2} = 4 \left[41.3 - 4.5 + 3.25 \sqrt{10} \right] \left[28.5 - 3 + 3.25 \sqrt{5} \right] = 6170 \text{ ft}^{2}$$


$$A_{2a2} = 4 \left[6.8 + 3.25 \left(\sqrt{10} - 3 \right) \right] \left[5.5 + 3.25 \left(\sqrt{5} - 2 \right) \right] = 184 \text{ ft}^{2}$$

$$V_{a2} = \frac{1}{81} \left[6170 + 184 + \sqrt{6170 \times 184} \right] \left[11.5 - 1.5 + 3.25 \right] = 1214 \text{ cu. yds.}$$

5

ł

Volume of filter = $V_{a2} - V_{a1} = 1214 - 1038 = 176$ cu. yds.

(210-VI-DN-6, Second Ed., January 1986)

NOMENCLATURE

1

^a 1	E	Thickness of riprap, ft
^a 2	Ŧ,	Thickness of riprap and filter material, ft
A ₁	91	Plan rectangular area of the plunge pool at the invert elevation of the outlet channel, ft ²
A ₂	Ξ	Plan rectangular area at the bottom of the plunge pool at a distance Z below the invert elevation of the outlet channel, ft ² .
d 50	Ξ	Size of rock in riprap of which 50 percent by weight is finer, ft
D	Ξ	Cantilever outlet pipe diameter, ft
e	≣	Base of natural logarithms
Fd	Ξ	Densimetric Froude number
g	Ξ	Acceleration of gravity, ft/sec ²
^L e	Ξ	Minimum horizontal distance from the center of the pool to the water surface contour at the upstream or down- stream end of an elliptical-shape plunge pool, ft
^L r	Ξ	Adjusted horizontal distance from the center of the pool to the water surface contour at the upstream or downstream end of the rectangular-shape plunge pool, ft
^L r2	Ξ	One-half the length of the bottom of a rectangular-shape plunge pool, ft
Q	Ξ	Design discharge, cfs
S	Ξ	Sine of the angle whose tangent is the slope of the pipe
v _{ao}	≣	Volume of the plunge pool between the invert elevation of the outlet channel and the exposed riprap surface, cu. yds.
v _{al}	Ŧ	Volume of the plunge pool between the invert elevation of the outlet channel and a surface at a thickness, a_1 , below the exposed riprap surface, cu. yds.
v _{a2}	Ē	Volume of the plunge pool between the invert elevation of the outlet channel and a surface at a thickness, a ₂ , below the exposed riprap surface, cu. yds.
		(210-VI-DN-6, Second Ed., January 1986)

14		
v _h	Ξ	Horizontal component of the jet impingement velocity, V _p , ft/sec
v _o	Ξ	Velocity in the pipe corresponding to the design discharge, Q, ft/sec
v _p	≣	Velocity where the jet plunges into the water surface, ft/sec
v _v	≣	Vertical component of the jet impingement velocity, V_p , ft/sec
We	H	One-half the minimum width at the center of the elliptical- shape plunge pool at the water surface elevation, ft
Wr	E	One-half the adjusted width at the center of the rectangular- shape plunge pool at the water surface elevation, ft
W _{r2}	Ξ	One-half the width of the bottom of a rectangular plunge pool, ft
X _m	Ξ	Horizontal distance from the pipe exit to the center of the plunge pool, ft
х _р	Ξ	Horizontal distance from the pipe exit to the center of the jet plunging into the water surface, ft
^z l	Ξ	Side slope ratio of the upstream or downstream slope of the rectangular-shape plunge pool
Ζ _ω	Ξ	Side slope ratio of the side slopes of the rectangular- shape plunge pool
z _d	Ξ	Water depth above the invert elevation of the outlet channel, ft
z _m	Ŧ	Maximum computed depth of the plunge pool, ft
z _p	Ξ	Vertical distance from the tailwater surface to the cantilever pipe invert, ft
ρ	E	Water density
ρ s	Ę	Bed material or riprap particle density
α	Ξ	Jet impingement angle where the jet plunges into the water surface

(210-VI-DN-6, Second Ed., January 1986)

1986)

÷

·1^

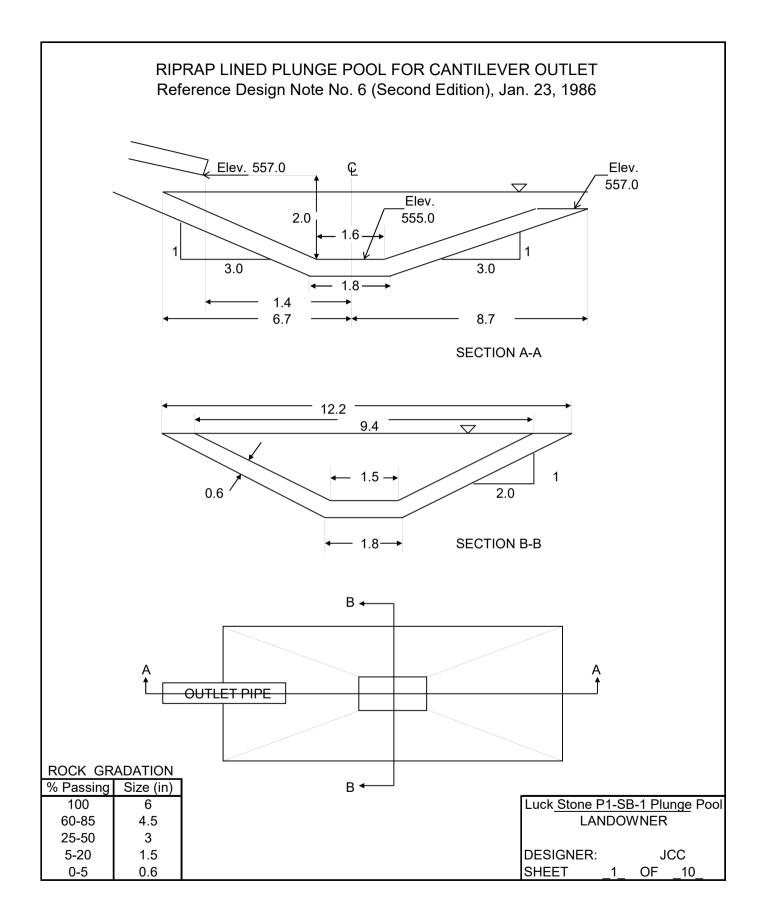
REFERENCES

Blaisdell, F. W., and Anderson, C. L. 1984. Pipe spillway plunge pool design equations. Proceedings of the conference - water for resource development, Hydraulics Division, ASCE, Coeur d'Alene, Idaho.

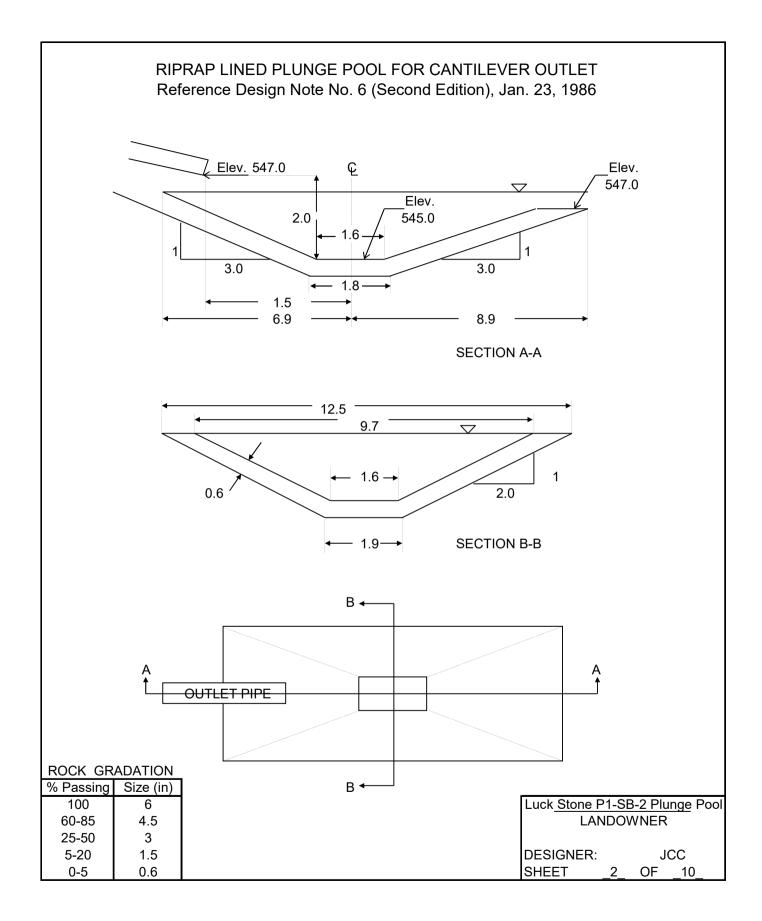
Anderson, C. L. and Blaisdell, F. W. 1982. Plunge pool energy dissipator for pipe spillways, Proceedings of the conference - applying research to hydraulic practice, ASCE, Jackson, Mississippi, p. 289-297.

Blaisdell, F. W., Anderson, C. L., and Hebaus, G. G. 1981. Ultimate dimensions of local scour. Journal of the Hydraulics Division, ASCE, Vol. 107, No. HY3, Proc. Paper 16144, p. 327-337.

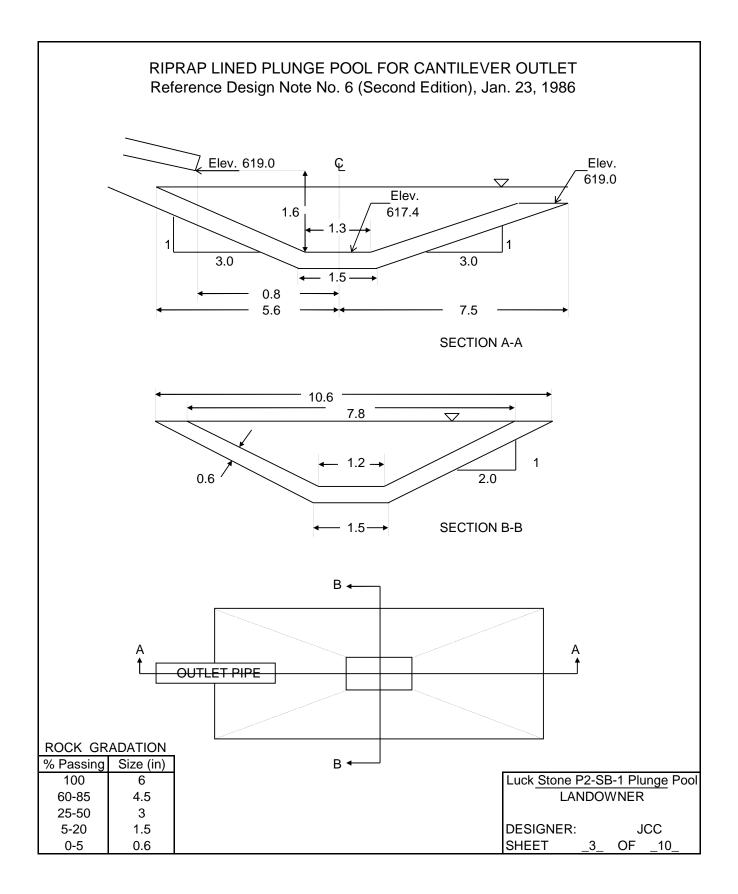
(210-VI-DN-6, Second Ed., January 1986)

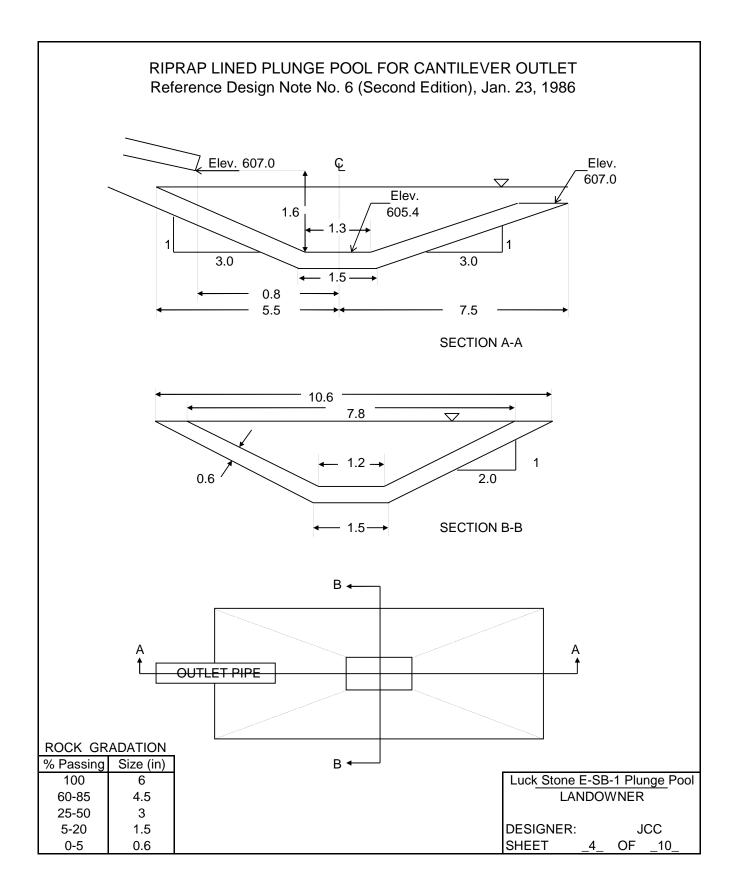

✿U.S. Government Printing Office : 1986 - 490-918/40184

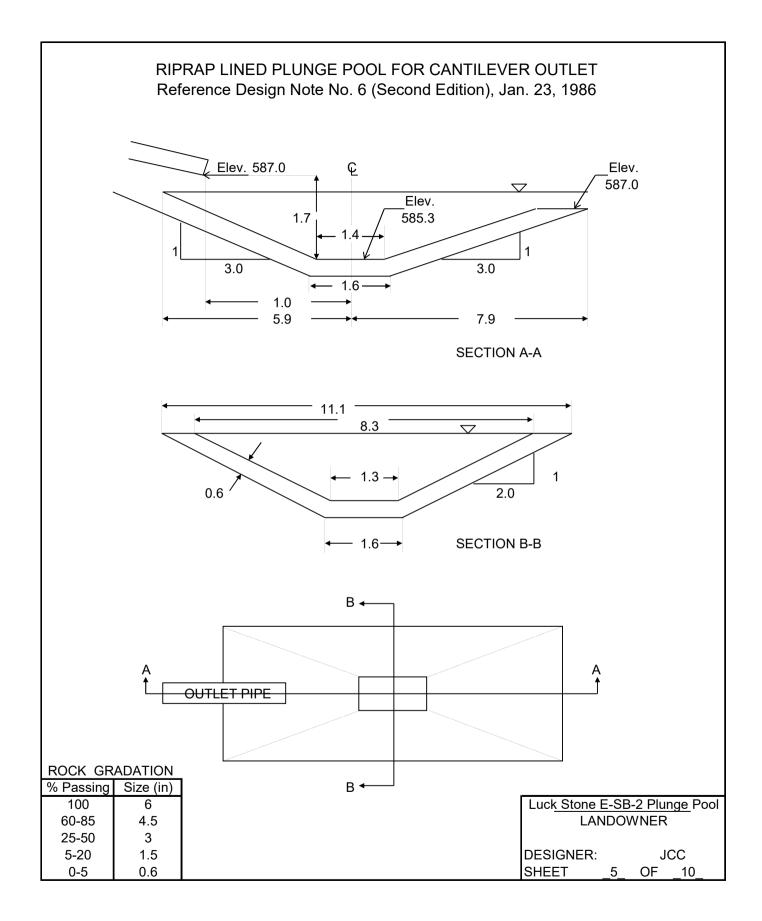
Ĭ,

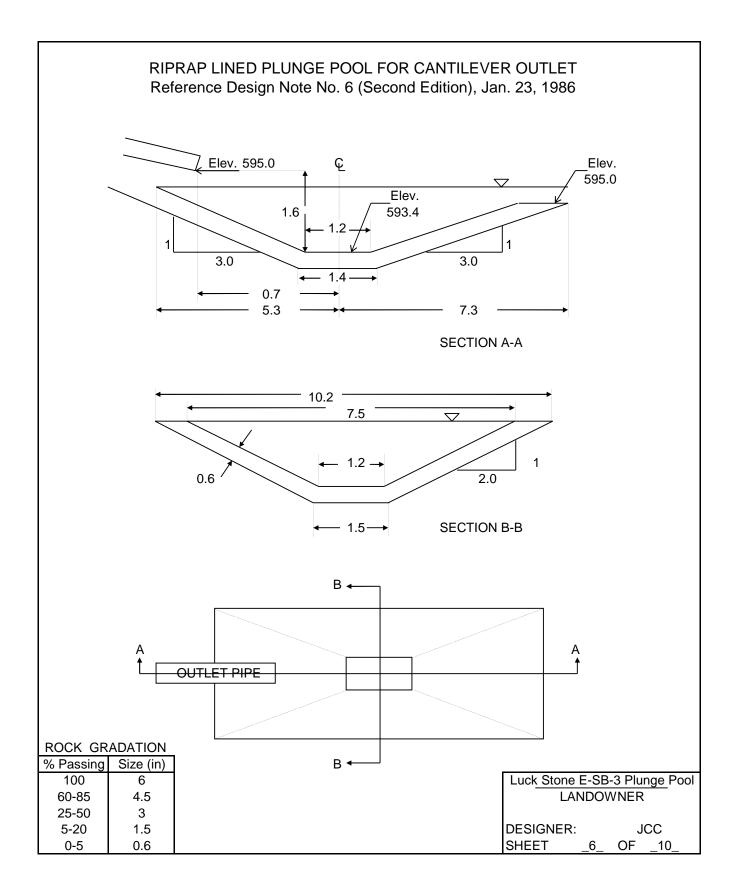

Reference 13

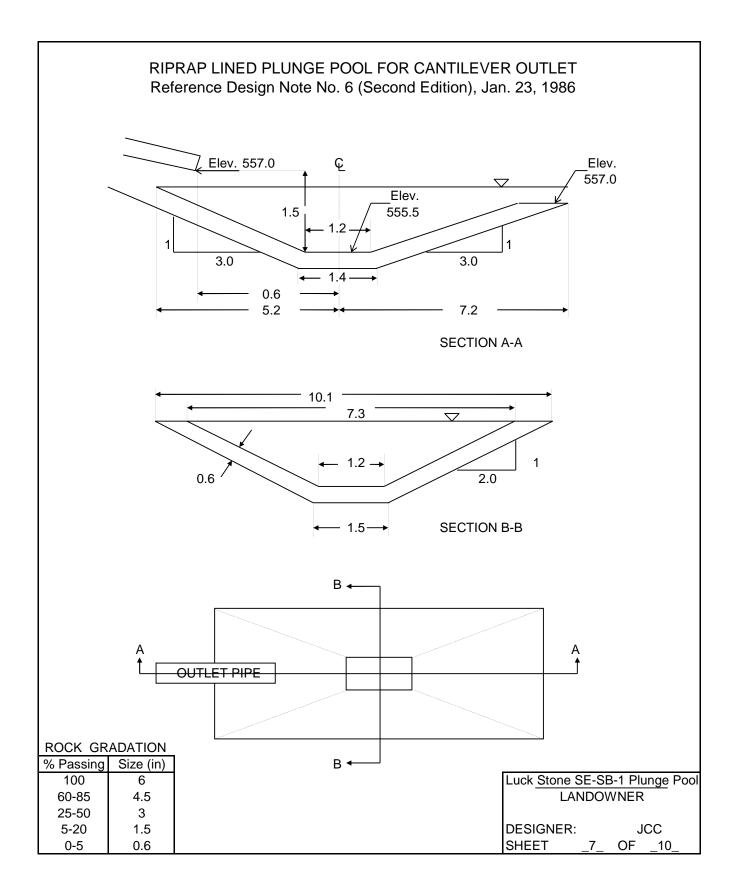
Riprap Lined Plunge Pool for Cantilever Outlet, NRCS Plunge Pool Sheets, March 2021.

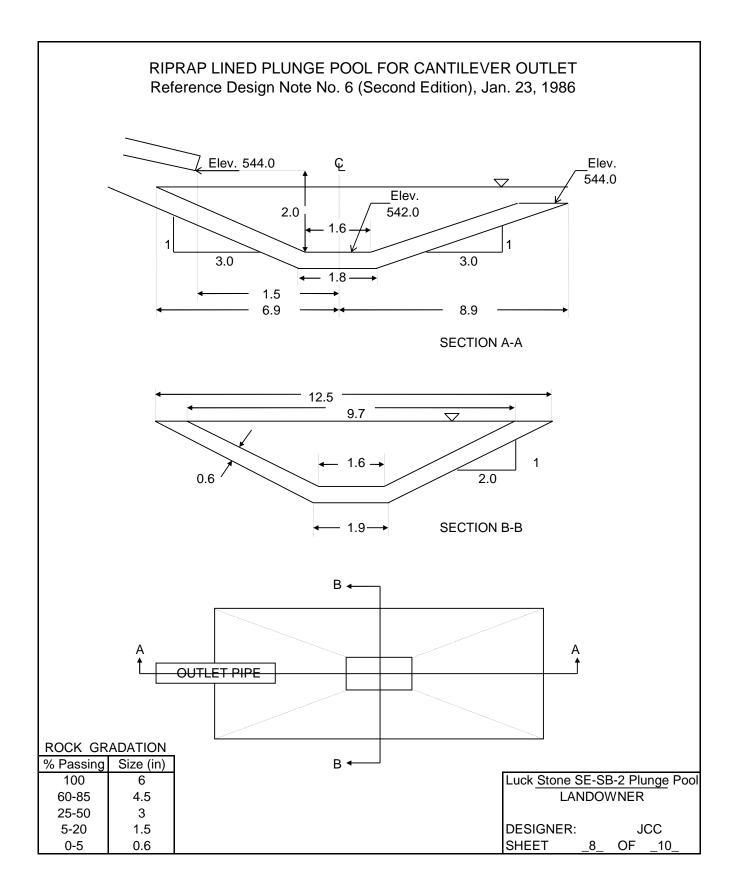

JOB:	Luck Stone P1-SB-1 Plunge Pool			
DESIGNER:	JCC	Date:	3/22/2021	
CHECKER:	AEW	Date:	3/22/2021	
INPUT DATA:		_	0.00	e.
Conduit Diameter		D =	2.00	
Conduit Discharge		Q =	7.33	
Conduit Slope at C		S =	0.01	ft/ft
Conduit Outlet Inve		EI, CO =		ft
Tailwater Elevation		EI, TW =		
Outlet Channel Inv	ert Elevation:	EI, CH =	557.00	π
Water Density:		RHO =	1.00	
	e Density: (Default 2.64)	RHOS =	2.64	
D, 50 Riprap Size:	e Density: (Delaut 2.04)	RS =	0.25	ft
	(2.5*D, 50 recommended)	RT =	0.23	ft
	s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>)	BT =	0.03	
Side Slope Ratio:		Zw =	2.00	
Upstream End Slo	ne Ratio:	Zlu =	3.00	
Downstream End S		Zld =	3.00	
Combined End Slo	•	Z1 =	3.00	
		- 12	0.00	
OUTPUTPOOL	LOCATION AND DIMENSIONS:			
Vert. Dist. from Ta	ilwater to Conduit Invert:	Zp =	0.00	ft
	eck: (If Zp < 0 , Use Zp = 0)	Use Zp =	0.00	ft
	Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]		0.K.	
**Beaching Cont				
Distance from Con	duit Exit to C/L Pool:	Xm =	1.44	ft
Pool depth at C/L	Below Conduit Invert:	Zp+0.8Zm =	1.98	ft
Pool Bottom Elev:		EI,PB =	555.02	ft
Pool Bottom Lengt	h:	2Lr2 =	1.56	ft
Pool Bottom Width	:	2Wr2 =	1.52	ft
Upstream Pool Ler	ngth at Tailwater Elev.:	Lru =	6.71	ft
Downstream Pool	Length at Tailwater Elev.:	Lrd =	6.71	ft
Pool Width at Tailv	vater Elev.:	2Wr =	9.42	ft
	Ratio: (Wr>=We)		O.K.	
Side Slope Rat	io Zw O.K.			
	ope Ratio: (Lru & Lrd >= Le)		0.K.	
**End Slope Rati				
	ength: (Lru >= Xm)		0.K.	
**End Slope Rati				
	at Bottom of Riprap:	EI, BR =	554.40	
	at Bottom of Bedding:	EI, BB =	553.90	ft
	MES BELOW WATER SURFACE ELEVATIO	DN:		
	tion (measured from bottom	17 - 1 -	40 -	I
surface of beddin		V,pbs =	12.7	•
Volume of Rock Ri		V,rs =		cu yd
Volume of Bedding	j.	V,bs =	5.0	cu yd

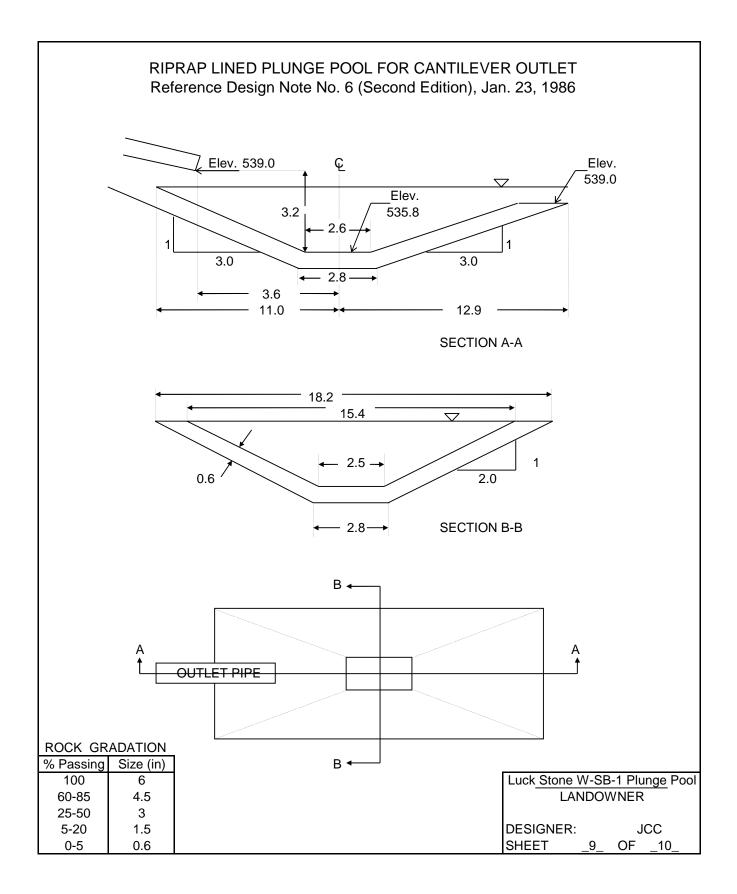

JOB: DESIGNER: CHECKER:	Luck Stone P1-SB-2 Plunge Pool JCC AEW	Date: Date:	3/22/2021 3/22/2021	
INPUT DATA: Conduit Diameter Conduit Discharge Conduit Slope at C Conduit Outlet Inv Tailwater Elevation Outlet Channel Inv	Dutlet: ert Elevation: n:	D = Q = S = EI, CO = EI, TW = EI, CH =	547.00	cfs ft/ft ft ft
D, 50 Riprap Size: Riprap Thickness:	(2.5*D, 50 recommended) s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>) pe Ratio: Slope Ratio:	RHO = RHOS = RS = RT = BT = ZW = Zlu = Zld = Z1 =	1.00 2.64 0.25 0.63 0.50 2.00 3.00 3.00 3.00	ft ft ft/ft ft/ft
Vert. Dist. from Ta Submergence Che	LOCATION AND DIMENSIONS: ilwater to Conduit Invert: eck: (If Zp < 0, Use Zp = 0) [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)] trolled**	Zp = Use Zp =	0.00 0.00 O.K.	
Pool depth at C/L Pool Bottom Elev: Pool Bottom Leng Pool Bottom Width Upstream Pool Le Downstream Pool Pool Width at Tail	n: ngth at Tailwater Elev.: Length at Tailwater Elev.:	Xm = Zp+0.8Zm = EI,PB = 2Lr2 = 2Wr2 = Lru = Lrd = 2Wr =		ft ft ft ft ft ft ft
Side Slope Rat Check Min. End S **End Slope Rat Check Upstream L **End Slope Rat Pool Bottom Elev. Pool Bottom Elev. OUTPUTVOLU	tio Zw O.K. lope Ratio: (Lru & Lrd >= Le) ios O.K.** Length: (Lru >= Xm) io Zlu O.K.** at Bottom of Riprap: at Bottom of Bedding: MES BELOW WATER SURFACE ELEVATIO	EI, BR = EI, BB = DN:	O.K. O.K. 544.35 543.85	
Volume of Excava surface of beddir Volume of Rock R Volume of Bedding	iprap:	V,pbs = V,rs = V,bs =		cu yd cu yd cu yd


JOB: DESIGNER:	Luck Stone P2-SB-1 Plunge Pool JCC	Date:	3/23/2021	
CHECKER:	AEW	Date:	3/23/2021	
INPUT DATA: Conduit Diameter Conduit Discharge Conduit Slope at 0 Conduit Outlet Inv Tailwater Elevation Outlet Channel Inv	Dutlet: ert Elevation: n:	D = Q = S = EI, CO = EI, TW = EI, CH =	619.00	cfs ft/ft ft ft
D, 50 Riprap Size: Riprap Thickness:	(2.5*D, 50 recommended) s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>) pe Ratio: Slope Ratio:	RHO = RHOS = RS = RT = BT = ZW = Zlu = Zld = Z1 =	2.00 3.00 3.00	ft ft ft/ft ft/ft
Vert. Dist. from Ta Submergence Che	LOCATION AND DIMENSIONS: ilwater to Conduit Invert: eck: (If Zp < 0, Use Zp = 0) [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)] trolled**	Zp = Use Zp =	0.00 0.00 O.K.	
Distance from Cor Pool depth at C/L Pool Bottom Elev: Pool Bottom Leng Pool Bottom Width Upstream Pool Le Downstream Pool Pool Width at Tail Check Side Slope	nduit Exit to C/L Pool: Below Conduit Invert: th: n: ngth at Tailwater Elev.: Length at Tailwater Elev.: water Elev.: Ratio: (Wr>=We)	Xm = Zp+0.8Zm = EI,PB = 2Lr2 = 2Wr2 = Lru = Lru = 2Wr =	1.64 617.36 1.27	ft ft ft ft ft ft ft
End Slope Rat Check Upstream I **End Slope Rat Pool Bottom Elev. Pool Bottom Elev.	lope Ratio: (Lru & Lrd >= Le) ios O.K. ∟ength: (Lru >= Xm) io Zlu O.K.** at Bottom of Riprap: at Bottom of Bedding:	EI, BR = EI, BB =	O.K. O.K. 616.74 616.24	
	iprap:	V,pbs = V,rs = V,bs =	3.0	cu yd cu yd cu yd


JOB: DESIGNER: CHECKER:	Luck Stone E-SB-1 Plunge Pool JCC AEW	Date: Date:	3/23/2021 3/23/2021	
INPUT DATA: Conduit Diameter Conduit Discharge Conduit Slope at C Conduit Outlet Inve Tailwater Elevation Outlet Channel Inve	Dutlet: ert Elevation: n:	D = Q = S = EI, CO = EI, TW = EI, CH =		cfs ft/ft ft ft
D, 50 Riprap Size: Riprap Thickness:	(2.5*D, 50 recommended) s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>) pe Ratio: Slope Ratio:	RHO = RHOS = RS = RT = BT = Zw = Zlu = Zld = Z1 =	1.00 2.64 0.25 0.63 0.50 2.00 3.00 3.00 3.00	ft/ft ft/ft
Vert. Dist. from Ta Submergence Che	LOCATION AND DIMENSIONS: ilwater to Conduit Invert: eck: (If $Zp < 0$, Use $Zp = 0$) $Q/(gD^5)^{0.5} \le (1.0+25*D,50/D)$] rolled**	Zp = Use Zp =	0.00 0.00 O.K.	
Pool depth at C/L Pool Bottom Elev: Pool Bottom Lengt Pool Bottom Width Upstream Pool Le Downstream Pool Pool Width at Tail	n: ngth at Tailwater Elev.: Length at Tailwater Elev.:	Xm = Zp+0.8Zm = EI,PB = 2Lr2 = 2Wr2 = Lru = Lrd = 2Wr =		ft
Side Slope Rat Check Min. End Sl **End Slope Rat Check Upstream L **End Slope Rat Pool Bottom Elev. Pool Bottom Elev.	tio Zw O.K. lope Ratio: (Lru & Lrd >= Le) ios O.K.** Length: (Lru >= Xm)	EI, BR = EI, BB = DN:	0.K. 0.K. 0.K. 604.75 604.25	
Volume of Excava surface of beddin Volume of Rock R Volume of Bedding	iprap:	V,pbs = V,rs = V,bs =	3.0	cu yd cu yd cu yd


JOB: DESIGNER: CHECKER:	Luck Stone E-SB-2 Plunge Pool JCC AEW	Date: Date:	3/22/2021 3/22/2021	
INPUT DATA: Conduit Diameter Conduit Discharge Conduit Slope at 0 Conduit Outlet Inv Tailwater Elevation Outlet Channel Inv	Dutlet: ert Elevation: n:	D = Q = S = EI, CO = EI, TW = EI, CH =	587.00	cfs ft/ft ft ft
D, 50 Riprap Size: Riprap Thickness:	(2.5*D, 50 recommended) s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>) pe Ratio: Slope Ratio:	RHO = RHOS = RS = RT = BT = ZW = Zlu = Zld = Z1 =		ft ft ft/ft ft/ft ft/ft
Vert. Dist. from Ta Submergence Che	LOCATION AND DIMENSIONS: ilwater to Conduit Invert: eck: (If Zp < 0, Use Zp = 0) [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)] trolled**	Zp = Use Zp =	0.00 0.00 O.K.	
Distance from Cor Pool depth at C/L Pool Bottom Elev: Pool Bottom Leng Pool Bottom Width Upstream Pool Le Downstream Pool Pool Width at Tail	nduit Exit to C/L Pool: Below Conduit Invert: th: n: ngth at Tailwater Elev.: Length at Tailwater Elev.:	Xm = Zp+0.8Zm = El,PB = 2Lr2 = 2Wr2 = Lru = Lrd = 2Wr =	1.36 1.33	ft ft ft ft ft ft
Side Slope Ra Check Min. End S **End Slope Rat Check Upstream I **End Slope Rat Pool Bottom Elev. Pool Bottom Elev.	tio Zw O.K. lope Ratio: (Lru & Lrd >= Le) ios O.K.** ₋ength: (Lru >= Xm)	EI, BR = EI, BB = DN:	O.K. O.K. 584.63 584.13	
Volume of Excava surface of beddir Volume of Rock R Volume of Beddin	iprap:	V,pbs = V,rs = V,bs =		cu yd cu yd cu yd


JOB: DESIGNER: CHECKER:	Luck Stone E-SB-3 Plunge Pool JCC AEW	Date: Date:	3/23/2021 3/23/2021	
INPUT DATA: Conduit Diameter Conduit Discharge Conduit Slope at C Conduit Outlet Inv Tailwater Elevation Outlet Channel Inv	Dutlet: ert Elevation: n:	D = Q = S = EI, CO = EI, TW = EI, CH =	595.00	cfs ft/ft ft ft
D, 50 Riprap Size: Riprap Thickness:	(2.5*D, 50 recommended) s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>) pe Ratio: Slope Ratio:	RHO = RHOS = RS = RT = BT = Zw = Zlu = Zld = Z1 =	1.00 2.64 0.25 0.63 0.50 2.00 3.00 3.00 3.00	ft ft ft/ft ft/ft
Vert. Dist. from Ta Submergence Che	LOCATION AND DIMENSIONS: ilwater to Conduit Invert: eck: (If Zp < 0, Use Zp = 0) Q/(gD^5)^0.5 <= (1.0+25*D,50/D)] trolled**	Zp = Use Zp =	0.00 0.00 O.K.	
Distance from Cor Pool depth at C/L Pool Bottom Elev: Pool Bottom Leng Pool Bottom Width Upstream Pool Le Downstream Pool Pool Width at Tail	nduit Exit to C/L Pool: Below Conduit Invert: th: n: ngth at Tailwater Elev.: Length at Tailwater Elev.:	Xm = Zp+0.8Zm = EI,PB = 2Lr2 = 2Wr2 = Lru = Lrd = 2Wr =	1.21 1.19 5.30 5.30	ft ft ft ft ft ft
Side Slope Ra Check Min. End S **End Slope Rat Check Upstream I **End Slope Rat Pool Bottom Elev. Pool Bottom Elev.	tio Zw O.K. lope Ratio: (Lru & Lrd >= Le) ios O.K.** Length: (Lru >= Xm)	EI, BR = EI, BB = DN:	O.K. O.K. 592.81 592.31	ft ft
	tion (measured from bottom ng): iprap:	V,pbs = V,rs = V,bs =	2.8	cu yd cu yd cu yd


JOB: DESIGNER: CHECKER:	Luck Stone SE-SB-1 Plunge Pool JCC AEW	Date: Date:	3/23/2021 3/23/2021	
INPUT DATA: Conduit Diameter Conduit Discharge Conduit Slope at 0 Conduit Outlet Inv Tailwater Elevation Outlet Channel Inv	Dutlet: ert Elevation: n:	D = Q = S = EI, CO = EI, TW = EI, CH =	557.00	cfs ft/ft ft ft
D, 50 Riprap Size: Riprap Thickness:	(2.5*D, 50 recommended) s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>) ope Ratio: Slope Ratio:	RHO = RHOS = RS = RT = BT = Zw = Zlu = Zld = Z1 =	1.00 2.64 0.25 0.63 0.50 2.00 3.00 3.00 3.00	ft ft ft/ft ft/ft
Vert. Dist. from Ta Submergence Che	LOCATION AND DIMENSIONS: nilwater to Conduit Invert: eck: (If Zp < 0 , Use Zp = 0) [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)] trolled**	Zp = Use Zp =	0.00 0.00 O.K.	ft ft
Distance from Cor Pool depth at C/L Pool Bottom Elev: Pool Bottom Leng Pool Bottom Width Upstream Pool Le Downstream Pool Pool Width at Tail Check Side Slope	nduit Exit to C/L Pool: Below Conduit Invert: th: n: ngth at Tailwater Elev.: Length at Tailwater Elev.: water Elev.: Ratio: (Wr>=We)	Xm = Zp+0.8Zm = EI,PB = 2Lr2 = 2Wr2 = Lru = Lrd = 2Wr =	1.54 555.46 1.18	ft ft ft ft ft ft ft ft
End Slope Rat Check Upstream I **End Slope Rat Pool Bottom Elev. Pool Bottom Elev.	lope Ratio: (Lru & Lrd >= Le) ios O.K. ∟ength: (Lru >= Xm)	EI, BR = EI, BB = DN:	O.K. O.K. 554.84 554.34	
	tion (measured from bottom ng): iprap:	V,pbs = V,rs = V,bs =	2.7	cu yd cu yd cu yd


JOB: DESIGNER: CHECKER:	Luck Stone SE-SB-2 Plunge Pool JCC AEW	Date: Date:	3/22/2021 3/22/2021	
INPUT DATA: Conduit Diameter Conduit Discharge Conduit Slope at 0 Conduit Outlet Inv Tailwater Elevation Outlet Channel Inv	Dutlet: ert Elevation: n:	D = Q = S = EI, CO = EI, TW = EI, CH =	544.00	cfs ft/ft ft ft
D, 50 Riprap Size: Riprap Thickness:	(2.5*D, 50 recommended) s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>) ope Ratio: Slope Ratio:	RHO = RHOS = RS = RT = BT = ZW = Zlu = Zld = Z1 =	1.00 2.64 0.25 0.63 0.50 2.00 3.00 3.00 3.00	ft ft ft/ft ft/ft ft/ft
Vert. Dist. from Ta Submergence Che	LOCATION AND DIMENSIONS: nilwater to Conduit Invert: eck: (If Zp < 0 , Use Zp = 0) [Q/(gD^5)^0.5 <= (1.0+25*D,50/D)] trolled**	Zp = Use Zp =	0.00 0.00 O.K.	
Pool depth at C/L Pool Bottom Elev: Pool Bottom Leng Pool Bottom Width Upstream Pool Le Downstream Pool Pool Width at Taih	n: ngth at Tailwater Elev.: Length at Tailwater Elev.: water Elev.:	Xm = Zp+0.8Zm = EI,PB = 2Lr2 = 2Wr2 = Lru = Lru = 2Wr =	1.61 1.56 6.91 6.91	
Side Slope Ra Check Min. End S **End Slope Rat Check Upstream I **End Slope Rat Pool Bottom Elev. Pool Bottom Elev. OUTPUTVOLU	lope Ratio: (Lru & Lrd >= Le) ios O.K. Length: (Lru >= Xm) io Zlu O.K.** at Bottom of Riprap: at Bottom of Bedding: MES BELOW WATER SURFACE ELEVATIO	EI, BR = EI, BB = DN:	O.K. O.K. 541.34 540.84	
Volume of Excava surface of beddir Volume of Rock R Volume of Beddin	iprap:	V,pbs = V,rs = V,bs =		cu yd cu yd cu yd

JOB:	Luck Stone W-SB-1 Plunge Pool			
DESIGNER:	JCC	Date:	3/26/2021	
CHECKER:	AEW	Date:	3/26/2021	
INPUT DATA:				
Conduit Diameter		D =	2.00	ft
Conduit Discharge	9:	Q =	13.84	cfs
Conduit Slope at C	Dutlet:	S =	0.01	ft/ft
Conduit Outlet Inv	ert Elevation:	EI, CO =	539.00	ft
Tailwater Elevation	n:	EI, TW =	539.00	ft
Outlet Channel Inv	vert Elevation:	EI, CH =		
		•		
Water Density:		RHO =	1.00	
	le Density: (Default 2.64)	RHOS =	2.64	
D, 50 Riprap Size:		RS =		ft
	(2.5*D, 50 recommended)	RT =	0.63	
	s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>)	BT =	0.50	
Side Slope Ratio:		Zw =	2.00	
Upstream End Slo	nne Ratio:	Zlu =	3.00	
Downstream End		Zld =	3.00	
Combined End Sk	•	Z10 =	3.00	
Combined End Sid		21 =	3.00	11/11
	LOCATION AND DIMENSIONS:			
	ailwater to Conduit Invert:	Zp =	0.00	ft
	eck: (If $Zp < 0$, Use $Zp = 0$)	Use Zp =	0.00	
	[Q/(gD^5)^0.5 <= (1.0+25*D,50/D)]	03e 2p -	0.00 O.K.	11
**Beaching Cont			U.K.	
•		Vm	2 55	£4
	nduit Exit to C/L Pool:	Xm =	3.55	
•	Below Conduit Invert:	Zp+0.8Zm =	3.21	ft
Pool Bottom Elev:		EI,PB =		ft
Pool Bottom Leng		2Lr2 =		ft
Pool Bottom Width		2Wr2 =		ft
	ngth at Tailwater Elev.:	Lru =	10.96	ft
	Length at Tailwater Elev.:	Lrd =	10.96	ft
Pool Width at Tail		2Wr =	15.37	ft
	Ratio: (Wr>=We)		O.K.	
**Side Slope Ra				
	lope Ratio: (Lru & Lrd >= Le)		O.K.	
**End Slope Rat				
	Length: (Lru >= Xm)		0.K.	
**End Slope Rat				
Pool Bottom Elev.	at Bottom of Riprap:	EI, BR =	535.16	ft
Pool Bottom Elev.	at Bottom of Bedding:	EI, BB =	534.66	ft
OUTPUTVOLU	MES BELOW WATER SURFACE ELEVATIO	DN:		
Volume of Excava	tion (measured from bottom			
surface of beddir	•	V,pbs =	36.0	cu yd
Volume of Rock R		V,rs =	10.0	•
Volume of Beddin		V,bs =	10.4	•
	0	,		

JOB: DESIGNER: CHECKER:	Luck Stone W-SB-2 Plunge Pool JCC AEW	Date: Date:	3/26/2021 3/26/2021	
INPUT DATA: Conduit Diameter Conduit Discharge Conduit Slope at C Conduit Outlet Inv Tailwater Elevation Outlet Channel Inv	Dutlet: ert Elevation: n:	D = Q = S = EI, CO = EI, TW = EI, CH =		cfs ft/ft ft ft
D, 50 Riprap Size: Riprap Thickness:	(2.5*D, 50 recommended) s: (6 inch min. rec.) (<u>Enter 0 for geotextile</u>) pe Ratio: Slope Ratio:	RHO = RHOS = RS = RT = BT = ZW = Zlu = Zld = Z1 =	0.63	ft ft ft/ft ft/ft ft/ft
Vert. Dist. from Ta Submergence Che	LOCATION AND DIMENSIONS: ilwater to Conduit Invert: eck: (If Zp < 0, Use Zp = 0) Q/(gD^5)^0.5 <= (1.0+25*D,50/D)] rolled**	Zp = Use Zp =	0.00 0.00 O.K.	
Distance from Cor Pool depth at C/L Pool Bottom Elev: Pool Bottom Lengi Pool Bottom Width Upstream Pool Le Downstream Pool Pool Width at Tail	nduit Exit to C/L Pool: Below Conduit Invert: th: n: ngth at Tailwater Elev.: Length at Tailwater Elev.:	Xm = Zp+0.8Zm = EI,PB = 2Lr2 = 2Wr2 = Lru = Lrd = 2Wr =	1.62	ft ft ft ft ft ft ft ft
Side Slope Rat Check Min. End S **End Slope Rat Check Upstream L **End Slope Rat Pool Bottom Elev. Pool Bottom Elev.	tio Zw O.K. lope Ratio: (Lru & Lrd >= Le) ios O.K.** Length: (Lru >= Xm)	EI, BR = EI, BB = DN:	O.K. O.K. 563.33 562.83	
Volume of Excava surface of beddir Volume of Rock R Volume of Bedding	iprap:	V,pbs = V,rs = V,bs =		cu yd cu yd cu yd

