

June 29, 2020

Mr. Brandon L. Phillips, Engineering Associate Solid Waste Permitting and Monitoring Section Division of Mining and Solid Waste Management Bureau of Land and Waste Management SC Department of Health and Environmental Control 2600 Bull Street Columbia, South Carolina 29201

> RE: Permit Application for the Greenpointe Class Two Construction, Demolition, and Land-Clearing Debris (C&D) Landfill Expansion Permit No.: LF2-00001 Project No.: 16227-0004

Dear Mr. Phillips:

In response to your comments via email on June 8, 2020 for the referenced project, we have the following comment response. The following items were brought to our attention in the aforementioned email and are listed along with our response to each item:

ENGINEERING PLANS

- 1. The Construction Plans need to show the distances between the landfill footprint and the following 2 items: minimum 100-foot buffer from all drinking water wells, and a minimum 2,500-foot buffer from any public drinking water supply intake;
 - Sheet C-2.0 of the Construction Plans (Drawing No. 01,168-D21 dated June 26, 2020) has been updated to include the minimum 100-foot buffer between the landfill footprint and the on-site drinking water well. The nearest public drinking water supply intake is the Easley Combined Utilities surface water intake at Saluda Lake located approximately 10 miles north of the site, which is outside of the minimum 2,500-foot buffer required from any public drinking water supply intake.
- 2. Update drawing sheets C-6.0, C-6.1 and C-6.2 to show the detailed cross-section of the landfill after maximum settlement;
 - Sheets C-6.0, C-6.1, & C-6.2 of the Construction Plans (Drawing No. 01,168-D21 dated June 26, 2020) have been updated to show the maximum settlement on the Cross Sections.
- 3. Provide a location map showing a minimum 10,000-foot buffer from turbojet aircraft runway and a minimum 5,000-foot buffer from piston-type aircraft runway;
 - The nearest airport to the facility is the Pickens County Airport, located approximately nine (9) miles north of the site, outside of the minimum 5,000-ft buffer for piston-type aircraft runways and the minimum 10,000-ft buffer for turbojet aircraft runways.

Alliance Consulting Engineers, Inc.

Post Office Box 8147 Columbia, SC 29202-8147 Phone 803 779-2078 Fax 803 779-2079 www.allianceCE.com

ENGINEERING REPORT

- 4. Please provide a procedure for the cap inspection and maintenance of the Class 2 landfill;
 - Section 8.2 of the Engineering Report details the Cap Inspection and Maintenance Procedures to be followed for the Greenpointe Landfill.

REVIEW COMMENTS BY STORMWATER SECTION

- 5. Please clarify what type/manufacturer of EBC and TRM you are requiring to be installed on the slopes and the ditch/swales;
 - North American Green SC150 will be installed on the slopes and North American Green SC150 will be installed on the ditches/swales. The Construction Plans (Drawing No. 01,168-D21 dated June 26, 2020) have been updated to state what type of matting is to be used.
- 6. Please clarify will the check dams be rock or sediment tubes;
 - The check dams will be rock. The detail for sediment tubes has been removed from Sheet C-7.1 of the Construction Plans (Drawing No. 01,168-D21 dated June 26, 2020).
- 7. Please provide a table with the areas of the ditch/swales which are to get ECB and which are to get TRM as the hydrology report lists some areas as having velocities greater than 30 ft/sec;
 - The highest velocity is in Perimeter Ditch 2A.1 of 7.59 feet per second as shown in Appendix E of the C-SWPPP. All ditches will be lined with North American Green SC250 matting, which has a design permissible velocity of 9.59 feet per second (unvegetated) and 15 feet per second (vegetated). Rip rap will be installed at all slope drain outlets to prevent scouring and erosion at all discharge points.
- 8. Please re-calculate the 80% trapping efficiency calculations for the ponds with the smallest D15 value. Madison D15 is 0.0053, Cecil D15 is 0.0043;
 - Sediment trapping efficiency calculations have been revised using the Cecil D15 value. The revised Sediment Trapping Efficiency Calculations are included in Appendix F of the C-SWPPP.
- 9. Please clarify in the hydrology report for each of the 3 basins the low flow orifice was not listed in the pond report on pages 559, 563, 567. The ponds will not discharge according to the hydro report until it begins to overtop the riser;
 - The low flow orifices have been added to the Post Development Hydraflow Report and revised on Sheet C-8.1 of the Construction Plans (Drawing No. 01,168-D21 dated June 26, 2020).
- 10. Please clarify will the temporary pipe slope drains be converted into permanent pipe slope drains with TRM once the lift is complete and the next lift begins operation;
 - Temporary slope drains will be converted to permanent slope drains once the lift has been completed and the next lift begins.

- 11. Please clarify Pond 2 shows an increase of peak discharge for the 2 year event of 0.14CFS, how is this increase being addressed?
 - As mentioned in Section 1.1 of the C-SWPPP, the slight increase of 0.14-cfs is compared to the previous design calculations. The post development peak flow rate is still below the pre-development peak flow rates as shown on the revised Table in Section 1.1 of the C-SWPPP.
- 12. Please clarify the SWPPP states the Skimmers are to remain permanently, does this mean they are to stay in operation until the landfill has ceased operations and the ponds will then be converted to water quality ponds?
 - Skimmers are to be removed once the landfill has ceased operations (and achieved 70% stabilization). The skimmers will be removed for the outlet structure and the low flow orifice will provide water quality post construction.
- 13. Please clarify will the silt fence remain and be repaired/replaced throughout the life of the landfill;
 - The silt fence will need to be maintained as long as areas that are draining towards it have not achieved 70% stabilization. Once these areas have achieved 70% stabilization, the silt fence will no longer need to be maintained and can be removed as stated on Sheet C-7.0 of the Construction Plans (Drawing No. 01,168-D21 dated June 26, 2020).
- 14. Please provide a Maintenance and Responsibility Agreement for the ponds;
 - Signed Permanent Pond Maintenance and Responsibility Agreement has been included with this comment response package.
- 15. Please move back the 1st row of Coir Baffles back a little on drawing sheet C5.1 so it is not so close to the rock forebay;
 - Silt baffles have been revised accordingly on Sheet C-5.1 of the Construction Plans (Drawing No. 01,168-D21 dated June 26, 2020).
- 16. Please clarify on drawing sheet C8.1 the hydro calcs state the emergency spillway is 25' but the detail sheet list 20' for basin 2, addition the other 2 basins have similar inconsistencies;
 - The correct spillway lengths are listed in the spillway notes on Sheet C-8.0 of the Construction Plans (Drawing No. 01,168-D21 dated June 26, 2020). The reference to 20' has been removed from the detail on Sheet C-8.0 and the spillway notes on Sheet C-8.1 have been revised to reference the correct lengths.
- 17. Please clarify on drawing sheet C8.1 the riser crest lengths for each of the 3 basins do not match the construction detail;
 - The riser crest lengths have been revised accordingly in the enclosed hydraflow report.

Mr. Brandon Phillips, Engineering Associate South Carolina Department of Health and Environmental Control June 29, 2020 - Page 4 of 4

18. Please clarify on drawing sheet C5.2 the buffer width is reduced by the access road, a surface water protection plan will need to be developed and Compliance option 2 from the CGP will need to be addressed in the SWPPP;

• The C-SWPPP has been revised to state that Compliance Option B from the Construction General Permit (CGP) will be utilized and the Surface Water Protection Plan Construction Sequence has been added to Section 1.7 of the C-SWPPP.

We trust that this information is to your satisfaction and look forward to your approval. If you have any questions or comments, please contact us at (803) 779-2078.

Very truly yours, ALLIANCE CONSULTING ENGINEERS, INC. Ryan T. Ohmer, P.E. Project Engineer

Enclosures

cc: Mr. Radford Jenkins, Wasteco, Inc.

Mr. Robert "Ty" Hawkins, Bunnell Lammons Engineering Mr. Deepal S. Eliatamby, P.E., SCCED, Alliance Consulting Engineers, Inc.

Mr. Kyle M. Clampitt, P.E., Alliance Consulting Engineers, Inc.

Mr. Gregory T. Farrell, P.E., Alliance Consulting Engineers, Inc.

ENGINEERING REPORT

COMPREHENSIVE STORMWATER POLLUTION PREVENTION PLAN (C-SWPPP)

FOR THE

GREENPOINTE CONSTRUCTION & DEMOLITION LANDFILL EXPANSION

LOCATED IN ANDERSON COUNTY, SOUTH CAROLINA

Prepared For: Wasteco, Inc. 500 Hamlin Road Easley, South Carolina 29642

Prepared By: Alliance Consulting Engineers, Inc. 124 Verdae Boulevard, Suite 505 Greenville, South Carolina 29607

> Project Number 16227-0004 June 2019 Revised June 2020

TABLE OF CONTENTS

1.0	Project Overview	1
1.1	Narrative	1
1.2	Stormwater Management and Sediment Control	8
1.3	Sequence of Construction	11
1.4	Non-Numeric Effluent Limits	12
1.5	Management of Non-Stormwater Discharge	13
1.6	Post-Construction Water Quality Measures	13
1.7	Buffer Zone Management	13
1.8	Certification Statement	
2.0	Site Features and Sensitive Areas	24
2.1	Sources of Pollution	24
2.2	Surface Waters	25
3.0	Compliance Requirements	26
3.1	SWPPP Availability	
3.2	Pre-Construction Conference	
3.3	Inspection Requirements	
3.4	Maintenance Policies	
3.5	Record Keeping	27
3.6	Final Stabilization	

LIST OF EXHIBITS

Exhibit A Erosion and Sediment Control Plan	16
---	----

LIST OF TABLES

Table 1A – Pre-Developed, Previous Design and Post Developed Peak Flows for Outfall 1	3
Table 1B - Pre and Post Developed Peak Flows for Outfall 2	3
Table 2 - Locations of Potential Sources of Stormwater Contamination	.11
Table 3 - Potential Construction Site Stormwater Pollutants	.24

APPENDICES

APPENDIX A	Site Maps	29
APPENDIX B	Pre and Post Development Maps	36
APPENDIX C	Pre-Development – Previously Permitted Calculations and HydroCAD	41
APPENDIX D	Post-Development – HydroCAD	154
APPENDIX E	Perimeter Drainage, Slope Conveyance, and Storm Drainage Pipes	200
APPENDIX F	Additional Calculations	224

1.0 **Project Overview**

1.1 Narrative

Wasteco, Inc. is proposing the expansion of the Greenpointe Construction and Debris (C&D) Landfill, which consists of construction of a new approximately 8.02 acre (AC) expansion to the existing 21.60 AC Cell 1 C&D Landfill, a new approximately 17.77 AC C&D Cell 2, and a gravel access road located along Hamlin Road in Anderson County, South Carolina. The property (TMS # 164-00-02-036 and 138-00-04-013) is located approximately one (1) mile west of exit 35 on Interstate I-85 in Anderson County, as illustrated in the Site Location Map in **Appendix A**. The proposed development will include approximately 66.8 AC of land disturbance of the approximately 212.5 AC site.

The Anderson County Digital Ortho Quarter Quadrangle (DOQQ) imagery provided by the United States Department of Agriculture Farm Service Agency (USDA-FSA) (See Aerial Map in Appendix A) was utilized to provide a general overview of the site and its surroundings. Expansion of Cell 1 and Cell 2 of the site consists of wooded, newly graded, grass, brush, impervious, and gravel areas. The United States Geological Survey's (USGS) 7.5 Minute Anderson County Quad Map (See Topographic Map in Appendix A) was utilized to provide a general overview of the site and surrounding area drainage patterns. Utilizing a topographic survey conducted by F&S Surveyors, Engineers, & Planners, Inc. dated February 8, 2017, it appears that a majority of the stormwater runoff is to one (1) discharge point along the southeastern portion of the property line at Pickens Creek. Based on a review of the South Carolina Soil Survey for Anderson County it is apparent that Cartecay (Ca) hydrologic soil group (HSG) B/D, Cecil (CdB, CdC, CdD, CeC2) HSG B, Hiwassee (HaC) HSG B, and Madison (MaC, MaD, MaE) HSG B soil comprises the project site (See Soils Map in Appendix A). The Federal Emergency Management Agency (FEMA) Flood Map Panels 45007C0040E, 45007C0110E, 45007C0130E, 45077C295D, 45077C0315D, and 45077C0410D dated 2011 (See FEMA Flood Map in Appendix A) identifies that the project site is located within the floodzone, which indicates the site is in an area of flooding and is inside of the 100-year Flood Plain. Based on the provided base flood elevations shown on the FEMA Map, the project site will not disturb this flood zone area. The National Wetlands Inventory (NWI) Map provided by the US Fish and Wildlife Service (See NWI Map in Appendix A), indicates there is one (1) creek (Pickens Creek) that borders the site from east to west transversing the property site. This creek has been delineated and is shown on the Construction Plans.

The proposed landfill expansion will include the construction of the approximately 8.02 AC expansion to the existing 21.60 AC Cell 1 C&D Landfill, a new approximately 17.77 AC C&D Cell 2, and a gravel access road. All earth moving activities will tie into existing grade and will

maintain the existing flow patterns of stormwater on-site. The proposed development's stormwater will be routed into three (3) detention basins (See Maps in **Appendix B**). There are currently two (2) detention basins (Detention Basin 1 and 2) on-site. The existing Detention Basin 1 will remain, Detention Basin 2 will be expanded, and a new detention basin (Detention Basin 3) will be constructed. The existing, expanded and new detention basins have approximately 1,306,766 cubic-feet of combined storage and are located along the southeastern portion of the property.

Appendix B, Pre-Development Watershed Map, illustrates the locations of the predevelopment watershed areas for the existing Cell 1, expansion of Cell 1, and proposed Cell 2 landfills. The hydraulic calculations for the existing Cell 1 C&D landfill development of the site were performed to compare to the design release rates shown in the previous report (see Appendix C for calculations). The existing Cell 1 C&D Landfill was approved and permitted separately in 2008 under permit LF2-001 (see Appendix C for calculations).

Three (3) existing study points were observed for this site. Drainage Area 1.1 (DA 1.1) is approximately 15.0 AC which contains good-wooded and fair-brush areas. The Discharge Point DA 1.1 is out of the existing Detention Basin 1, which continues in the southerly direction to discharge at Pickens Creek. Drainage Area 1.2 (DA 1.2) is approximately 13.0 acres which contains fair-brush, gravel, and newly graded soil areas. The Discharge Point DA 1.2 Outfall is at the existing Detention Basin 2, which continues in the southerly direction to discharge at Pickens Creek. Drainage Area 2.1 (DA 2.1) is approximately 40.78 AC which contains good-wooded area and fair-brush area. The analysis area DA 2.1 is the area of Cell 2 draining southwest to the wetlands and southeast into Pickens Creek.

Appendix B, Post Development Watershed Map, illustrates the location of the postdevelopment watershed areas and the apparent stormwater drainage patterns. The existing three (3) DAs are subdivided into four (4) Das.

DA 1.1 is approximately 17.34 AC size and is routed to the existing Detention Basin 1, which drains into Outfall 1. DA 1.2 is approximately 27.61 AC in size and is routed to the new expansion of Detention Basin 2, which drains into Outfall 1. This drainage area contains proposed impervious surface, gravel, newly graded soil, fair-grass, and good-woods for the new Cell 1 expansion. The peak flows from Detention Basin 1 and Detention Basin 2 are combined at Outfall 1 for the total post development discharge rates.

DA 2.1 splits into DA 2.1 and DA 2.1 Bypass. DA 2.1 is approximately 23.38 AC in size and is routed to the new Detention Basin 3, which discharges into Outfall 2. DA 2.1 Bypass is approximately 17.41 AC in size and bypasses into the discharge point Outfall 2. This drainage area contains proposed newly graded soils, impervious surfaces, and gravel for the Cell 2 C&D landfill.

The peak flows from the DA 2.1 to the new Detention Basin 3 and DA 2.1 Bypass are combined at Outfall 2 for the total post development discharge rates.

The Stormwater Calculations conducted by Alliance Consulting Engineers, Inc. modeled the overall development utilizing the HydraCAD® Software. This program utilized the SCS method for generating hydrographs, in accordance with South Carolina state regulations. The predeveloped peak flows and post-developed peak flows can be seen in **Table 1A-1C**. DA 1.1 and 1.2 studies the point of discharge from Detention Basins 1 and 2. DA 2.1 studies the discharge into Pickens Creek from the Detention Basin 3 and bypass at Cell 2. The post-developed flows are required to be less than the pre-developed flows up through the 25-yr, 24-hr storm event per Anderson County requirements. As shown in the tables below, even though there is a slight increase from the previously approved post-development peak flow rates, they are still below the pre-development peak flow rates (see Appendix C).

Table 1A – Pre-Developed, Previous Design and Post Developed Peak Flows for Outfall 1

Return Period	Pre-Dev. Peak Flow (CFS)	Previous Design Peak Flow (CFS)	Post-Dev. Peak Flow (CFS)
2 yr, 24-hr	53.52	1.90	2.94
10 yr, 24-hr	108.10	2.21	3.54
25 yr, 24-hr	135.11	6.20	7.17

Return Period	Pre-Dev. Peak Flow (CFS)	Post-Dev. Peak Flow (CFS)
2 yr, 24-hr	11.91	10.95
10 yr, 24-hr	53.17	33.61
25 yr, 24-hr	83.76	61.80

 Table 1B - Pre and Post Developed Peak Flows for Outfall 2

Water quality will be provided for this project by the use of skimmers sized for a drawdown of one (1) day for the water quality volume. Sheets C-8.0-8.1 of the Construction Plans includes the details and cross-sections for the detention ponds and skimmers.

Stormwater runoff in DA 2.1 Bypass will have the same good condition of stabilized and wooded areas to flow through in the proposed Post-Development conditions just as it did in the Pre-Development prior to entering the existing creek bed. Therefore, no controls are proposed for the DA 2.1 Bypass area.

All rip-rap berms were designed and located where the stormwater enters the proposed detention basins. The location were selected to provide 20% of the sediment storage in the forebays up to the crests of the berms. The locations and dimensions of the proposed three (3) rip-rap berms are shown on the Storm Drain Details (Sheet C-8.1). In addition, coir baffles and one (1) 6-inch skimmer for Detention Basin 1, one (1) 8-inch skimmer for Detention Basin 2, and two (2) 5-inch skimmers for Detention Basin 3 shall be placed within the detention basins during construction. The skimmer sizes were designed to drain the 10-year storm event volume at a minimum of 24 hours. The skimmer sizing information is shown on Sheet C-8.0 of the Storm Drain Details.

Volume and Drawdown Calculations for Existing Detention Basin #1

D.A. = 17.34 acres

Sediment Storage Required: 3600 cubic feet (CF) x 17.34 acres (AC) = 62,424 CF

Forebay Volume Required: 62,424 CF x 0.2 = 12,485 CF

Forebay Volume Provided: 13,177 CF as shown on the plans

First Flush Volume = (17.34 AC x 43,560 SF/AC) x (1" / 12" per foot) = 62,944 CF

The actual provided water quality volume is 187,729 CF at elevation 809.92 in Detention Basin 1. Using a Faircloth Skimmer, the skimmer size needed to drawdown this volume in a minimum 24 hours is a 6", which will drawdown 51,840 CF in a 24-hr period. This is a drawdown rate of:

51,840 CF / (24 hr x 3600 sec/hr) = 0.6 cfs

This drawdown rate will be utilized as the pond discharge rate below the top of the first outlet control in the outlet structure in the following design.

First Flush drawdown time:

First Flush Volume = 62,944 CF Drawdown time = 62,944 CF/ (0.6 cfs x 3600 sec / hr) x (1 day / 24 hr) = **1.21 days**

10-yr drawdown time:

Maximum storage volume in pond = 169,351 CF (see attached Hydraflow Reports, **Appendix D**) Occurs at hour 19.63 and elevations 809.48 and draws down to elevation 803.00 at hour 69.

Remaining Drawdown time = $187,729 \text{ CF} / (0.6 \text{ cfs x } 3600 \text{ sec} / \text{ hr}) \times (1 \text{ day} / 24 \text{ hr}) = 3.62 \text{ days}$

This results in a total retention time of = 3.62 days + 1.21 days = 4.83 days

Running Hydraflow for this sediment basin with a contributing area of bare soil (CN = 86) and the average flow rate of the skimmer given for the Faircloth Skimmer, the peak elevation in the basin will be at 809.48 with a peak flow of 1.19 cfs for the 10-yr storm event which is below the crest of the riser (810.50) and crest of the emergency spillway (811.00). From the South Carolina Department of Health and Environmental Control (SCDHEC) Trapping Efficiency Figure this basin will provide 89.69% trapping efficiency (see attached Sediment Basin Trapping Efficiency summary, **Appendix F**).

Volume and Drawdown Calculations for Detention Basin #2

D.A. = 27.61 AC

Sediment Storage Required: 3600 CF x 27.61 AC = 99,396 CF

Forebay Volume Required: 99,396 CF x 0.2 = 19,879 CF

Of the 27.61 acres of run-off being routed to Detention Basin 2 by the perimeter diversions 9.66 acres is routed to Forebay B and 17.95 acres is routed to Forebay A. Therefore, 65% of the forebay volume (12,922 CF) must be contained within Forebay A and 35% (6,958 CF) must be contained within Forebay B.

Forebay A Volume Provided:	17,315 CF as shown on the plans
Forebay B Volume Provided:	7,986 CF as shown on the plans
First Flush Volume = (27.61 AC x 4	3,560 SF/AC x (1" / 12" per foot) = 100,224 CF

The actual provided water quality volume is 294,075 CF at elevation 804.50 in the detention basin 2. Using a Faircloth Skimmer, the skimmer size needed to drawdown this volume in a minimum 24 hours is an 8", which will drawdown 97,978 CF in a 24 hour period.

This is a drawdown rate of:

97,978 CF / (24 hr x 3600 sec/hr) = 1.13 cfs

This drawdown rate will be utilized as the pond discharge rate below the top of the first outlet control in the outlet structure in the following design.

First Flush drawdown time:

First Flush Volume = 100,224 CF Drawdown time = 100,224 CF / (1.13 cfs x 3600 sec / hr) x (1 day / 24 hr) = **1.03 days**

10-yr drawdown time:

Maximum storage volume in pond = 263,073 CF (see attached Hydraflow Reports, **Appendix D**) Occurs at hour 19.17 and elevation 804.13 and draws down to elevation 799.00 at hour 63.2.

Drawdown time = 294,075 CF/ (1.13 cfs x 3600 sec / hr) x (1 day / 24 hr) = 3.01 days

This results in a total retention time of = 3.01 days + 1.03 days = 4.04 days

Running Hydraflow for this sediment basin with a contributing area of bare soil (CN = 86) and the average flow rate of the skimmer given for the Faircloth Skimmer, the peak elevation in the basin will be at 804.13 with a peak flow of 2.05 cfs for the 10-yr storm event which is below the crest of the riser (805.00) and crest of the emergency spillway (805.75). From the SCDHEC Trapping Efficiency Figure this basin will provide 90.00% trapping efficiency (see attached Sediment Basin Trapping Efficiency summary, **Appendix F**).

Volume and Drawdown Calculations for proposed Detention Basin #3

D.A. = 23.38 AC

Sediment Storage Required: 3600 CF x 23.38 AC = 84,168 CF

Forebay Volume Required: 84,168 CF x 0.2 = 16,834 CF

Forebay Volume Provided: 18,758 CF as shown on the plans

First Flush Volume = (23.38 AC x 43,560 SF/AC) x (1" / 12" per foot) = 84,869 CF

The actual provided water quality volume is 91,308 CF at elevation 805.80 in Detention Basin 3. Using a Faircloth Skimmer, the skimmer size needed to drawdown this volume in a minimum 24 hours is a two (2) 5", which will drawdown 65,664 CF in a 24-hr period. This is a drawdown rate of:

65,664 CF / (24 hr x 3600 sec/hr) = 0.76 cfs

This drawdown rate will be utilized as the pond discharge rate below the top of the first outlet control in the outlet structure in the following design.

First Flush drawdown time:

First Flush Volume = 84,869 CF Drawdown time = 84,869 CF / $(0.76 \text{ cfs x } 3600 \text{ sec } / \text{ hr}) \times (1 \text{ day } / 24 \text{ hr}) = 1.29 \text{ days}$

10-yr drawdown time:

Maximum storage volume in pond = 104,267 CF (see attached Hydraflow Reports, **Appendix D**) Occurs at hour 16.03 at elevation 806.09 and draws down to the water quality volume provided at hour 22.87.

Drawdown time = 91,308 CF / (0.76 cfs x 3600 sec / hr) x (1 day / 24 hr) = 1.39 daysThis results in a total retention time of 1.29 days + 1.39 days = 2.68 days

Running Hydraflow for this sediment basin with a contributing area of bare soil (CN = 86) and the average flow rate of the skimmer given for the Faircloth Skimmer, the peak elevation in the basin will be at 806.09 with a peak flow of 1.58 cfs for the 10-yr storm event which is below the crest of the riser (808.00) and crest of the emergency spillway (808.50). From the SCDHEC Trapping Efficiency Figure this basin will provide 89.14% trapping efficiency (see attached Sediment Basin Trapping Efficiency summary, **Appendix F**) which is above the required 80.0% trapping efficiency.

The proposed storm drainage system was modeled in Autodesk® Storm and Sanitary Analysis Software. This program utilized the Rational Method in order to ensure the proposed pipe networks function properly. The storm drainage systems were sized to handle the 10-year storm event without having any surcharging conditions within the pipes. The 10-year storm event output of this model can be referenced in **Appendix E**, refer to the drainage maps as well.

The proposed slope conveyance systems and perimeter ditches were modeled using in Autodesk® Hydraflow Express Extension. This program utilized the Rational Method in order to ensure the proposed slope conveyance systems and perimeter ditches function properly.

The slope conveyance systems were sized to handle the 25-year storm event without having any surcharging conditions within the system. The largest drainage area was used to design all the slope conveyances and indicate the cross-section parameters. The 25-year storm event output of this model can be referenced in **Appendix E**, refer to the Slope Drainage Maps as well.

The perimeter ditches were sized to handle the 25-year storm event without having any surcharging conditions within the ditches. The perimeter ditches were sized from the analysis point for the entire ditch. The 25-year storm event output of this model can be referenced in **Appendix E**, refer to the Perimeter Ditch Drainage Maps as well.

Excavation and backfilling for site grading of the proposed development will be the primary soil disturbing activities. Excavated soils not immediately utilized in backfilling will be stockpiled and protected on site and then finish graded just before final stabilization. All exposed soils will be reseeded and new vegetation will be planted as soon as practical.

1.2 Stormwater Management and Sediment Control

• Water Quality BMPs

The locations of best management practices (BMPs) are illustrated in Exhibit A.

To prevent soil from washing into the undisturbed areas of the site, the following site-wide BMPs will be implemented:

- Single Row and/or Double Row silt fencing will be placed along the perimeter of the areas to be cleared and graded before any clearing or grading takes place.
- Construction Entrance/Exit will be placed at the designated entrance.
- Inlet protections will be used at the proposed inlets where necessary.
- BMPs will be inspected every seven (7) calendar days.
- The detention basins equipped with rip-rap berm, skimmer(s), and baffles will capture runoff from construction areas.

The post construction water quality for the proposed development will be treated within the new detention basins, where runoff is captured into the new storm drainage system. Calculations above should be referenced for the water quality volumes.

• Erosion Prevention BMPs

The locations of best management practices (BMPs) have been illustrated in **Exhibit A**. Several of the BMPs included in this plan have been developed to serve as post-construction stormwater controls.

To prevent soil from washing onto the undisturbed areas of the site or off-site, the following erosion prevention BMPs will be implemented and remain in place until the cells are closed out and meet final stabilization requirements:

- As each phase of the landfill is brought to finished grade, that portion of the cell will be brought to final stabilization.
- After fertilizing these areas will be seeded. The permanent seed mix for March to August planting dates shall consist of Annual Rye Grass, Hulled Bermuda, Pensacola Bahia, Sericea Lespedeza, and Weeping Love Grass. The permanent seed mix for September to February planting dates shall consist of Annual Rye Grass, Hulled Bermuda, Brown Top Millet, and Unhulled Bermuda. Seeding rates shall conform to the grassing specifications approved for the Project and/or to the seeding rates illustrated on the Construction Details for Anderson County.
- Cleared and graded soils and slope drains provided will be sloped as indicated on the Grading Plans (Sheet C-4.0-4.10).
- Grassing, erosion control matting, and turf reinforcement matting will be placed at the appropriate locations as indicated on the Erosion and Sediment Control Plan (Sheets C-5.0 C-5.4).
- Outlet protection will be installed at pipe outlets.
- A visual inspection of active landfill sites will occur at least every seven (7) calendar days by landfill personnel for areas of open landfill application;
- A visual inspection will occur every thirty (30) calendar days for stabilized sites to ensure that sediment and erosion control measures are operating properly.

• Construction Debris Management

Waste materials will be handled and disposed of per guidelines and requirements of this landfill permit and the following preventative measures:

- Fertilizers will be applied only in the minimum amounts recommended by the manufacturer.
- Fertilizers will be worked into the soil to limit exposure to stormwater.
- Fertilizers will be stored and covered, and partially used bags will be transferred to a sealable bin to avoid spills.
- Vehicles on site will be monitored for leaks and receive regular preventive maintenance to reduce the chance of leakage.
- Petroleum products will be stored in tightly sealed containers which are clearly labeled.
- Spill kits will be included with all fueling sources and maintenance activities.
- Sanitary waste will be collected from portable units as necessary to avoid overfilling.
- A covered receptacle will be used for all waste materials.
- Materials and equipment necessary for spill cleanup will be kept on site. Equipment will include, but not be limited to, brooms, dust pans, mops, rags, gloves, goggles, kitty litter, sand, sawdust, and plastic and metal trash containers.
- Spills will be cleaned up immediately upon discovery. Spills large enough to reach the storm drain collection system will be reported to the National Response Center at (800) 424-8802.

- A stabilized construction entrance with a filter fabric liner will be constructed to reduce vehicle tracking of sediments.
- Dump trucks hauling material from the construction site will be covered with a tarp.

• Construction Entrances and Dust Control

The contractor is to use the designated construction entrance as shown. The contractor will be instructed to protect and maintain entrances at all times and in accordance with the Erosion Control Details. The gravel construction entrance will be maintained and reworked with additional stone as needed. Traffic entering or exiting each parking lot will be directed through the construction entrance. A water truck will be called on site to water soil as necessary to minimize dust.

• Additional Onsite and Offsite Pollution Identification

The following potential source areas of stormwater contamination were identified and evaluated:

- Cleared and graded areas;
- Construction site entrance;
- Undisturbed areas; and
- Construction debris.

 Table 2 and Exhibit A presents site specific information regarding stormwater pollution

 potential from each of these areas.

Sub-Watershed Area ⁽¹⁾	Potential Stormwater Contamination Point	Potential Pollutants	Potential Problem
All Post Watersheds	Cleared and graded areas; Construction debris	Soil erosion, fertilizer, pesticides	Erosion of soils from cleared and graded areas have the potential to discharge into the proposed detention basin
DA 1.1	<i>Construction site</i> <i>entrance</i>	Hydraulic oil, gasoline, antifreeze, soil erosion, fertilizer, pesticides	Leaking hydraulic oil and antifreeze from clearing and grading equipment. Gasoline and diesel fuel spills while fueling construction equipment, and erosion of exposed and stockpiled soils. Tracking of soil into the road through the construction site entrance.
DA 1.1, 1.2, and 2.1	Proposed inlets	Soil erosion, fertilizer, pesticides, hydraulic oil, gasoline, antifreeze	Erosion of soils from cleared and graded areas have the potential to discharge into the proposed storm drainage system. Leaking hydraulic oil and antifreeze from vehicles and equipment from the construction site entrance.
None	All undisturbed areas	None	No storm water related issues with this completely vegetated area.

Table 2 - Locations of Potential Sources of Stormwater Contamination

(1) See Appendix B for drainage areas

1.3 Sequence of Construction

Structural BMPs will be coordinated with construction activities so the BMP is in place before construction begins. A full construction sequence for this project is shown on the Erosion Control Plan (Sheet C-5.0 - C-5.4) within the Construction Plans for this project. The following BMPs will be coordinated with construction activities:

- A Preconstruction Meeting will be held for this project per SCDHEC's review process.
- The limits of disturbance and any portion of the 50' wetland buffer outside the limits of disturbance will need to be flagged.
- The temporary perimeter controls (silt fences) will be installed before any clearing and grading begins.

- The new construction entrance/exit entrances will be installed before any clearing and grading begins.
- The new detention basins will be in place with all during construction measures prior to clearing and grading the remainder of the site.
- Clearing and grading will not occur in an area until it is necessary for construction to proceed.
- Once construction activity ceases permanently in an area, that area will be stabilized with matting and grass seed as indicated in the Construction Documents.
- The temporary perimeter controls (silt fencing) will not be removed until all construction activities at the site are complete and soils have been permanently stabilized.
- Sediment basins will remain in place until the landfill is closed out and authorization from SCDHEC is granted to remove them.

1.4 Non-Numeric Effluent Limits

Stormwater volume and velocity control within the site will be accomplished during construction activities to minimize erosion. This will be accomplished through the use of the following BMPs and techniques:

- Limiting the amount of disturbed area not stabilized at a time;
- Phased construction sequence;
- Diverting off-site flow around the site;
- Controlling drainage patterns within the construction site;
- Surface roughening along any slopes;
- Temporary stabilization of disturbed areas;
- Permanent and temporary seeding, as portions of the landfill cells are completed;
- Riprap outlet protection to be placed at all outfalls, including discharge points;
- Check dams and forebays to minimize velocities; and
- Detention basins.

The contractor shall maintain the riprap outlet protection measures and aprons at all times throughout the construction process.

1.5 Management of Non-Stormwater Discharge

The following are allowable sources of non-stormwater discharges that may be associated with construction activity at the site:

- Waters used to wash vehicles where detergents are not used;
- Water used to control dust in accordance with Section 3.2.2 of the Construction General Permit;
- Uncontaminated ground water or spring water; and
- Uncontaminated excavation dewatering.

1.6 Post-Construction Water Quality Measures

The Post-Construction water quality measures will consist of the following:

- 1. Permanent grassing; and
- 2. Dry detention basins.

1.7 Buffer Zone Management

Per Section 3.2.4.C of the CGP, a buffer zone has been proposed along the Jurisdictional Wetlands As shown on the Erosion Control Plans (Sheet C-5.0 - C-5.4 of the Construction Plans), Compliance Option B from the CGP will be utilized and double row silt fence with mulch (a minimum 3 linear feet of spacing between rows) is provided along the areas that cannot maintain a fifty (50)-linear foot (LF) undisturbed buffer. The surface water protection plan detailed below will need to be followed in regards to construction in the buffer zones.

Surface Water Protection Plan – Construction Sequence (Compliance Option B)

- 1. Receive NPDES coverage from SCDHEC (and approval from MS4, if applicable).
- 2. Pre-Construction Meeting (On-site if more than 10 disturbed acres and non-linear project).
- 3. Notify SCDHEC EQC Regional Office (and MS4, when applicable) 48 hours prior to beginning land-disturbing activities.
- 4. Installation of construction entrance(s).
- 5. Flagging of Buffer Zone.
- 6. Clearing & grubbing only as necessary for installation of perimeter controls.
- 7. Installation of perimeter controls (e.g., silt fence).
- 8. Begin Weekly Inspections of Buffer Zones and adjacent BMPs. Conduct routine maintenance as necessary (See BMP's construction details).

- 9. Clearing and grubbing only in areas of basins/traps/ponds.
- 10. Installation of basins/traps/ponds and installation of diversions to those structures (outlet structures must be completely installed as shown on the details before proceeding to the next step; areas draining to these structures cannot be disturbed until the structures and diversions to these structures are completely installed).
- 11. Clearing and grubbing of site or demolition (sediment and erosion control measures for these areas must already be installed).
- 12. Rough grading.
- 13. Installation of storm drain system and placement of inlet protection as each inlet is installed.
- 14. Fine grading, etc.
- 15. Permanent/final stabilization.
- 16. Clean-out of detention basins that were used as sediment control structures and regrading of detention pond bottoms; if necessary, modification of sediment basin riser to convert to detention basin outlet structure.
- 17. Removal of temporary sediment and erosion control measures after entire area draining to the structure is finally stabilized (The Department recommends that the Project Owner/Operator have the SWPPP Prepared or registration equivalent approve the removal of temporary structures).
- 18. End Buffer Zone Inspections and Maintenance.
- 19. Perform As-Built Surveys of all detention structures and submit to SCDHEC or MS4 for acceptance.
- 20. Submit Notice of Termination (NOT) to SCDHEC as appropriate.

BMP Maintenance Notes

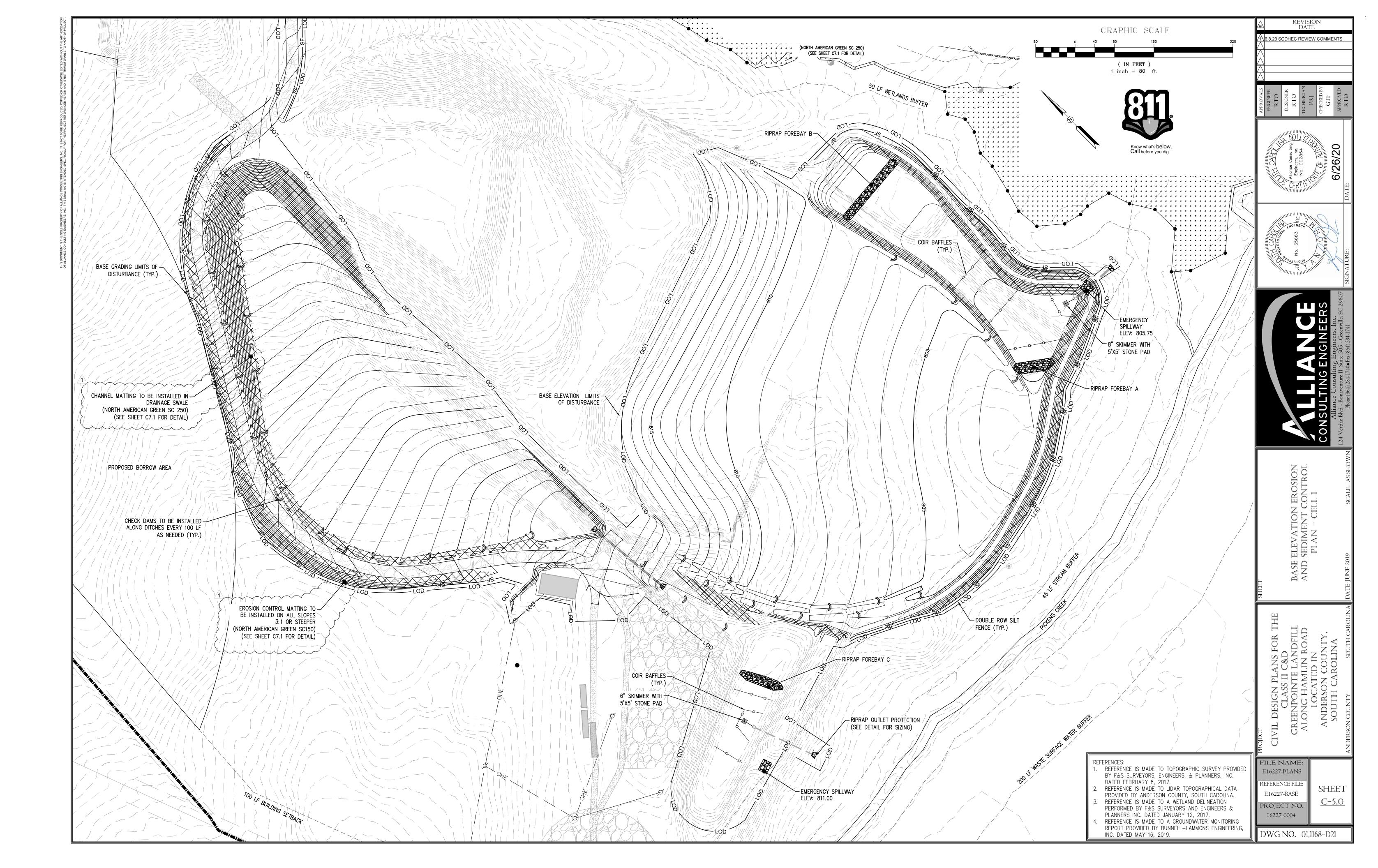
- All BMPs whose discharges reach adjacent surface waters should be maintained until Final Stabilization is reached.
- All BMPs discharging to a Surface Water must be maintained to prevent the discharge of sediment-laden stormwater to the best extent possible.
- Any accumulated sediment within BMPs adjacent to surface water is to be removed when the sediment depth reaches the cleanout height of each specific BMP.
- Records of maintenance of all BMPs discharging to Surface Waters must be kept within the SWPPP's Maintenance Log.

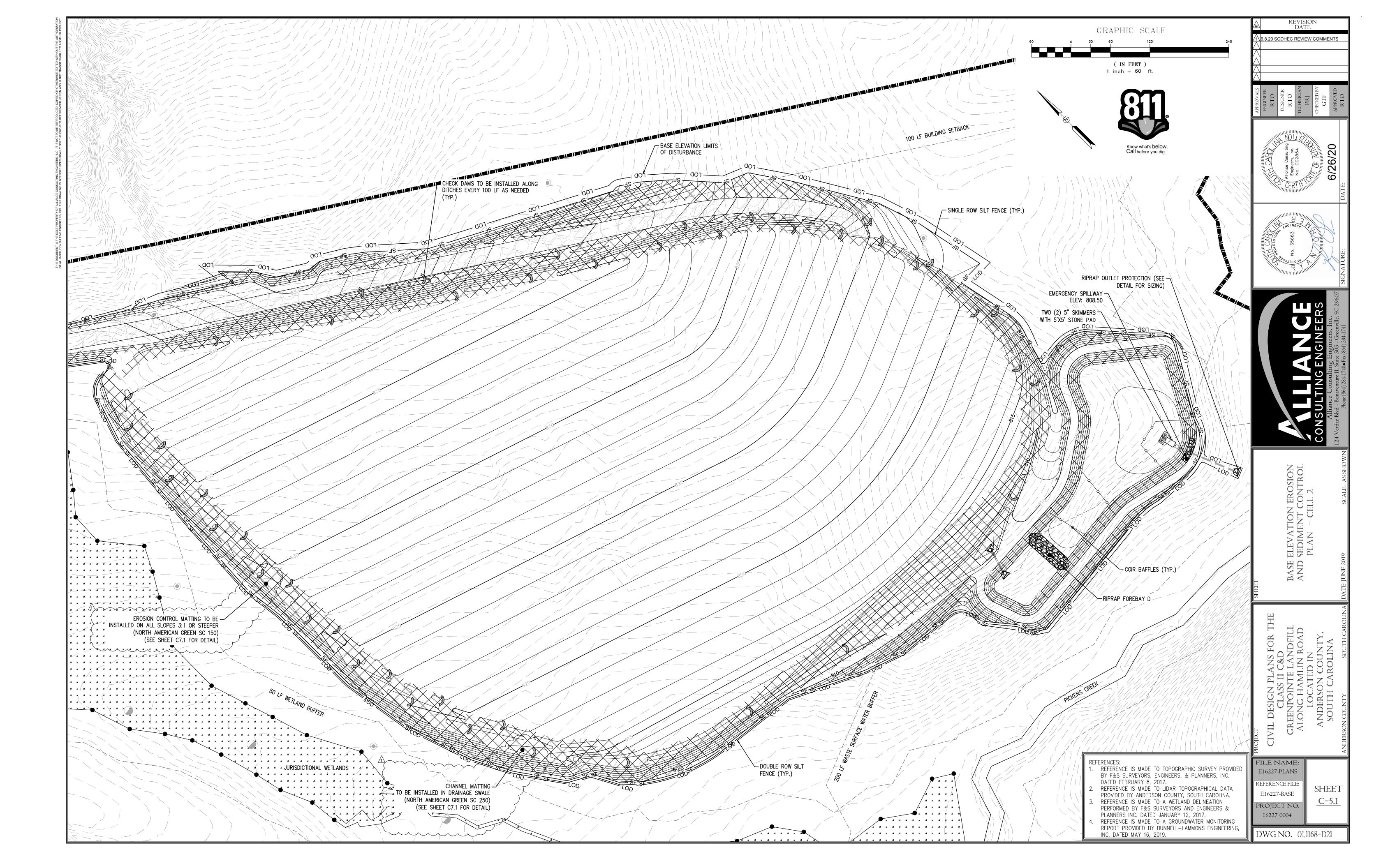
GUGSTOCO, Inc.

Greenpointe Landfill C&D Expansion

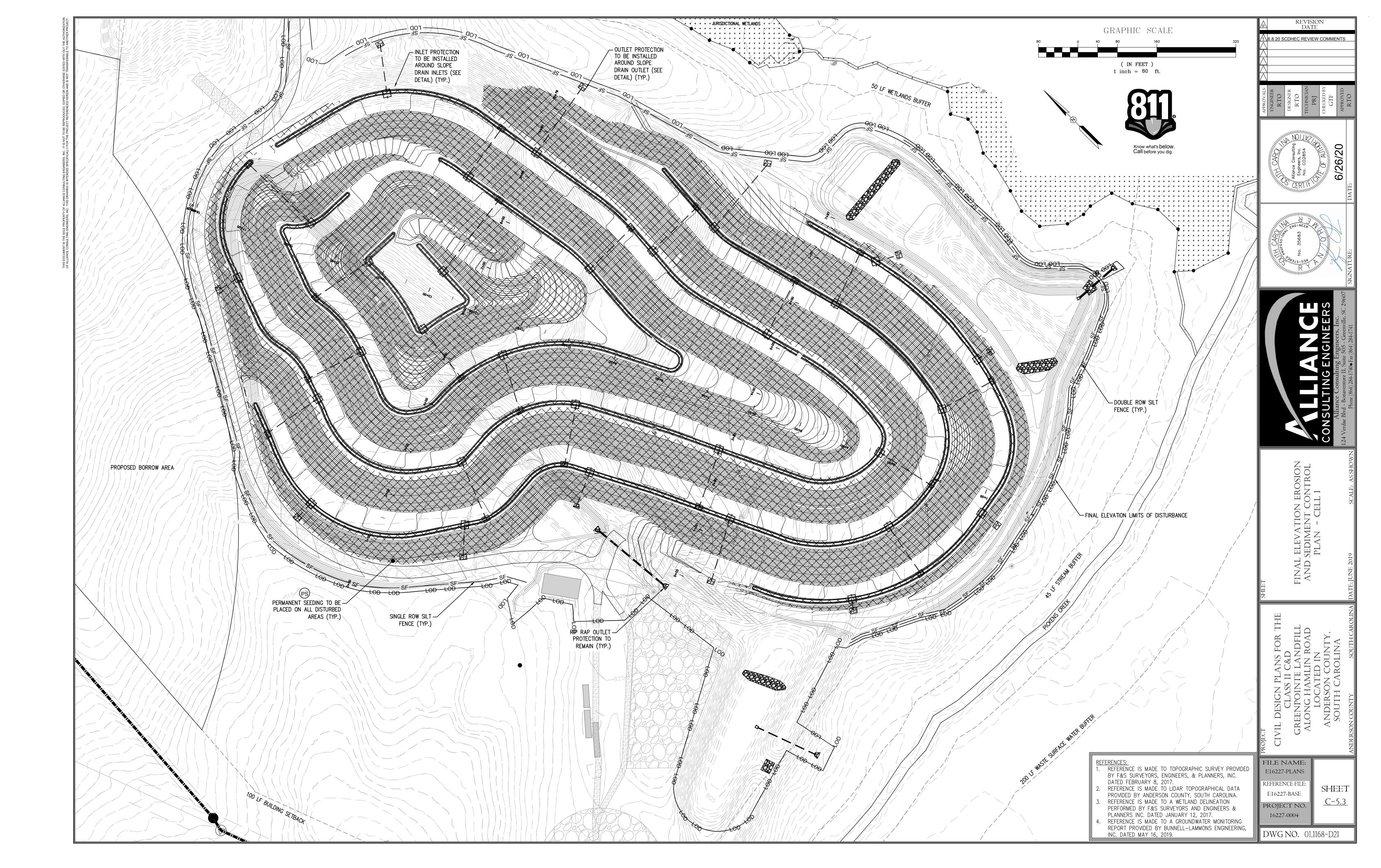
1.8 Certification Statement

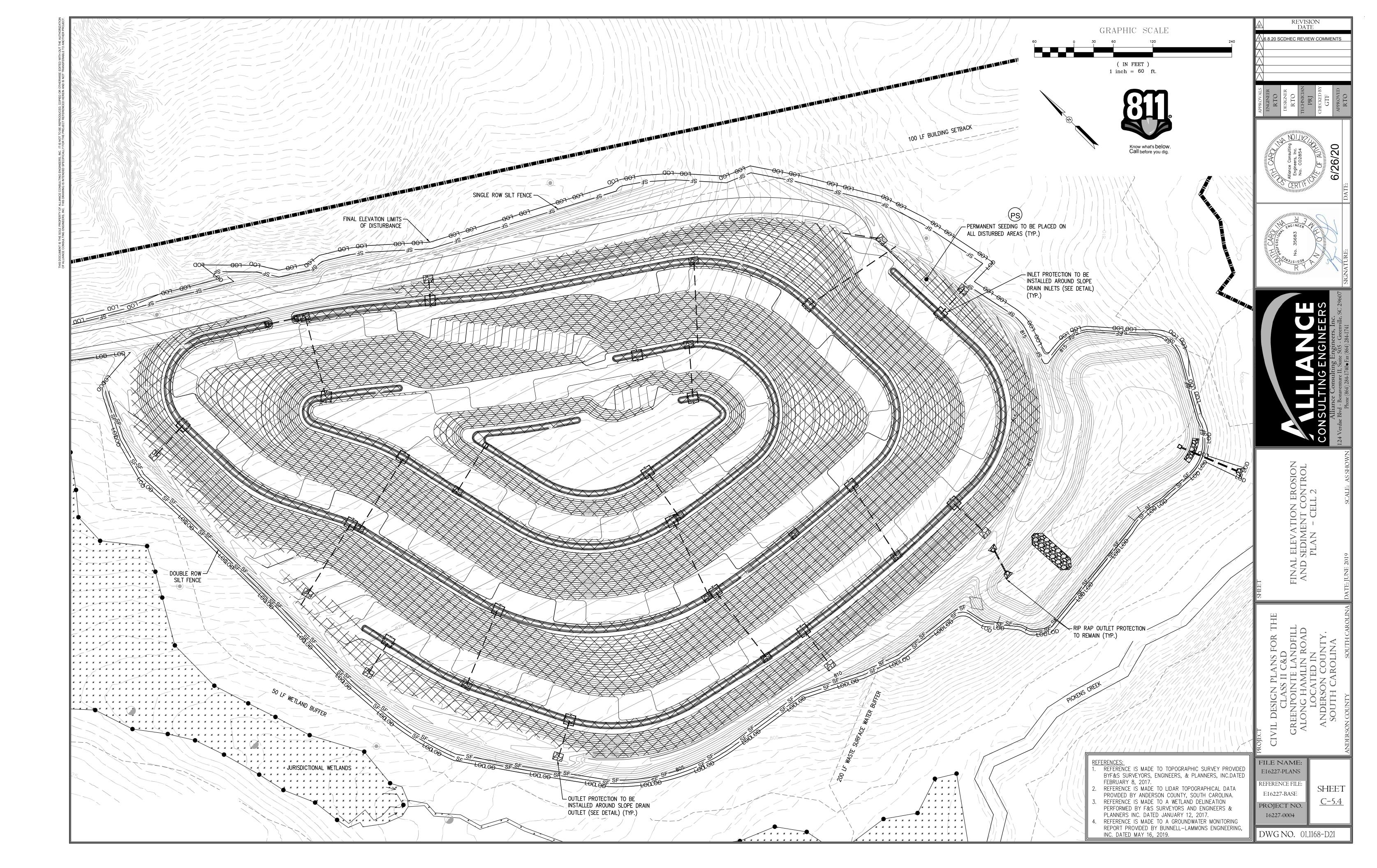
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.


Name: Ryan T. Ohmer, P.E Title: Project Engineer ____ Date: <u>6/26/26</u> Signature: _






Exhibit A Erosion and Sediment Control Plan



2.0 <u>Site Features and Sensitive Areas</u>

2.1 Sources of Pollution

Pollutants that result from clearing, grading, and excavation have the potential to be present in stormwater runoff are listed in **Table 3** below. This table includes information regarding material type, chemical and physical description, and the specific regulated stormwater pollutants associated with each material.

Trade Name Material	Chemical/Physical Description ⁽¹⁾	Stormwater Pollutants ⁽¹⁾
Pesticides (insecticides, fungicides, herbicides, rodenticides)	Various colored to colorless liquid, powder, pellets, or grains	Chlorinated hydrocarbons, organophosphates, carbamates, arsenic
Fertilizer	Liquid or solid grains	Nitrogen, phosphorous
Cleaning solvents	Colorless, blue, or yellow- green liquid	Perchloroethylene, methylene chloride, trichloroethylene, petroleum distillates
Asphalt	Black solid	Oil, petroleum distillates
Concrete	White solid	Limestone, sand
Wastewater from construction equipment washing	Water	Soil, oil & grease, solids
Hydraulic oil/fluids	Brown oily petroleum hydrocarbon	Mineral oil
Gasoline	Colorless, pale brown or pink petroleum hydrocarbon	Benzene, ethyl benzene, toluene, xylene, MTBE
Diesel Fuel	Clear, blue-green to yellow liquid	Petroleum distillate, oil & grease, naphthalene, xylenes

Table 3 - Potential Construction Site Stormwater Pollutants

Kerosene	Pale yellow liquid petroleum hydrocarbon	Coal oil, petroleum distillates
Antifreeze/coolant	Clear green/yellow liquid	Ethylene glycol, propylene glycol, heavy metals (copper, lead, zinc)
Erosion	Solid Particles	Soil, Sediment

⁽¹⁾ Data obtained from MSDSs when available

2.2 Surface Waters

A jurisdictional creek (Pickens Creek), is present along the southern portion of the site. This wetland area should not be negatively impacted from construction of this proposed development due to the proposed Best Management Practices (detention basin, rip rap outlet protection at basin outfall within the site, and the double row silt fencing) and ongoing monitoring and measures provided as part of the landfill permit.

The proposed stormwater attenuation by the new detention basins was designed to meet the requirements of SCDHEC. This additional flow should not create additional adverse impacts to the existing downstream conditions.

3.0 <u>Compliance Requirements</u>

3.1 SWPPP Availability

A copy of the On-Site Stormwater Pollution Prevention Plan (OS-SWPPP) will be retained at the construction site or a nearby location easily accessible during normal business hours, from the date of commencement of construction activities to the date the final stabilization is reached. Contractors who have day-to-day operational control over OS-SWPPP implementation will have a copy of this SWPPP available at a central location within the construction site for use by all those identified as having responsibilities under the OS-SWPPP. If it is not practical to have the OS-SWPPP at the site, the permittee and or operator will, upon request make the OS-SWPPP available by the end of normal business hours, or by the following business day under extenuating circumstances. The OS-SWPPP will be made available upon request and at the time of a construction site inspection by SCDHEC, local government officials, and operator of a Municipal Separate Storm Sewer System (MS4) receiving discharges from the construction site to the requestor.

3.2 Pre-Construction Conference

A pre-construction conference will be held at the construction site. Each contractor, subcontractor, blanket utility provider, etc., who will work at the site will attend this conference in person. The primary purpose of this conference is for:

- I. The preparer of the SWPPP and someone with a registration equivalent to that of the preparer of the SWPPP; and/or
- II. The person with operational control of the plans and specifications or their duly authorized representative

To review and explain the OS-SWPPP so that all are aware of the requirements before they start performing construction-related activities that may affect the implementation of the approved OS-SWPPP.

3.3 Inspection Requirements

Visual inspections of cleared and graded areas of the construction site will be performed once every seven (7) calendar days for active landfills. The inspection will be conducted by the SWPPP coordinator or his designated stormwater team members. The inspection will verify that

the structural BMPs described in Section 1 of this SWPPP are in good condition and are minimizing erosion. The inspection will also verify that the procedures used to prevent stormwater contamination from construction materials and petroleum products are effective. The following inspection and maintenance practices will be used to maintain erosion and sediment controls:

- Built up sediment will be removed from silt fencing when it has reached one-third the height of the fence.
- Silt fences and inlet protections (if applicable) will be inspected for depth of sediment, for tears, to determine if the fabric is securely attached to the fence posts, and to ensure that the fence posts are firmly in the ground.
- Temporary and permanent seeding will be inspected for bare spots, washouts, and healthy growth.
- The stabilized construction entrance will be inspected for sediment tracked on the road, for clean gravel, and to ensure that all traffic use the stabilized entrance when leaving the site.
- Built up sediment will be removed from rip rap outlet protection.
- Sediment forebays will be inspected and cleaned out as needed.
- The detention basin will be inspected for sediment accumulation after each rain event, and skimmer observed to ensure it is functioning properly.

3.4 Maintenance Policies

All maintenance to sediment and erosion control devices shall be in accordance with the Construction Details. The contractor shall maintain the existing BMPs at all times.

Permanent maintenance of the detention basins will include the following:

- Periodic grass cutting,
- Trash and sediment build up within basin,
- Trash and debris removal from Outlet Control Structure,
- Outlet Control Structure orifices and weir cleaning, a
- Outlet pipes to be cleaned, inspected and repaired,
- Rip Rap outlet protection to be maintained,
- Tree growth to not be allowed along the detention basin berms, and
- Erosion on side slopes.

3.5 Record Keeping

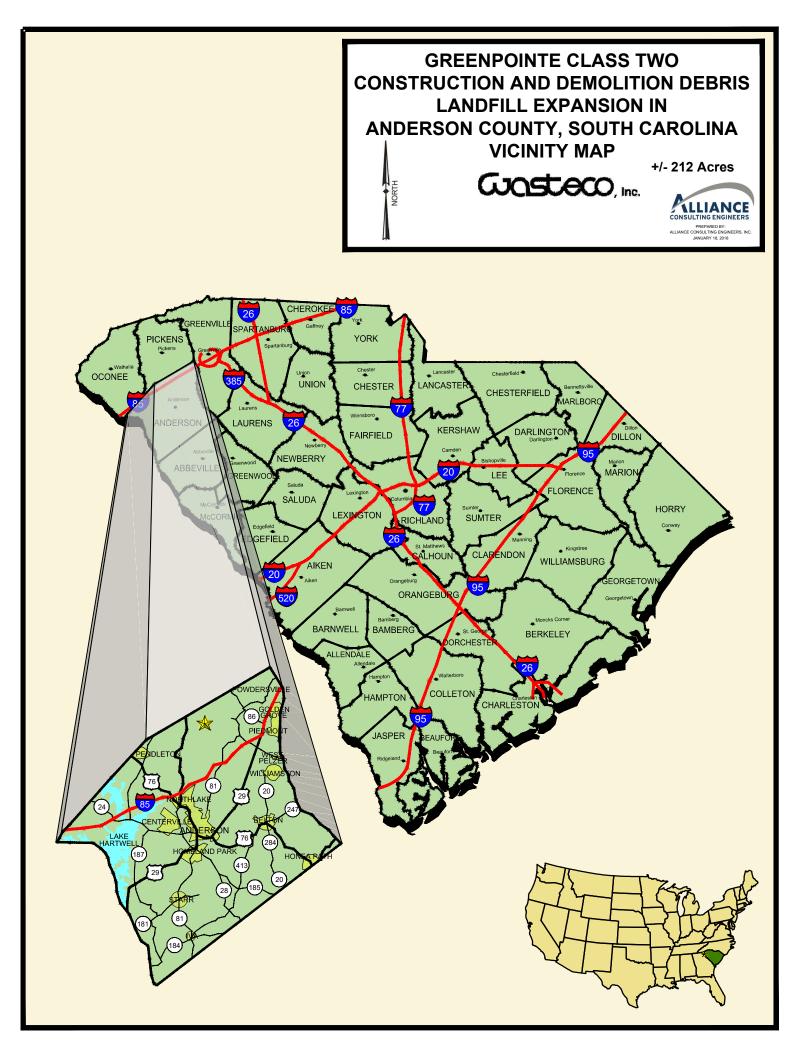
The maintenance inspection report will be made after each inspection. A copy of the report form to be completed by the SWPPP coordinator will be provided in the OS-SWPPP. In the event that a spill was to take place on the site, the SWPPP Coordinator will complete a spill report as

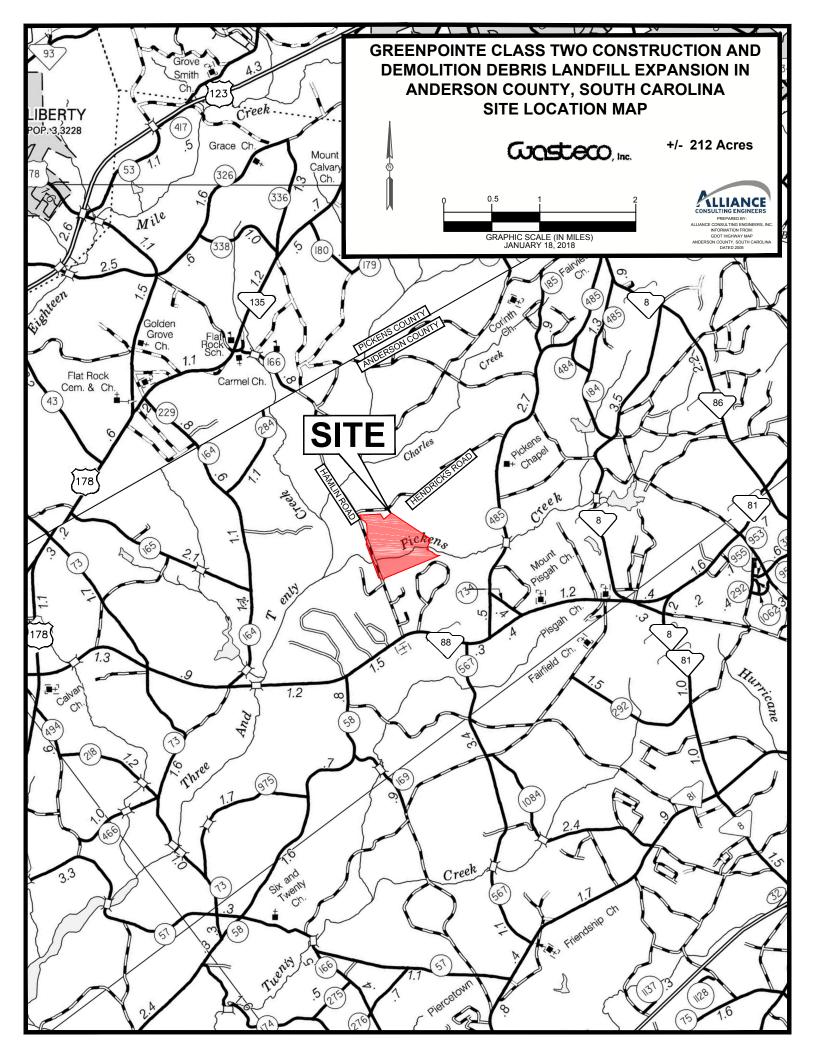
outlined in the OS-SWPPP. Completed forms will be maintained on-site during the entire construction project. Following construction, the completed forms will be retained at the General Contractor's office for a minimum of one (1) year.

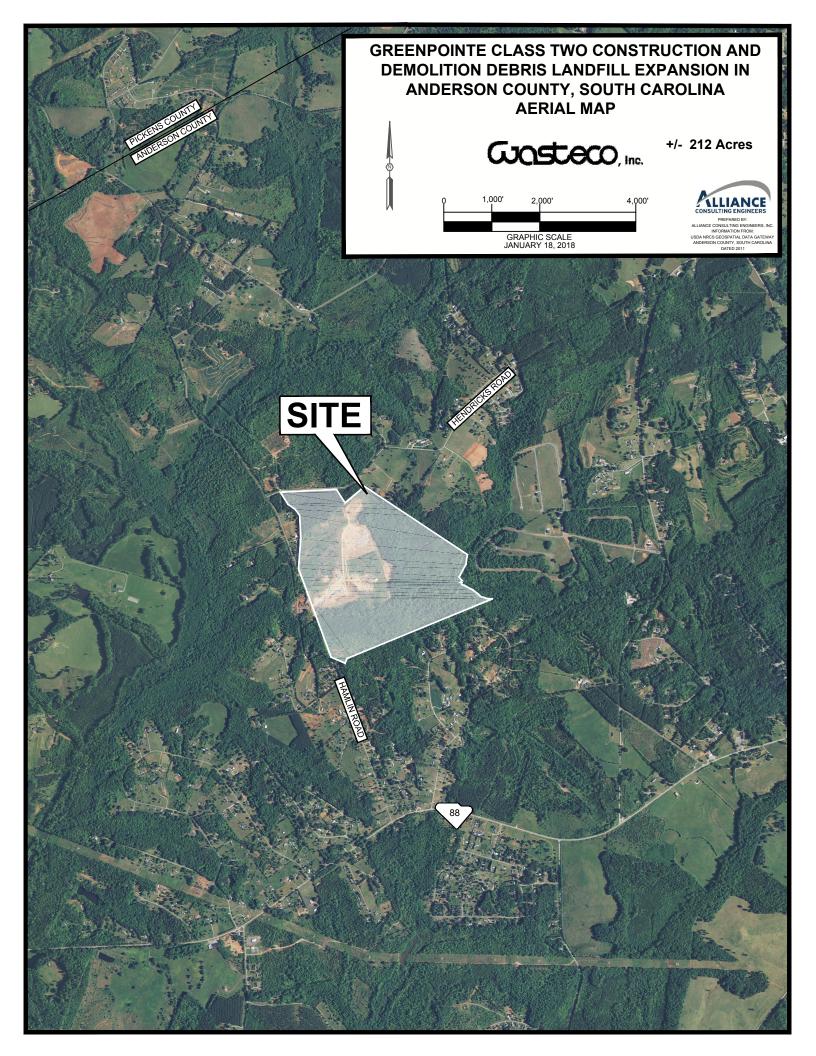
If construction activities or design modifications are made to the site plan, which could impact stormwater, this SWPPP will be amended appropriately. The amended SWPPP will have a description of the new activities that contribute to the increased pollutant loading and the planned source control activities.

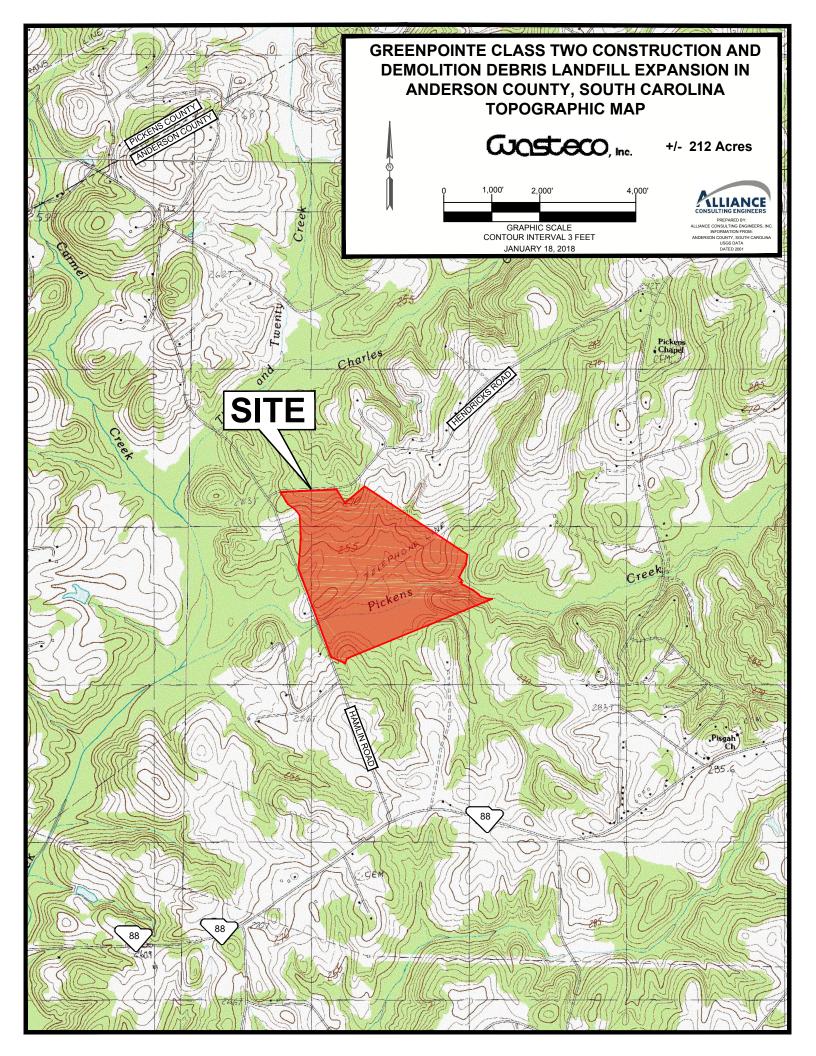
3.6 Final Stabilization

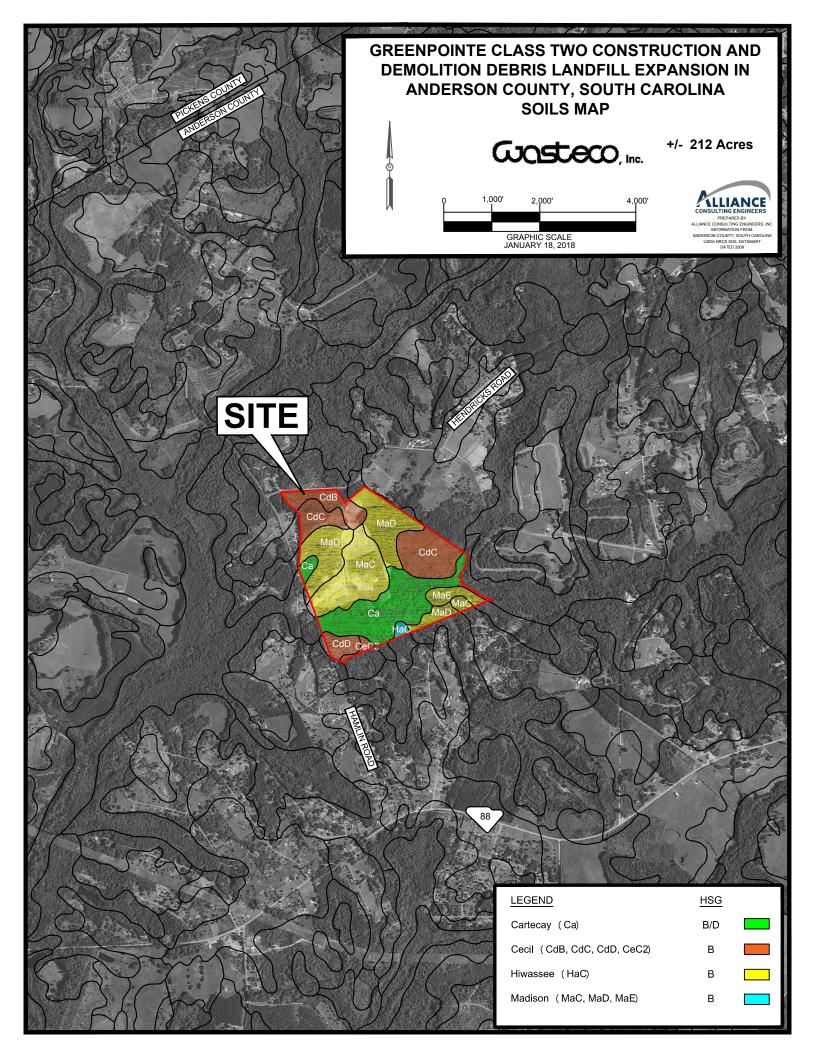
Final stabilization will occur as each stage of the landfill cells are brought to final grade and when all land-disturbing activities at the construction site have been completed and all areas not covered by permanent structures, either (1) have a uniform vegetative cover with a density of 75 percent of the natural background vegetative cover, or (2) equivalent permanent stabilization measures have been implemented to provide effective cover for exposed portions of the construction site not stabilized with vegetation.

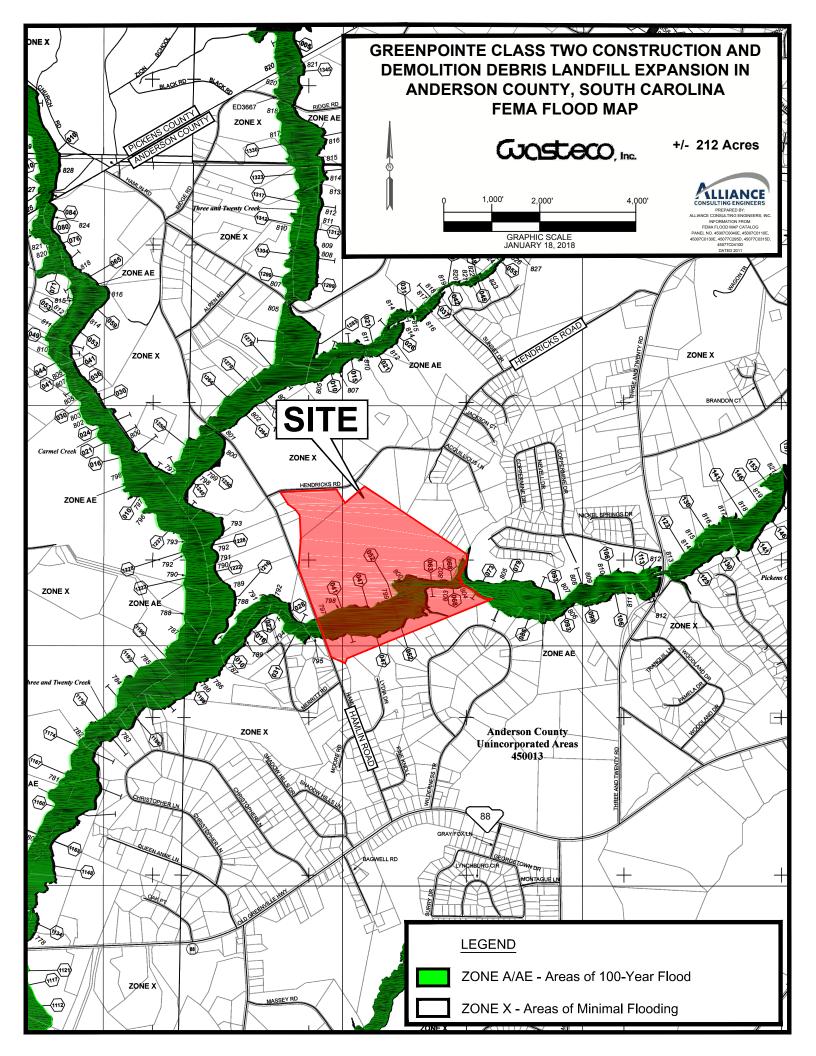


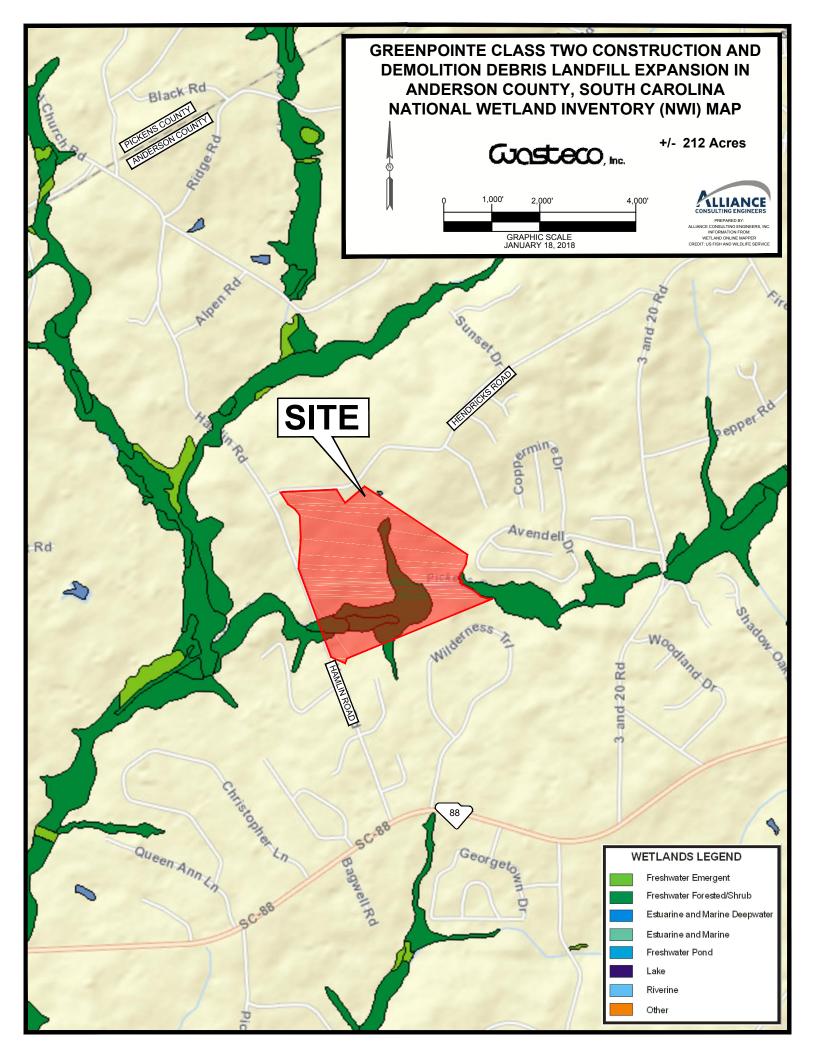

Comprehensive Stormwater Pollution Prevention Plan (C-SWPPP)

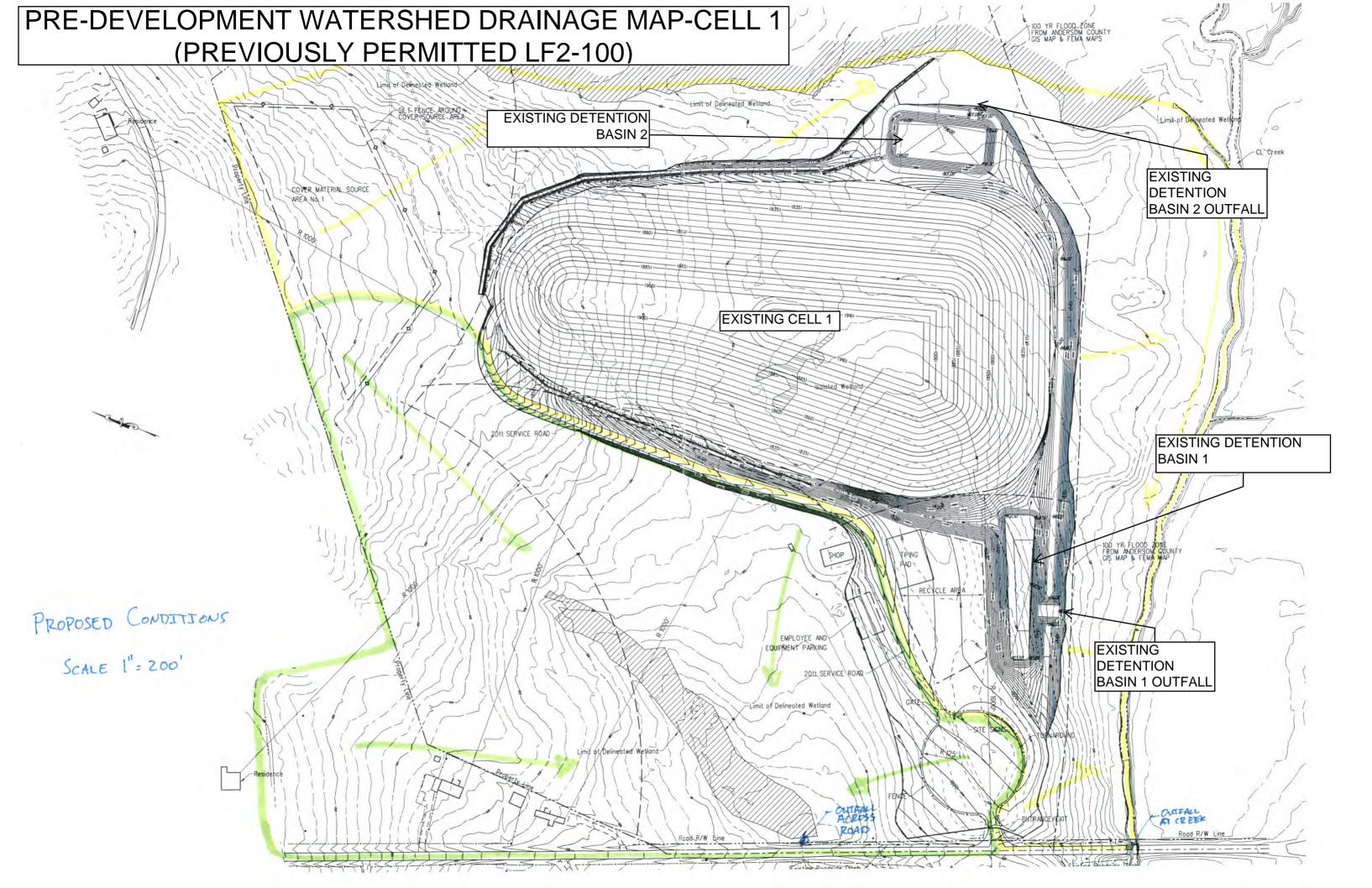

Greenpointe Landfill C&D Expansion

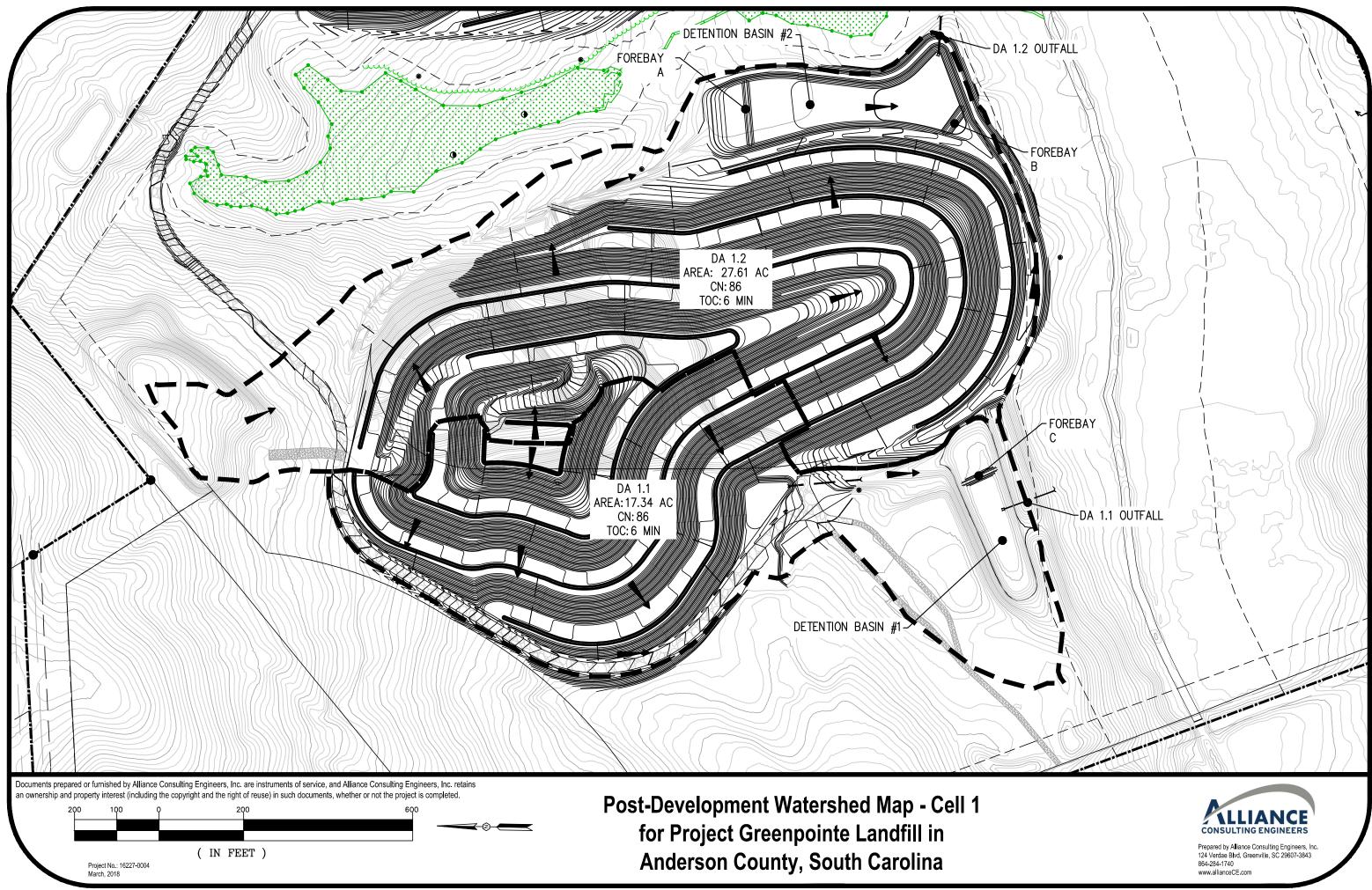

APPENDIX A Site Maps

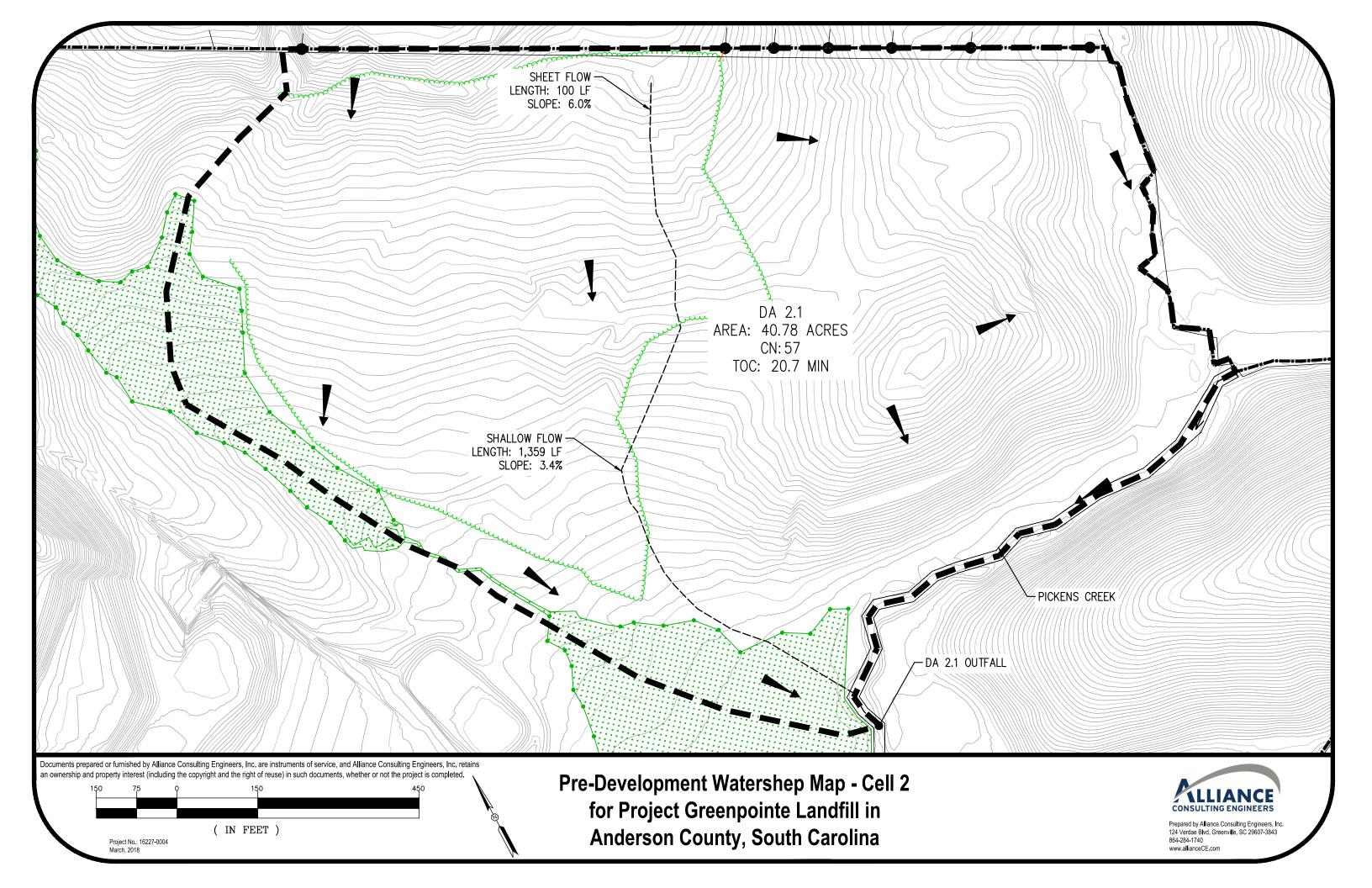


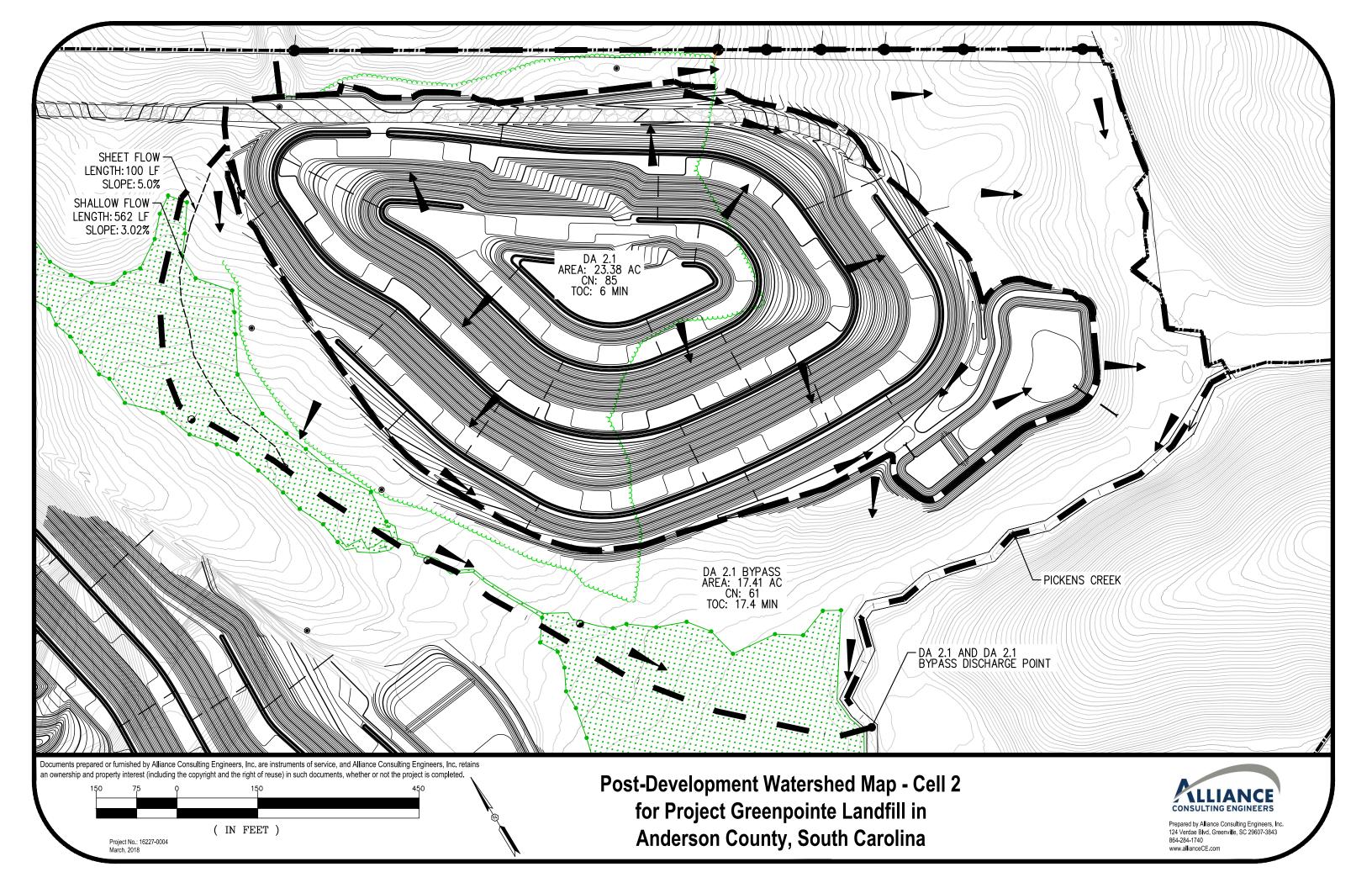









Greenpointe Landfill C&D Expansion


APPENDIX B Pre and Post Development Maps

Greenpointe Landfill C&D Expansion

APPENDIX C Pre-Development – Previously Permitted Calculations and HydroCAD

Legend

Hyd. Origin Description

1 SCS Runoff DA 2.1

Project: Pre-Development Hydraflow Model.gpw

Hydraflow Table of Contents

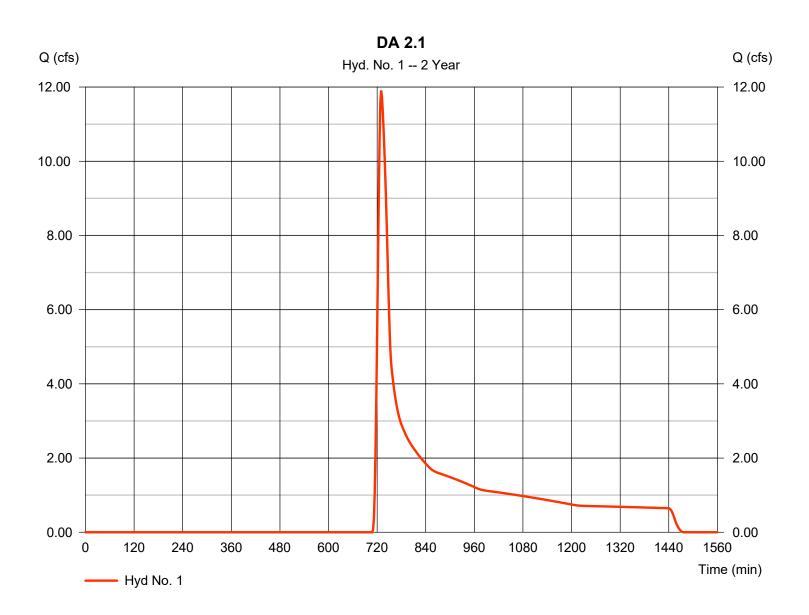
rdraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11	Tuesday, 04 / 17 / 2018
Watershed Model Schematic	1
Hydrograph Return Period Recap	2
2 - Year	
Summary Report	3
Hydrograph Reports	4
Hydrograph No. 1, SCS Runoff, DA 2.1	
TR-55 Tc Worksheet	5
10 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, DA 2.1	
25 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, DA 2.1	
100 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, DA 2.1	
IDF Report	

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11

yd. o.	Hydrograph type	h Inflow hyd(s)	Peak Outflow (cfs)								Hydrograph Description
(origin)		1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	•	
	SCS Runoff			- 11.91			53.17	83.76		172.88	DA 2.1
	j. file: Pre-De										4 / 17 / 2018

Hydrograph Summary Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	11.91	2	730	68,354				DA 2.1
Pre-Development Hydraflow Model.gpw					Return F	Period: 2 Ye	ar	Tuesday, 04	4 / 17 / 2018

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11

Hyd. No. 1

Hydrograph type	= SCS Runoff	Peak discharge	= 11.91 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 68,354 cuft
Drainage area	= 40.780 ac	Curve number	= 57
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.70 min
Total precip.	= 3.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

4

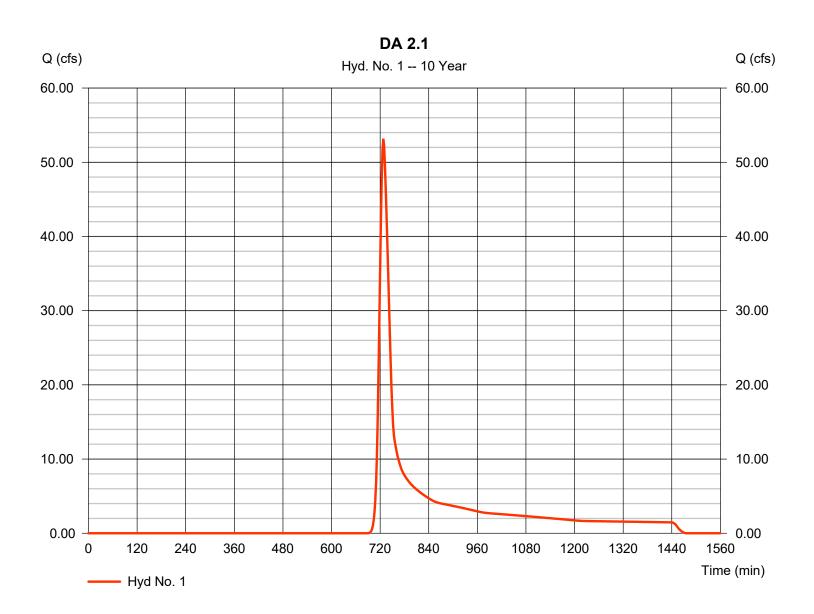
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11

Hyd. No. 1

DA 2.1

Description	Α		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 100.0 = 3.60 = 6.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 13.05	+	0.00	+	0.00	=	13.05
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1358.68 = 3.40 = Unpavec =2.98	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 7.61	+	0.00	+	0.00	=	7.61
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							20.70 min

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11


Hvd	Hydrograph	Peak	Time	Time to	Hyd.	Inflow	Maximum	Total	Hydrograph
No.	type (origin)	flow (cfs)	interval (min)	Peak (min)	volume (cuft)	hyd(s)	elevation (ft)	strge used (cuft)	Description
1	SCS Runoff	53.17	2	728	208,081				DA 2.1
Pre	Pre-Development Hydraflow Model.gpw					eturn Period: 10 Year Tuesday, 04 / 17 / 2018			4 / 17 / 2018

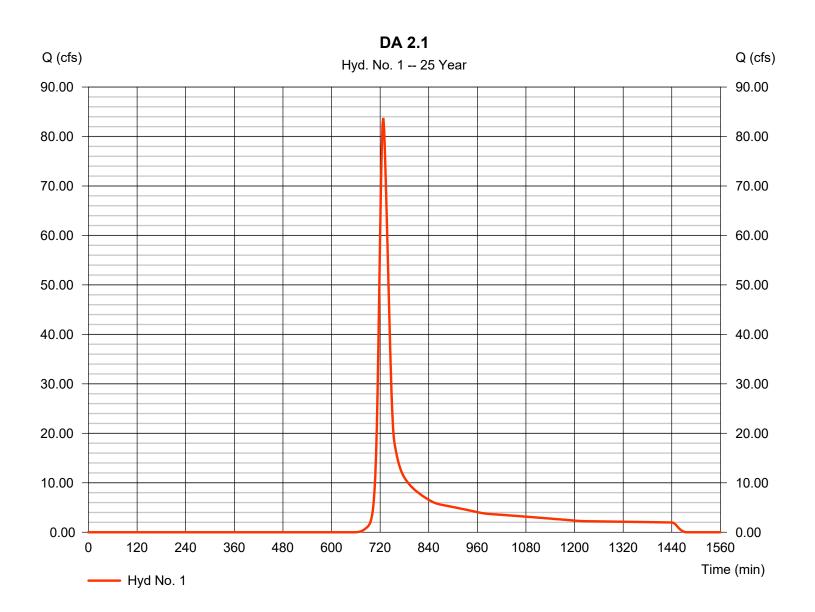
Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11

Hyd. No. 1

Hydrograph type	= SCS Runoff	Peak discharge	= 53.17 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 208,081 cuft
Drainage area	= 40.780 ac	Curve number	= 57
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.70 min
Total precip.	= 5.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11


łyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	83.76	2	728	309,106				DA 2.1
Dre	-Developmei	nt Hydrafly	w Mode		Return P	Period: 25 Y	/ear	Tuesday 0	4 / 17 / 2018

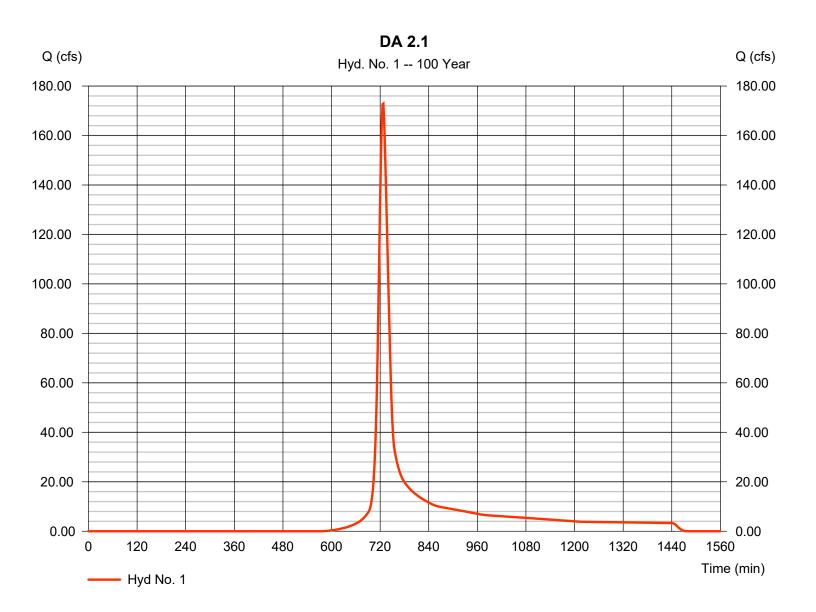
Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11

Hyd. No. 1

Hydrograph type	= SCS Runoff	Peak discharge	= 83.76 cfs
Storm frequency	= 25 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 309,106 cuft
Drainage area	= 40.780 ac	Curve number	= 57
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.70 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11


lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	172.88	2	728	607,884				DA 2.1
Pre-Development Hydraflow Model.gpw					Return P	eturn Period: 100 Year Tuesday, 04 / 1			4 / 17 / 2018

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11

Hyd. No. 1

Hydrograph type	= SCS Runoff	Peak discharge	= 172.88 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 607,884 cuft
Drainage area	= 40.780 ac	Curve number	= 57
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.70 min
Total precip.	= 9.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 04 / 17 / 2018

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v11

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)									
(Yrs)	В	D	E	(N/A)						
1	0.0000	0.0000	0.0000							
2	51.0918	10.3000	0.8101							
3	0.0000	0.0000	0.0000							
5	50.0837	10.2000	0.7521							
10	52.1003	10.3000	0.7297							
25	56.3781	10.4000	0.7092							
50	60.2406	10.5000	0.6983							
100	64.2406	10.6000	0.6897							
				1						

File name: Greenpointe IDF.IDF

Intensity = B / (Tc + D)^E

Return					Intens	ity Values	(in/hr)					
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.61	4.46	3.73	3.22	2.85	2.56	2.33	2.14	1.98	1.85	1.73	1.63
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.47	5.22	4.42	3.86	3.44	3.11	2.85	2.63	2.45	2.30	2.16	2.05
10	7.12	5.79	4.93	4.32	3.87	3.51	3.22	2.99	2.79	2.62	2.47	2.34
25	8.11	6.64	5.69	5.00	4.49	4.09	3.77	3.50	3.27	3.08	2.91	2.76
50	8.89	7.31	6.28	5.54	4.98	4.54	4.19	3.89	3.65	3.43	3.25	3.09
100	9.66	7.97	6.86	6.07	5.47	4.99	4.61	4.29	4.02	3.79	3.59	3.41

Tc = time in minutes. Values may exceed 60.

Two C&D Landfill Expansion Anderson Cnty\Engineering Calculations\Stormwater\Anderson County 24 hr Rainfall.pcp

	Rainfall Precipitation Table (in)										
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr			
SCS 24-hour	3.30	3.60	0.00	0.00	5.50	6.60	0.00	9.40			
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

BLWM # 21126 (164.6)

1 of 2

CONSTRUCTION, DEMOLITION, AND LAND CLEARING DEBRIS LANDFILL PLAN FOR THE GREENPOINTE C & D LANDFILL SITE ANDERSON COUNTY, SOUTH CAROLINA

APPROVED BY	
SOUTH CAROLINA DEPARTMENT OF HEALTH	
AND ENVIRONMENTAL CONTROL	
Bureau of Land/& Waste Management	and the first
BY Ray Millan	
TITLE Division Director	_
DATE ISSUED 7-10-2008 PERMIT NO	DN GUID
	ч () L) ()

MAY 19 2000 .

DIVISION OF MINING & SOLID WASTE MANAGEMENT JLYVM

> DAVIS FLÓYD

CONSTRUCTION, DEMOLITION, AND LAND

CLEARING DEBRIS LANDFILL PLAN

FOR THE GREENPOINTE

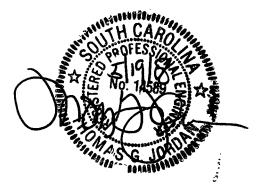
C & D LANDFILL SITE

ANDERSON COUNTY, SOUTH CAROLINA

MAY 19 2006

DIMISION OF MINING & SOLID WASTE MANAGEMENT BLWM

SEPTEMBER, 2005


REVISED NOVEMBER, 2005

REVISED OCTOBER 2007

REVISED MAY 2008

DAVIS & FLOYD, INC. JOB NUMBER 11967.00

DAVIS FLŐYD

PREPARED BY

DAVIS & FLOYD, INC.

ENVIRONMENTAL DIVISION

GREENWOOD, SOUTH CAROLINA

TABLE OF CONTENTS

PAGE

DAVIS FLÖYD 1

1.0	GENERAL INFORMATION	1.1
2.0	CONSTRUCTION, DEMOLITION, AND LAND CLEARING DEBRIS LANDFILL DESIGN	2.1
	2.1 Hydrogeologic Characteristics	2.1
	2.2 Availability of Adequate Soil Cover	2.2
	2.3 Land Use	2.3
3.0	METHOD OF OPERATION	3.1
	3.1 Landfill Operations	3.1
4.0	REQUIRED EQUIPMENT	4.1
5.0	DRAINAGE AND SEDIMENT CONTROL	5.1
6.0	RECORDKEEPING	6.1
7.0	PERMIT REVIEW	7.1
8.0	CLOSURE PROCEDURES AND POST CLOSURE CARE	8.1

APPENDICES

APPENDIX 1	PERMIT APPLICATION
APPENDIX 2	LAND USE MAP
APPENDIX 3	SEDIMENT CONTROL DESIGN
APPENDIX 4	MISCELLANEOUS
APPENDIX 5	CELL SEQUENCING PLAN
APPENDIX 6	SETTLEMENT CALCULATION REPORT

APPENDIX 3

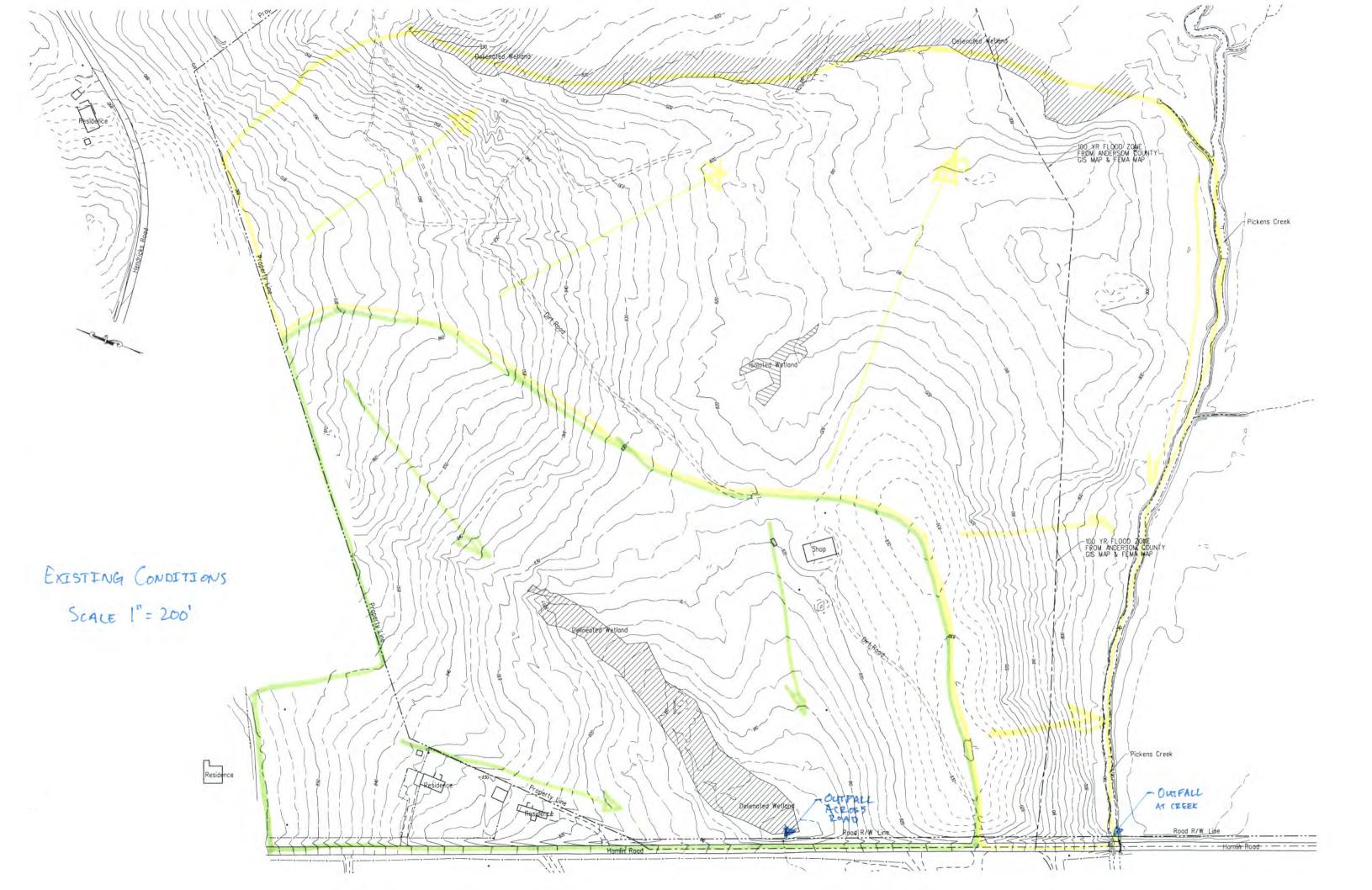
SEDIMENT CONTROL DESIGN

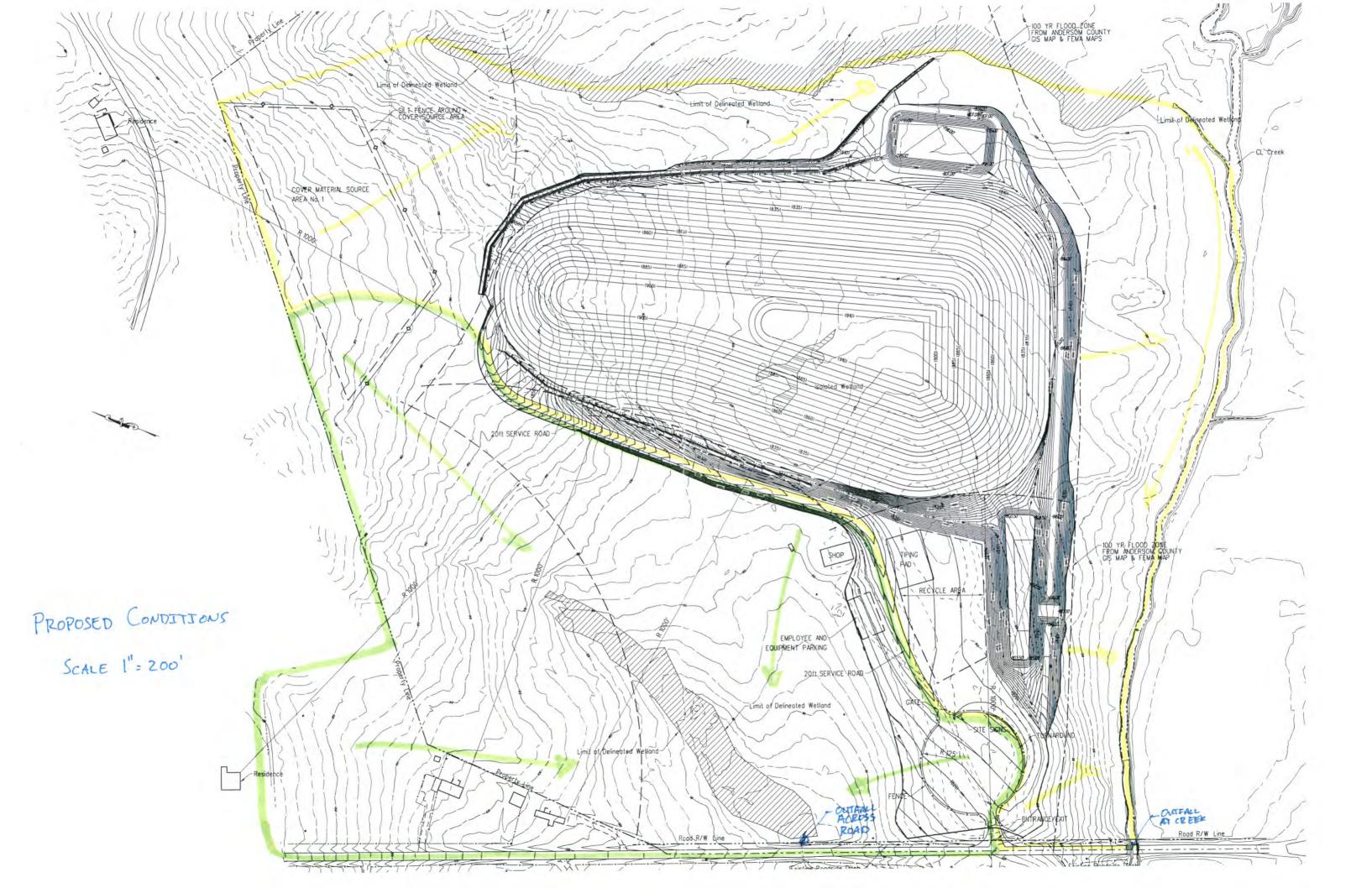
Storm Drainage Outfall Tabulation

į

Greenpointe, LLC 5/16/2008

1


Area	Predeveloped	Postdeveloped
	10 year Peak	10 year Peak
Identification	Flow (cfs)	Flow (cfs)
Total Runoff	190.06	124.31


Area	Predeveloped 10 year Peak Flow (cfs)	Postdeveloped 10 year Peak Flow (cfs)
Across Road	81.53	71.91
At Creek	108.1	52.4

Davis & Floyd, Inc.

.

7

¢

Outfall At Creek

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	10 yr - 24 hr
Rainfall Depth:	5.500 inches

Particle Size Distribution:

Size (mm)	Madison
1.4000	100.000%
1.0000	84.600%
0.0630	[`] 49.300%
0.0440	42.600%
0.0380	42.600%
0.0040	8.800%
0.0030	5.800%
0.0010	0.000%

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	

Structure Networking:

#1	
Null	

Structure Summary:										
	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)		
#1	58.650	58.650	108.10	12.35	88.6	9,574	5.16	2.84		

Ctructure Cummany

.

Particle Size Distribution(s) at Each Structure

Structure #1:	
Size (mm)	In/Out
1.4000	100.000%
1.0000	100.000%
0.0630	70.972%
0.0440	61.327%
0.0380	61.327%
0.0040	12.668%
0.0030	8.350%
0.0010	0.000%

.

Structure Detail:

Structure #1 (Null)

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	24.850	0.252	0.252	0.355	77.000	М	49.26	5.064
	2	33.800	0.326	0.326	0.348	79.000	М	66.03	7.287
	Σ	58.650						108.10	12.351

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	С	P	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.240	200.00	1.50	0.1700	1.0000	1	23.1	6,171	3.48	1.89
	2	0.240	300.00	5.00	0.0830	1.0000	1	72.9	13,375	7.44	4.08
	Σ							88.6	9,574	5.16	2.84

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	2.00	38.00	1,900.00	4.240	0.124
		9. Small streams flowing bankfull	0.21	4.00	1,900.23	4.120	0.128
#1	1	Time of Concentration:					0.252
#1	2	3. Short grass pasture	6.55	36.00	550.00	2.040	0.074
		8. Large guilles, diversions, and low flowing streams	2.00	38.00	1,900.00	4.240	0.124
		9. Small streams flowing bankfull	0.21	4.00	1,900.00	4.120	0.128
#1	2	Time of Concentration:					0.326

Subwatershed Muskingum Routing Details:

Stru #	Land Flow Condition		Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Timė (hrs)
#1			2.00	38.00	1,900.00	4.240	0.124
		9. Small streams flowing bankfull	0.21	4.00	1,900.00	4.120	0.128
#1	1	Muskingum K:					0.252
#1	2	3. Short grass pasture	6.55	36.00	550.00	2.040	0.074

.

SEDCAD 4 for Windows

Stru #	SWS #	Land Flow Condition	Slope (%) Vert. D (ft)		Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)	
		8. Large gullies, diversions, and low flowing streams	2.00	38.00	1,900.00	4.240	0.124	
		9. Small streams flowing bankfull	0.21	4.00	1,900.00	4.120	0.128	
#1	2	Muskingum K:					0.326	

Outfall Across Road

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

Filename: Outfall Across Road.sc4

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	10 yr - 24 hr
Rainfall Depth:	5.500 inches

Particle Size Distribution:

Size (mm)	Madison		
1.4000	100.000%		
1.0000	84.600%		
0.0630	49.300%		
0.0440	42.600%		
0.0380	42.600%		
0.0040	8.800%		
0.0030	5.800%		
0.0010	0.000%		

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Nuli	#1	==>	End	0.000	0.000	

Structure Networking:

I	#1
	Null

SEDCAD 4 for Windows

Convright 1998 -2002 Pamola 1 Schwah

.

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)
#1	38,126	38.126	81.53	8.73	77.8	12,714	6.95	3.5

Structure Summary:

Particle Size Distribution(s) at Each Structure

Structure #1:							
Size (mm)	In/Out						
1.4000	100.000%						
1.0000	99.650%						
0.0630	68.654%						
0.0440	59.324%						
0.0380	59.324%						
0.0040	12.255%						
0.0030	8.077%						
0.0010	0.000%						

Structure Detail:

Structure #1 (Null)

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	1.760	0.040	0.040	0.369	98.000	М	7.39	0.771
	2	36.366	0.172	0.172	0.325	79.000	М	83.16	7.957
	Σ	38.126						81.53	8.728

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	С	P	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.240	200.00	1.50	0.1700	1.0000	1	2.5	4,358	2.67	1.44
	2	0.240	300.00	5.00	0.0830	1.0000	1	86.5	14,743	8.48	4.58
	Σ							77.8	12,714	6.95	3.57

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	2.57	18.00	700.00	4.810	0.040
#1	1	Time of Concentration:					0.040
#1	2	3. Short grass pasture	5.56	50.00	900.00	1.880	0.132
		8. Large gullies, diversions, and low flowing streams	2.57	18.00	700.00	4.810	0.040
#1	2	Time of Concentration:					0.172

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	2.57	18.00	700.00	4.810	0.040
#1	1	Muskingum K:					0.040
#1	2	8. Large gullies, diversions, and low flowing streams	2.57	18.00	18.00 700.00	4.810	0.040
		3. Short grass pasture	5.56	50.00	900.00	1.880	0.132
#1	2	Muskingum K:					0.172

Diversion Ditch 25-yr

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

Filename: Diversion Ditch.sc4

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	6.600 inches

Particle Size Distribution:

Size (mm)	Madison
1.4000	100.000%
1.0000	84.600%
0.0630	49.300%
0.0440	42.600%
0.0380	42.600%
0.0040	8.800%
0.0030	5.800%
0.0010	0.000%

		_				
Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Channel	#1	==>	End	0.000	0.000	

Structure Networking:

#1
Chan'l

		Stru	cture S	Summ	ary:			
	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/i)	24VW (ml/l)
#1	1.485	1.485	7.00	0.62	1.5	3,298	2.02	1.08

$\hat{}$. ___

Particle Size Distribution(s) at Each Structure

C #1.
In/Out
100.000%
84.620%
49.312%
42.610%
42.610%
8.802%
5.801%
0.000%

Structure #1:

Structure Detail:

Structure #1 (Vegetated Channel)

Trapezoidal Vegetated Channel Inputs:

Material: Bermuda grass

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
2.00	3.0:1	3.0:1	2.5	С, В	0.50			8.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class C w/o Freeboard	Class C w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	7.00 cfs		7.00 cfs	
Depth:	0.84 ft	1.34 ft	1.19 ft	1.69 ft
Top Width:	7.06 ft	10.06 ft	9.17 ft	12.17 ft
Velocity:	1.83 fps		1.05 fps	
X-Section Area:	3.82 sq ft		6.67 sq ft	
Hydraulic Radius:	0.521 ft		0.698 ft	
Froude Number:	0.44		0.22	
Roughness Coefficient:	0.0839		0.1782	

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	1.485	0.091	0.091	0.308	86.000	М	6.86	0.616
	Σ	1.485						7.00	0.616

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	С	P	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.240	300.00	3.50	0.0500	1.0000	1	1.5	3,299	2.02	1.08
	Σ							1.5	3,298	2.02	1.08

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	3.33	3.00	90.00	5.470	0.004
		6. Grassed waterway	2.54	19.04	749.60	2.390	0.087
#1	1	Time of Concentration:					0.091

Subwatershed Muskingum Routing Details:

Stru #	sws #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	3.33	3.00	90.00	5.470	0.004
		6. Grassed waterway	2.54	19.04	749.60	2.390	0.087
#1	1	Muskingum K:					0.091

Perimeter Ditch 1 25-yr

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	6.600 inches

Particle Size Distribution:

Size (mm)	Madison
1.4000	100.000%
1.0000	84.600%
0.0630	49.300%
0.0440	42.600%
0.0380	42.600%
0.0040	8.800%
0.0030	5.800%
0.0010	0.000%

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Channel	#1	==>	End	0.000	0.000	

Structure Networking:

#1
Chan'l

	Structure Summary:								
	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)	
#1	15.000	15.000	49.46	5.06	8.2	2,211	1.23	0.66	

Particle Size Distribution(s) at Each Structure

Structul	re #1:
Size (mm)	In/Out
1.4000	100.000%
1.0000	100.000%
0.0630	66.485%
0.0440	57.449%
0.0380	57.449%
0.0040	11.867%
0.0030	7.822%

0.000%

0.0010

Structure Detail:

Structure #1 (Vegetated Channel)

Trapezoidal Vegetated Channel Inputs:

Material: Bermuda grass

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
4.00	3.0:1	3.0:1	3.5	С, В	0.50			8.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
а 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Class C w/o Freeboard	Class C w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	49.46 cfs		49.46 cfs	
Depth:	1.26 ft	1.76 ft	1.60 ft	2.10 ft
Top Width:	11.54 ft	14.54 ft	13.57 ft	16.57 ft
Velocity:	5.07 fps		3.53 fps	
X-Section Area:	9.76 sq ft		14.01 sq ft	
Hydraulic Radius:	0.817 ft		0.995 ft	
Froude Number:	0.97		0.61	
Roughness Coefficient:	0.0476		0.0781	

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	15.000	0.138	0.138	0.316	86.000	М	50.93	5.060
	Σ	15.000						49.46	5.060

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	с	Р	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.240	200.00	2.11	0.0500	1.0000	1	9.2	2,509	1.46	0.78
	Σ							8.2	2,211	1.23	0.66

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	3.45	45.53	1,319.71	2.780	0.131
#1	1	Time of Concentration:					0.138

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	3.45	45.53	1,319.71	2.780	0.131
#1	1	Muskingum K:					0.138

Perimeter Ditch 2 25-yr

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	6.600 inches

Particle Size Distribution:

Size (mm)	Madison
1.4000	100.000%
1.0000	84.600%
0.0630	49.300%
0.0440	42.600%
0.0380	42.600%
0.0040	8.800%
0.0030	5.800%
0.0010	0.000%

				•		
Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Channel	#1	==>	End	0.000	0.000	

Structure Networking:

I	#1
	Chan'l

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)
#1	13.000	13.000	58.83	5.39	14.2	3,557	2.17	1.18

Structure Summary:

Particle Size Distribution(s) at Each Structure

Structur	re #1:
Size (mm)	In/Out
1.4000	100.000%
1.0000	85.853%
0.0630	50.030%
0.0440	43.231%
0.0380	43.231%
0.0040	8.930%
0.0030	5.886%
0.0010	0.000%

Structure Detail:

Structure #1 (Vegetated Channel)

Trapezoidal Vegetated Channel Inputs:

Material: Bermuda grass

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
4.00	3.0:1	3.0:1	4.1	С, В	0.50			8.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class C w/o Freeboard	Class C w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	58.83 cfs		58.83 cfs	
Depth:	1.27 ft	1.77 ft	1.59 ft	2.09 ft
Top Width:	11.60 ft	14.60 ft	13.52 ft	16.52 ft
Velocity:	5.95 fps		4.23 fps	
X-Section Area:	9.88 sq ft		13.90 sq ft	
Hydraulic Radius:	0.823 ft		0.991 ft	
Froude Number:	1.14		0.74	
Roughness Coefficient:	0.0447		0.0711	

#1	<u>1</u> Σ	13.000 13.000	0.114	0.114	0.326	86.000	M	60.07 58.83	5.393 5.393
Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	С	Ρ	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.240	200.00	3.40	0.0500	1.0000	1	14.4	3,609	2.21	1.21
	Σ							14.2	3,557	2.17	1.18

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	4.14	48.68	1,176.00	3.050	0.107
#1	1	Time of Concentration:					0.114

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	4.14	48.68	1,175.84	3.050	0.107
#1	1	Muskingum K:					0.114

<u>Pond 1 2 yr</u>

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

Filename: Pond 1 2yr.sc4

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	2 yr - 24 hr
Rainfall Depth:	3.600 inches

Particle Size Distribution:

Madison
100.000%
84.600%
49.300%
42.600%
42.600%
8.800%
5.800%
0.000%

ł

.

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	

Structure Networking:

#1 Pond

				Suu						
	•.		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)
i -	<u>`</u>	In			22.58	2.22	6.5	4,027	2.21	1.19
	#1	Out	15.000	15.000	0.77	2.07	0.5	1,077	0.00	0.00

Structure Summary:

i

ł.

Particle Size Distribution(s) at Each Structure

Size (mm)	In	Out
1.4000	100.000%	100.000%
1.0000	100.000%	100.000%
0.0630	68.069%	100.000%
0.0440	58.818%	100.000%
0.0380	58.818%	100.000%
0.0040	12.150%	100.000%
0.0030	8.008%	100.000%
0.0010	0.000%	0.000%

Structure #1:

Structure Detail:

Structure #1 (Pond)

Pond Inputs:

(

Initial Pool Elev:	807.01 ft
Initial Pool:	0.00 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	20.00 %

*No sediment capacity defined

Perforated Riser

	Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
ľ	48.00	6.00	18.00	50.00	1.00	0.0240	813.00	4

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
813.50	30.00	3.00:1	3.00:1	20.00

Pond Results:

Peak Elevation:	810.34 ft
H'graph Detention Time:	14.61 hrs
Pond Model:	CSTRS
Dewater Time:	1.53 days
Trap Efficiency:	92.37 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
807.00	0.000	0.000	0.000		Top of Sed. Storage
807.01	0.000	0.000	0.000		Low hole SPW #1
807.50	0.128	0.022	0.294	0.89*	
808.00	0.503	0.169	0.418	4.27*	
808.50	0.530	0.427	0.513	6.75	
809.00	0.558	0.699	0.593	5.95	
809.50	0.587	0.986	0.663	5.55	

Printed 05-15-2008

SEDCAD 4 for Windows

Convrint 1008 -2002 Pamela I Schurch

t

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time	
	((hrs)	<u>an an a</u>
810.00	0.618	1.287	0.727	5.25	
810.34	0.639	1.503	0.766	8.10	Peak Stage
810.50	0.649	1.604	0.785		
811.00	0.681	1.936	0.839		
811.50	0.721	2.287	0.890		
812.00	0.763	2.658	0.939		
812.50	0.804	3.049	0.985		
813.00	0.847	3.462	1.028		Spillway #1
813.50	0.901	3.899	13.773		Spillway #2
814.00	0.956	4.364	38.898		
814.50	0.960	4.843	61.932		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

			•
Elevation (ft)	Perf. Riser (cfs)	Emergency Spillway (cfs)	Combined Total Discharge
			(cfs)
807.00	0.000	0.000	0.000
807.01	2.00>0.000	0.000	0.000
807.50	0.294	0.000	0.294
808.00	0.418	0.000	0.418
808.50	0.513	0.000	0.513
809.00	0.593	0.000	0.593
809.50	0.663	0.000	0.663
810.00	0.727	0.000	0.727
810.50	0.785	0.000	0.785
811.00	0.839	0.000	0.839
811.50	0.890	0.000	0.890
812.00	0.939	0.000	0.939
812.50	0.985	0.000	0.985
813.00	1.028	0.000	1.028
813.50	13.773	0.000	13.773
814.00	16.402	22.496	38.898
814.50	16.940	44.992	61.932

Detailed Discharge Table

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	15.000	0.137	0.138	0.316	86.000	М	23.23	2.222
	Σ	15.000						22.58	2.222

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	C	Р	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.240	500.00	3.30	0.0500	1.0000	1	7.4	4,566	2.63	1.41
	Σ							6.5	4,027	2.21	1.19

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horlz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	3.54	46.72	1,320.00	2.820	0.130
#1	1	Time of Concentration:	· · · · · · · · · · · · · · · · · · ·			_	0.137

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
	_	3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	3.45	45.53	1,320.00	2.780	0.131
#1	1	Muskingum K:					0.138

Pond 1 10 yr

.

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

1

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	10 yr - 24 hr
Rainfall Depth:	5.500 inches

Particle Size Distribution:

Madison
100.000%
84.600%
49.300%
42.600%
42.600%
8.800%
5.800%
0.000%

.

Structure Nethorking.							
Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description	
Pond	#1	==>	End	0.000	0.000		

Structure Networking:

	#1
	Pond

				004			aryr			
1			Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)
1		In	45.000	15.000	39.60	4.00	12.4	4,261	2.36	1.26
_	#1	Out	15.000	15.000	0.97	2.88	1.1	1,191	0.00	0.00

Structure Summary:

Particle Size Distribution(s) at Each Structure

Size (mm)	In	Out
1.4000	100.000%	100.000%
1.0000	100.000%	100.000%
0.0630	66.863%	100.000%
0.0440	57.776%	100.000%
0.0380	57.776%	100.000%
0.0040	11.935%	100.000%
0.0030	7.866%	92.625%
0.0010	0.000%	0.000%

Structure #1:

Structure Detail:

Structure #1 (Pond)

Pond Inputs:

807.01 ft
0.00 ac-ft
0.00 ac-ft
20.00 %

*No sediment capacity defined

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
48.00	6.00	18.00	50.00	1.00	0.0240	813.00	4

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
813.50	30.00	3.00:1	3.00:1	20.00

Pond Results:

1

Peak Elevation:	812.37 ft
H'graph Detention Time:	15.39 hrs
Pond Model:	CSTRS
Dewater Time:	2.28 days
Trap Efficiency:	91.51 %
	H'graph Detention Time: Pond Model: Dewater Time:

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
807.00	0.000	0.000	0.000		Top of Sed. Storage
807.01	0.000	0.000	0.000		Low hole SPW #1
807.50	0.128	0.022	0.294	0.89*	
808.00	0.503	0.169	0.418	4.27*	•
808.50	0.530	0.427	0.513	6.09*	
809.00	0.558	0.699	0.593	5.55*	
809.50	0.587	0.986	0.663	5.22*	

Printed 05-15-2008

.

SEDCAD 4 for Windows

Convright 1998 _2002 Pamela | Schurch

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
810.00	0.618	1.287	0.727	5.02*	
810.50	0.649	1.604	0.785	5.05	
811.00	0.681	1.936	0.839	4.95	
811.50	0.721	2.287	0.890	4.90	
812.00	0.763	2.658	0.939	4.95	
812.37	0.794	2.949	0.973	7.80	Peak Stage
812.50	0.804	3.049	0.985		
813.00	0.847	3.462	1.028		Spillway #1
813.50	0.901	3.899	13.773		Spillway #2
814.00	0.956	4.364	38.898		
814.50	0.960	4.843	61.932		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

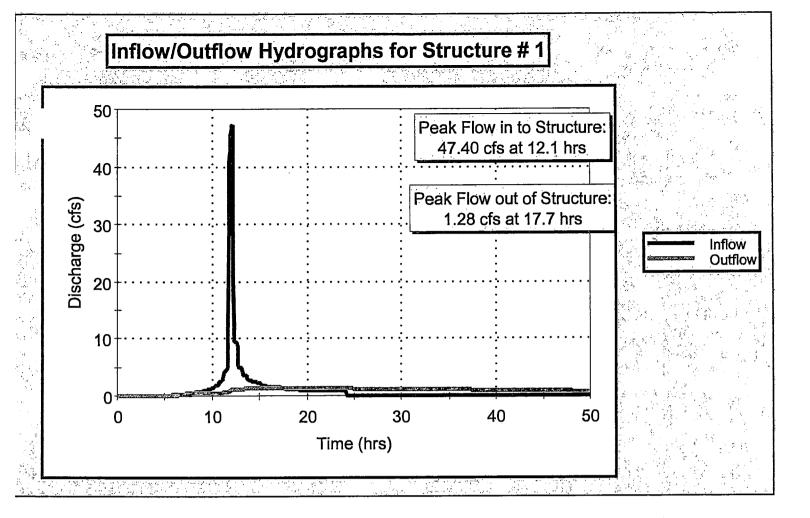
		19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 -	Combined
Elevation		Emergency	Total
(ft)	Perf. Riser (cfs)	Spillway (cfs)	Discharge
			(cfs)
807.00	0.000	0.000	0.000
807.01	2.00>0.000	0.000	0.000
807.50	0.294	0.000	0.294
808.00	0.418	0.000	0.418
808.50	0.513	0.000	0.513
809.00	0.593	0.000	0.593
809.50	0.663	0.000	0.663
810.00	0.727	0.000	0.727
810.50	0.785	0.000	0.785
811.00	0.839	0.000	0.839
811.50	0.890	0.000	0.890
812.00	0.939	0.000	0.939
812.50	0.985	0.000	0.985
813.00	1.028	0.000	1.028
813.50	13.773	0.000	13.773
814.00	16.402	22.496	38.898
814.50	16.940	44.992	61.932

7

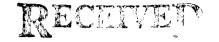
Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	15.000	0.137	0.138	0.316	86.000	М	40.76	3.998
	Σ	15.000						39.60	3.998

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:


Stru #	SWS #	Soil K	L (ft)	S (%)	C C	Р	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (mi/l)
#1	1	0.240	500.00	3.30	0.0500	1.0000	1	14.1	4,834	2.80	1.50
	Σ	······································						12.4	4,261	2.36	1.26

Subwatershed Time of Concentration Details:


Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz, Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
	_	6. Grassed waterway	3.54	46.72	1,320.00	2.820	0.130
#1	1	Time of Concentration:					0.137

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	3.45	45.53	1,320.00	2.780	0.131
#1	1	Muskingum K:					0.138

(

1

MAY 2008

DIVISION OF MINING 3 SOLID WASTE MENAGEN BLAM

Pond 1 25 yr

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

Printed 05-29-2008

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	6.600 inches

Particle Size Distribution:

Size (mm)	Madison
1.4000	100.000%
1.0000	84.600%
0.0630	49.300%
0.0440	42.600%
0.0380	42.600%
0.0040	8.800%
0.0030	5.800%
0.0010	0.000%

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	

Structure Networking:

#1 Pond

Peak Total Total Peak Immediate Peak Contributing Runoff Sediment Sediment Settleable 24VW Contributing Discharge Area Area Volume Conc. Conc. (tons) (ml/l) (cfs) (ml/l) (ac-ft) (mg/l) (ac) (ac) 1.29 In 49.46 5.06 16.1 4,360 2.42 15.000 #1 15.000 3.54 1,192 0.00 0.00 Out 2.63 1.6

Structure Summary:

•••

Particle Size Distribution(s) at Each Structure

Size (mm)	In	Out
1.4000	100.000%	100.000%
1.0000	100.000%	100.000%
0.0630	66.485%	100.000%
0.0440	57. 44 9%	100.000%
0.0380	57.449%	100.000%
0.0040	11.867%	100.000%
0.0030	7.822%	79.942%
0.0010	0.000%	0.000%

Structure #1:

r - 1

÷

Structure Detail:

Structure #1 (Pond)

Pond Inputs:

Initial Pool Elev:	807.01 ft
Initial Pool:	0.00 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	20.00 %

*No sediment capacity defined

Perforated Riser

	Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel B Length (ft)	arrel Slope (%)	Manning's n	pillway Elev (ft)	lumber of Holes per Elev
1	48.00	6.00	18.00	50.00	1.00	0.0240	813.00	4

Emergency Spillway

Spillway Elev	est Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
813.50	30.00	3.00:1	3.00:1	20.00

Pond Results:

Peak Elevation:	813.06 ft
H'graph Detention Time:	13.99 hrs
Pond Model:	CSTRS
Dewater Time:	2.74 days
Trap Efficiency:	90.22 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
807.00	0.000	0.000	0.000		Top of Sed. Storage
807.01	0.000	0.000	0.000		Low hole SPW #1
807.50	0.128	0.022	0.294	0.89*	
808.00	0.503	0.169	0.418	4.27*	
808.50	0.530	0.427	0.513	6.09*	
809.00	0.558	0.699	0.593	5.55*	
809.50	0.587	0.986	0.663	5.22*	-

Elevation-Capacity-Discharge Table

SEDCAD 4 for Windows

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
810.00	0.618	1.287	0.727	5.02*	
810.50	0.649	1.604	0.785	4.88*	
811.00	0.681	1.936	0.839	5.00	
811.50	0.721	2.287	0.890	4.90	······································
812.00	0.763	2.658	0.939	4.90	
812.50	0.804	3.049	0.985	4.90	
813.00	0.847	3.462	1.028	8.40	Spillway #1
813.06	0.859	3.517	2.630	5.75	Peak Stage
813.50	0.901	3.899	13.773		Spiilway #2
814.00	0.956	4.364	38.898		
814.50	0.960	4.843	61.932		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

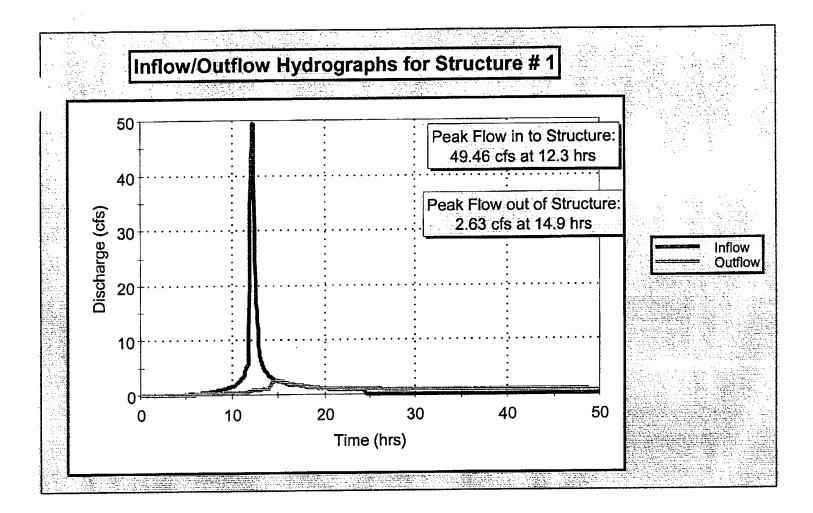
Elevation (ft)	Perf. Riser (cfs)	Emergency Spillway (cfs)	Combined Total Discharge
007.00	0.000	0.000	(cfs) 0.000
807.00			
807.01	2.00>0.000	0.000	0.000
807.50	0.294	0.000	0.294
808.00	0.418	0.000	0.418
808.50	0.513	0.000	0.513
809.00	0.593	0.000	0.593
809.50	0.663	0.000	0.663
810.00	0.727	0.000	0.727
810.50	0.785	0.000	0.785
811.00	0.839	0.000	0.839
811.50	0.890	0.000	0.890
812.00	0.939	0.000	0.939
812.50	0.985	0.000	0.985
813.00	1.028	0.000	1.028
813.50	13.773	0.000	13.773
814.00	16.402	22.496	38.898
814.50	16.940	44.992	61.932

7

	Subwatcisiicu iijaiology 2000								
Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	15.000	0.137	0.138	0.316	86.000	м	50.93	5.060
	Σ	15.000						49.46	5.060

Subwatershed Hydrology Detail:

Subwatershed Sedimentology Detail:


Stru #		Soil K	L (ft)	S (%)	с	Ρ	PS #	Sediment	Sediment Conc.	Peak Settleable Conc	(ml/l)
	1		500.00	3.30		1.0000	1	18.3	4,947		1.54
	Σ							16.1	4,360	2.42	1.29

Subwatershed Time of Concentration Details:

Stru #	SWS	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	3.54	46.72	1,320.00	2.820	0.130
#1	1	Time of Concentration:					0.137

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	3.45	45.53	1,320.00	2.780	0.131
#1	1	Muskingum K:					0.138

File.... H:\JOBSODD\11967-00\C\Ponds\New Design\Pond 15 ac.ppw

BMP FIRST FLUSH CALCULATIONS

First Flush Depth = 1.0000 in Drainage Area = 15.000 acres Volume = Flush Depth * Drainage Area First Flush volume = 1.250 ac-ft

.

,

Type.... Time vs. Volume Name.... MDRAIN 4 OUT

File.... H:\JOBSODD\11967-00\C\Ponds\New Design\Pond 15 ac.ppw

TIME vs. VOLUME (ac-ft)

Time hrs	Time on left	-		= .5000 hrs rst value in	each row.
.0000 [1.286	1,257	1.229	1.202	1.175
2.5000	1.148	1.122	1.096	1.071	1.046
5.0000 1	1.021	.997	.972	.948	.924
7.5000	.900	.877	.855	.833	.812
10.0000	.791	.770	.750	.730	.711
12.5000	.692	.672	.653	.633	.614
15.0000	.594	.575	.556	.537	.518
17.5000	.499	.480	.461	.442	.423
20.0000	.404	.385	.367	.349	.331
22.5000	.314	.298	.282	.266	.251
25.0000	.236	.222	.208	.194	.180
27.5000	.167	.146	.128	.112	.098
30.0000	.086	.076	.066	.058	.051
32.5000	.045	.040	.035	.031	.028
35.0000	.025	.022	.013	.006	.003
37.5000	.001	.001	.000	.000	.000
40.0000	.000	.000	.000	.000	.000
42.5000	.000	.000			

Pond 2 2yr

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

1

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	2 yr - 24 hr
Rainfall Depth:	3.600 inches

Particle Size Distribution:

Size (mm)	Madison
1.4000	100.000%
1.0000	84.600%
0.0630	49.300%
0.0440	42.600%
0.0380	42.600%
0.0040	8.800%
0.0030	5.800%
0.0010	0.000%

•

I.

.

1

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	

#1 Pond ;

	Structure Summary:												
		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)				
	In		12.000	27.58	2.37	2.0	1,180	0.72	0.39				
#1	Out	13.000	13.000	0.99	2.37	0.1	245	0.00	0.00				

Structure Summary:

Particle Size Distribution(s) at Each Structure

Size (mm)	In	Out
1.4000	100.000%	100.000%
1.0000	87.125%	100.000%
0.0630	50.771%	100.000%
0.0440	43.871%	100.000%
0.0380	43.871%	100.000%
0.0040	9.063%	100.000%
0.0030	5.973%	93.703%
0.0010	0.000%	0.000%

Structure #1:

a

Structure Detail:

Structure #1 (Pond)

Pond Inputs:

Initial Pool Elev:	798.01 ft
Initial Pool:	0.00 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	20.00 %

*No sediment capacity defined

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number o f Holes per Elev
48.00	8.00	18.00	300.00	0.50	0.0240	804.00	5

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
805.00	20.00	3.00:1	3.00:1	40.00

Pond Results:

801.60 ft
12.82 hrs
CSTRS
1.41 days
93.63 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
798.00	0.000	0.000	0.000		Top of Sed. Storage
798.01	0.001	0.000	0.000		Low hole SPW #1
798.50	0.126	0.023	0.368	3.15	
799.00	0.464	0.161	0.523	3.80	
799.50	0.486	0.399	0.641	5.00	
800.00	0.508	0.647	0.741	4.35	
800.50	0.531	0.907	0.829	4.00	

SEDCAD 4 for Windows

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
801.00	0.554	1,178	0.908	3.80	
801.50	0.578	1.461	0.981	6.10	
801.60	0.583	1.519	0.994	3.70	Peak Stage
802.00	0.602	1.756	1.049		
802.50	0.626	2.063	1.113		
803.00	0.651	2.383	1.173		
803.50	0.676	2.714	1.231		
804.00	0.702	3.059	1.285		Spillway #1
804.50	0.728	3.417	9.754		
805.00	0.754	3.787	9.995		Spillway #2
805.50	0.781	4.171	17.462		
806.00	0.809	4.568	105.988		
806.50	0.836	4.979	205.839		

Detailed Discharge Table

		· · · · · · · · ·	Combined
Elevation	Dorf Dicor (cfr)	Emergency	Total
(ft)	Perf. Riser (cfs)	Spillway (cfs)	Discharge
			(cfs)
798.00	0.000	0.000	0.000
798.01	2.00>0.000	0.000	0.000
798.50	0.368	0.000	0.368
799.00	0.523	0.000	0.523
799.50	0.641	0.000	0.641
800.00	0.741	0.000	0.741
800.50	0.829	0.000	0.829
801.00	0.908	0.000	0.908
801.50	0.981	0.000	0.981
802.00	1.049	0.000	1.049
802.50	1.113	0.000	1.113
803.00	1.173	0.000	1.173
803.50	1.231	0.000	1.231
804.00	1.285	0.000	1.285
804.50	9.754	0.000	9.754
805.00	9.995	0.000	9.995
805.50	10.230	7.232	17.462
806.00	10.460	95.528	105.988
806.50	10.685	195.154	205.839

	Subwatersned Hydrology Detall:											
Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)			
#1	1	13.000	0.114	0.114	0.326	86.000	М	28.60	2.367			
	Σ	13.000						27.58	2.367			

entouched Iludualeaus Datails

Subwatershed Sedimentology Detail:

Stru #	SWS #	Soil K	L (ft)	S (%)	с	P	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/i)
#1	1	0.240	4.00	3.90	0.0500	1.0000	1	2.1	1,215	0.75	0.40
	Σ							2.0	1,180	0.72	0.39

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	4.14	48.68	1,176.00	3.050	0.107
#1	1	Time of Concentration:		·			0.114

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	4.14	48.68	1,176.00	3.050	0.107
#1	1	Muskingum K:					0.114

Pond 2 10yr

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

General Information

Storm Information:

Storm Type:	NRCS Type II		
Design Storm:	10 yr - 24 hr		
Rainfall Depth:	5.500 inches		

Particle Size Distribution:

Size (mm)	Madison
1.4000	100.000%
1.0000	84.600%
0.0630	49.300%
0.0440	42.600%
0.0380	42.600%
0.0040	8.800%
0.0030	5.800%
0.0010	0.000%

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	

Structure Networking:

#1 Pond

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc. (ml/l)	24VW (ml/l)
	In	40.000	48.000	47.40	4.26	3.9	1,233	0.75	0.41
#1	Out	13.000	13.000	1.28	3.60	0.3	280	0.00	0.00

Structure Summary:

.

۱

Particle Size Distribution(s) at Each Structure

Size (mm)	In _	Out
1.4000	100.000%	100.000%
1.0000	85.853%	100.000%
0.0630	50.030%	100.000%
0.0440	43.231%	100.000%
0.0380	43.231%	100.000%
0.0040	8.930%	100.000%
0.0030	5.886%	74.800%
0.0010	0.000%	0.000%

Structure #1:

Structure Detail:

Structure #1 (Pond)

Pond Inputs:

Initial Pool Elev:	798.01 ft
Initial Pool:	0.00 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	20.00 %

*No sediment capacity defined

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
48.00	8.00	18.00	300.00	0.50	0.0240	804.00	5

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
805.00	20.00	3.00:1	3.00:1	40.00

Pond Results:

Peak Elevation:	803.91 ft
H'graph Detention Time:	14.97 hrs
Pond Model:	CSTRS
Dewater Time:	1.86 days
 Trap Efficiency:	92.13 %

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
798.00	0.000	0.000	0.000		Top of Sed. Storage
798.01	0.001	0.000	0.000		Low hole SPW #1
798.50	0.126	0.023	0.368	0.74*	
799.00	0.464	0.161	0.523	3.21*	
799.50	0.486	0.399	0.641	4.48*	
800.00	0.508	0.647	0.741	4.06*	
800.50	0.531	0.907	0.829	3.79*	

SEDCAD 4 for Windows

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
801.00	0.554	1.178	0.908	3.80	
801.50	0.578	1.461	0.981	3.60	
802.00	0.602	1.756	1.049	3.55	
802.50	0.626	2.063	1.113	3.40	
803.00	0.651	2.383	1.173	3.40	
803.50	0.676	2.714	1.231	3.35	
803.91	0.697	2.997	1.276	7.30	Peak Stage
804.00	0.702	3.059	1.285		Spillway #1
804.50	0.728	3.417	9.754		
805.00	0.754	3.787	9.995		Spiliway #2
805.50	0.781	4.171	17.462		
806.00	0.809	4.568	105.988		
806.50	0.836	4.979	205.839		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

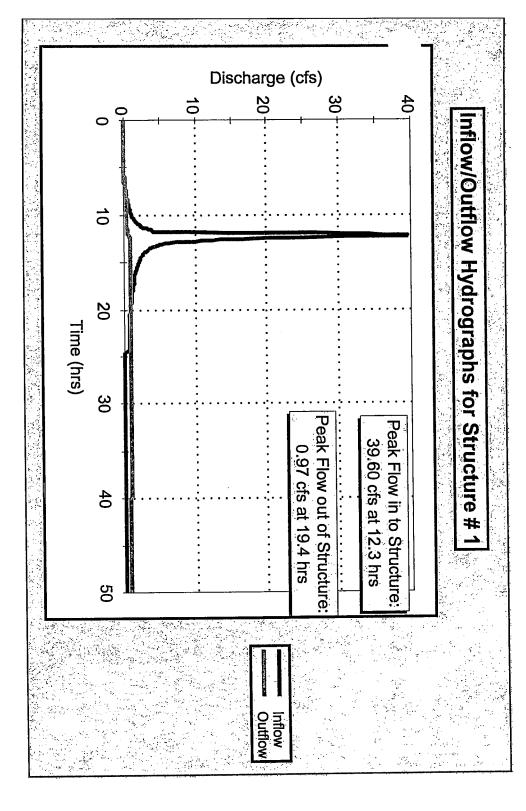
Detailed Discharge Table

	• • •		Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)		Spillway (cfs)	Discharge
		····	(cfs)
798.00	0.000	0.000	0.000
798.01	2.00>0.000	0.000	0.000
798.50	0.368	0.000	0.368
799.00	0.523	0.000	0.523
799.50	0.641	0.000	0.641
800.00	0.741	0.000	0.741
800.50	0.829	0.000	0.829
801.00	0.908	0.000	0.908
801.50	0.981	0.000	0.981
802.00	1.049	0.000	1.049
802.50	1.113	0.000	1.113
803.00	1.173	0.000	1.173
803.50	1.231	0.000	1.231
804.00	1.285 ·	0.000	1.285
804.50	9.754	0.000	9.754
805.00	9.995	0.000	9.995
805.50	10.230	7.232	17.462
806.00	10.460	95.528	105.988
806.50	10.685	195.154	205.839

.

	Subwatersned Hydrology Detall:											
Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)			
#1	1	13.000	0.114	0.114	0.326	86.000	М	48.58	4.261			
	Σ	13.000						47.40	4.261			

watershed Undrelegy Detail


Stru #	SWS #	Soil K	L (ft)	S (%)	С	Р	PS #	Sediment (tons)	Peak Sediment Conc. (mg/l)	Peak Settleable Conc (ml/l)	24VW (ml/l)
#1	1	0.240	4.00	3.90	0.0500	1.0000	1	3.9	1,251	0.77	0.42
	Σ							3.9	1,233	0.75	0.41

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	4.14	48.68	1,176.00	3.050	0.107
#1	1	Time of Concentration:	• • • • • • • • • • • • • • • • • • • •				0.114

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1 1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	4.14	48.68	1,176.00	3.050	0.107
#1	1	Muskingum K:					0.114

Conversiont 1998 -2002 Pamala I Schwah

1

MAY 2008

DIVISION OF MINING 8 SOLID WACTE AS MISCEN INT BUILT

Pond 2 25yr

Davis & Floyd, Inc. 1319 Hwy 72 221 E. Greenwood, SC 29649

Phone: 864-229-5211

•

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	6.600 inches

Particle Size Distribution:

Size (mm)	Madison
1.4000	100.000%
1.0000	84.600%
0.0630	49.300%
0.0440	42.600%
0.0380	42.600%
0.0040	8.800%
0.0030	5.800%
0.0010	0.000%

:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	

Structure Networking:

#1 Pond

1

1

Total Contributing Immediate Peak Total Peak Peak Runoff Sediment Sediment Settleable 24VW Contributing Discharge Area Volume Conc. Conc. Area (tons) (ml/l) (cfs) (ac-ft) (mg/l) (ml/l) (ac) (ac) 0.42 5.0 1,251 0.76 58.83 5**.39** In 13.000 13.000 #1 0.5 275 0.02 0.01 5.79 4.65 Out

Structure Summary:

- L

į

Particle Size Distribution(s) at Each Structure

Size (mm)	În	Out
1.4000	100.000%	100.000%
1.0000	85.853%	100.000%
0.0630	50.030%	100.000%
0.0440	43.231%	100.000%
0.0380	43.231%	100.000%
0.0040	8.930%	83.377%
0.0030	5.886%	54.953%
0.0010	0.000%	0.000%

Structure #1:

J., . .

Structure Detail:

Structure #1 (Pond)

Pond Inputs:

Initial Pool Elev:	798.01 ft
Initial Pool:	0.00 ac-ft
*Sediment Storage:	0.00 ac-ft
Dead Space:	20.00 %

*No sediment capacity defined

Perforated Riser

	Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel B Length (ft)	arrel Slope (%)	Manning's n Si	oillway Elev I (ft)	Number of Holes per Elev
Γ	48.00	8.00	18.00	300.00	0.50	0.0240	804.00	5

Emergency Spillway

Spillway Elev Cr	est Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope V	Vidth (ft)
805.00	20.00	3.00:1	3.00:1	40.00

Pond Results:

Peak Elevation:	804.27 ft
H'graph Detention Time:	12.19 hrs
Pond Model:	CSTRS
Dewater Time:	2.11 days
Trap Efficiency:	89.29 %
	H'graph Detention Time: Pond Model: Dewater Time:

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
798.00	0.000	0.000	0.000		Top of Sed. Storage
798.01	0.001	0.000	0.000		Low hole SPW #1
798.50	0.126	0.023	0.368	0.74*	
799.00	0.464	0.161	0.523	3.21*	
799.50	0.486	0.399	0.641	4.48*	
800.00	0.508	0.647	0.741	4.06*	
800.50	0.531	0.907	0.829	3.79*	

SEDCAD 4 for Windows

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
801.00	0.554	1.178	0.908	3.80	
801.50	0.578	1.461	0.981	3.60	
802.00	0.602	1.756	1.049	3.50	
802.50	0.626	2.063	1.113	3.45	
803.00	0.651	2.383	1.173	3.40	
803.50	0.676	2.714	1.231	3.35	
804.00	0.702	3.059	1.285	7.05	Spillway #1
804.27	0.716	3.249	5.793	6.25	Peak Stage
804.50	0.728	3.417	9.754		
805.00	0.754	3.787	9.995		Spillway #2
805.50	0.781	4.171	17.462		
806.00	0.809	4.568	105.988		
806.50	0.836	4.979	205.839		

*Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

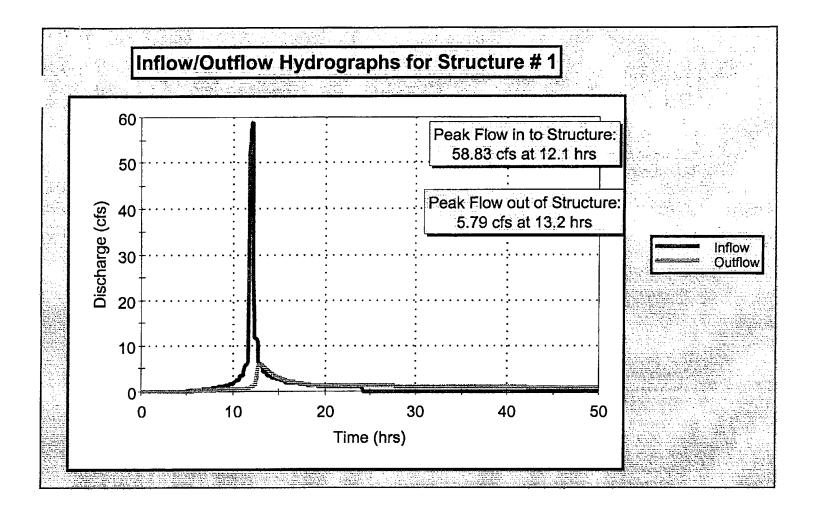
Elevation (ft)	Perf, Riser (cfs)	Emergency Spillway (cfs)	Combined Total Discharge
			(cfs)
798.00	0.000	0.000	0.000
798.01	2.00>0.000	0.000	0.000
798.50	0.368	0.000	0.368
799.00	0.523	0.000	0.523
799.50	0.641	0.000	0.641
800.00	0.741	0.000	0.741
800.50	0.829	0.000	0.829
801.00	0.908	0.000	0.908
801.50	0.981	0.000	0.981
802.00	1.049	0.000	1.049
802.50	1.113	0.000	1.113
803.00	1.173	0.000	1.173
803.50	1.231	0.000	1.231
804.00	1.285	0.000	1.285
804.50	9.754	0.000	9.754
805.00	9.995	0.000	9.995
805.50	10.230	7.232	17.462
806.00	10.460	95.528	105.988
806.50	10.685	195.154	205.839

7

Subwatersned Hydrology Delall:									
Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	13.000	0.114	0.114	0.326	86.000	м	60.07	5.393
	Σ	13.000						58.83	5.393

hustarchad Hydrology Detail

Subwatershed Sedimentology Detail:


Stru #	5WS #	Soil <u>K</u>	L (ft)	S (%)		۲۵ در ایند P مرابع		tra and a dif	Peak Sediment	Settleable	
#1	1	0.240	4.00	3.90	0.0500	1.0000	1	5.1	1,269	0.78	0.42
	Σ							5.0	1,251	0.76	0.42

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	ert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
•• ·		6. Grassed waterway	4.14	48.68	1,176.00	3.050	0.107
#1	1	Time of Concentration:		_			0.114

Subwatershed Muskingum Routing Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	3. Short grass pasture	33.00	12.00	36.36	4.590	0.002
		3. Short grass pasture	12.00	2.00	16.66	2.770	0.001
		3. Short grass pasture	33.00	26.00	78.78	4.590	0.004
		6. Grassed waterway	4.14	48.68	1,176.00	3.050	0.107
#1	1	Muskingum K:					0.114

File.... H:\JOBSODD\11967-00\C\Ponds\New Design\Pond 13 ac.ppw

BMP FIRST FLUSH CALCULATIONS

First Flush Depth = 1.0000 in Drainage Area = 13.000 acres Volume = Flush Depth * Drainage Area First Flush volume = 1.083 ac-ft

Type.... Time vs. Volume Name.... MDRAIN 4 OUT

File.... H:\JOBSODD\11967-00\C\Ponds\New Design\Pond 13 ac.ppw

TIME vs. VOLUME (ac-ft)

Time	l	Output Tir	ne increme	nt = .5000 hrs	
hrs	Time on left	represents	time for	first value in	each row.
.0000	1.089	1.055	1.023	.992	.962
2.5000	.933	.905	.877	.849	.821
5.0000	.793	.765	.737	.710	.682
7.5000	.655	.627	.599	.572	.546
10.0000	.520	.495	.471	.447	.423
12.5000	.400	.378	.355	.332	.310
15.0000	.289	.268	.247	.226	.206
17.5000	.187	.168	.145	.117	.095
20.0000	.078	.064	.052	.043	.036
22.5000	.030	.025	.021	.011	.003
25.0000	.001	.000	.000	.000	.000
27.5000	.000	.000	.000	.000	.000
30.0000	.000				

Greenpointe LF Expansion

Ryan T. Ohmer

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	2 yr - 24 hr
Rainfall Depth:	3.600 inches

Structure Networking:							
Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description	
Null	#1	==>	End	0.000	0.000		

#1 Null

. .

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	58.650	58.650	53.52	6.20

Structure Summary:

Structure Detail:

Structure #1 (Null)

					-					
Stru #	SWS #	SWS Area	Time of Conc	Musk K Musk X		Curve	UHS	Peak Discharge	Runoff Volume	
#	#	(ac)	(hrs)	(hrs)		Number	Number		(cfs)	(ac-ft)
#1	1	24.850	0.252	0.252	0.355	77.000	М	24.24	2.502	
	2	33.800	0.326	0.326	0.348	79.000	М	33.39	3.702	
	Σ	58.650						53.52	6.203	

Subwatershed Hydrology Detail:

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	2.00	38.00	1,900.00	4.240	0.124
		9. Small streams flowing bankfull	0.21	4.00	1,904.76	4.120	0.128
#1	1	Time of Concentration:					0.252
#1	2	3. Short grass pasture	6.55	36.00	549.61	2.040	0.074
		8. Large gullies, diversions, and low flowing streams	2.00	38.00	1,900.00	4.240	0.124
		9. Small streams flowing bankfull	0.21	4.00	1,904.76	4.120	0.128
#1	2	Time of Concentration:					0.326

Greenpointe LF Expansion

Ryan T. Ohmer

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	10 yr - 24 hr
Rainfall Depth:	5.500 inches

Structure Metworking,							
Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description	
Null	#1	==>	End	0.000	0.000		

#1 Null

Structure Networking:

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	58.650	58.650	108.10	12.35

Structure Summary:

Structure Detail:

Structure #1 (Null)

					-				
Stru #	SWS #	SWS Area	Time of Conc	Musk K	Musk X	Curve	UHS	Peak Discharge	Runoff Volume
π	#	(ac)	(hrs)	(hrs)		Number		(cfs)	(ac-ft)
#1	1	24.850	0.252	0.252	0.355	77.000	М	49.26	5.064
	2	33.800	0.326	0.326	0.348	79.000	М	66.03	7.287
	Σ	58.650						108.10	12.351

Subwatershed Hydrology Detail:

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	2.00	38.00	1,900.00	4.240	0.124
		9. Small streams flowing bankfull	0.21	4.00	1,904.76	4.120	0.128
#1	1	Time of Concentration:					0.252
#1	2	3. Short grass pasture	6.55	36.00	549.61	2.040	0.074
		8. Large gullies, diversions, and low flowing streams	2.00	38.00	1,900.00	4.240	0.124
		9. Small streams flowing bankfull	0.21	4.00	1,904.76	4.120	0.128
#1	2	Time of Concentration:					0.326

Greenpointe LF Expansion

Ryan T. Ohmer

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	6.400 inches

		501	ucu			ling,
Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	

#1 Null

Structure Networking:

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	58.650	58.650	135.11	15.46

Structure Summary:

Structure Detail:

Structure #1 (Null)

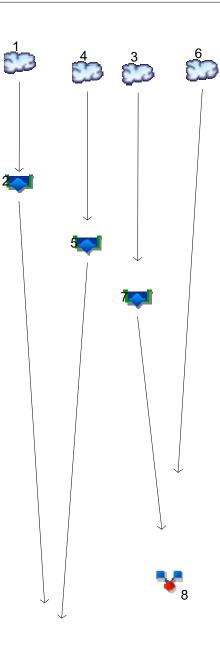
					-				
Stru #	SWS #	SWS Area	Time of Conc	Musk K	Musk X	Curve	UHS	Peak Discharge	Runoff Volume
#	#	(ac)	(hrs)	(hrs)		Number		(cfs)	(ac-ft)
#1	1	24.850	0.252	0.252	0.355	77.000	М	61.65	6.367
	2	33.800	0.326	0.326	0.348	79.000	М	82.33	9.093
	Σ	58.650						135.11	15.461

Subwatershed Hydrology Detail:

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	2.00	38.00	1,900.00	4.240	0.124
		9. Small streams flowing bankfull	0.21	4.00	1,904.76	4.120	0.128
#1	1	Time of Concentration:					0.252
#1	2	3. Short grass pasture	6.55	36.00	549.61	2.040	0.074
		8. Large gullies, diversions, and low flowing streams	2.00	38.00	1,900.00	4.240	0.124
		9. Small streams flowing bankfull	0.21	4.00	1,904.76	4.120	0.128
#1	2	Time of Concentration:					0.326

Greenpointe Landfill C&D Expansion


APPENDIX D Post-Development – HydroCAD

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

1

9

Legend

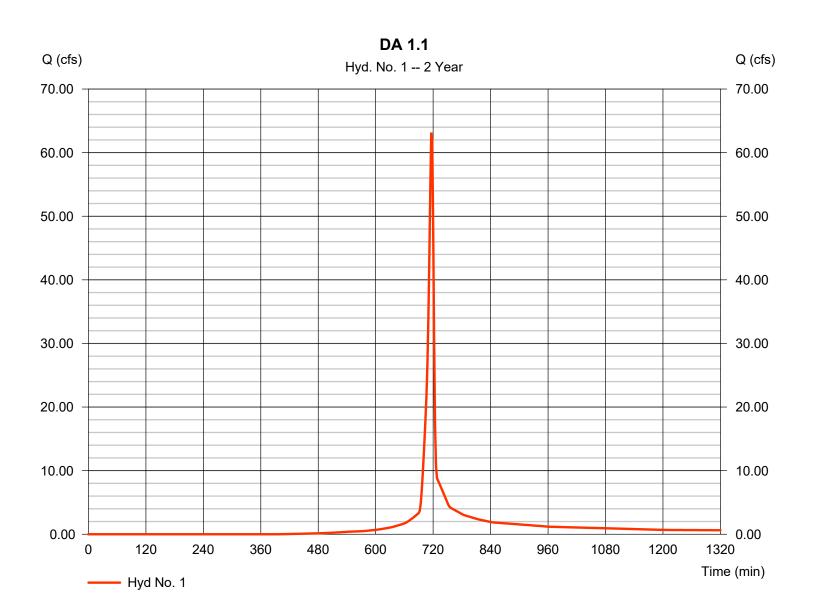
<u>Hyd.</u>	<u>Origin</u>	Description
1	SCS Runoff	DA 1.1
2	Reservoir	Thru Detention Basin#1
3	SCS Runoff	DA 2.1
4	SCS Runoff	DA 1.2
5	Reservoir	Thru Detention Basin#2
6	SCS Runoff	DA BYPASS 2.1
7	Reservoir	Thru Detention Basin#3
8	Combine	Outfall 2
9	Combine	Outfall 1

Project: Post-Development Hydraflow.gpw

Thursday, 06 / 25 / 2020

Hydrograph Return Period Recap Hydraffow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Io.type (origin)1SCS Runoff2Reservoir3SCS Runoff4SCS Runoff5Reservoir6SCS Runoff7Reservoir8Combine9Combine	hyd(s)	1-yr	2-yr 63.15 1.068 82.22 100.56 1.870 9.445 1.575 10.95 2.938	3-yr	5-yr	10-yr 110.65 1.188 146.12 176.19 2.051 31.88 6.338 33.61 3.541	25-yr 138.14 2.475 183.24 219.96 3.631 47.26 18.35 61.80 7.168	50-yr	100-yr 207.53 37.79 277.06 330.44 36.40 91.39 159.03 246.41 72.26	Description DA 1.1 Thru Detention Basin#1 DA 2.1 DA 1.2 Thru Detention Basin#2 DA BYPASS 2.1 Thru Detention Basin#3 Outfall 2 Outfall 1
 Reservoir SCS Runoff SCS Runoff SCS Runoff Reservoir SCS Runoff Reservoir Combine 	1 4 3 6, 7	 	1.068 82.22 100.56 1.870 9.445 1.575 10.95	 	 	1.188 146.12 176.19 2.051 31.88 6.338 33.61	2.475 183.24 219.96 3.631 47.26 18.35 61.80	 	37.79 277.06 330.44 36.40 91.39 159.03 246.41	Thru Detention Basin#1 DA 2.1 DA 1.2 Thru Detention Basin#2 DA BYPASS 2.1 Thru Detention Basin#3 Outfall 2
 3 SCS Runoff 4 SCS Runoff 5 Reservoir 6 SCS Runoff 7 Reservoir 8 Combine 	 4 3 6, 7	 	82.22 100.56 1.870 9.445 1.575 10.95	 	 	146.12 176.19 2.051 31.88 6.338 33.61	183.24 219.96 3.631 47.26 18.35 61.80	 	277.06 330.44 36.40 91.39 159.03 246.41	DA 2.1 DA 1.2 Thru Detention Basin#2 DA BYPASS 2.1 Thru Detention Basin#3 Outfall 2
 SCS Runoff Reservoir SCS Runoff Reservoir Reservoir Combine 	4 3 6, 7	 	100.56 1.870 9.445 1.575 10.95	 	 	176.19 2.051 31.88 6.338 33.61	219.96 3.631 47.26 18.35 61.80	 	330.44 36.40 91.39 159.03 246.41	DA 1.2 Thru Detention Basin#2 DA BYPASS 2.1 Thru Detention Basin#3 Outfall 2
 Reservoir SCS Runoff Reservoir Combine 	4 3 6, 7		1.870 9.445 1.575 10.95	 	 	2.051 31.88 6.338 33.61	3.631 47.26 18.35 61.80		36.40 91.39 159.03 246.41	Thru Detention Basin#2 DA BYPASS 2.1 Thru Detention Basin#3 Outfall 2
6 SCS Runoff 7 Reservoir 8 Combine	 3 6, 7		9.445 1.575 10.95			31.88 6.338 33.61	47.26 18.35 61.80		91.39 159.03 246.41	DA BYPASS 2.1 Thru Detention Basin#3 Outfall 2
7 Reservoir 8 Combine	3 6, 7		1.575 10.95			6.338 33.61	18.35 61.80		159.03 246.41	Thru Detention Basin#3 Outfall 2
8 Combine	6, 7		10.95			33.61	61.80		246.41	Outfall 2
9 Combine	2, 5,		2.938			3.541	7.168		72.26	Outfall 1

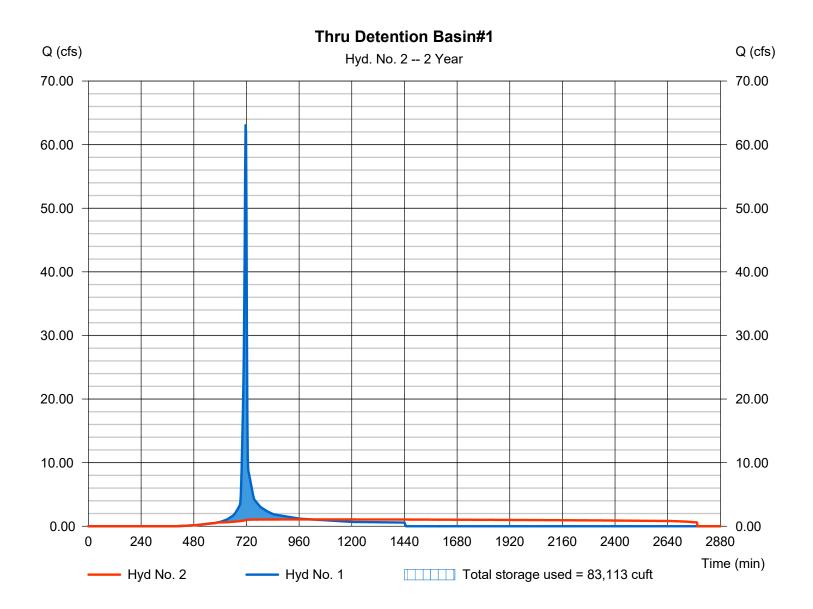

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

DA 1.1

Hydrograph type	= SCS Runoff	Peak discharge	= 63.15 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 129,060 cuft
Drainage area	= 17.340 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

Thru Detention Basin#1

Hydrograph type	= Reservoir	Peak discharge	= 1.068 cfs
Storm frequency	= 2 yrs	Time to peak	= 1018 min
Time interval	= 2 min	Hyd. volume	= 129,090 cuft
Inflow hyd. No.	= 1 - DA 1.1	Max. Elevation	= 807.19 ft
Reservoir name	= Detention Basin #1	Max. Storage	= 83,113 cuft
Reservoir name	= Detention Basin #1	Max. Storage	= 83,113 cuft

Storage Indication method used.

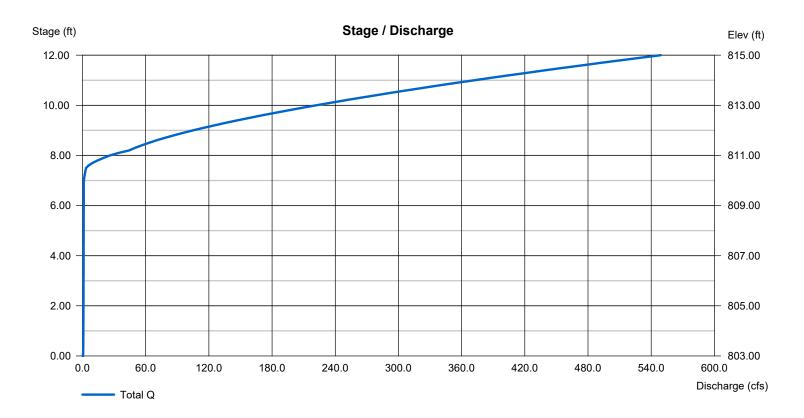
5

Pond Report

Pond No. 1 - Detention Basin #1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 803.00 ft

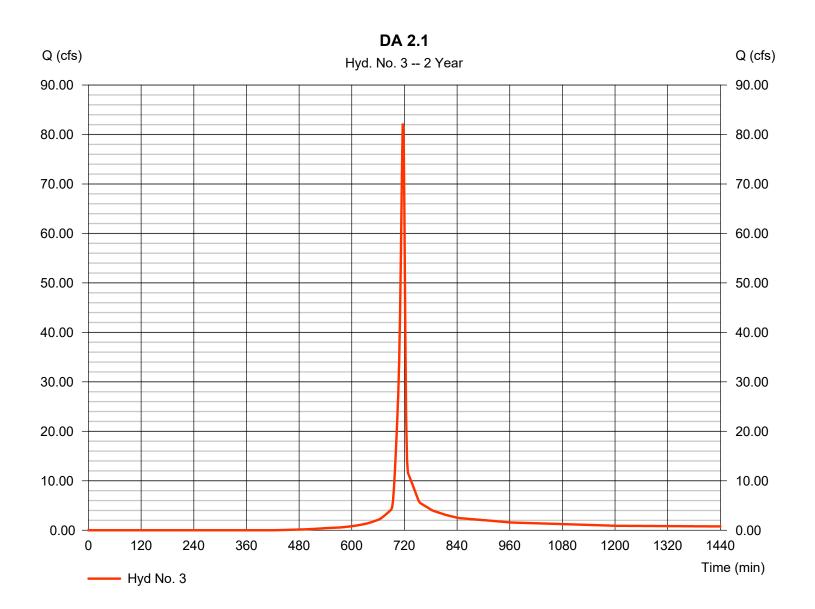

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	803.00	00	0	0
0.01	803.01	100	0	0
1.00	804.00	13,933	5,020	5,020
2.00	805.00	20,159	16,949	21,969
3.00	806.00	28,637	24,272	46,241
4.00	807.00	32,348	30,471	76,712
5.00	808.00	36,240	34,272	110,984
6.00	809.00	39,890	38,047	149,030
7.00	810.00	43,939	41,894	190,924
8.00	811.00	46,647	45,282	236,206
9.00	812.00	50,386	48,500	284,706
10.00	813.00	54,240	52,296	337,002
11.00	814.00	58,612	56,406	393,408
12.00	815.00	61,880	60,233	453,640

Culvert / Orifice Structures

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in) = 24.00 3.00 0.00 0.00 Crest Len (ft) = 16.50 24.00 1.50 0.00 811.00 = 24.00 3.00 0.00 0.00 Crest El. (ft) = 810.50 809.92 0.00 Span (in) No. Barrels = 1 1 0 0 Weir Coeff. = 3.33 2.60 3.33 3.33 = 803.00 803.00 0.00 0.00 Weir Type = 1 Broad Invert El. (ft) Rect ---= 100.00 0.00 0.00 Length (ft) 0.00 Multi-Stage = Yes No Yes No = 1.00 0.00 Slope (%) 0.00 n/a N-Value = .013 .013 .013 n/a 0.60 Orifice Coeff. = 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Multi-Stage = n/a Yes No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

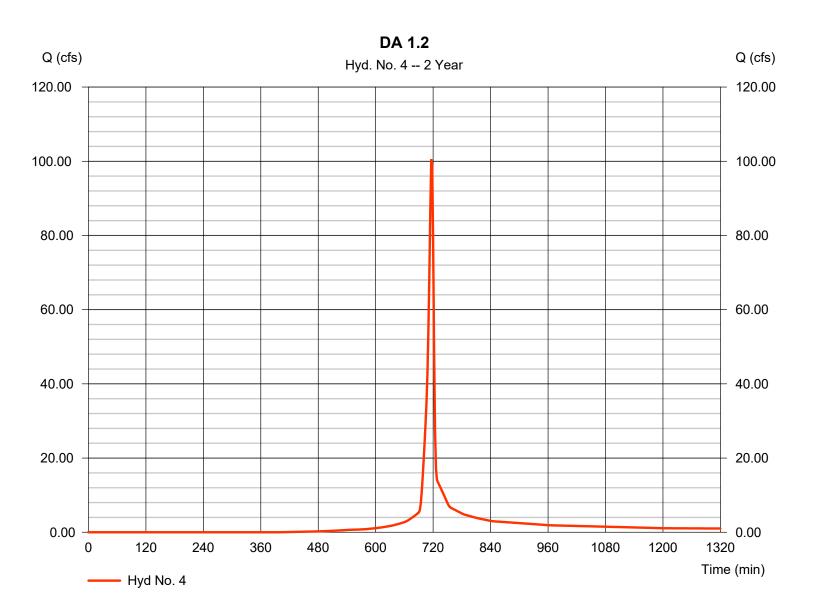

Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

DA 2.1

Hydrograph type	= SCS Runoff	Peak discharge	= 82.22 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 167,383 cuft
Drainage area	= 23.380 ac	Curve number	= 85
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



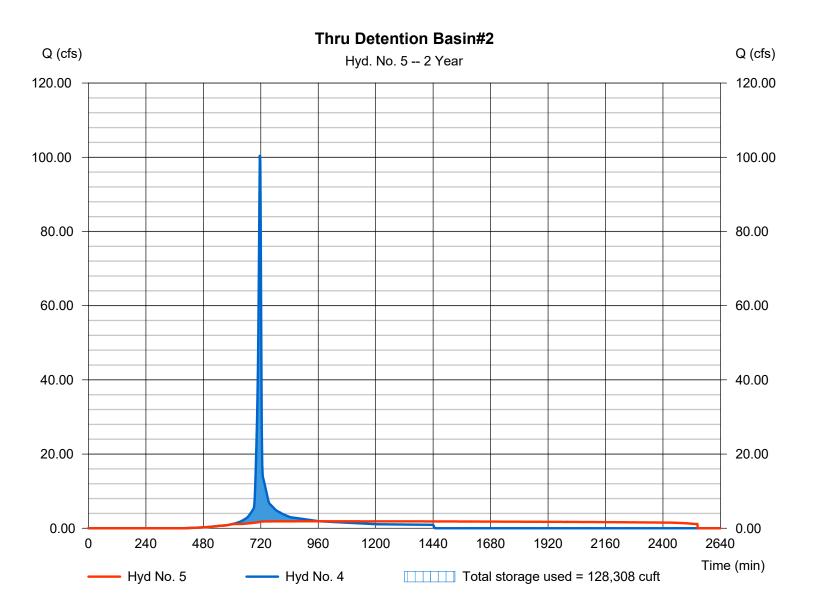
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

DA 1.2

Hydrograph type	= SCS Runoff	Peak discharge	= 100.56 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 205,499 cuft
Drainage area	= 27.610 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

8


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

Thru Detention Basin#2

Hydrograph type	= Reservoir	Peak discharge	= 1.870 cfs
Storm frequency	= 2 yrs	Time to peak	= 966 min
Time interval	= 2 min	Hyd. volume	= 205,540 cuft
Inflow hyd. No.	= 4 - DA 1.2	Max. Elevation	= 802.40 ft
Reservoir name	= Detention Basin #2	Max. Storage	= 128,308 cuft

Storage Indication method used.

9

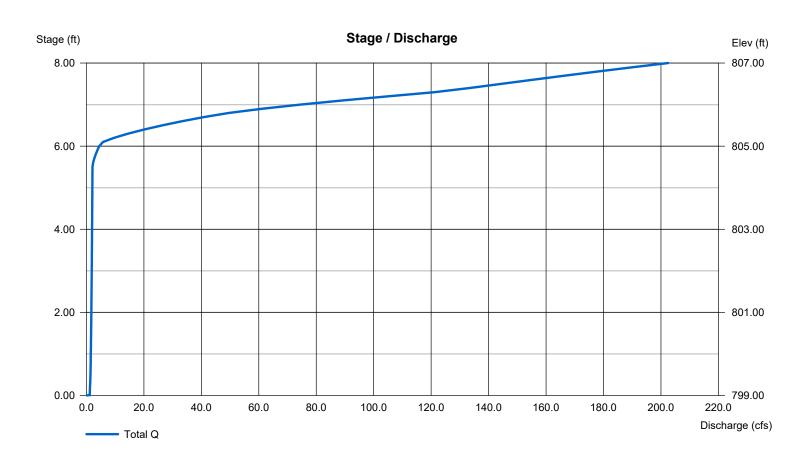
Pond Report

Pond No. 3 - Detention Basin #2

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 799.00 ft

Stage / Storage Table

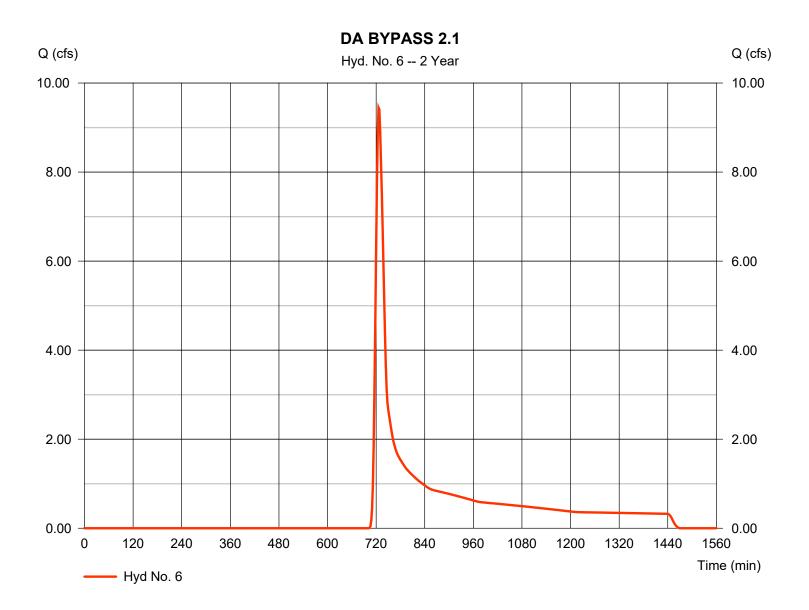

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	799.00	00	0	0
0.01	799.01	100	0	0
1.00	800.00	23,963	8,451	8,451
2.00	801.00	44,503	33,704	42,155
3.00	802.00	70,732	57,108	99,263
4.00	803.00	76,218	73,451	172,713
5.00	804.00	81,851	79,010	251,723
6.00	805.00	87,605	84,703	336,427
7.00	806.00	93,480	90,518	426,944
8.00	807.00	99,469	96,449	523,393

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 42.00	4.00	0.00	0.00	Crest Len (ft)	= 16.00	25.00	2.00	0.00
Span (in)	= 42.00	4.00	0.00	0.00	Crest El. (ft)	= 805.00	805.75	804.50	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 799.00	799.00	0.00	0.00	Weir Type	= 1	Broad	Rect	
Length (ft)	= 100.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	Yes	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

DA BYPASS 2.1

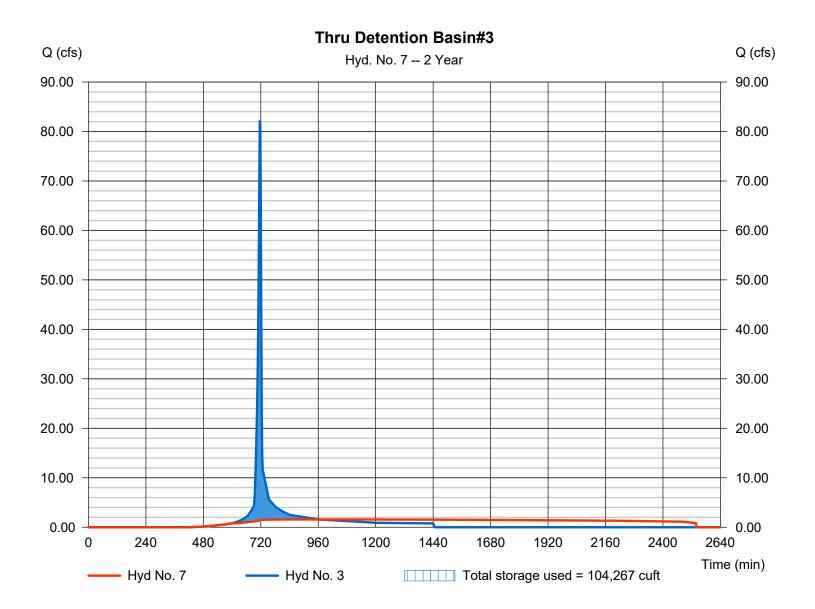
Hydrograph type	= SCS Runoff	Peak discharge	= 9.445 cfs
Storm frequency	= 2 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 39,077 cuft
Drainage area	= 17.410 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.40 min
Total precip.	= 3.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

DA BYPASS 2.1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 100.0 = 3.60 = 5.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14.03	+	0.00	+	0.00	=	14.03
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 562.00 = 3.02 = Unpaved =2.80	I	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.34	+	0.00	+	0.00	=	3.34
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							17.40 min


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

Thru Detention Basin#3

= Reservoir	Peak discharge	= 1.575 cfs
= 2 yrs	Time to peak	= 962 min
= 2 min	Hyd. volume	= 167,392 cuft
= 3 - DA 2.1	Max. Elevation	= 806.09 ft
= Detention Basin #3	Max. Storage	= 104,267 cuft
	= 2 yrs = 2 min = 3 - DA 2.1	= 2 yrsTime to peak= 2 minHyd. volume= 3 - DA 2.1Max. Elevation

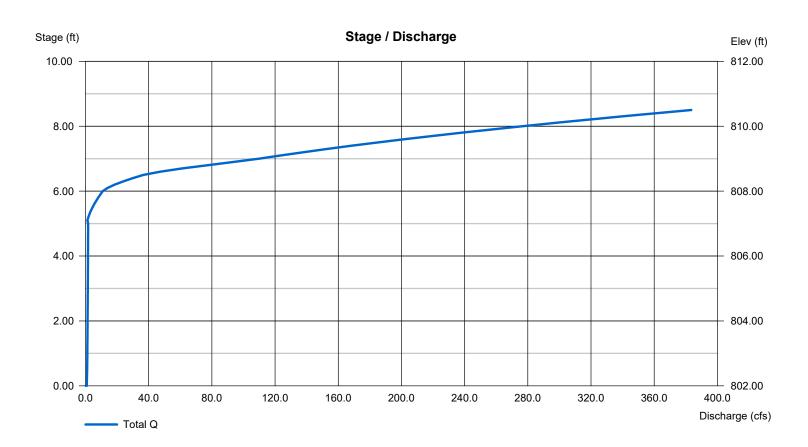
Storage Indication method used.

Pond Report

Pond No. 7 - Detention Basin #3

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 802.00 ft


Stage / Storage Table

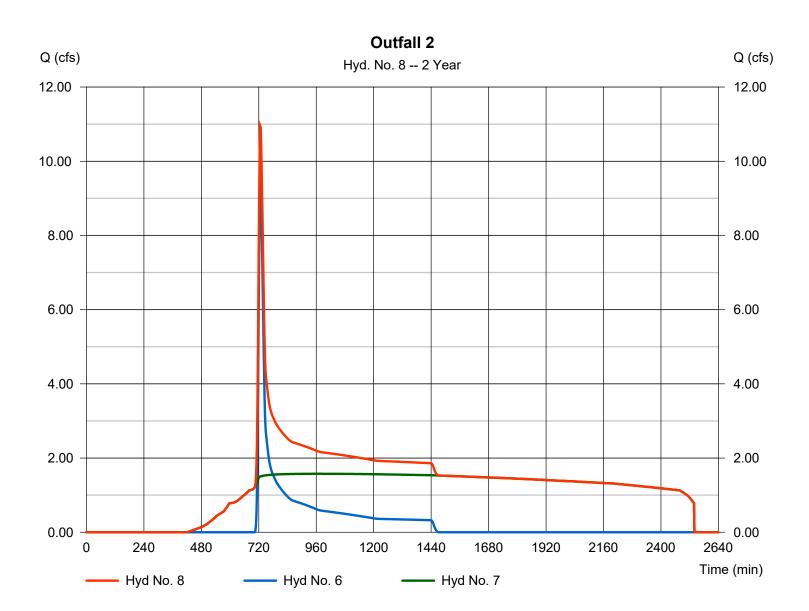
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	802.00	00	0	0
0.01	802.10	100	0	0
1.00	803.00	10,959	3,995	3,995
2.00	804.00	30,577	19,945	23,940
3.00	805.00	39,703	35,037	58,978
4.00	806.00	42,916	41,295	100,272
5.00	807.00	46,186	44,537	144,809
6.00	808.00	49,513	47,835	192,644
7.00	809.00	52,896	51,190	243,834
8.00	810.00	56,335	54,601	298,434
8.50	810.50	58,076	28,599	327,033

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	4.00	0.00	0.00	Crest Len (ft)	= 15.00	40.00	3.00	0.00
Span (in)	= 36.00	4.00	0.00	0.00	Crest El. (ft)	= 808.00	808.50	807.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert EI. (ft)	= 802.00	802.00	0.00	0.00	Weir Type	= 1	Broad	Rect	
Length (ft)	= 92.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	Yes	No
Slope (%)	= 0.54	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

14

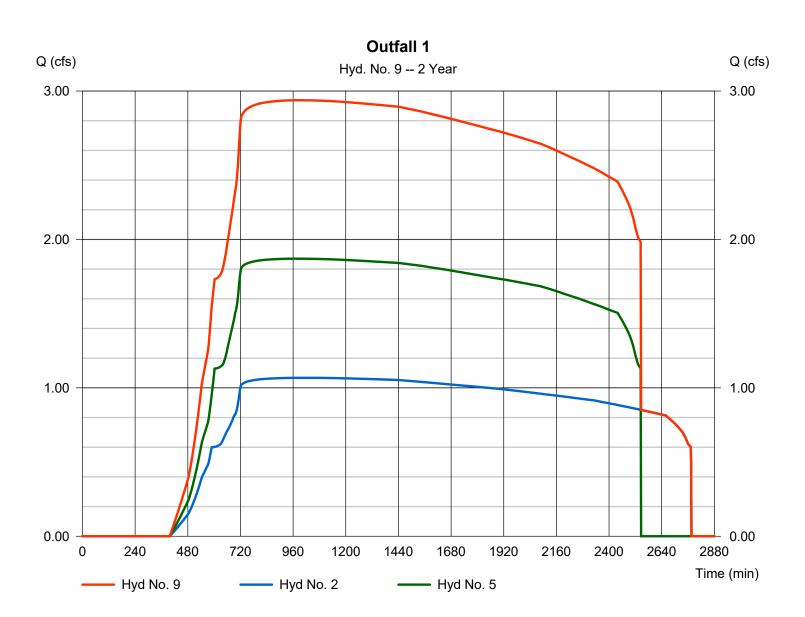

Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

Outfall 2

Storm frequency = Time interval =	Combine 2 yrs 2 min 6, 7	Time to peak Hyd. volume	= 10.95 cfs = 726 min = 206,469 cuft = 17.410 ac
innow nyus.	0, 1		- 17.410 40



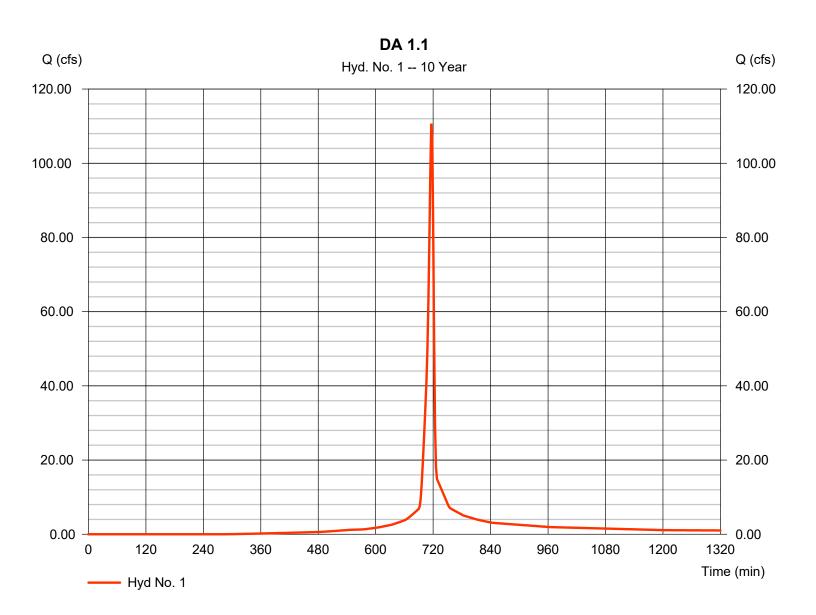
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

Outfall 1

Hydrograph type	= Combine	Peak discharge	= 2.938 cfs
Storm frequency	= 2 yrs	Time to peak	= 986 min
Time interval	= 2 min	Hyd. volume	= 334,630 cuft
Inflow hyds.	= 2, 5	Contrib. drain. area	= 0.000 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	110.65	2	716	232,270				DA 1.1
2	Reservoir	1.188	2	1178	232,271	1	809.48	169,351	Thru Detention Basin#1
3	SCS Runoff	146.12	2	716	304,966				DA 2.1
4	SCS Runoff	176.19	2	716	369,837				DA 1.2
5	Reservoir	2.051	2	1150	369,880	4	804.13	263,073	Thru Detention Basin#2
6	SCS Runoff	31.88	2	726	106,094				DA BYPASS 2.1
7	Reservoir	6.338	2	790	305,007	3	807.66	176,611	Thru Detention Basin#3
8	Combine	33.61	2	726	411,102	6, 7			Outfall 2
Pos	st-Developme	ent Hydraf	low.gpw		Return F	Period: 10 Y	/ear	Thursday, (06 / 25 / 2020

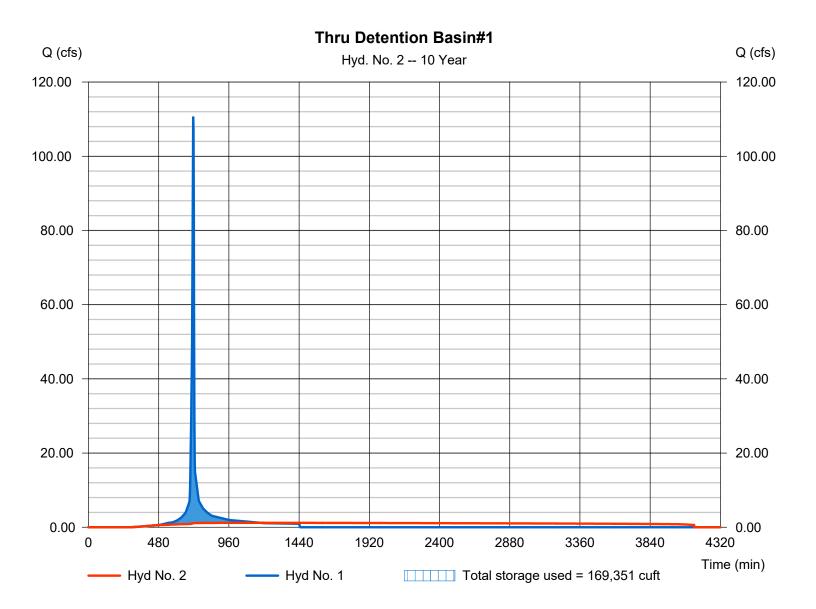
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

DA 1.1

Hydrograph type	= SCS Runoff	Peak discharge	= 110.65 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 232,270 cuft
Drainage area	= 17.340 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

18

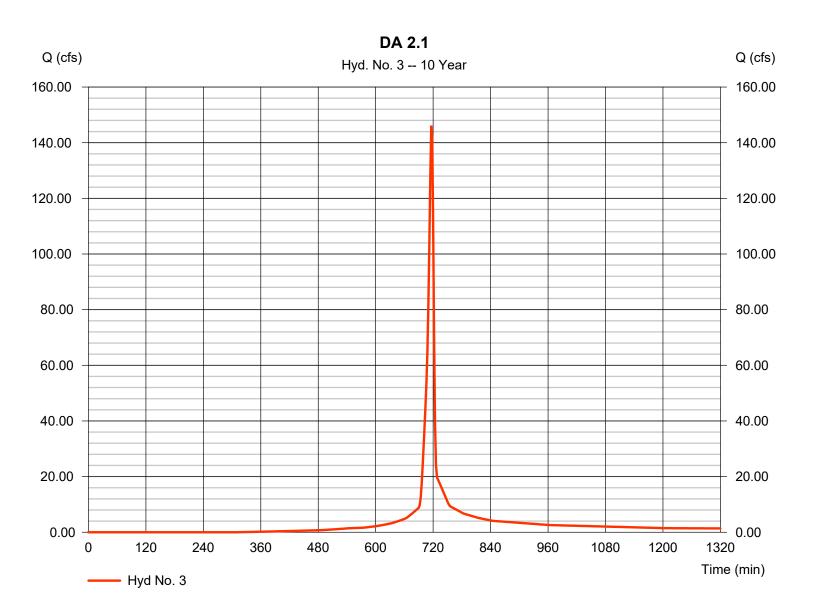

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

Thru Detention Basin#1

Hydrograph type	= Reservoir	Peak discharge	= 1.188 cfs
Storm frequency	= 10 yrs	Time to peak	= 1178 min
Time interval	= 2 min	Hyd. volume	= 232,271 cuft
Inflow hyd. No.	= 1 - DA 1.1	Max. Elevation	= 809.48 ft
Reservoir name	= Detention Basin #1	Max. Storage	= 169,351 cuft

Storage Indication method used.

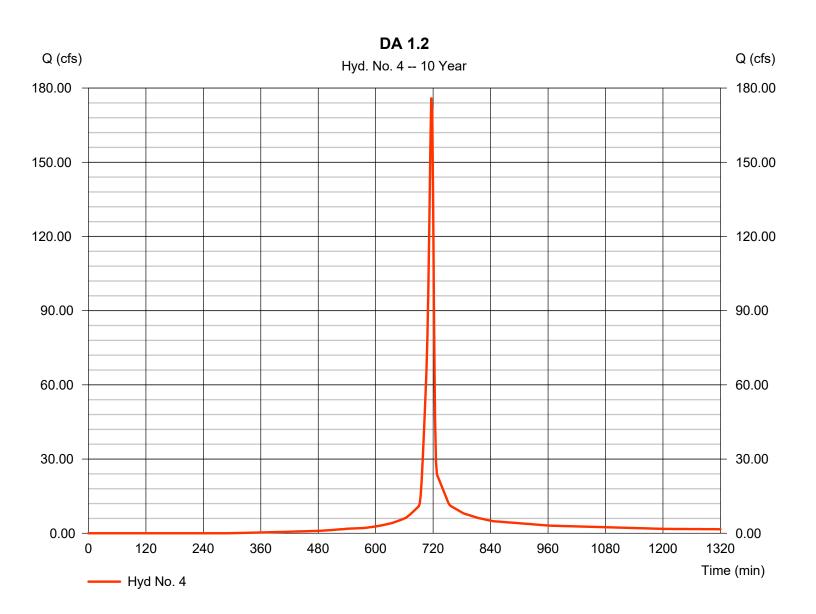

19

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

DA 2.1

Hydrograph type	= SCS Runoff	Peak discharge	= 146.12 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 304,966 cuft
Drainage area	= 23.380 ac	Curve number	= 85
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

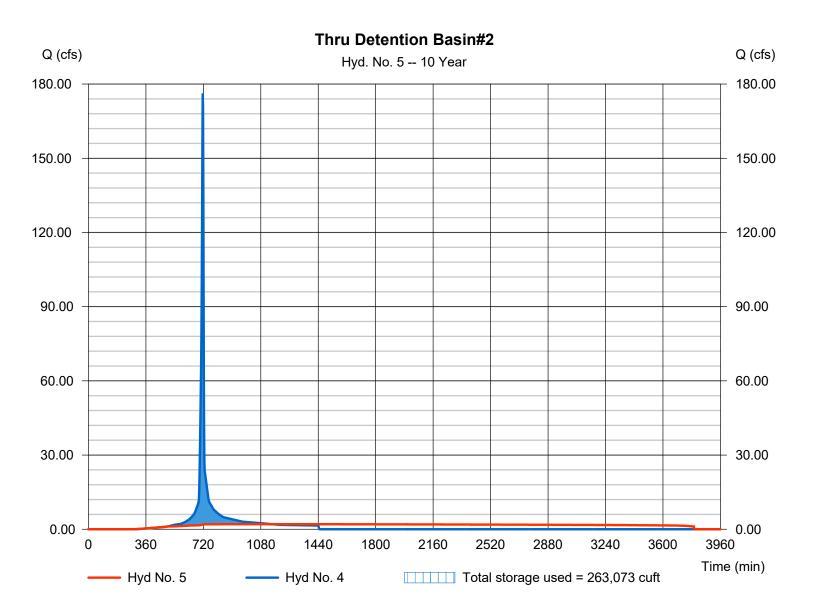


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

DA 1.2

Hydrograph type	= SCS Runoff	Peak discharge	= 176.19 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 369,837 cuft
Drainage area	= 27.610 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

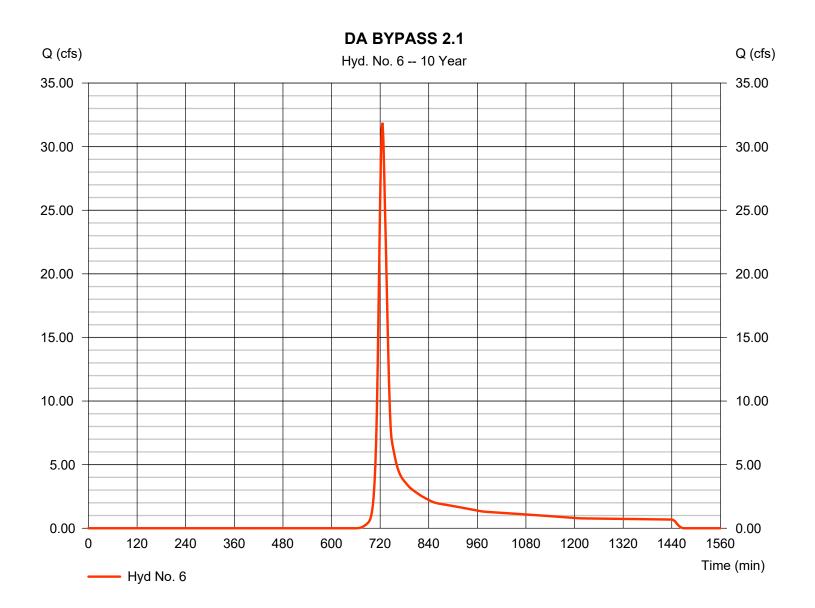

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

Thru Detention Basin#2

ervoir Peak dis	charge = 2.051 cfs
rs Time to p	beak = 1150 min
n Hyd. volu	ume = 369,880 cuft
DA 1.2 Max. Ele	evation = 804.13 ft
ention Basin #2 Max. Sto	orage = 263,073 cuft
	rs Time to p n Hyd. volu DA 1.2 Max. Ele

Storage Indication method used.

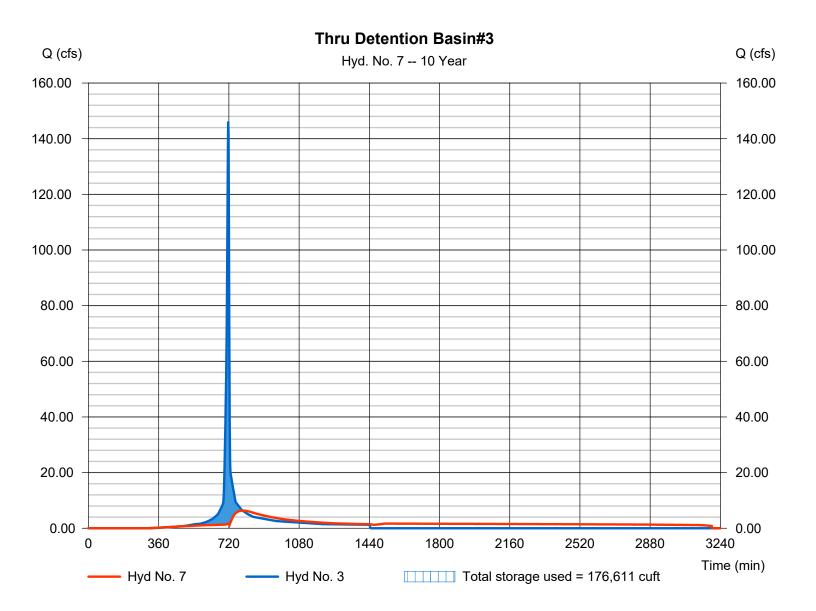

22

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

DA BYPASS 2.1

Hydrograph type	= SCS Runoff	Peak discharge	= 31.88 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 106,094 cuft
Drainage area	= 17.410 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.40 min
Total precip.	= 5.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

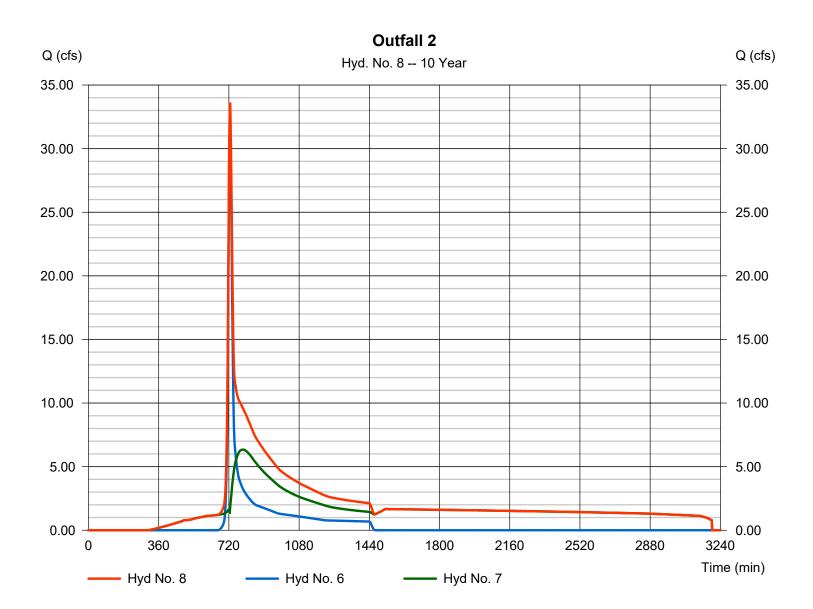

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

Thru Detention Basin#3

Hydrograph type	= Reservoir	Peak discharge	= 6.338 cfs
Storm frequency	= 10 yrs	Time to peak	= 790 min
Time interval	= 2 min	Hyd. volume	= 305,007 cuft
Inflow hyd. No.	= 3 - DA 2.1	Max. Elevation	= 807.66 ft
Reservoir name	= Detention Basin #3	Max. Storage	= 176,611 cuft

Storage Indication method used.

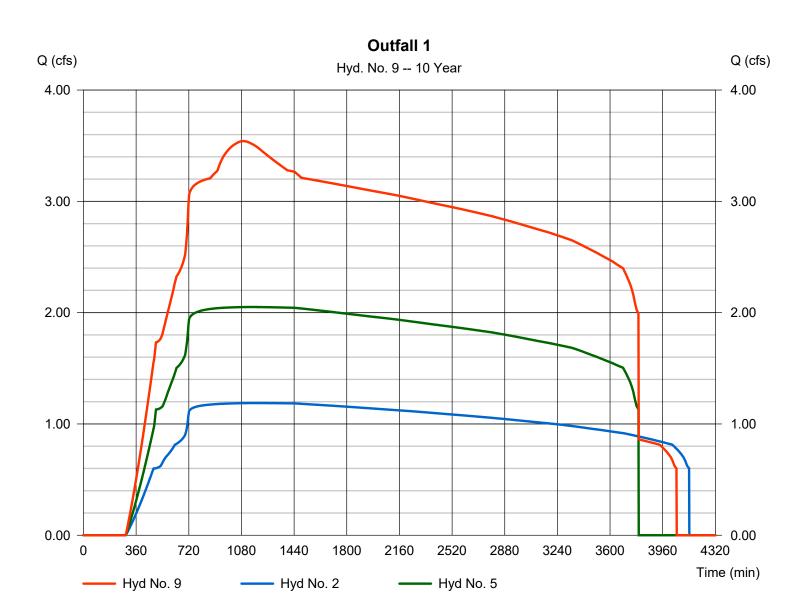

24

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

Outfall 2

Hydrograph type	= Combine	Peak discharge	= 33.61 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 411,102 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 17.410 ac
millow nyus.	- 0, 7	Contrib. Grain. area	- 17.410 ac

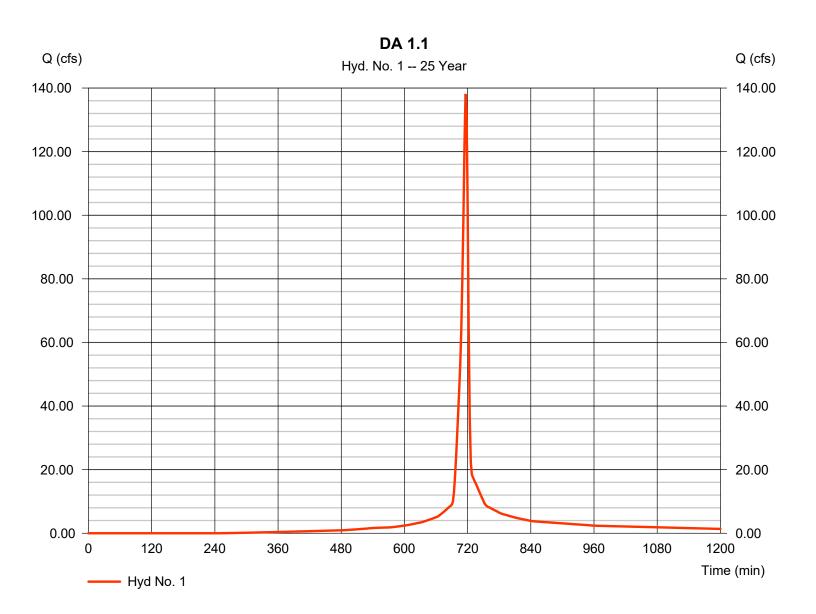


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

Outfall 1

Storm frequency Time interval	= Combine = 10 yrs = 2 min = 2, 5	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 3.541 cfs = 1092 min = 602,168 cuft = 0.000 ac
innew nyas.	- 2, 9		- 0.000 de

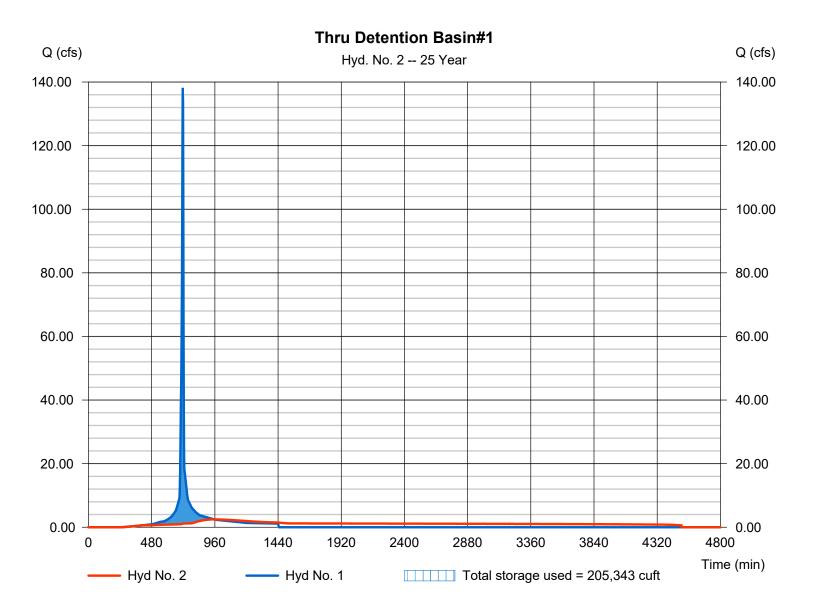

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

	ograph ription
2 Reservoir 2.475 2 954 294,007 1 810.32 205,343 Thru Detention 3 SCS Runoff 183.24 2 716 387,566 DA 2.1 4 SCS Runoff 219.96 2 716 468,098 DA 1.2 5 Reservoir 3.631 2 982 468,118 4 804.87 325,781 Thru Detention 6 SCS Runoff 47.26 2 726 152,760 DA BYPASS 2. 7 Reservoir 18.35 2 740 387,585 3 808.20 202,737 Thru Detention 8 Combine 61.80 2 726 540,345 6, 7 Outfall 2	
3 SCS Runoff 183.24 2 716 387,566 DA 2.1 4 SCS Runoff 219.96 2 716 468,098 DA 1.2 5 Reservoir 3.631 2 982 468,118 4 804.87 325,781 Thru Detention 6 SCS Runoff 47.26 2 726 152,760 DA BYPASS 2. 7 Reservoir 18.35 2 740 387,585 3 808.20 202,737 Thru Detention 8 Combine 61.80 2 726 540,345 6, 7 Outfall 2	
4 SCS Runoff 219.96 2 716 468,098 DA 1.2 5 Reservoir 3.631 2 982 468,118 4 804.87 325,781 Thru Detention 6 SCS Runoff 47.26 2 726 152,760 DA BYPASS 2. 7 Reservoir 18.35 2 740 387,585 3 808.20 202,737 Thru Detention 8 Combine 61.80 2 726 540,345 6, 7 Outfall 2	Basin#1
5 Reservoir 3.631 2 982 468,118 4 804.87 325,781 Thru Detention 6 SCS Runoff 47.26 2 726 152,760 DA BYPASS 2. 7 Reservoir 18.35 2 740 387,585 3 808.20 202,737 Thru Detention 8 Combine 61.80 2 726 540,345 6, 7 Outfall 2	
6 SCS Runoff 47.26 2 726 152,760 DA BYPASS 2. 7 Reservoir 18.35 2 740 387,585 3 808.20 202,737 Thru Detention 8 Combine 61.80 2 726 540,345 6, 7 Outfall 2	
7 Reservoir 18.35 2 740 387,585 3 808.20 202,737 Thru Detention 8 Combine 61.80 2 726 540,345 6, 7 Outfall 2	Basin#2
8 Combine 61.80 2 726 540,345 6, 7 Outfall 2	1
	Basin#3
9 Combine 7.168 2 908 762,119 2, 5, Outfall 1	
Post-Development Hydraflow.gpw Return Period: 25 Year Thursday, 06 / 25 / 2020	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

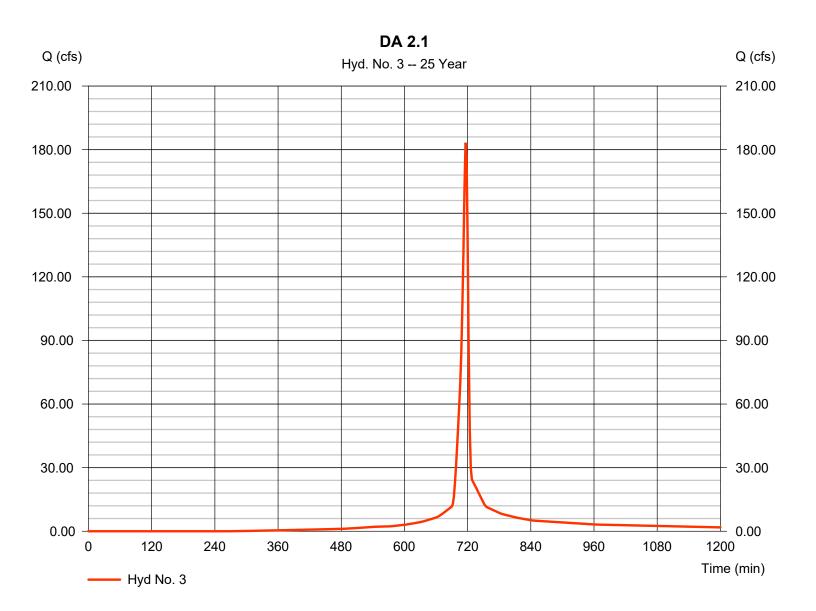
Hydrograph type	= SCS Runoff	Peak discharge	= 138.14 cfs
Storm frequency	= 25 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 293,981 cuft
Drainage area	= 17.340 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

Thru Detention Basin#1

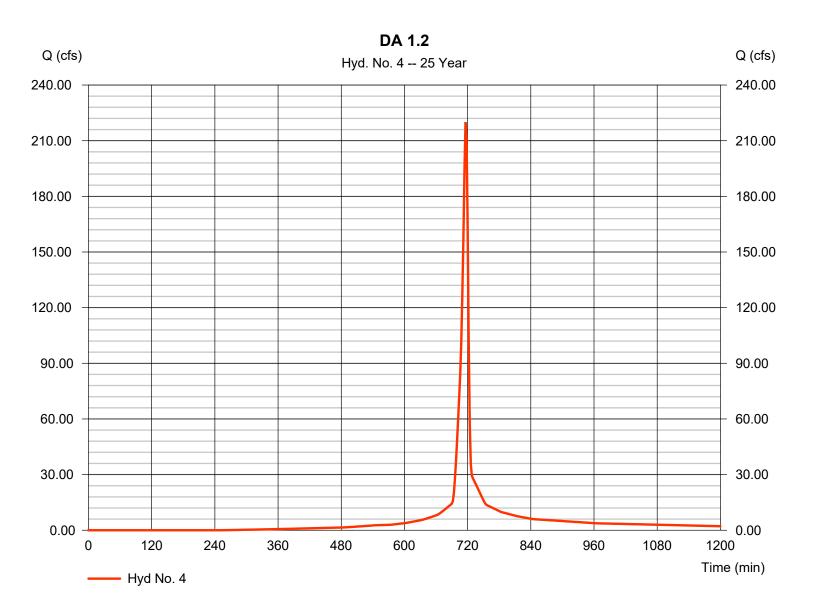
= Reservoir	Peak discharge	= 2.475 cfs
= 25 yrs	Time to peak	= 954 min
= 2 min	Hyd. volume	= 294,007 cuft
= 1 - DA 1.1	Max. Elevation	= 810.32 ft
= Detention Basin #1	Max. Storage	= 205,343 cuft
	= 25 yrs = 2 min = 1 - DA 1.1	= 25 yrsTime to peak= 2 minHyd. volume= 1 - DA 1.1Max. Elevation


Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 183.24 cfs
Storm frequency	= 25 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 387,566 cuft
Drainage area	= 23.380 ac	Curve number	= 85
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

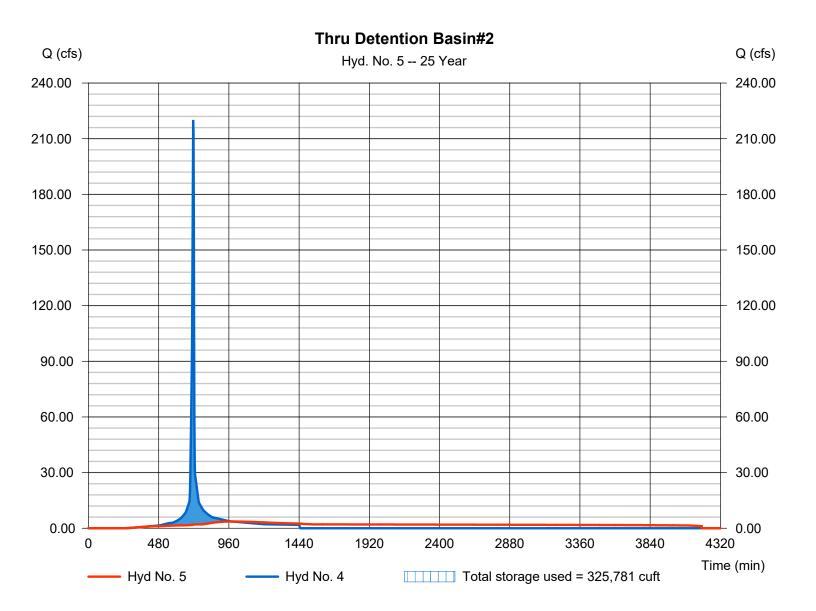


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

DA 1.2

Hydrograph type	= SCS Runoff	Peak discharge	= 219.96 cfs
Storm frequency	= 25 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 468,098 cuft
Drainage area	= 27.610 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

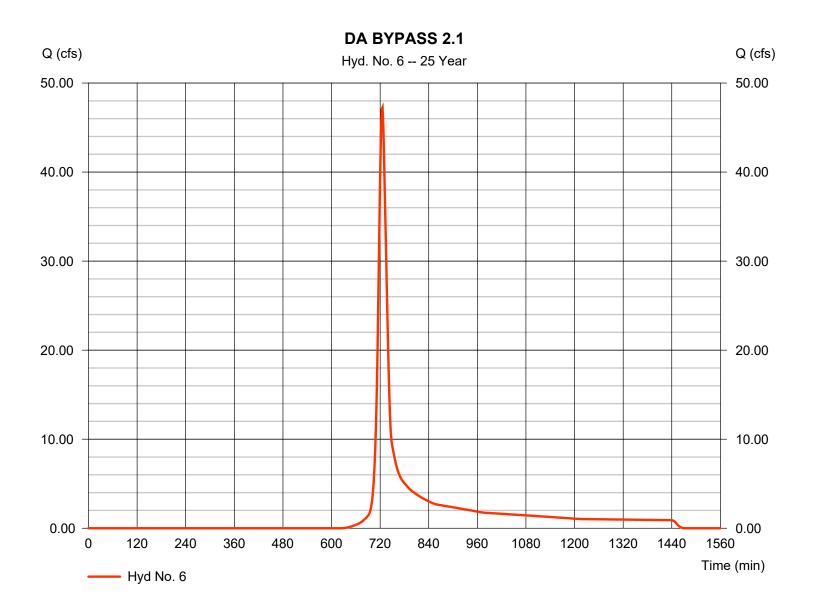

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

Thru Detention Basin#2

Hydrograph type	= Reservoir	Peak discharge	= 3.631 cfs
Storm frequency	= 25 yrs	Time to peak	= 982 min
Time interval	= 2 min	Hyd. volume	= 468,118 cuft
Inflow hyd. No.	= 4 - DA 1.2	Max. Elevation	= 804.87 ft
Reservoir name	= Detention Basin #2	Max. Storage	= 325,781 cuft

Storage Indication method used.



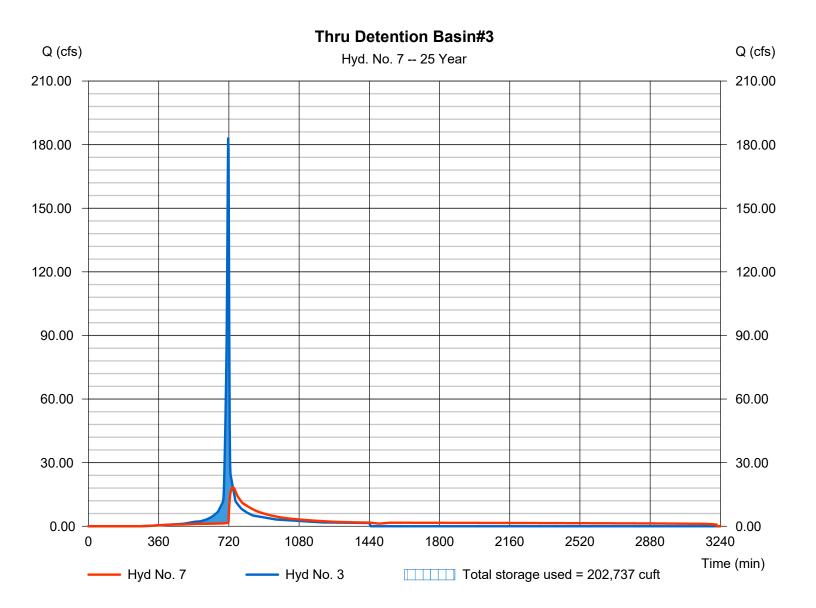
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

DA BYPASS 2.1

Hydrograph type	= SCS Runoff	Peak discharge	= 47.26 cfs
Storm frequency	= 25 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 152,760 cuft
Drainage area	= 17.410 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.40 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

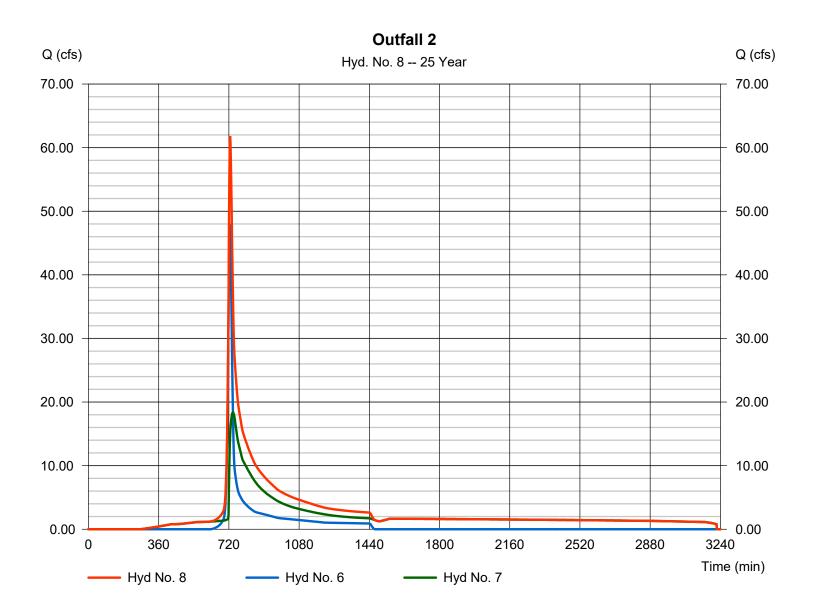
33


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

Thru Detention Basin#3

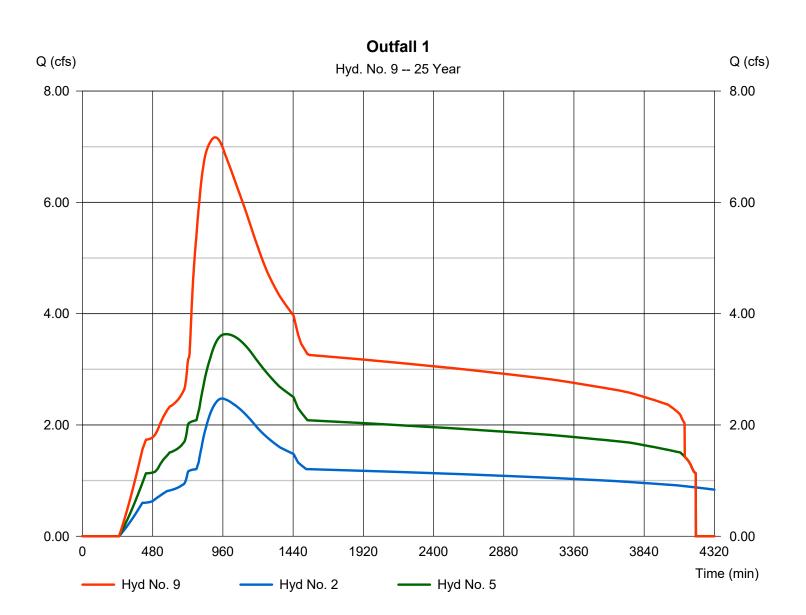
Hydrograph type	= Reservoir	Peak discharge	= 18.35 cfs
Storm frequency	= 25 yrs	Time to peak	= 740 min
Time interval	= 2 min	Hyd. volume	= 387,585 cuft
Inflow hyd. No.	= 3 - DA 2.1	Max. Elevation	= 808.20 ft
Reservoir name	= Detention Basin #3	Max. Storage	= 202,737 cuft


Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

Outfall 2



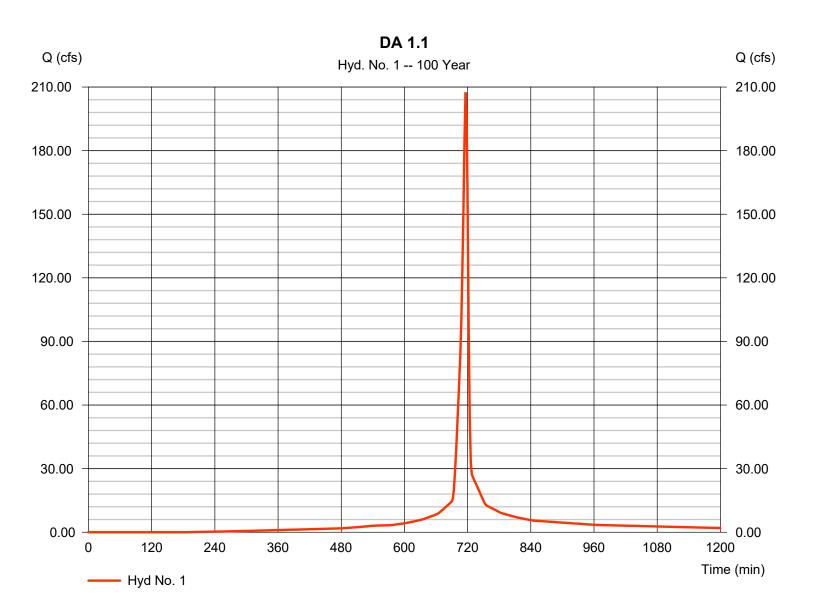
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

Outfall 1

Hydrograph type	= Combine	Peak discharge	= 7.168 cfs
Storm frequency	= 25 yrs	Time to peak	= 908 min
Time interval	= 2 min	Hyd. volume	= 762,119 cuft
Inflow hyds.	= 2, 5	Contrib. drain. area	= 0.000 ac
initiation injust.	2, 0		0.000 40

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	207.53	2	716	454,032				DA 1.1
2	Reservoir	37.79	2	726	454,050	1	811.14	242,775	Thru Detention Basin#1
3	SCS Runoff	277.06	2	716	602,339				DA 2.1
4	SCS Runoff	330.44	2	716	722,942				DA 1.2
5	Reservoir	36.40	2	736	722,987	4	805.64	394,471	Thru Detention Basin#2
6	SCS Runoff	91.39	2	724	287,176				DA BYPASS 2.1
7	Reservoir	159.03	2	722	602,348	3	809.37	262,346	Thru Detention Basin#3
8	Combine	246.41	2	722	889,524	6, 7			Outfall 2
Pos	st-Developme	ent Hydraf	low.gpw		Return P	Period: 100	Year	Thursday,	06 / 25 / 2020

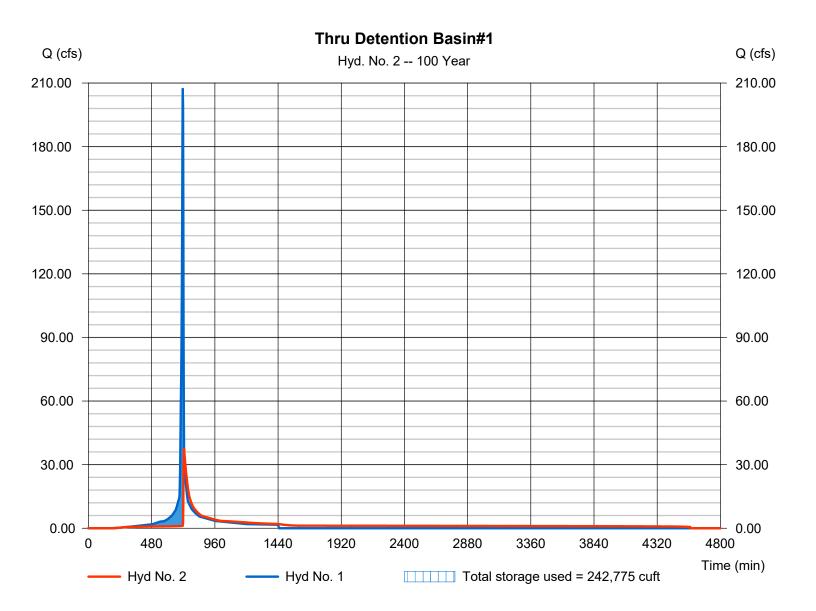
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

DA 1.1

Hydrograph type	= SCS Runoff	Peak discharge	= 207.53 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 454,032 cuft
Drainage area	= 17.340 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 9.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

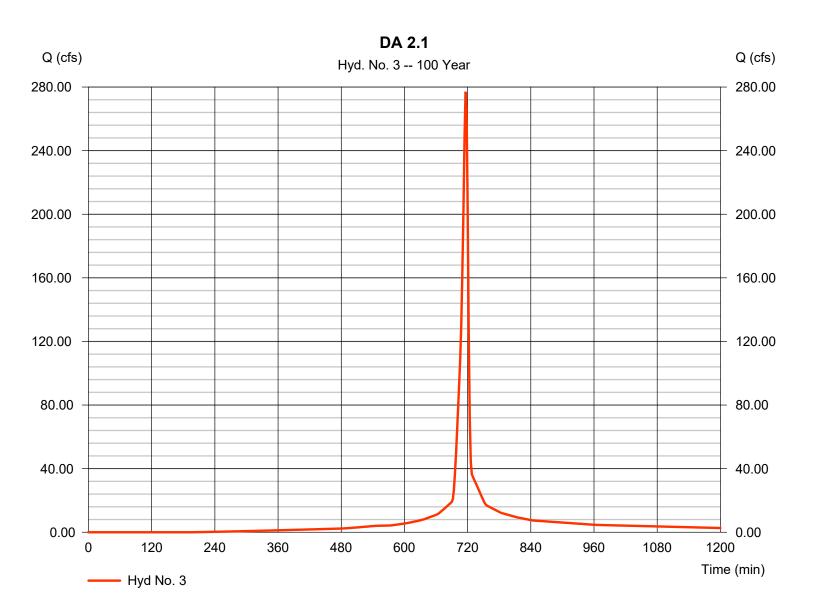
38


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

Thru Detention Basin#1

Hydrograph type	= Reservoir	Peak discharge	= 37.79 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 454,050 cuft
Inflow hyd. No.	= 1 - DA 1.1	Max. Elevation	= 811.14 ft
Reservoir name	= Detention Basin #1	Max. Storage	= 242,775 cuft

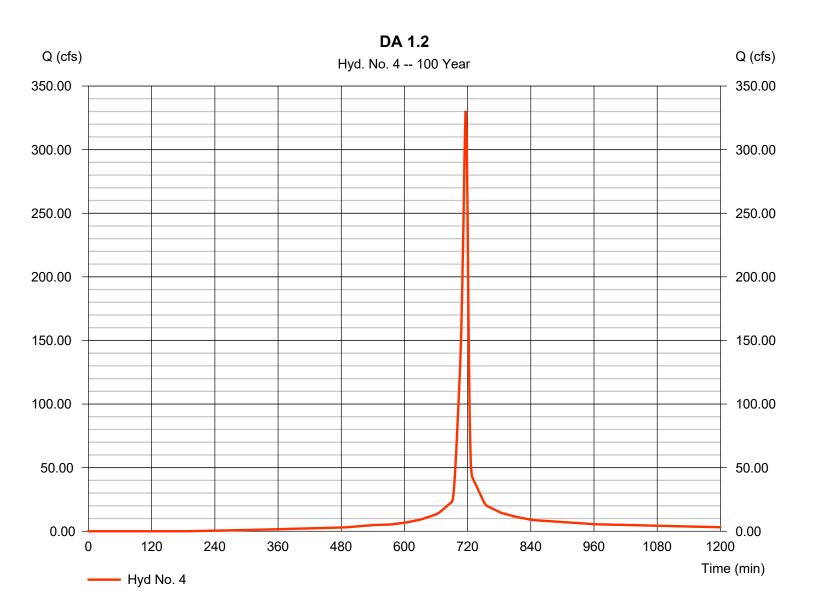

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 277.06 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 602,339 cuft
Drainage area	= 23.380 ac	Curve number	= 85
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 9.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

40

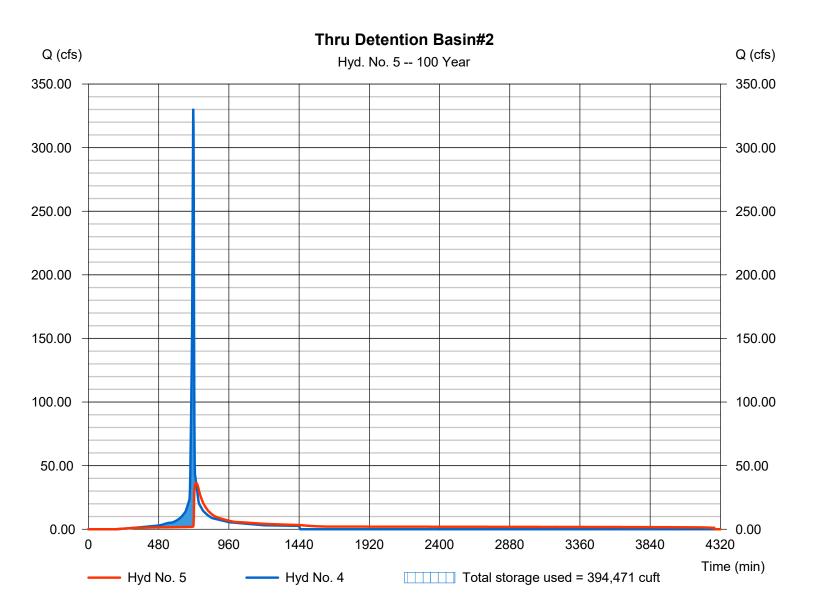

Thursday, 06 / 25 / 2020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

DA 1.2

Hydrograph type	= SCS Runoff	Peak discharge	= 330.44 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 722,942 cuft
Drainage area	= 27.610 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 9.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

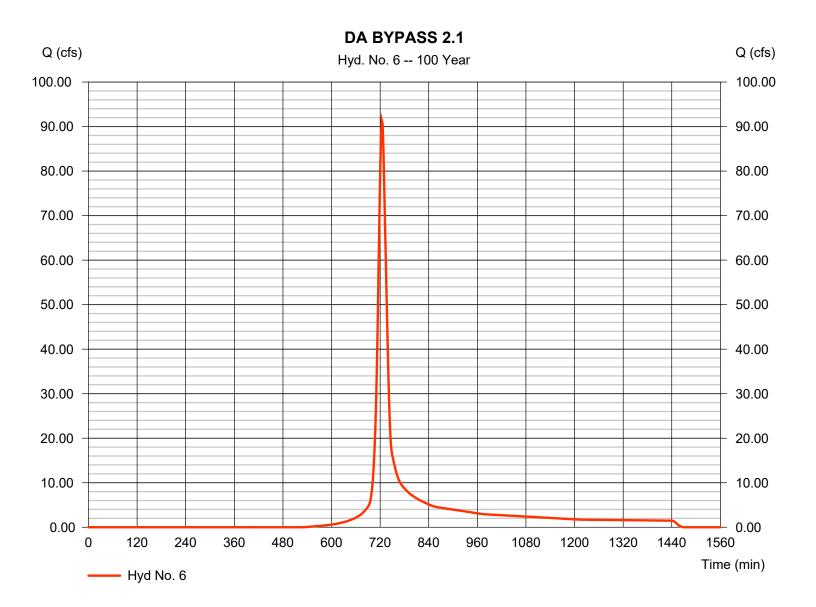

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

Thru Detention Basin#2

Hydrograph type	= Reservoir	Peak discharge	= 36.40 cfs
Storm frequency	= 100 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 722,987 cuft
Inflow hyd. No.	= 4 - DA 1.2	Max. Elevation	= 805.64 ft
Reservoir name	= Detention Basin #2	Max. Storage	= 394,471 cuft

Storage Indication method used.


42

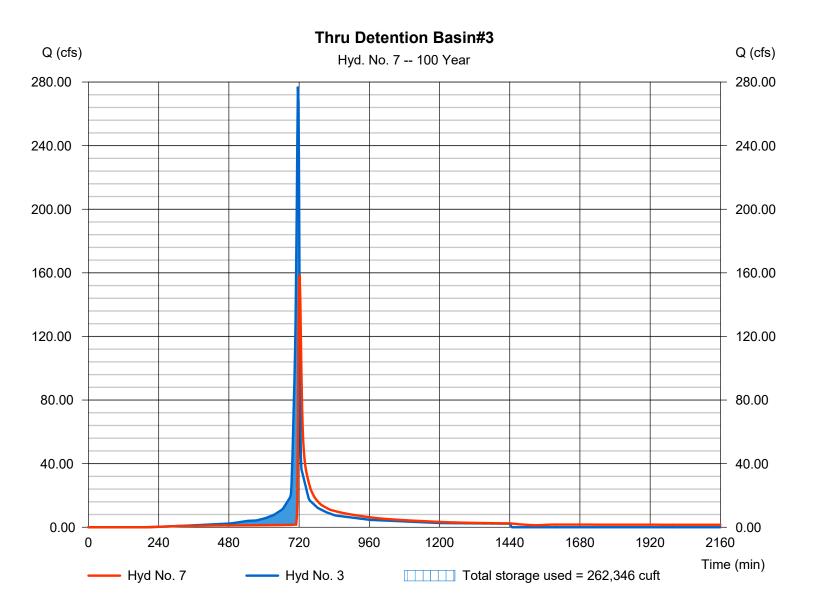
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 6

DA BYPASS 2.1

Hydrograph type	= SCS Runoff	Peak discharge	= 91.39 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 287,176 cuft
Drainage area	= 17.410 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.40 min
Total precip.	= 9.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Thursday, 06 / 25 / 2020

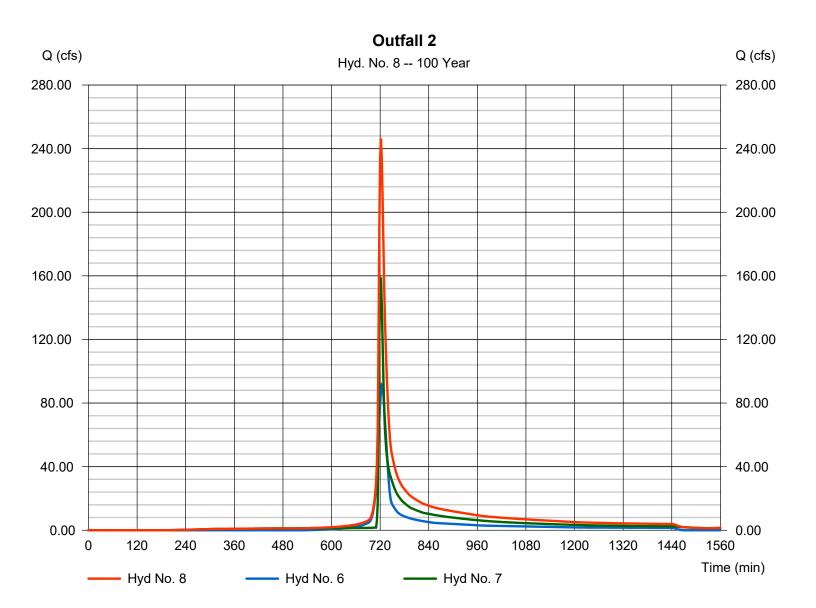

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

Thru Detention Basin#3

Hydrograph type	= Reservoir	Peak discharge	= 159.03 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 602,348 cuft
Inflow hyd. No.	= 3 - DA 2.1	Max. Elevation	= 809.37 ft
Reservoir name	= Detention Basin #3	Max. Storage	= 262,346 cuft

Storage Indication method used.

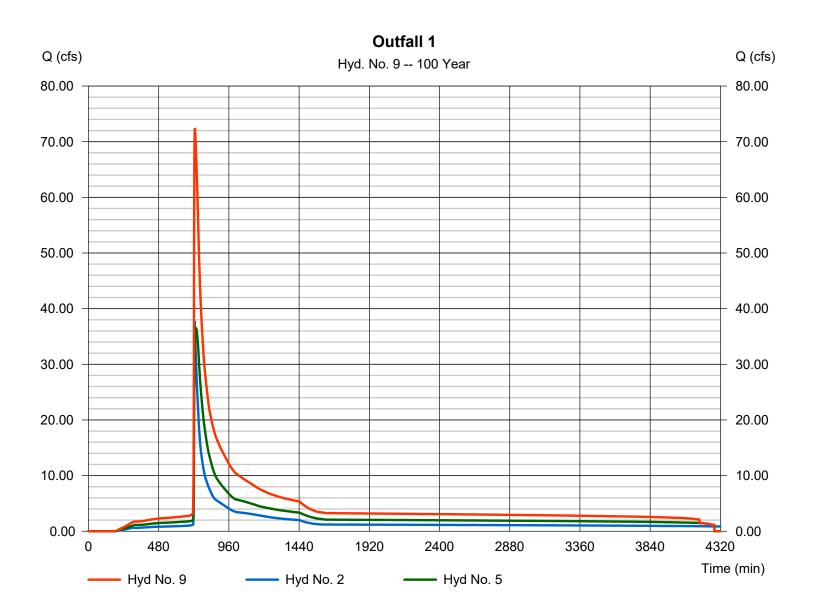

Thursday, 06 / 25 / 2020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 8

Outfall 2

Hydrograph type	= Combine	Peak discharge	= 246.41 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 889,524 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 17.410 ac
-			


45

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

Outfall 1

Hydrograph type	= Combine	Peak discharge	= 72.26 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 1,177,037 cuft
Inflow hyds.	= 2, 5	Contrib. drain. area	= 0.000 ac

46

Thursday, 06 / 25 / 2020

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Return Period	Intensity-Du	ration-Frequency Equation Coefficients (FHA)					
(Yrs)	В	D	E	(N/A)			
1	0.0000	0.0000	0.0000				
2	69.8703	13.1000	0.8658				
3	0.0000	0.0000	0.0000				
5	79.2597	14.6000	0.8369				
10	88.2351	15.5000	0.8279				
25	102.6072	16.5000	0.8217				
50	114.8193	17.2000	0.8199				
100	127.1596	17.8000	0.8186				

File name: SampleFHA.idf

Intensity = B / (Tc + D)^E

Return	Intensity Values (in/hr)											
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.69	4.61	3.89	3.38	2.99	2.69	2.44	2.24	2.07	1.93	1.81	1.70
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.57	5.43	4.65	4.08	3.65	3.30	3.02	2.79	2.59	2.42	2.27	2.15
10	7.24	6.04	5.21	4.59	4.12	3.74	3.43	3.17	2.95	2.77	2.60	2.46
25	8.25	6.95	6.03	5.34	4.80	4.38	4.02	3.73	3.48	3.26	3.07	2.91
50	9.04	7.65	6.66	5.92	5.34	4.87	4.49	4.16	3.88	3.65	3.44	3.25
100	9.83	8.36	7.30	6.50	5.87	5.36	4.94	4.59	4.29	4.03	3.80	3.60

Tc = time in minutes. Values may exceed 60.

Two C&D Landfill Expansion Anderson Cnty/Engineering Calculations/Stormwater/Anderson County 24 hr Rainfall.pcp

	Rainfall Precipitation Table (in)							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	3.30	3.60	0.00	0.00	5.50	6.60	0.00	9.40
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00



Greenpointe Landfill C&D Expansion

APPENDIX E Perimeter Drainage, Slope Conveyance, and Storm Drainage Pipes

STORM DRAINAGE PIPE REPORT

Autodesk® Storm and Sanitary Analysis 2016 - Version 11.1.55 (Build 1) _____ * * * * * * * * * * * * * * * * * * * Project Description **** File Name GP Landfill Pipes.SPF **** Analysis Options **** Flow Units cfs Subbasin Hydrograph Method. EPA SWMM Infiltration Method SCS Curve Number Link Routing Method Kinematic Wave Storage Node Exfiltration.. None Starting Date APR-13-2018 00:00:00 Ending Date APR-14-2018 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Wet Time Step 00:05:00 Dry Time Step 01:00:00 Routing Time Step 30.00 sec * * * * * * * * * * * * * Element Count * * * * * * * * * * * * * Number of rain gages 1 Number of subbasins 4 Number of nodes 4 Number of links 2 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary ***** Data Data Recording Source Type Interval Gage TD ID min _____ CUMULATIVE 6.00 Rain Gage-01 10-Yr * * * * * * * * * * * * * * * * Subbasin Summary * * * * * * * * * * * * * * * * Total Equiv. Imperv. Average Area Width Area Slope acres ft % % Subbasin Raingage olo ID -----8.53 500.00 25.00 0.5000 Rain Gage-01 3.78 500.00 25.00 0.5000 Rain Gage-01 12.07 500.00 25.00 0.5000 Rain Gage-01 8.34 500.00 25.00 0.5000 Rain Gage-01 DA_1C.1 DA_1C.2 DA_3D.1 DA_3D.2 ******* Node Summary * * * * * * * * * * * * Element Invert Maximum Ponded Type Elevation Elev. Area ft ft ft² Node External Inflow ТD

HW_1.A HW_2. A Out-1Pipe 1.A Out-2Pipe2.A	JUNCTION JUNCTION OUTFALL OUTFALL	816. 808. 816. 805.	90 819.90 95 811.70 00 819.00 00 807.00	0.00 0.00 0.00 0.00 0.00		
************* Link Summary ************ Link ID	From Node		Element Type	Length ft	Slope %	Manning's Roughness
Pipe 1.A		Out-1Pipe 1.	A CONDUIT	170.9	0.5267	0.0130 0.0130
*************** Cross Section ***********	Summary					
Link	Shape	Depth/	Width	No. of	Cross	Full Flow
Design ID		Diameter		Barrels	Sectional	Hydraulic
Flow					Area	Radius
Capacity					Alea	Raulus
cfs		ft	ft		ft²	
	CIRCULAR	3.00			7.07	
48.41 Pipe_2_A 83.28	CIRCULAR	2.00	2.00	1	3.14	0.50
Runoff Quanti	**************************************	Volume acre-ft	Depth inches			
	tation	14.993	5.499			
	oss	0.000	0.000			
	Loss f	2.569 11.632	0.942 4.266			
	storage	0.813	0.298			
	ror (%)	-0.138				
Flow Routing	**************************************	Volume acre-ft	Volume Mgallons			
	nflow	0.000	0.000			
Wet Weather I	inflow	11.618	3.786			
	nflow	0.000	0.000			
	.ow	0.000	0.000			
	.ow	0.000 11.614	0.000 3.785			
	ling	0.000	0.000			
	OSS	0.000	0.000			
	ed Volume	0.000	0.000			
	Volumo	0.001	0.000			
Final Stored	ror (%)	0.023	0.000			

Subbasin DA_1C.1			
Soil/Surface Description	Area (acres)	Soil Group	CN
Newly Graded, Fair Condition (HSG B) Composite Area & Weighted CN	8.53 8.53 8.53	В	86.00 86.00
Subbasin DA_1C.2			
Soil/Surface Description	Area (acres)	Soil Group	CN
Newly Graded, Fair Condition (HSG B) Composite Area & Weighted CN	3.78 3.78 3.78	В	86.00 86.00
Subbasin DA_3D.1			
Soil/Surface Description	Area (acres)	Soil Group	CN
Newly Graded, Fair Condition (HSG B) Composite Area & Weighted CN	12.07 12.07	В	86.00 86.00
Subbasin DA_3D.2			
Soil/Surface Description	Area (acres)	Soil Group	CN
Newly Graded, Fair Condition (HSG B) Composite Area & Weighted CN	8.34 8.34	В	86.00 86.00
<pre>************************************</pre>	°t «*		
Where:	(50.5/)		
<pre>Tc = Time of Concentration (min) L = Flow Length (ft) n = Manning's Roughness i = Rainfall Intensity (in/hr) S = Slope (ft/ft)</pre>			
Subbasin DA_1C.1			
<pre>Flow length (ft): Pervious Manning's Roughness: Impervious Manning's Roughness: Pervious Rainfall Intensity (in/hr): Impervious Rainfall Intensity (in/hr): Slope (%): Computed TOC (minutes):</pre>	743.44 0.10000 0.01500 0.22912 0.22912 0.50000 92.75		

I I S C	Flow length (ft): Pervious Manning's R Impervious Manning's Pervious Rainfall In Impervious Rainfall Slope (%): Computed TOC (minute	Roughness tensity (i Intensity	: n/hr):	329.12 0.10000 0.01500 0.22912 0.22912 0.50000 56.88				
Subbasin	DA_3D.1							
Flow length (ft): 1051.65 Pervious Manning's Roughness: 0.10000 Impervious Manning's Roughness: 0.01500 Pervious Rainfall Intensity (in/hr): 0.22912 Impervious Rainfall Intensity (in/hr): 0.22912 Slope (%): 0.50000 Computed TOC (minutes): 114.21								
Subbasin	DA_3D.2							
	Flow length (ft): 726.30 Pervious Manning's Roughness: 0.10000 Impervious Manning's Roughness: 0.01500 Pervious Rainfall Intensity (in/hr): 0.22912 Impervious Rainfall Intensity (in/hr): 0.22912 Slope (%): 0.50000 Computed TOC (minutes): 91.46							

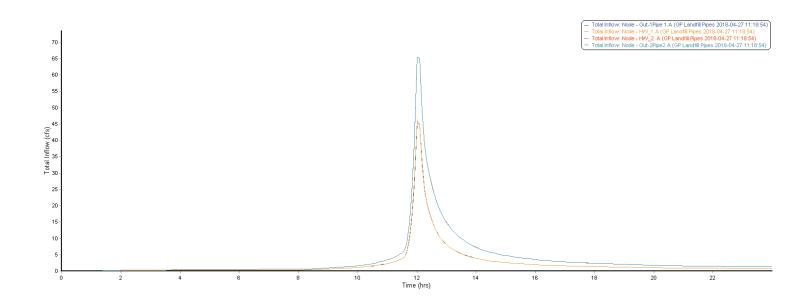
Subbasin Time of	Total	Total	Total	Total	Total	Peak	Runoff	
ID Concentrati		Runon	Evap.	Infil.	Runoff	Runoff	Coefficient	
hh:mm:ss		in	in	in	in	cfs		days
DA_1C.1 01:32:45	5.50	0.00	0.00	0.94	4.27	29.39	0.777	0
DA_1C.2	5.50	0.00	0.00	0.94	4.32	16.72	0.786	0
00:56:53 DA_3D.1	5.50	0.00	0.00	0.94	4.24	37.25	0.771	0
01:54:12 DA_3D.2 01:31:27	5.50	0.00	0.00	0.94	4.27	28.92	0.777	0

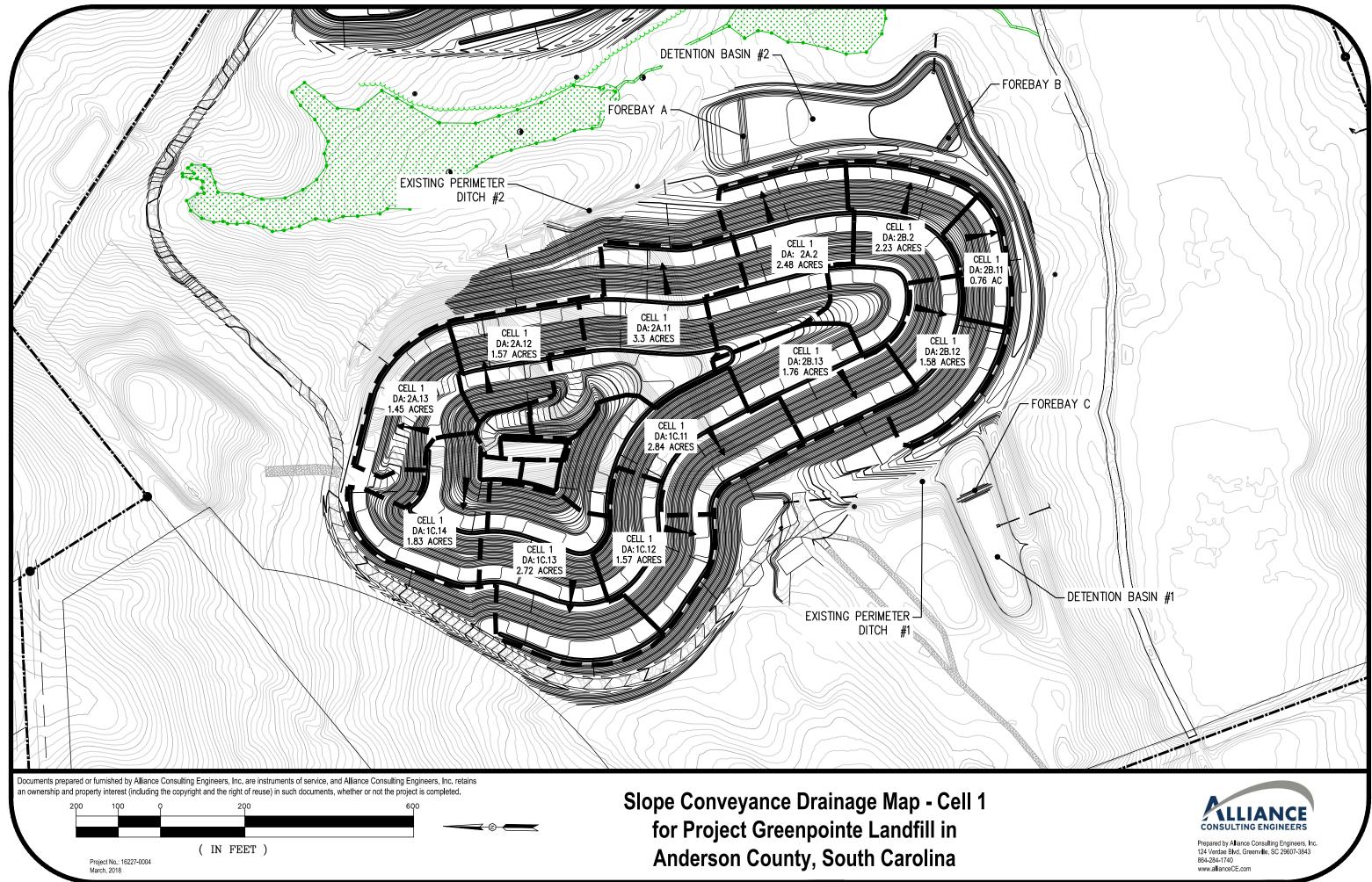
Node ID	Average Depth Attained	Maximum Depth Attained	Maximum HGL Attained		of Max rrence	Total Flooded Volume	Total Time Flooded	Retention Time
	ft	ft	ft	days	hh:mm	acre-in	minutes	hh:mm:ss
HW_1.A HW_2. A Out-1Pipe 1.A Out-2Pipe2.A	0.34 0.22 0.34 0.22	2.34 1.35 2.33 1.35	819.24 810.30 818.33 806.35	0 0 0	12:00 12:06 12:00 12:00	0 0 0	0 0 0 0	0:00:00 0:00:00 0:00:00 0:00:00

* * * * * * * * * * * * * * * * * * *

Node ID	Element Type	Maximum Lateral Inflow cfs	Peak Inflow cfs	Peak Occu	ime of Inflow rrence hh:mm	Flooding Overflow	Time of Peak Flooding Occurrence days hh:mm
HW_1.A	JUNCTION	45.99	45.99	0	12:00	0.00	
HW_2. A	JUNCTION	66.17	66.17	0	12:06	0.00	
Out-1Pipe 1.A	OUTFALL	0.00	45.95	0	12:00	0.00	
Out-2Pipe2.A	OUTFALL	0.00	66.16	0	12:06	0.00	

Outfall Node ID	Flow	Average	Peak
	Frequency	Flow	Inflow
	(%)	cfs	cfs
Out-1Pipe 1.A	99.17	2.23	45.95
Out-2Pipe2.A	99.48	3.66	66.16
System	99.32	5.89	111.52

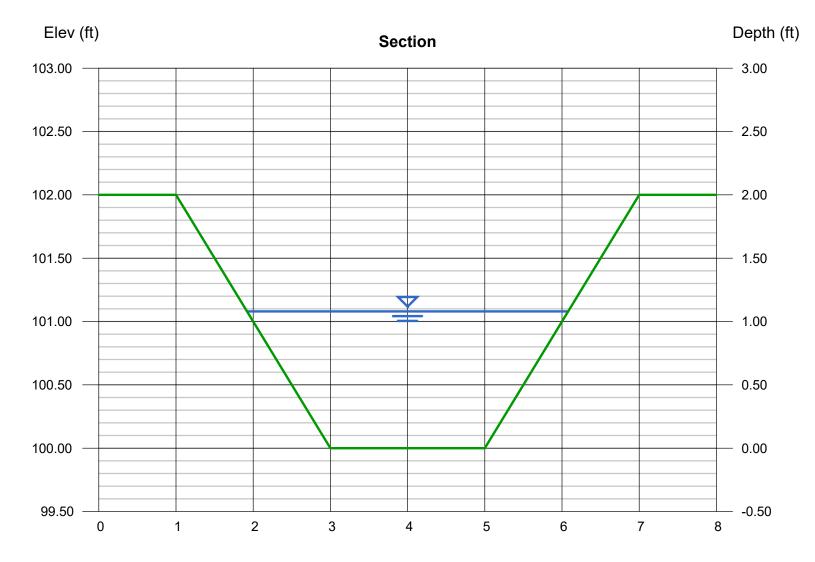


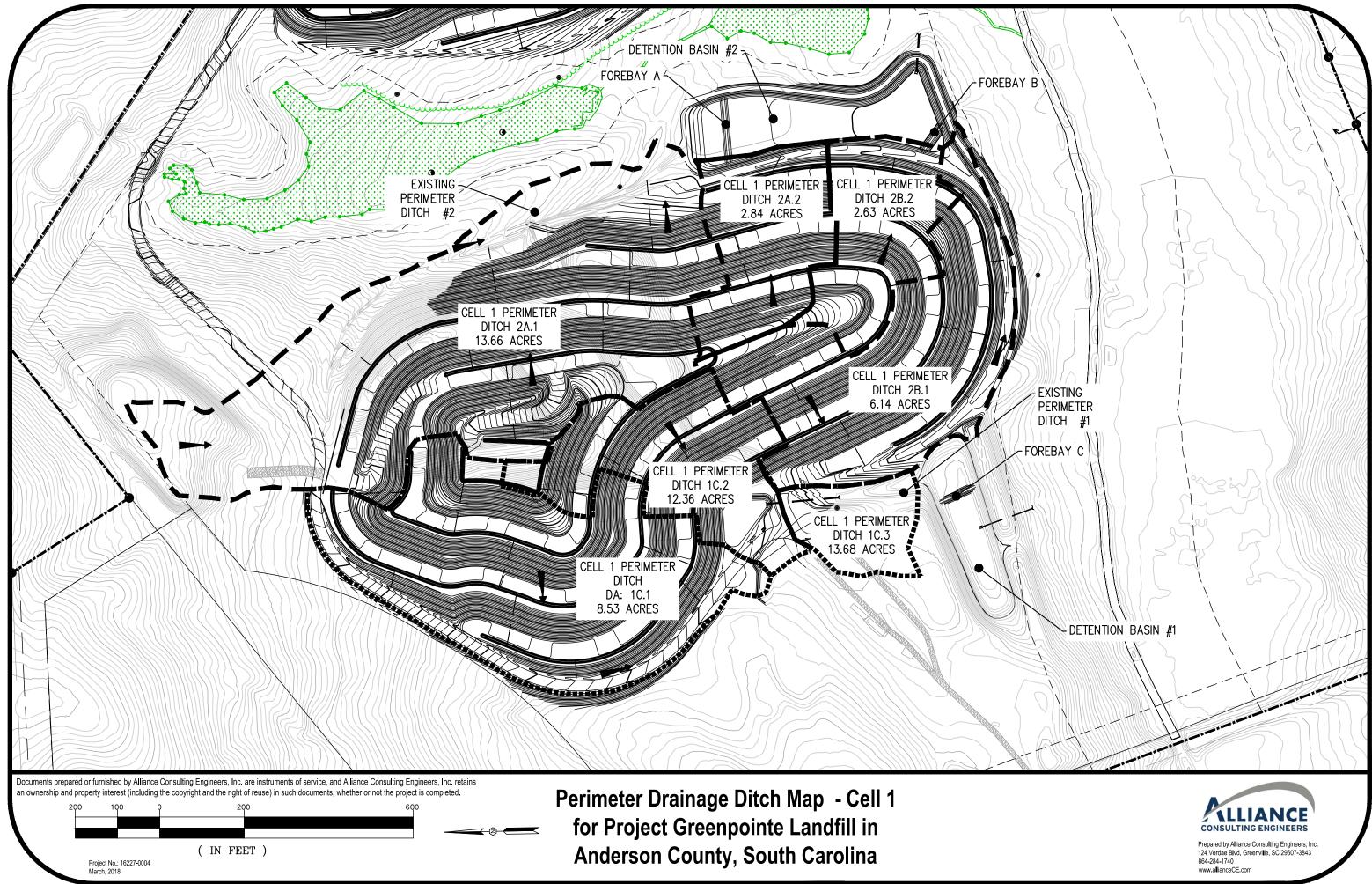

* * * * * * * * * * * * * * * * * *

Link ID Element Ratio of Total Reported Type Maximum Time Condition Flow Surcharged Depth minutes Pipe 1.A CONDUIT N.78 0 Calculated Pipe_2_A CONDUIT 0.67 0 Calculated Contended Depth Conten

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node HW_1.A.

Analysis began on: Fri Apr 27 11:18:52 2018 Analysis ended on: Fri Apr 27 11:18:53 2018 Total elapsed time: 00:00:01

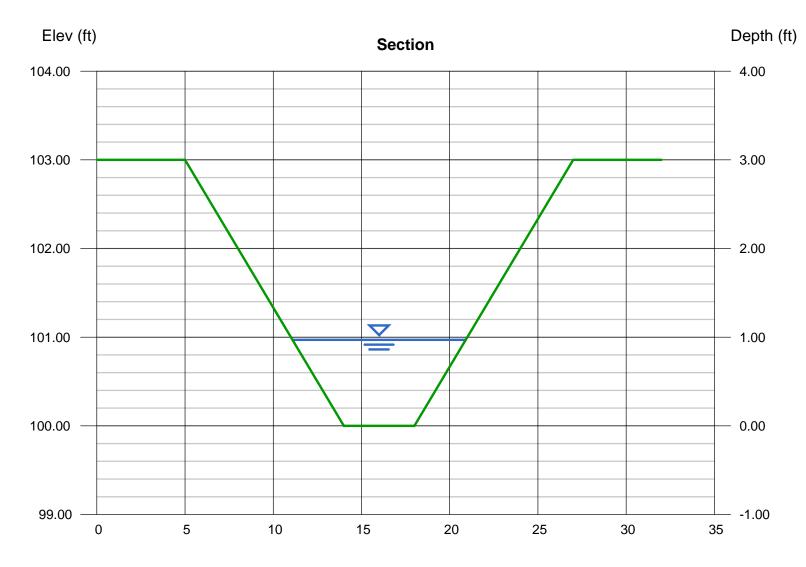



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Apr 16 2018

SLOPE CONVEYANCE DRAINAGE - CELL 1

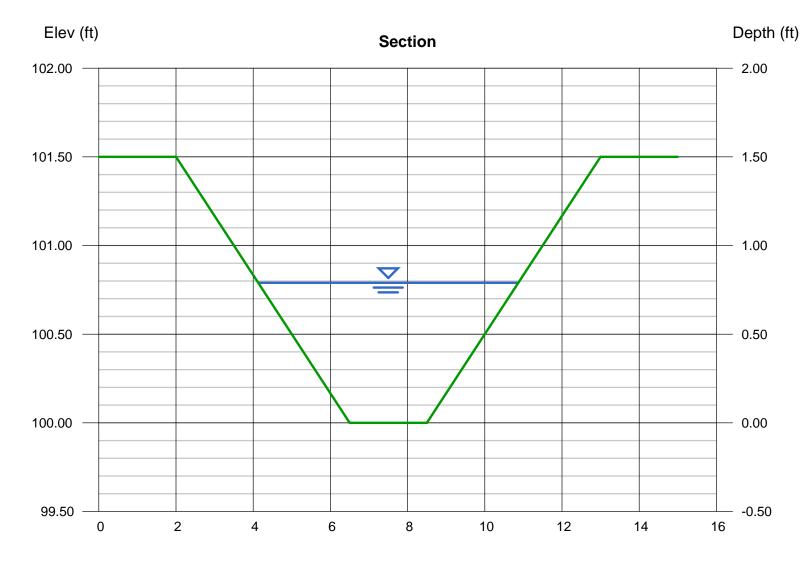
Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.08
Side Slopes (z:1)	= 1.00, 1.00	Q (cfs)	= 12.28
Total Depth (ft)	= 2.00	Area (sqft)	= 3.33
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.69
Slope (%)	= 1.00	Wetted Perim (ft)	= 5.05
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.91
		Top Width (ft)	= 4.16
Calculations		EGL (ft)	= 1.29
Compute by:	Known Q		
Known Q (cfs)	= 12.28		



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

PERIMETER DRAINAGE DITCH - CELL 1 - PERIMETER DITCH 2A.1 (EXISTING DITCH 2)

Trapezoidal		Highlighted	
Bottom Width (ft)	= 4.00	Depth (ft)	= 0.97
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 50.84
Total Depth (ft)	= 3.00	Area (sqft)	= 6.70
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.59
Slope (%)	= 4.10	Wetted Perim (ft)	= 10.13
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.26
		Top Width (ft)	= 9.82
Calculations		EGL (ft)	= 1.86
Compute by:	Known Q		
Known Q (cfs)	= 50.84		



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

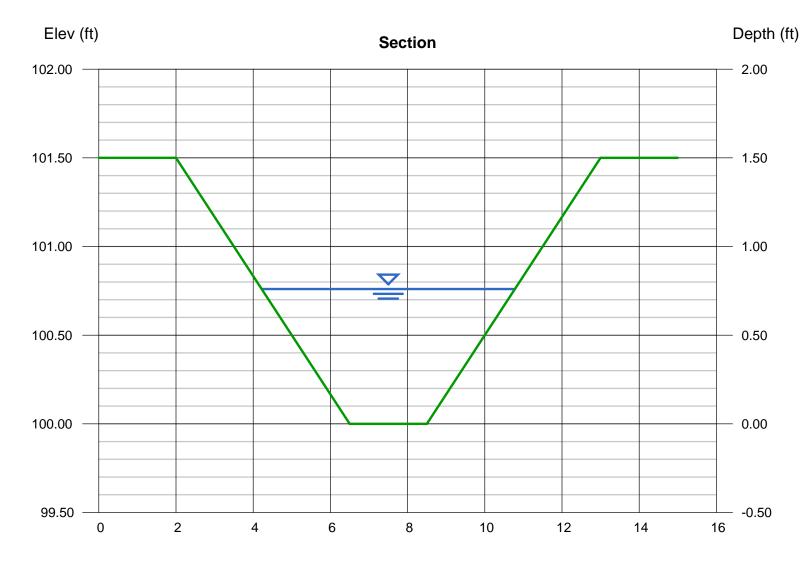
Wednesday, Mar 7 2018

PERIMETER DRAINAGE DITCH - CELL 1 - PERIMETER DITCH 2A.2


Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.79
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 10.57
Total Depth (ft)	= 1.50	Area (sqft)	= 3.45
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.06
Slope (%)	= 1.00	Wetted Perim (ft)	= 7.00
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.69
		Top Width (ft)	= 6.74
Calculations		EGL (ft)	= 0.94
Compute by:	Known Q		
Known Q (cfs)	= 10.57		

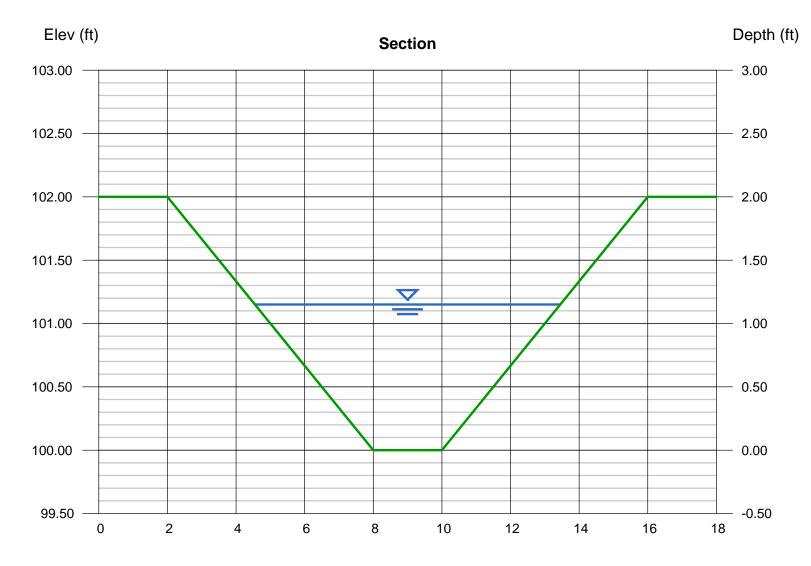
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

PERIMETER DRAINAGE DITCH - CELL 1 - PERIMETER DITCH 2B.1


Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.03
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 22.85
Total Depth (ft)	= 2.00	Area (sqft)	= 5.24
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.36
Slope (%)	= 1.50	Wetted Perim (ft)	= 8.51
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.01
		Top Width (ft)	= 8.18
Calculations		EGL (ft)	= 1.33
Compute by:	Known Q		
Known Q (cfs)	= 22.85		

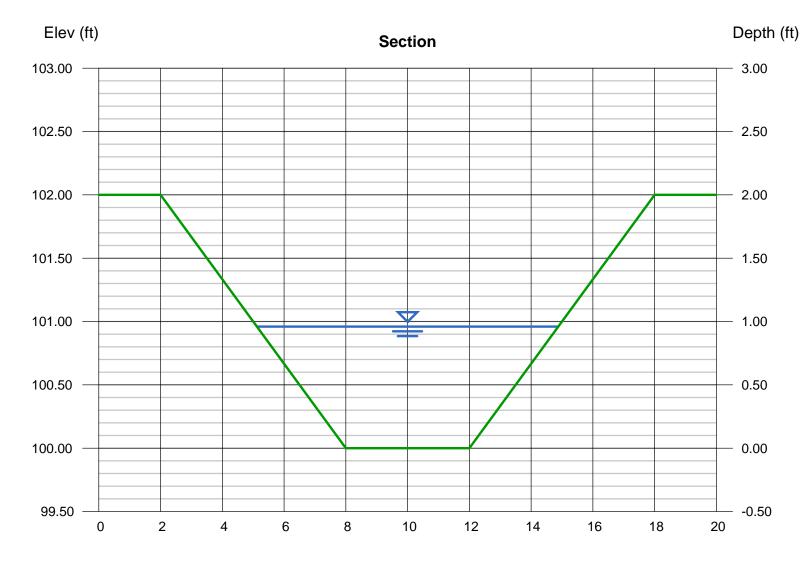
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

PERIMETER DRAINAGE DITCH - CELL 1 - PERIMETER DITCH 2B.2


Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.76
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 9.790
Total Depth (ft)	= 1.50	Area (sqft)	= 3.25
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.01
Slope (%)	= 1.00	Wetted Perim (ft)	= 6.81
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.66
		Top Width (ft)	= 6.56
Calculations		EGL (ft)	= 0.90
Compute by:	Known Q		
Known Q (cfs)	= 9.79		

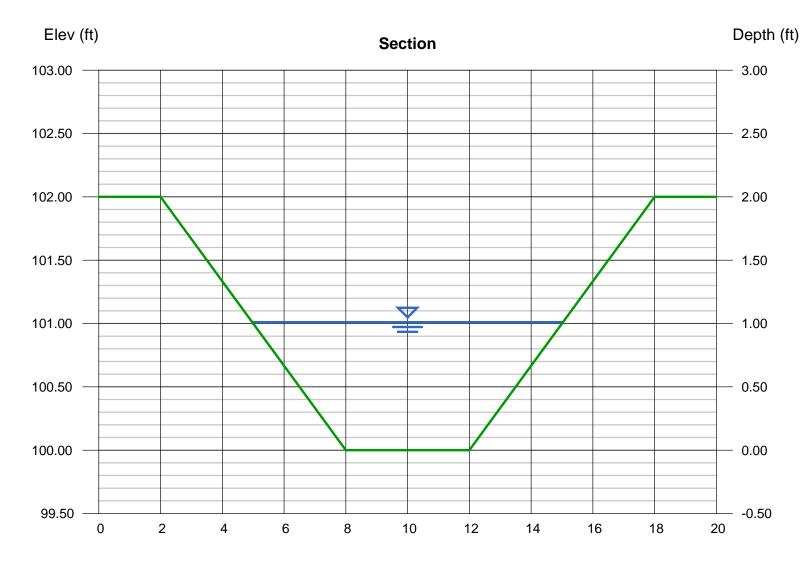
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

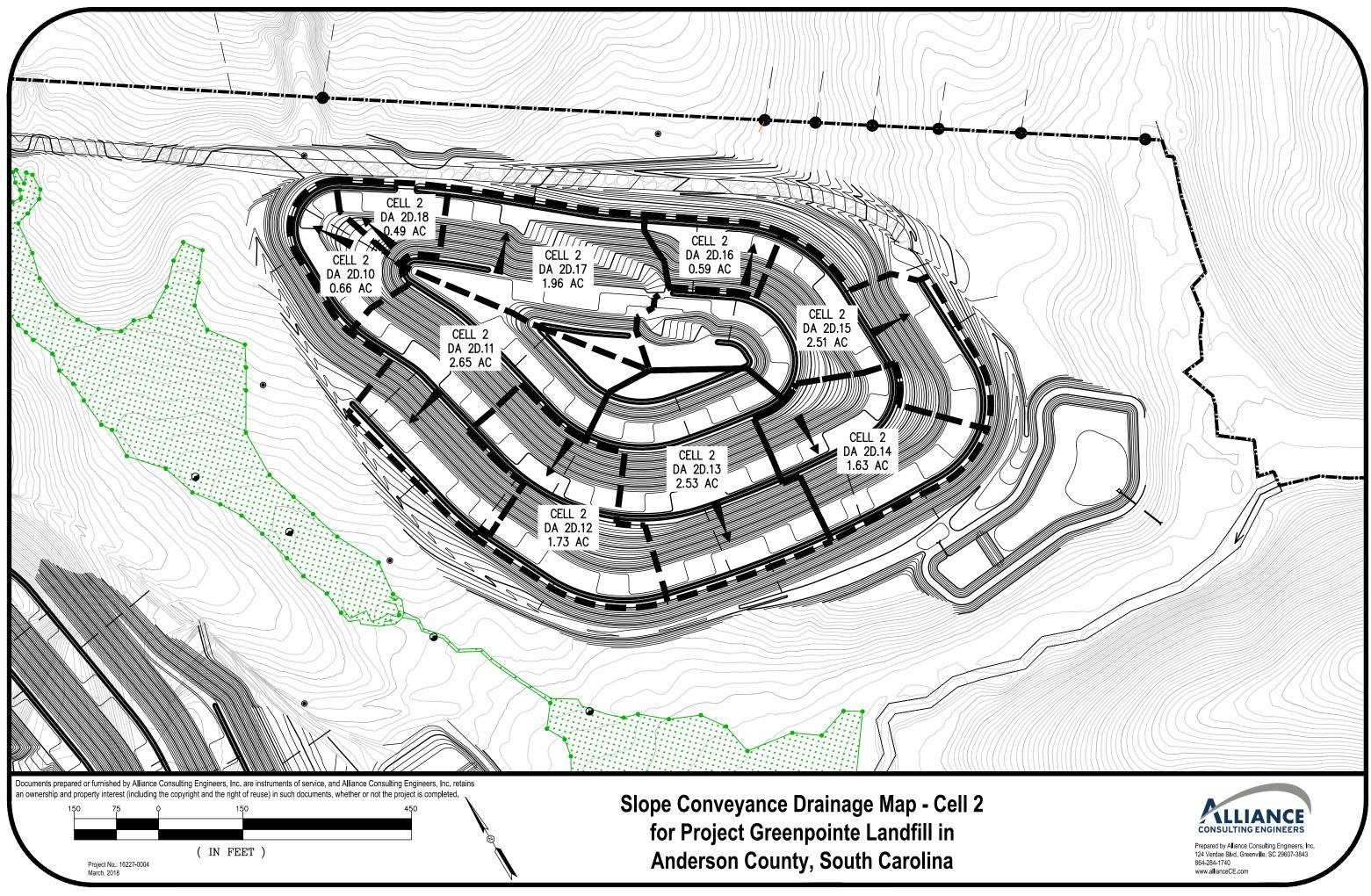
PERIMETER DRAINAGE DITCH - CELL 1 - PERIMETER DITCH 1C.1


Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.15
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 31.74
Total Depth (ft)	= 2.00	Area (sqft)	= 6.27
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.06
Slope (%)	= 1.80	Wetted Perim (ft)	= 9.27
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.19
		Top Width (ft)	= 8.90
Calculations		EGL (ft)	= 1.55
Compute by:	Known Q		
Known Q (cfs)	= 31.74		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

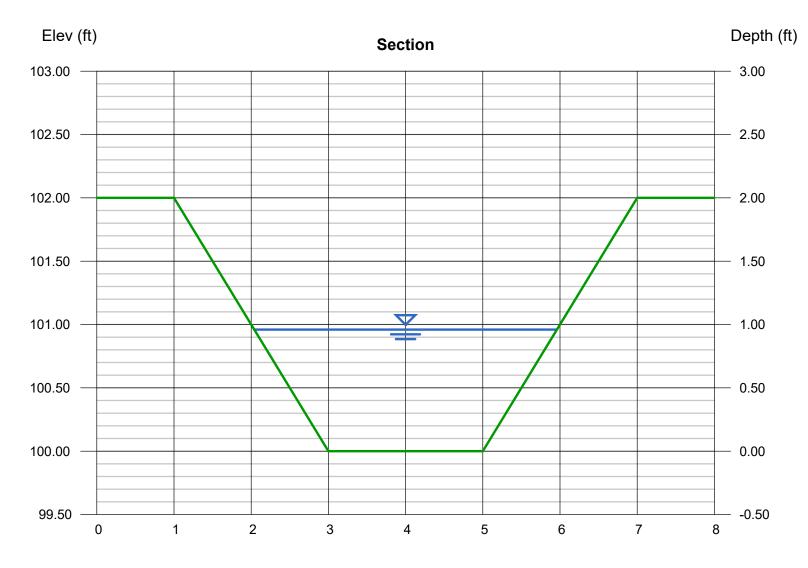
PERIMETER DRAINAGE DITCH - CELL 1 - PERIMETER DITCH 1C.2

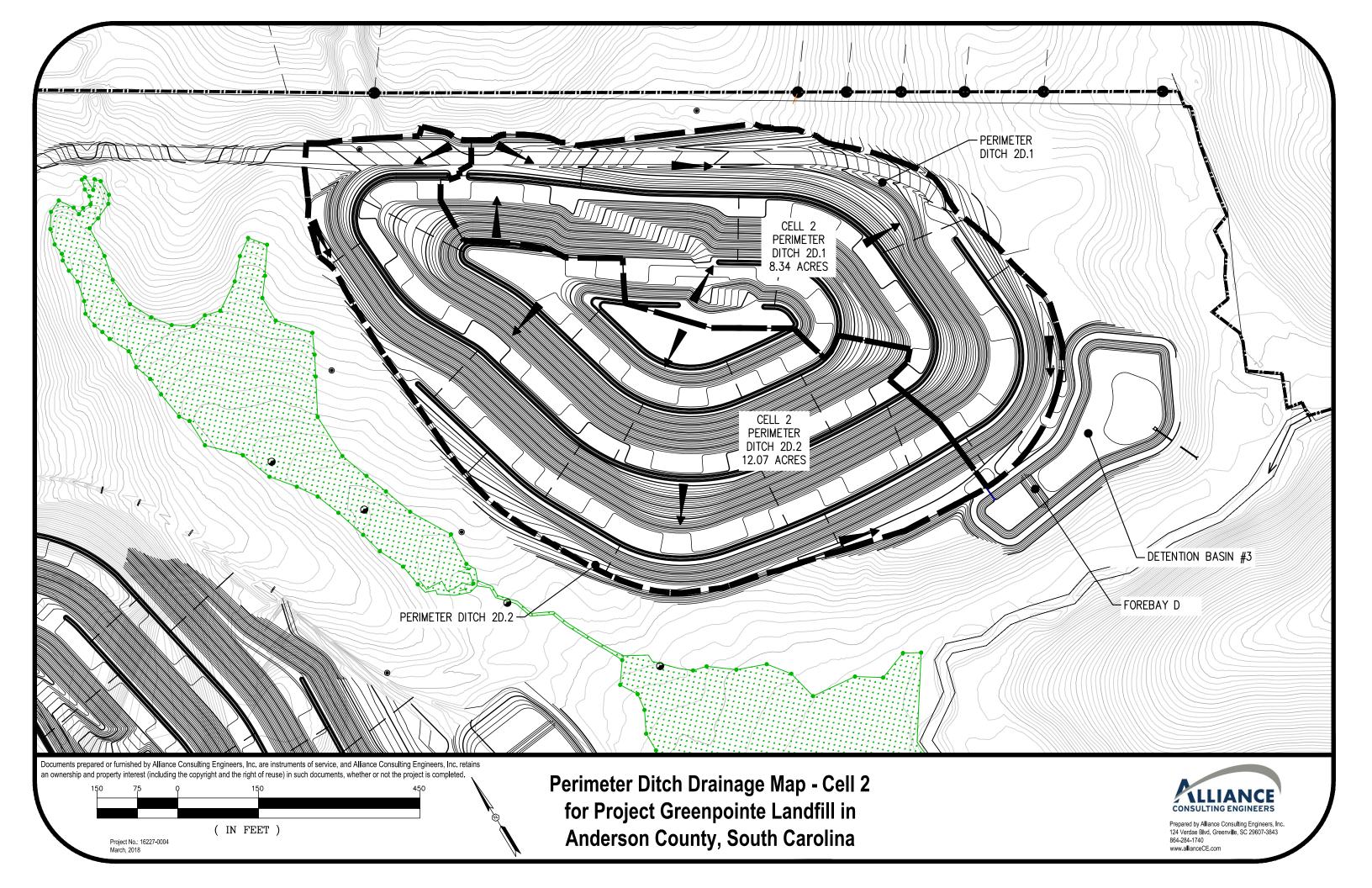

Trapezoidal		Highlighted	
Bottom Width (ft)	= 4.00	Depth (ft)	= 0.96
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 46.00
Total Depth (ft)	= 2.00	Area (sqft)	= 6.60
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.96
Slope (%)	= 3.50	Wetted Perim (ft)	= 10.07
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.20
		Top Width (ft)	= 9.76
Calculations		EGL (ft)	= 1.71
Compute by:	Known Q		
Known Q (cfs)	= 46.00		


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

PERIMETER DRAINAGE DITCH - CELL 1 - PERIMETER DITCH 1C.3

Trapezoidal		Highlighted	
Bottom Width (ft)	= 4.00	Depth (ft)	= 1.01
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 50.92
Total Depth (ft)	= 2.00	Area (sqft)	= 7.10
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.17
Slope (%)	= 3.50	Wetted Perim (ft)	= 10.39
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.26
		Top Width (ft)	= 10.06
Calculations		EGL (ft)	= 1.81
Compute by:	Known Q		
Known Q (cfs)	= 50.92		

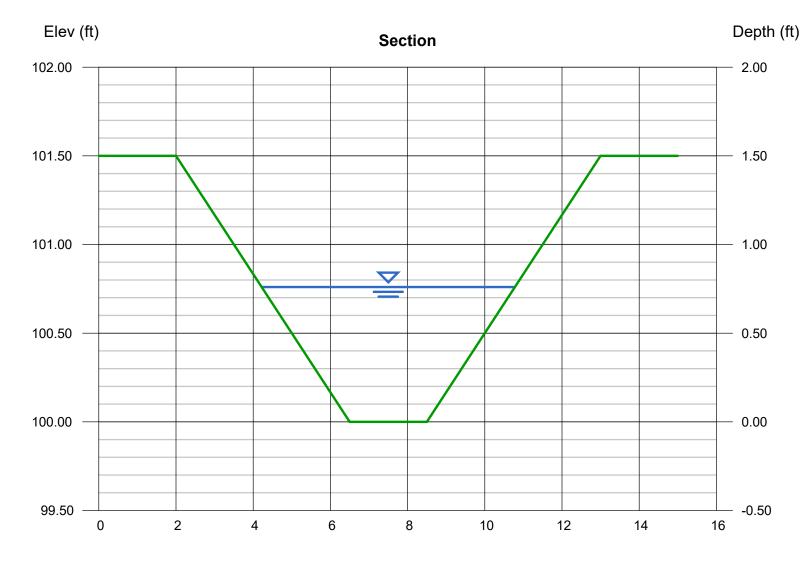

Reach (ft)



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

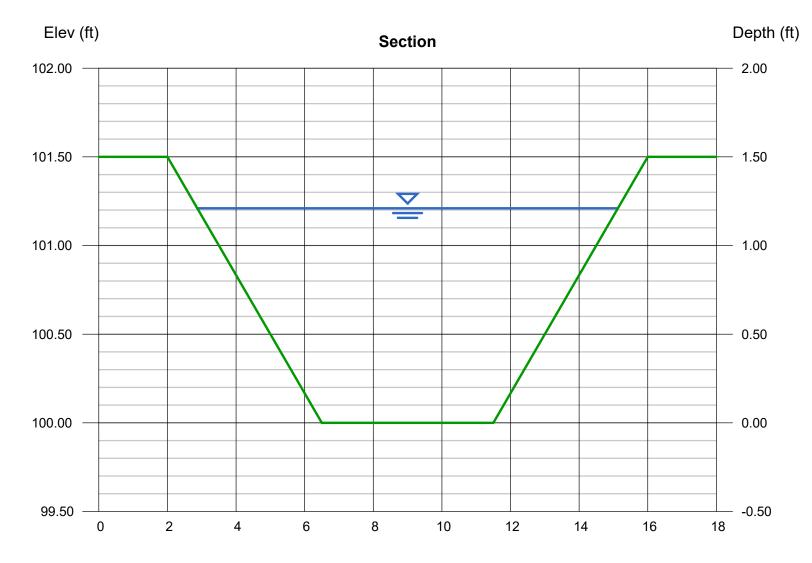
SLOPE CONVEYANCE DRAINAGE - CELL 2

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.96
Side Slopes (z:1)	= 1.00, 1.00	Q (cfs)	= 9.860
Total Depth (ft)	= 2.00	Area (sqft)	= 2.84
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.47
Slope (%)	= 1.00	Wetted Perim (ft)	= 4.72
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.80
		Top Width (ft)	= 3.92
Calculations		EGL (ft)	= 1.15
Compute by:	Known Q		
Known Q (cfs)	= 9.86		



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

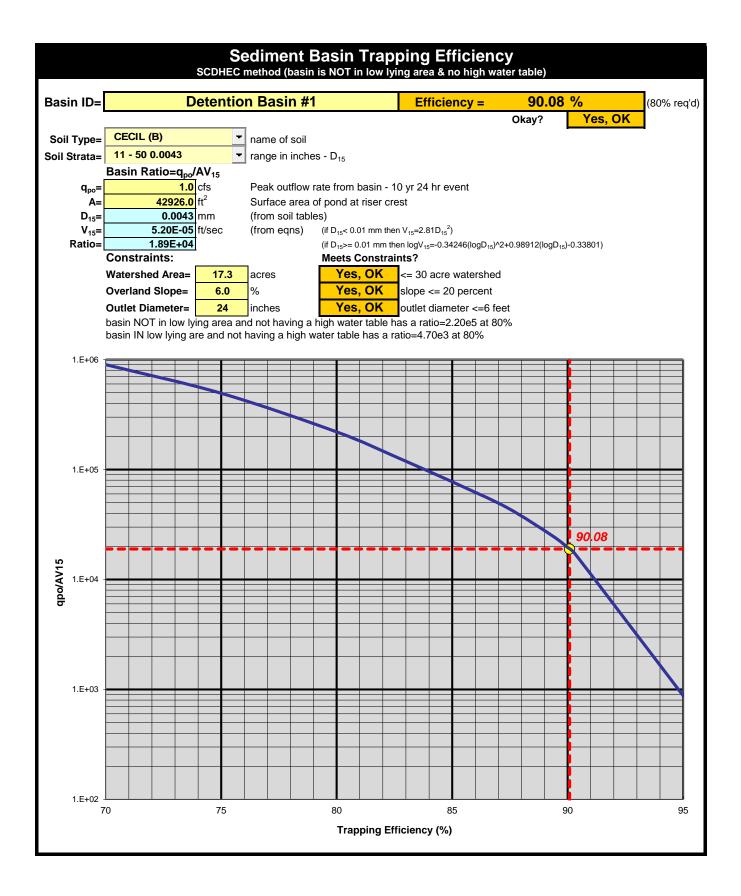
PERIMETER DRAINAGE DITCH - CELL 2 - PERIMETER DITCH 2D.1

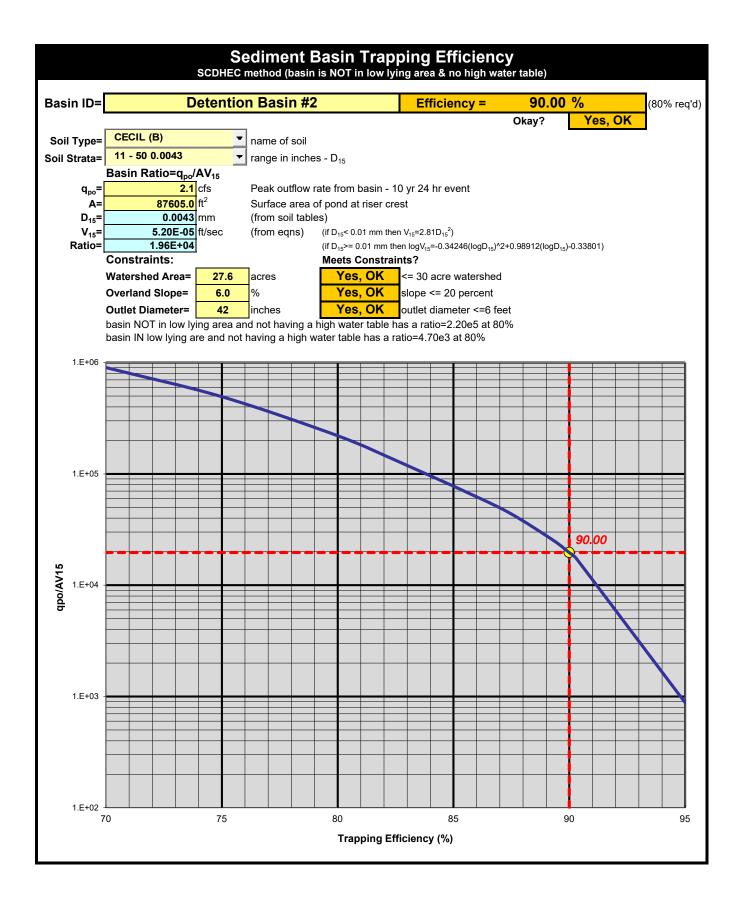

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.76
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 9.790
Total Depth (ft)	= 1.50	Area (sqft)	= 3.25
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.01
Slope (%)	= 1.00	Wetted Perim (ft)	= 6.81
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.66
		Top Width (ft)	= 6.56
Calculations		EGL (ft)	= 0.90
Compute by:	Known Q		
Known Q (cfs)	= 9.79		

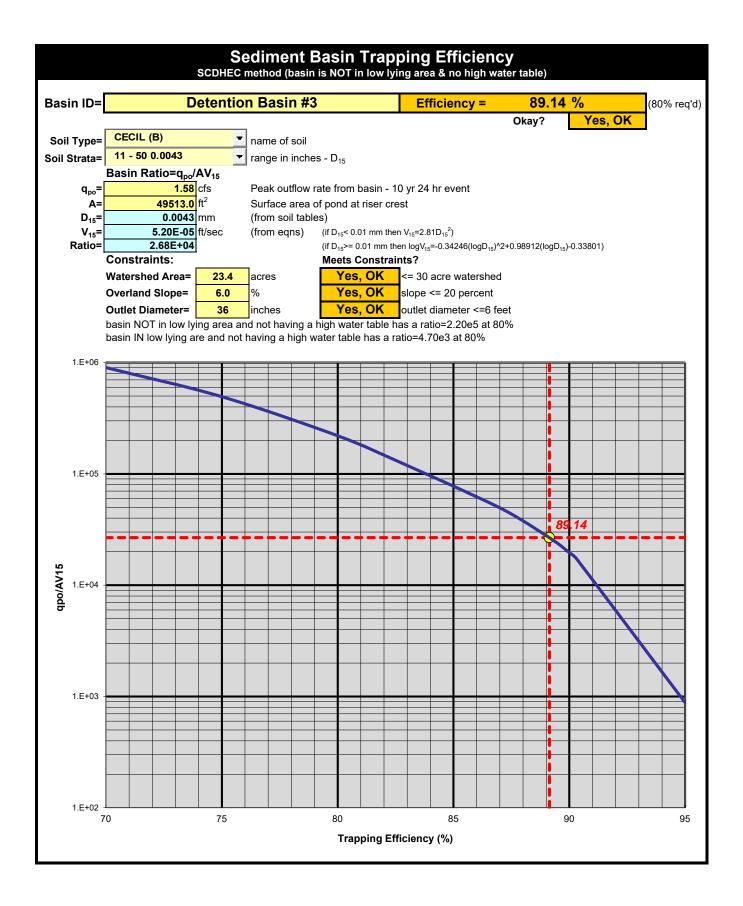
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

PERIMETER DRAINAGE DITCH - CELL 2 - PERIMETER DITCH 2D.2

Trapezoidal		Highlighted	
Bottom Width (ft)	= 5.00	Depth (ft)	= 1.21
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 44.91
Total Depth (ft)	= 1.50	Area (sqft)	= 10.44
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.30
Slope (%)	= 1.00	Wetted Perim (ft)	= 12.65
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.09
		Top Width (ft)	= 12.26
Calculations		EGL (ft)	= 1.50
Compute by:	Known Q		
Known Q (cfs)	= 44.91		






Greenpointe Landfill C&D Expansion

APPENDIX F Additional Calculations

Drainage Area to	o Basin =						Тур	e of Detention	Basin (Dry or Wet) = Dry
_	DA 1.1 =	17.34 AC					Pond	Storage	
	:	17.34 Total	Acres				Stage	Volume	
							0.0	0	
Water Quality V	olume =	17.34 Acres	* 43,	560 ft ² /Ac * 0.	.0833 ft =	= 62,919.0 ft ³	1.0	5,020	
							1.7	21,969	
Average Discharge Rate for 24-hour Dew	atering = 62,93	19.0 ft ³	*	ʻ <u>1</u> hr	=	0.728 cfs	2.7	46,241	
	24	4 hours		3600 sec			3.7	76,712	
							4.7	110,984	
Size Orifice for De	watering						6.0	149,030	
Q	$= 0.6A\sqrt{2gh}$						7.0	190,924	
Interpolate I	ond Storage to	Find h (Pon	d Report Att	ached)			8.0	236,206	
@ h ₁ = 1	.00	v ₁ =	5,020 ft ³				9.0	284,706	
@ h ₂ = 2	.00	v ₂ =	21,969 ft ³				10.0	337,002	
							11.0	393,408	
$h = (V - v_1) \frac{(h_2 - h_1)}{(v_2 - v_1)}$ h =							12.0	453,640	
	4.42 ft								
$A = \frac{Q}{0.6\sqrt{2gh}} \qquad A =$	0.072 ft ²								
4A d =	0.3027 ft								
$d = \sqrt{\frac{4A}{\pi}}$ $d = d =$	3.63 inches	5							
se a 3 inch orifice or smaller to g	uarantee mo	re than 2	4-hour de	ewatering time	e				

*Use

Dewatering Calculations

0.049 ft² A =

Q = 0.497 cfs

35.2 hours t =

> A volume of 62,919.0 ft³ will be discharged from a 3.00 inch orifice over 35.2 hours

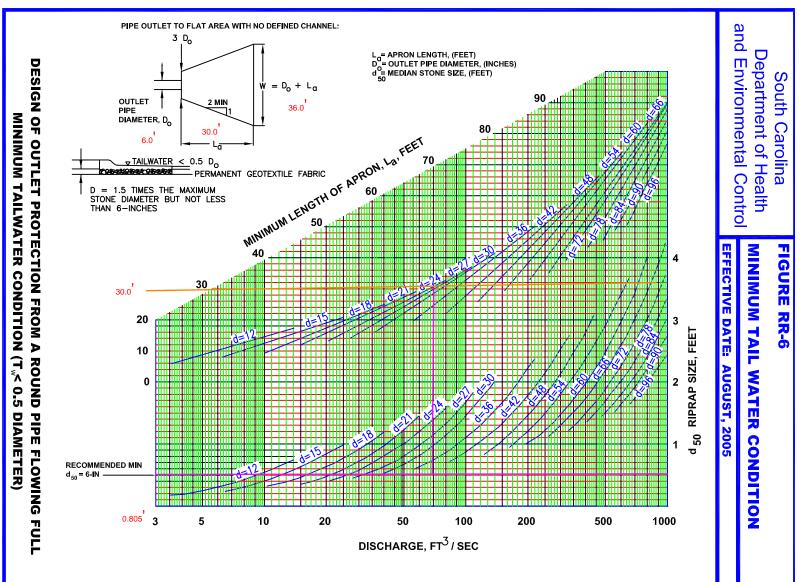
Drainage A	rea to Basin =						Тур	e of Detention	Basin (Dry or Wet) =
	DA 1.2 =	27.61 AC					Pond	Storage	
		27.61 Total A	cres				Stage	Volume	
							0.0	0	
Water Qua	lity Volume =	27.61 Acres	* 43,560 ft ² /	'Ac * 0.083	3 ft =	100,184.2 ft ³	1.0	8,451	
							2.0	42,155	
Average Discharge Rate for 24-hour	Dewatering = 10	00,184.2 ft ³	*	1 hr	=	1.160 cfs	3.0	99,263	
		24 hours	3	600 sec			4.0	172,713	
							5.0	251,723	
Size Orifice fo	or Dewatering						6.0	336,427	
	$Q = 0.6A\sqrt{2g}$	gh					7.0	426,994	
Interpo	late Pond Storage	to Find h (Pond	Report Attached)				8.0	523,393	
@ h	₁ = 1.00	v ₁ =	8,451 ft ³						
@ h	₂ = 2.00	v ₂ = 4	2,155 ft ³						
$h = (V - v_1) \frac{(h_2 - h_1)}{(v_2 - v_1)}$ $A = \frac{Q}{0.6\sqrt{2gh}}$									
$h = (V - m)(h_2 - h_1)$									
$n = (v - v_1) \frac{1}{(v_2 - v_1)}$	n = 3.72 ft								
0									
$A = \frac{c}{0.6\sqrt{2}ch}$	$A = 0.125 \text{ ft}^2$								
0.0 291									
$d = \sqrt{\frac{4A}{\pi}}$	d = 0.3987 ft								
$a = \sqrt{\frac{\pi}{\pi}}$	d = 4.78 inc	ches							
× ×									
Jse a 4 inch orifice or smaller t	o guarantee r	nore than 24	-hour dewater	ing time					
Dewatering Calculations									

 $A = 0.087 \text{ ft}^2$

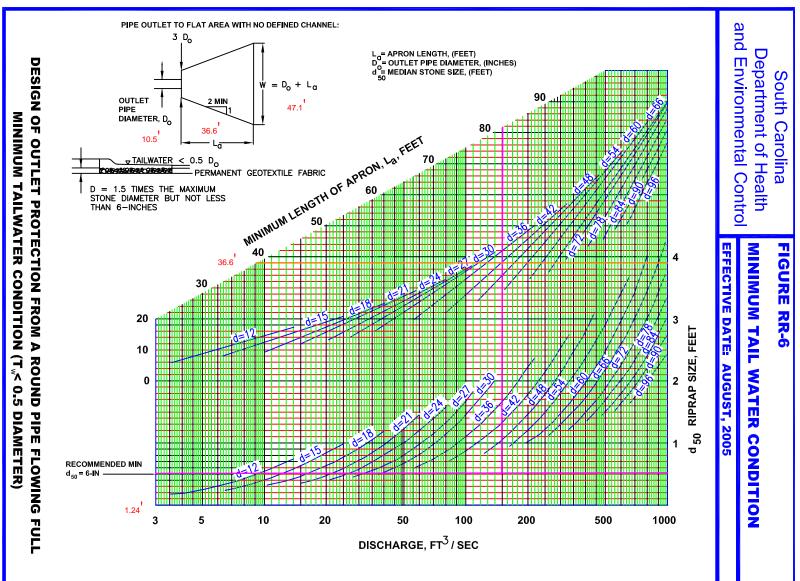
Q = 0.811 cfs

t = 34.3 hours

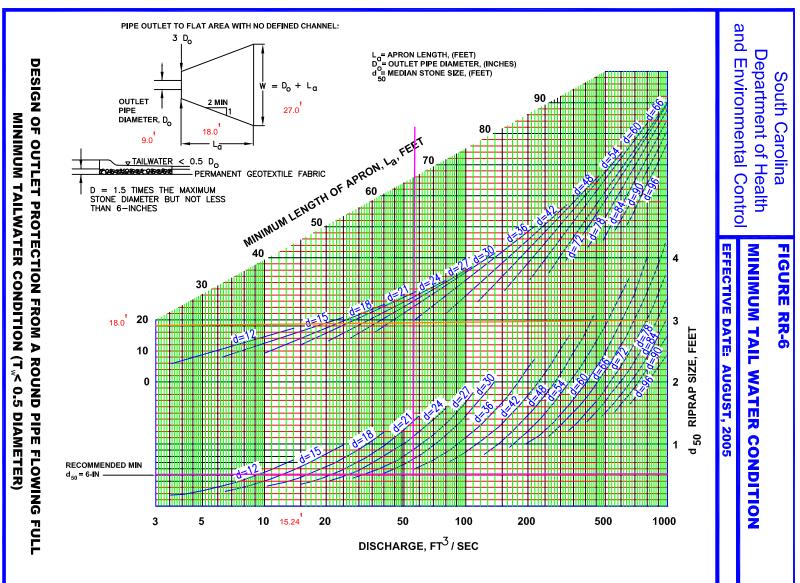
A volume of 100,184.2 ft³ will be discharged from a 4.00 inch orifice over 34.3 hours

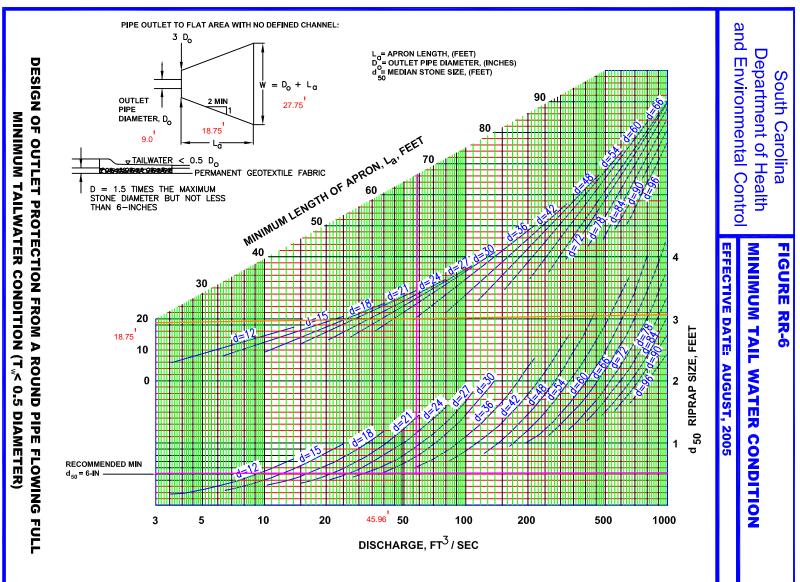

Draina	ge Area to Basin = DA 2.1 = 23.38 AC		pe of Detention Basin (Dry or Wet) = D Storage
	23.38 Total Acres	Stage	Volume
		0.0	0
Water	Quality Volume = 23.38 Acres * 43,560 ft ² /Ac * 0.0833 ft = 84,83	35.5 ft ³ 1.0	3,995
		2.0	23,940
Average Discharge Rate for 24-	hour Dewatering = <u>84,835.5</u> ft ³ * <u>1</u> hr = 0.9	982 cfs 3.0	58,978
	24 hours 3600 sec	4.0	100,272
		5.0	144,809
Size Orif	ice for Dewatering	6.0	192,644
	$Q = 0.6A\sqrt{2gh}$	7.0	243,834
Int	erpolate Pond Storage to Find h (Pond Report Attached)	8.0	298,434
	$@h_1 = 3.00$ $v_1 = 58,978 \text{ ft}^3$		
	$@ h_2 = 4.00 v_2 = 100,272 ext{ ft}^3$		
$h = (V - v_1) \frac{(h_2 - h_1)}{(v_2 - v_1)}$	h = 3.63 ft		
$A = \frac{Q}{0.6\sqrt{2gh}}$	$A = 0.107 \text{ ft}^2$		
4.4	d = 0.3693 ft		
$d = \sqrt{\frac{4A}{\pi}}$	d = 0.3693 ft d = 4.43 inches		

 $A = 0.087 \text{ ft}^2$


Q = 0.800 cfs

t = 29.5 hours


A volume of 84,835.5 ft³ will be discharged from a 4.00 inch orifice over 29.5 hours


RIP-RAP FOR OUTFALL PIPE OF DETENTION BASIN 1

RIP-RAP FOR OUTFALL PIPE OF DETENTION BASIN 2

RIP-RAP FOR OUTFALL PIPE OF DETENTION BASIN 3

RIP-RAP FOR OUTFALL PIPE OF 36" RCP PIPE IN CELL 1

PIPE OUTLET TO FLAT AREA WITH NO DEFINED CHANNEL: and 3 D L_0 = APRON LENGTH, (FEET) D = OUTLET PIPE DIAMETER, (INCHES) d^O = MEDIAN STONE SIZE, (FEET) 50 Department of Health **Environmental Control** DESIGN OF OUTLET PROTECTION FROM A ROUND PIPE FLOWING South $= D_0 + L_a$ 90 OUTLET 2 MIN 26.25 PIPE MINIMUM TAILWATER CONDITION DIAMETER, Do Carolina MINIMUM LENGTH OF APRON, La, FEET 80 22.25 4.0 <u>___TAILWATER <___</u>0.5 D_O SCREATED PERMANENT GEOTEXTILE FABRIC D = 1.5 TIMES THE MAXIMUM STONE DIAMETER BUT NOT LESS THAN 6-INCHES **EFFECTIVE DATE:** MINIMUM TAIL WATER CONDITION **FIGURE RR-6** 40 4 30 22.25 20 3 **RIPRAP SIZE, FEET** 10 (T_√< 0.5 **AUGUST**, 2005 0 2 DIAMETER) d 50 1 RECOMMENDED MIN d₅₀ = 6-IN 3 5 10 20 50 66.16 100 200 500 1000 FULL DISCHARGE, FT³ / SEC

RIP-RAP FOR OUTFALL 24" PIPE IN CELL 2