LID Cost Analysis Savings and Profitability

LID is a comprehensive holistic technology involving new philosophies, principles, practices and processes.

- **1. Site Design to Conserve Terrestrial Functions**
- 2. Disconnection
- 3. Grading Techniques
- 4. Distributed Controls
- 5. Multifunctional Use of Space
- 6. Less Grading and Clearing

<u>"Optimize the use of these smart design techniques"</u>

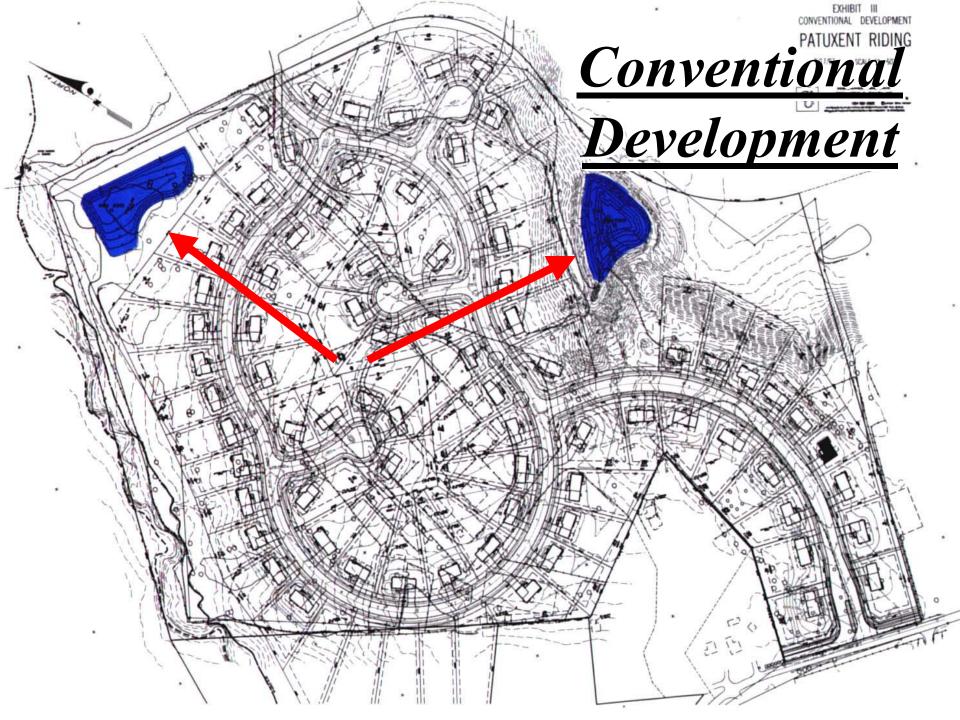
100

Rain Gardens

Rain Garden Treatment Train Approach

Bioretention Cell

Grass Filter Strip


Flow Path Flow Path Grass Swale Bioretention Cell

Storm Drain System

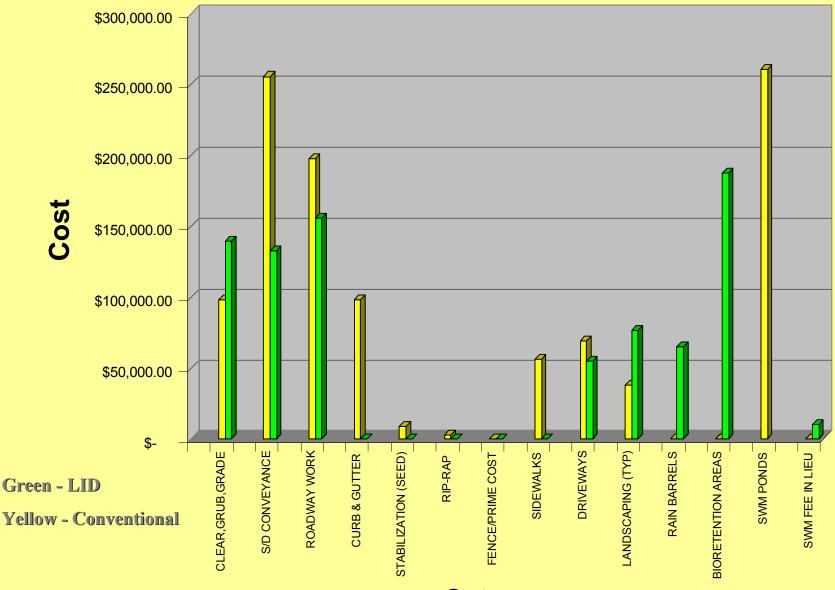
Somerset Cost Savings

- \$780,000 Total Cost Savings

 Eliminated
 - Curb / Gutter \$350,000
 - 4 stormwater ponds \$650,000
 - Pipes / Structures \$150,000
 - -Added
 - \$370,000 for Rain Gardens

LID Development

Conservation Minimization Soil Management Open Drainage Rain Gardens Rain Barrels Pollution Prevention


Disconnected Decentralized Distributed Multi-functional

Multiple Systems

Construction Cost Comparison

Patuxent Riding				
	<u>Cor</u>	<u>ventional</u>	Lov	v Impact
Grading /Roads	\$	569,698	\$	426,575
<u>StormDrains</u>	\$	225,721	\$	132,558
SWM Pond / Fees	\$	260,858	\$	10,530
Bioretention / Micro	\$	-	\$	175,000
Total	\$	1,086,277	\$	744,663
Unit Cost	\$	14,679	\$	9,193

SWM Construction Cost Comparison

Category

A Comparison of Two Different Land Plans

PROJECTED RESULTS FROM TOTAL DEVELOPMENT

Conventional Plan	Revised Green Plan
358	375
21,770	21,125
7,360	0
10,098	6,733
103	79
\$4.6 million	\$3.9 million
	358 21,770 7,360 10,098 103

ACTUAL RESULTS FROM PHASE ONE		
Total Site (engineer's estimate)	Conventional Plan	Green Plan
Lot Yield	63	72
Total Cost	\$1,028,544	828,523
Cost Per Lot	\$16,326	\$11,507

ECONOMIC AND OTHER BENEFITS FROM LOW-IMPACT DEVELOPMENT

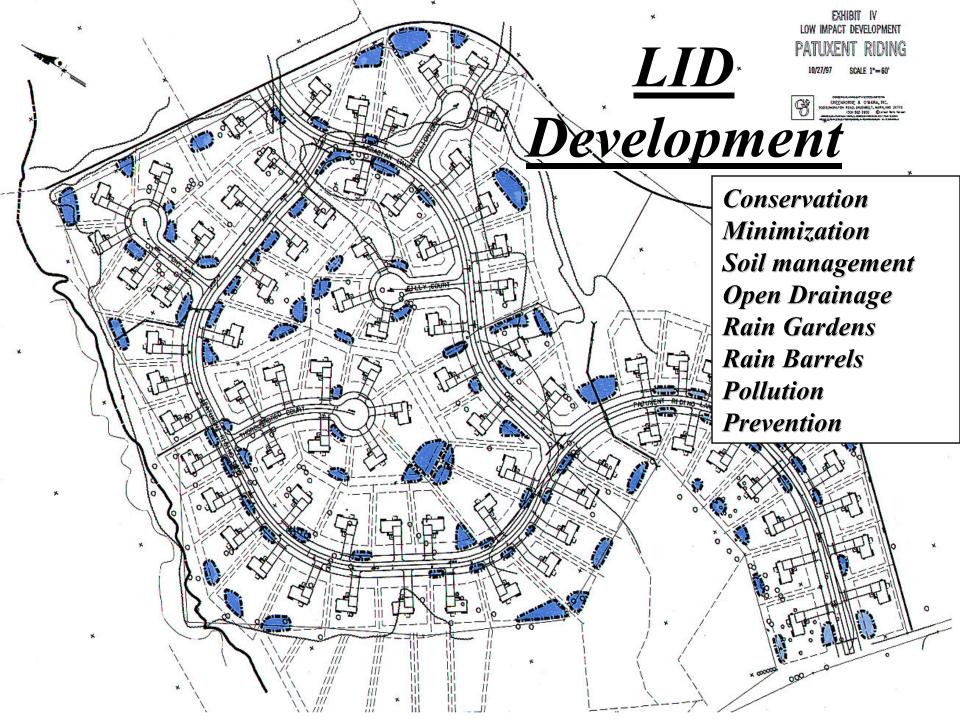
Higher Lot Yield	17 additional lots
Higher Lot Value	\$3,000 more per lot than competition
Lower Cost per Lot	\$4,800 less per lot
Enhanced Marketability	80 percent of lots sold in the first year
Added Amenities	23.5 acres of green space/parks
Recognition	National, state, and professional groups

TOTAL ECONOMIC BENEFIT	More than \$2.2 million in savings.

LID Practices (No Limit!)

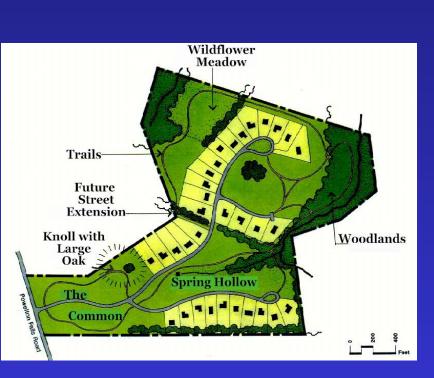
"Creative Techniques to Treat,Use, Store, Retain, Detain and Recharge"

- Bioretention / Rain Gardens
- Strategic Grading
- Site Finger Printing
- Resource Conservation
- Flatter Wider Swales
- Flatter Slopes
- Long Flow Paths
- Tree / Shrub Depression
- Turf Depression
- Landscape Island Storage
- Rooftop Detention /Retention
- Roof Leader Disconnection
- Parking Lot / Street Storage
- Smaller Culverts, Pipes & Inlets

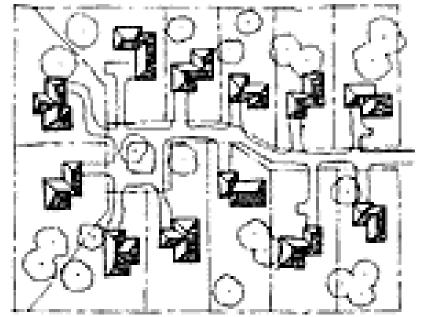

- Alternative Surfaces
- Reduce Impervious Surface
- Surface Roughness Technology
- Rain Barrels / Cisterns / Water Use
- Catch Basins / Seepage Pits
- Sidewalk Storage
- Vegetative Swales, Buffers & Strips
- Infiltration Swales & Trenches
- Eliminate Curb and Gutter
- Shoulder Vegetation
- Maximize Sheet flow
- Maintain Drainage Patterns
- Reforestation
- Pollution Prevention.....

<u>Suburban Development</u>

- Bioretention / Rain Gardens
- Strategic Grading
- Site Finger Printing
- Resource Conservation
- Flatter Wider Swales
- Flatter Slopes
- Long Flow Paths
- Tree / Shrub Depression
- Turf Depression
- Landscape Island Storage
- Roof Leader Disconnection
- Smaller Culverts, Pipes & Inlets
- Alternative Surfaces


- Reduce Impervious Surface
- Surface Roughness Technology
- Rain Barrels / Cisterns / Water Use
- Catch Basins / Seepage Pits
- Vegetative Swales, Buffers & Strips
- Infiltration Swales & Trenches
- Eliminate Curb and Gutter
- Shoulder Vegetation
- Maximize Sheet flow
- Maintain Drainage Patterns
- Reforestation.....
- Pollution Prevention.....

"Creative Techniques to Treat, Use, Store, Retain, Detain and Recharge"


1. Conservation

- Local Watershed and Conservation Plans
 - Forest (Contiguous and Interior Habitat)
 - Streams (Corridors)
 - Wetlands
 - Habitats
 - Step Slopes
 - Buffers
 - Critical Areas
 - Parks
 - Scenic Areas
 - Trails
 - Shorelines
 - Difficult Soils
 - Ag Lands
 - Minerals

Cluster Development Conservation Design

2 dwelling units/acre gross density 2 dwelling units/acre net density 12 dwelling units on 6 acres 2 dwelling units/acre gross density 4 dwelling units/acre net density 12 dwelling units on 3 acres

undeveloped open space

http://www.extension.umn.edu/distribution/naturalresources/

Village Homes Davis, CA

Natural drainage swales

ergy2000.ee.doe.gov

Prairie Crossing

- \$1.4 M saved in infrastructure
- Narrower streetsNatural drainage

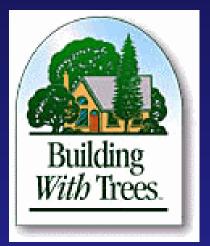
50% reduction in energy
% of each home sale goes to Liberty Prairie Foundation

Prairie Crossing

Grayslake, Illinois

- Reduced density from 1500 lots to 317
- 150 acres of farmland
- 3 land planning types:
 Large lot
 Cluster
 Neo-traditional

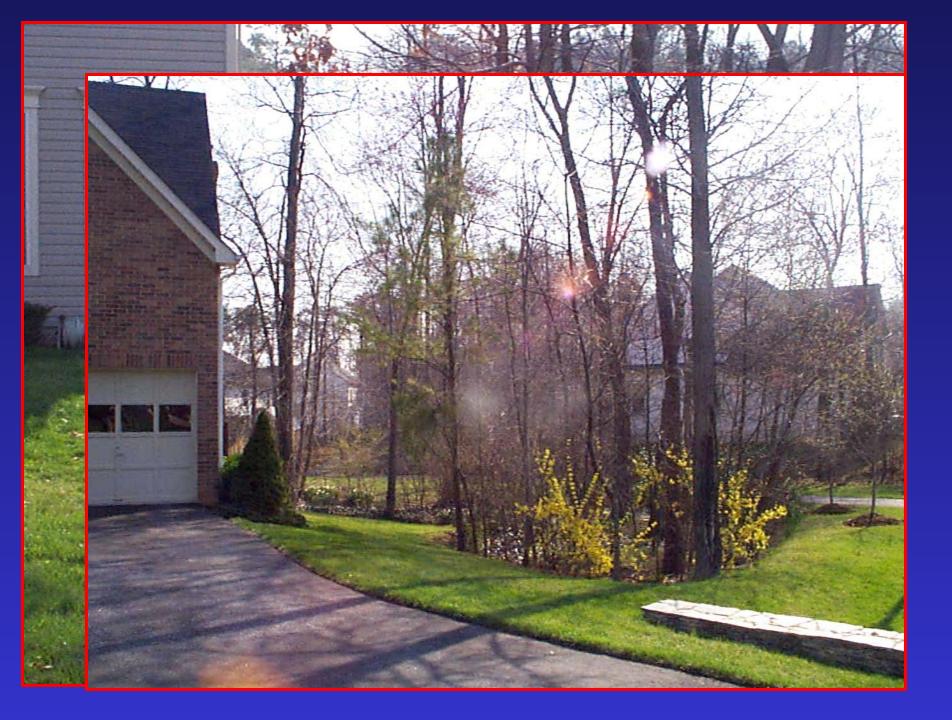
2. Minimize Impacts


- Minimize Clearing
- Minimize Grading
- Save A and B soils
- Limit lot Disturbance
- Soil Amendments
- Alternative Surfaces
- Reforestation
- Disconnect
- Reduce pipes, curb and gutters
- Reduce Impervious Surfaces

The National Arbor Day Foundation

The National Association of Home Builders

Kelly Woods by Residential Development Group Crystal Lake, Ill.


Limited Lot Disturbance

Site Finger Printing

On-lot Conservation Issues

Vegetation / Soils / Drainage / etc.

- Infrastructure Conflicts
 - Roadway Requirements
 - Min. / Max Grades and Slopes
 - Right-of-Way
 - Utility Easements
 - Driveway Slopes / Locations
 - Setbacks (Buildings / Septic Systems
 - Drainage Courses (Location and Safety)

On-lot Conservation Issues

Vegetation / Soils / Drainage / etc.

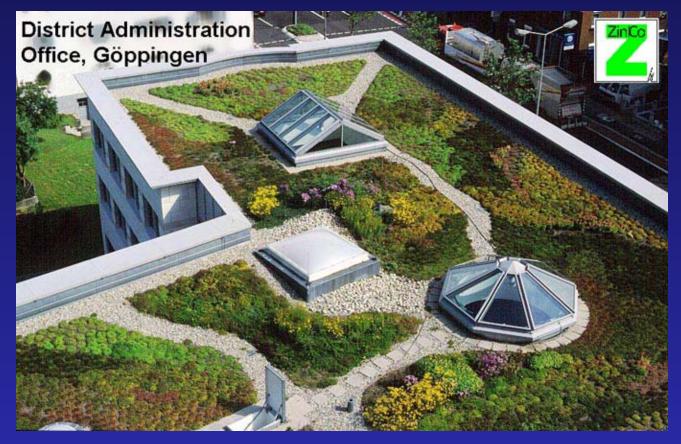
- Construction Techniques
 - Avoid Construction Damage
 - Protect roots
 - Type and Age of Trees
 - Hydrology

3. Maintain Time of Concentration

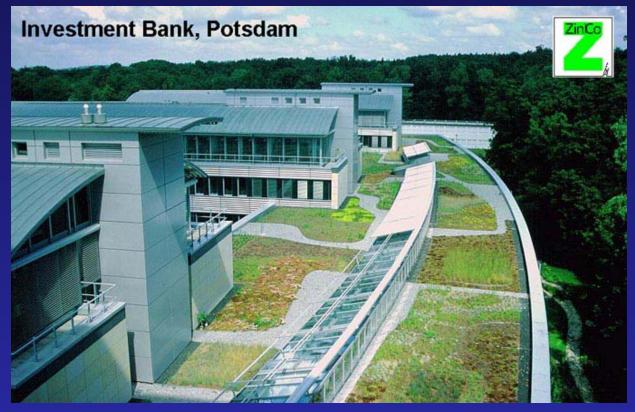
- Open Drainage
- Use green space
- Flatten slopes
- Disperse drainage
- Lengthen flow paths
- Save headwater areas
- Vegetative swales
- Maintain natural flow paths
- Increase distance from streams
- Maximize sheet flow

Saving Existing Forested Areas To Treat Runoff

> Berms Depressions Sheet flow



4. Storage, Detention & Filtration "LID IMP's"


- Uniform Distribution at the Source
 - Open drainage swales
 - Rain Gardens / Bioretention
 - Smaller pipes and culverts
 - Small inlets
 - Depression storage
 - Infiltration
 - Rooftop storage
 - Pipe storage
 - Street storage
 - Rain Water Use
 - Soil Management**

Project Data:

- Size: 12,850 sqf
- Soil depth: 3"-8"
- Plant level: sedum with semi-intensive plantingislands
- Construction year: 1990

Project Data:

- Total size: about several 10,000 sq. ft. extensive and intensive roof vegetation
- Soil depth: 3"-25"
- Plant level: from sedum, shrubs and grasses up to large bushes and trees
- Construction year: 1996

Project Data:

- Size: 84,500 sqf
- Soil depth: 4"
- Plant level: sedum, shrubs, grasses
- Construction year: 1998

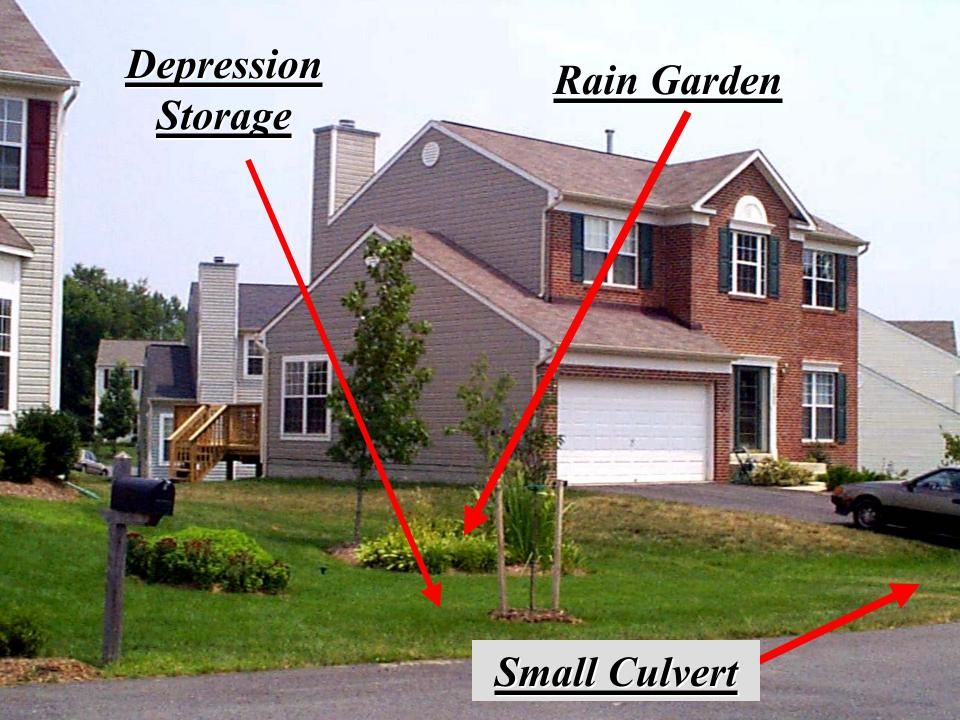
Benefits of a Green Roof

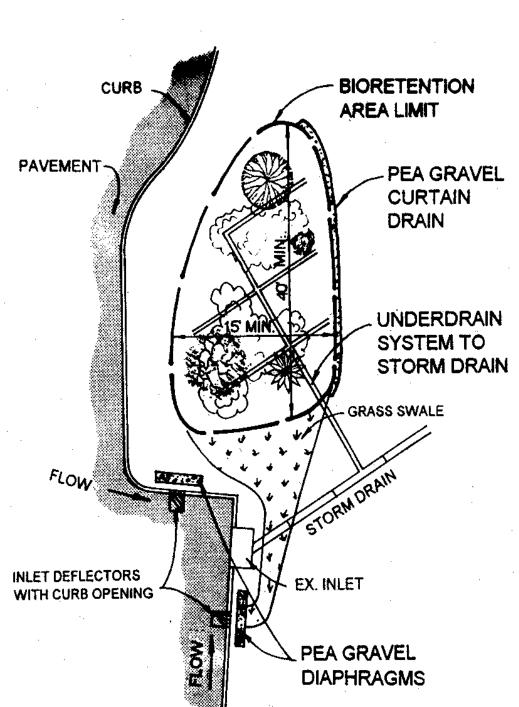
(from ZinCo Roofgardens, The Green Roof Planning Guide)

Ecological Benefits

- Improvement of microclimate
- New habitat for plants, animals, and humans
- Retention of storm water reduces load on domestic drainage system
- Reduction of noise level due to less sound reverberation and improved sound insulation
- Retention of dust particles and nutrients from air and rain

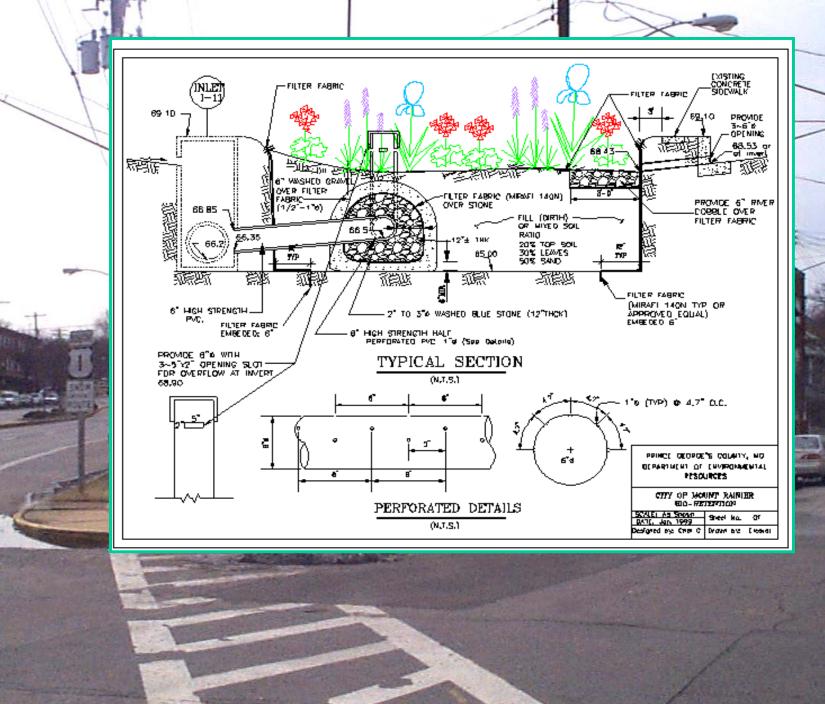
Benefits of a Green Roof

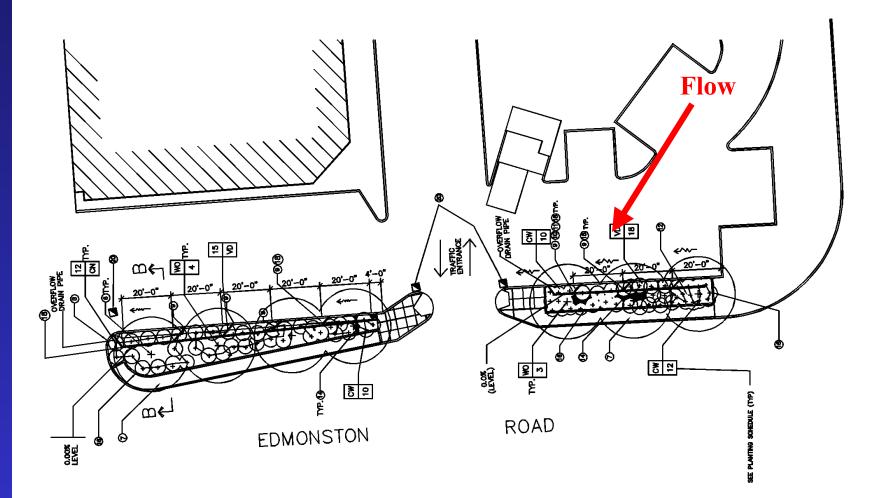

(from ZinCo Roofgardens, The Green Roof Planning Guide)


Economic Benefits

- Increase in life expectancy of waterproofing by providing protection against temperature extremes and ultra-violet light
- Saving energy costs by improving by improving thermal insulation and ensuring more economical functioning of air-conditioning
- Better use of building plot (a green roof increases recreational area
- Increase in property value

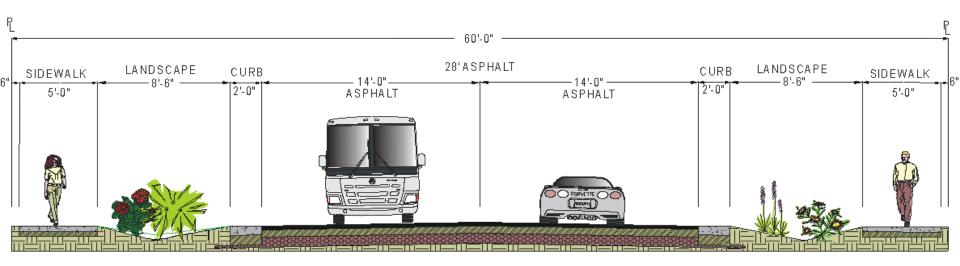
<u>Rain</u> Gardens


<u>Typical Landscape Maintenance Practices</u>



All green space can be designed to be hydrologically functional and treat runoff.

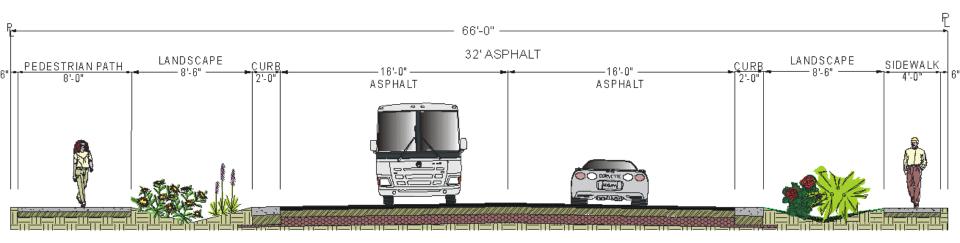
Port Towns Shopping Center


0.94 Acres @ \$29,000 \$30,000 / Ac.

APPENDIX DRUGHT

LEASE

ALLE HIS


NEW 60' RIGHT-OF-WAY SERVICE 26 TO 75 RESIDENCES

LOW IMPACT RESULTS

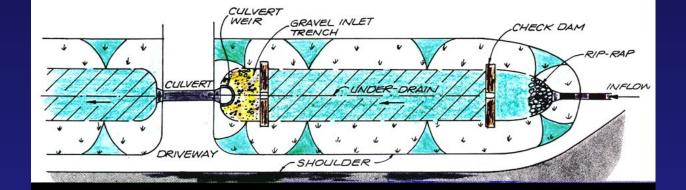
- 28% LESS ASPHALT SURFACE
- I0-14% STORM WATER RUNOFF REDUCTION
- 125% INCREASE IN GREEN SPACE

NEW 66' RIGHT-OF-WAY SERVICE MINIMUM 3000 AVERAGE DAILY TRIPS

LOW IMPACT RESULTS

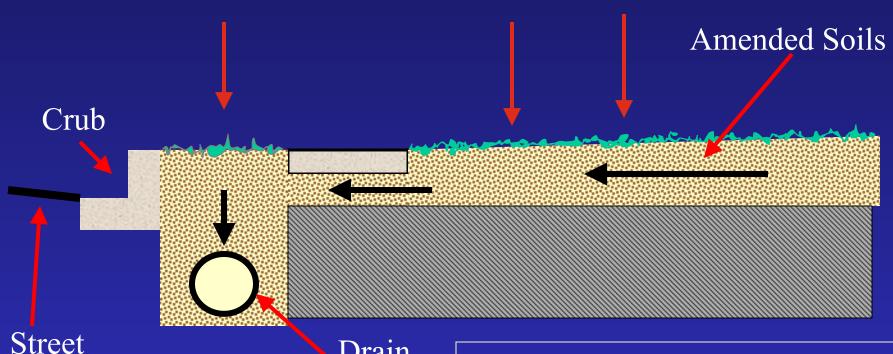
- 26% LESS ASPHALT SURFACE
- 12-15% STORM WATER RUNOFF REDUCTION
- 125% INCREASE IN GREEN SPACE

Many of the features of the proposed standards are shown in Table 6-1. The table also includes features associated with the current standards being used in North Logan City for comparison purposes.

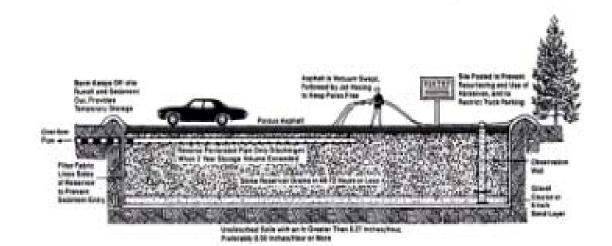

Table 6-1. Design Information for Existing and Proposed Roadway Standards in North Logan City, Utah.

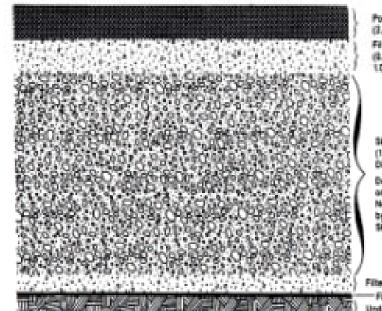
Road Type	Collector (existing)	Collector (proposed)	Major residential (existing)	Major residential (proposed)	Minor residential (existing)	Minor residential (proposed)
ROW Width	66 '	66'	60'	60'	50'	50'
Street Width	43'	32'	39'	28'	30'	25'
Landscape Area	NA	8.5' Each side	NA	8.5' Each side	NA	6' Each side
Drainage	Curb and gutter	Flat curb and swale (optional high-back curb)	Curb and gutter	Flat curb and swale	Curb and gutter	Flat curb and swale
Pedestrian Walkway	5' both sides	4' one side, 8' other side	4' both sides	5' both sides	4' both sides	4' both sides

Estimated costs associated with implementation of each of the proposed roadways are contained in Appendix D.


6.2 Standards

Optimizing Urban Soil Functionality


Drain


Cross Section of Urban Curb / Gutter / Yard

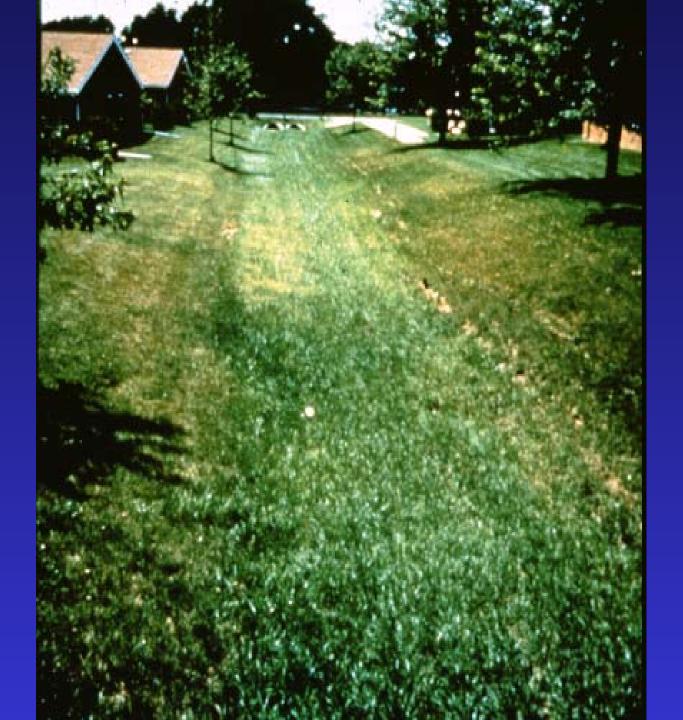
By engineering the soil media composition, void space and depth we can store, treat, recharge and release runoff at predevelopment levels.

Side View

Porous Pavement Course (2.5-4.0 inches Thick) Filter Course (3.5 inch Diameter Gravel, 1.0 inch Thick)

Stone Reservair (1.5-3.0 Inch Diameter Stone)

Cepth Variable Depending on the Storage Volume Needed, Storage Provided by the Vold Space Between Stores

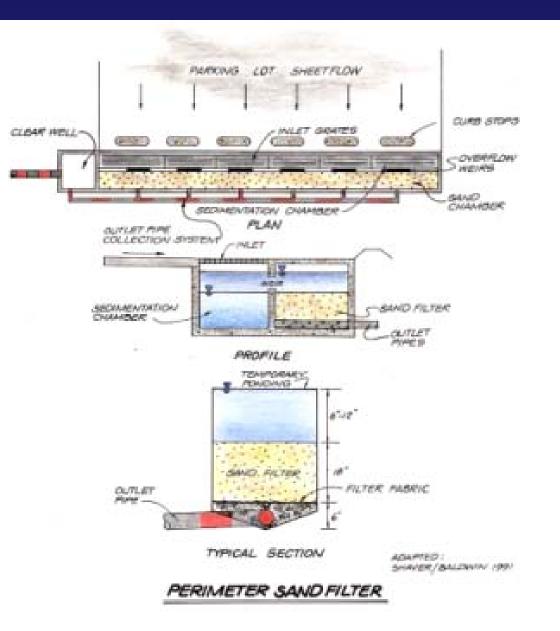

Filter Course (Gravel, 2 Inch Deep) — Filter Fabric Layer Undisturbed Soil

Total Water Management

Runoff Use

Consumption Reduction

Save \$100 / yr.



My House

Rain Barrel

Rain Gardens

<u>Kettering Demonstration Project</u>

"A Comprehensive Urban Retrofit and Outreach Program"

- Project Overview

- Goals / Objectives
 - » Learning and understanding how to develop an effective public education program.
- Program Components
 - » Partnerships
 - » Structural Measures
 - » Educational Units
 - » Monitoring
 - » Modeling

Educational Components

- Project Introduction
- Pre-program Survey
- Lawn Care
- Backyard Habitat
- Reporting Pollution Problems
- Recycling
- House hold Hazardous Wastes
- Care Care
- Tree Planting
- Adopt a Stream
- Pollution Prevention

Media Used

- Direct Mailings
 - Letters / Brochures
- Library
- Community News Letters / Meetings
- Signs
- Community Organizations
- Workshops
- News Papers
- Other Public Announcements

Ketterin

Eugene T. Lauer

Community Demonstration P

Eugene T. Lau Director

> Would you like to have gre landscaping that attracts wil less time, less money, and less harmful chemics

Community Demons

Come out to our Wild Acres w learn how!

Date: Monday, October 20 Time: 7:00pm Place: The Kettering Commun

Each person that attends will receive a the For more information call Stephen Par An interpreter for the hearing impaired can be made

Working Together Parts N. Gendering Cleaner, Healthier Co

County Executive

Working Together For A Cleaner, Healthier Community

Did You Know:

Kettering residents discharge approximately 1,277 quarts of detergents each year to the local stream from car washing alone?

Approximately 2,533 quarts of oil are disposed of improperly in Kettering each year and have the potential to contaminate the stream?

Approximately 2,992 quarts of antifreeze are drained onto the streets of Kettering where it then runs directly into the stream?

Approximately 23,643 pounds of nitrogen have the potential of being washed off of Kettering lawns each year from fertilizer applications?

Approximately 80% of Kettering residents apply some form of chemical pesticides to their yards each year?

When our environmental education program began last summer, 58% of Kettering residents did not know that neighborhoods like Kettering cause water pollution?

The stream that flows through the eastern part of Kettering into the Northeast Branch is so polluted that it can support almost no aquatic life?

Kettering Survey Response		
Questions	Pre Program	Post Program
	%	%
Is urban Runoff a Problem?	58	40
Use Pesticides?	41	42
Use Herbicides?	30	56
Fertilize?		
Spring	43	46
Fall	40	44
Don't Recycle Antifreeze	25	24
Don't know how to report problems	72	55
Response Rate	36	15
Are you likely to adopt the programs?		94
Where Do You Get Your Information?	Lables	
	News Media	

Comparison of EMC at Site K3 for 1993 and 1996-1997					
Pollutant	1993 Median	1996-1997 Median			
Lead	1995 Meulan 11	10.7			
Zinc	60	41.4			
NH3	ND	0.12			
BOD5	5.5	10.44			
No2/NO3	0.45	0.26			
TP	0.45	0.31			
TKN	1.6	1.16			
TSS	45	93			
40% reduction in	N02 / N03				
31% Reduction in					

Mean Monthly Nitrogen Concentration (Est. from HSPF for 8-yr simulation)

Education Program Costs

 Community Planner......\$41,616

 Other Support Staff\$11,250

 Consultant Services\$15,500

 Publications / Copies\$5,852

 Mailings.....\$7,818

 Total
 \$82,036

What We Learned About Public Educational Programs

- Socio-economic Factors
- Value of Reconnaissance Study
- Value and Use of Media
- Costs and Level of Effort
- Large Scale Applications
- Motivational Factors (Complex)
- Long Term Success
- Conclusions

How We Applied the Lessons

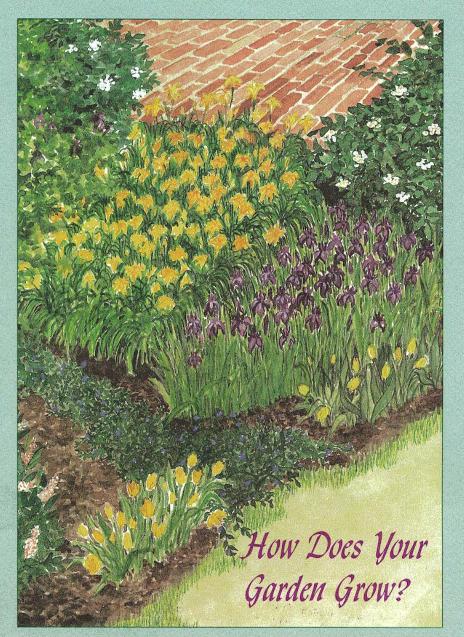
- New Focus and Goals for Outreach Programs

- Stream Teams "Train the Trainers"
- Targeted
- Organizations / Institutions
- New Technology to Engage the Public
 - Low Impact Development
 - Onsite Controls / Rain Gardens

Current Education Programs

- Stream Teams
 - Community / Organizational Based Outreach
 - Program Components
 - Promote with Interested Parties
- Organizational Training and Programs
 - Environmental Groups
 - Institutions
 - Changing the way they do business

Stream Survey Form


Garden Clubs Schools

Community Organizations

Environmental Groups Homeowners Associations

Stream clean up

A Reference Guide to Enhancing your Rain Garden

Education Responsibility **Function** 0 & M **Enforcement Easements** HOA **Community Standards Economics Property Values Added Value**

Ease of Maintenance