

Natural Hydrologic Cycle

McCuen, 1999

Developed Hydrologic Cycle

McCuen, 1999

Wetlands Recharge

Volume/Frequency

How Does LID Maintain or Restore The Hydrologic Regime?

- Creative ways to:
 - Maintain / Restore Storage Volume
 - interception, depression, channel
 - Maintain / Restore Infiltration Volume
 - Maintain / Restore Evaporation Volume
 - Maintain / Restore Runoff Volume
 - Maintain Flow Paths
- Engineer a site to mimic the natural water cycle functions / relationships

<u>Key LID Principles</u>

"Volume"

"Hydrology as the Organizing Principle "

- Unique Watershed Design
 - Match Initial Abstraction Volume
 - Mimic Water Balance
- Uniform Distribution of Small-scale Controls
- Cumulative Impacts of Multiple Systems

 filter / detain / retain / use / recharge / evaporate
- Decentralized / Disconnection
- Multifunctional Multipurpose Landscaping & Architecture
- Prevention

<u>Defining LID Technology</u>

Major Components

- 1. Conservation (Watershed and Site Level)
- 2. Minimization (Site Level)
- 3. Strategic Timing (Watershed and Site Level)
- 4. Integrated Management Practices (Site Level) Retain / Detain / Filter / Recharge / Use
- 5. Pollution Prevention Traditional Approaches

LID Practices (No Limit!)

<u>"Creative Techniques to Treat, Use, Store, Retain, Detain and Recharge"</u>

- Bioretention / Rain Gardens
- Strategic Grading
- Site Finger Printing
- Resource Conservation
- Flatter Wider Swales
- Flatter Slopes
- Long Flow Paths
- Tree / Shrub Depression
- Turf Depression
- Landscape Island Storage
- Rooftop Detention /Retention
- Roof Leader Disconnection
- Parking Lot / Street Storage
- Smaller Culverts, Pipes & Inlets

- Alternative Surfaces
- Reduce Impervious Surface
- Surface Roughness Technology
- Rain Barrels / Cisterns / Water Use
- Catch Basins / Seepage Pits
- Sidewalk Storage
- Vegetative Swales, Buffers & Strips
- Infiltration Swales & Trenches
- Eliminate Curb and Gutter
- Shoulder Vegetation
- Maximize Sheet flow
- Maintain Drainage Patterns
- Reforestation.....
- Pollution Prevention.....

LID Hydrologic Analysis Dr. Mow-Soung Cheng

Compensate for the loss of rainfall abstraction Infiltration Evapotranspiration Surface storage Time of travel

LID Design Procedure Highlights

- Site Analysis
- Determine Unique Design Storm
- Maintain Flow Patterns and Tc
- Conservation and Prevention
- Develop LID CN
- Compensatory Techniques. Stress Volume Control then Detention or Hybrid for Peak

- Based on NRCS technology, can be applied nationally
- Analysis components use same methods as NRCS
- Designed to meet both storm water quality and quantity requirements

Other Models Acceptable!!!

- TR-55 used as a basic design tool for local government use. COMMON PRACTICAL PLATFORM
- Still an ungaged and uncalibrated model!!
- Other more sophisticated, data and time intensive models exist for calibration/verification
- Continuous simulation recognized as the most rigorous

LID Manual H and H Process

Developed Condition, Conventional CN (Higher Peak, More Volume, and Earlier Peak Time) **Existing Condition**

Т

Τ

Reducing Volume

Provide Retention storage so that the runoff volume will be the same as Predevelopment

 A_3

Т

Q

Retention storage needed to reduce the CN to the existing condition $= A_2 + A_3$

Detention Storage

<u>Comparison of Conventional and L I D</u> <u>Curve Numbers (CN)</u> tor **<u>1- Acre Residential Lots</u> Conventional CN Disconectiveness** R) Customize Curb Number to Maximize Land Cover and

Disconnectivity

25 % Woods60 % Grass

 P_{IMP} = Percent of imp. site

Curve Number is reduced by using LID Land Uses.

LID to Maintain the Time of Concentration

"Uniformly Distributed Controls"

* Minimize Disturbance

* Flatten Grades

* Reduce Height of Slopes

* Increase Flow Path

* Increase Roughness " n "

- * Infiltration
- * Retention
- * Roof Top Storage
- * Rain Barrels
- * Bioretention
- * Irrigation Pond

Determining LID BMP Sizing

8% BMP

<u>Methods of Detaining Storage to</u> <u>Reduce Peak Runoff Rate</u>

- * Larger Swales with less slope
- * Swales with check dams
- * Smaller or constricted drainage pipes
- * Rain barrels
- * Rooftop storage
- * Diversion structures

LID Techniques and Objectives

Low-Impact Development Technique

Low Impact Development Objective	Flatten Slope	Increase Flow Path	Increase Sheet Flow	Increase Roughness	Minimize Disturbance	Larger Swales	Flatten Slopes on Swales	Infiltration Swales	Vegetative Filter Strips	Constricted Pipes	Disconnected Impervious Areas	Reduce Curb and Gutter	Rain Barrels	Rooftop Storage	Bioretention	Re-Vegetation	Vegetation Preservation
Increase Time of Concentration	X	Х	Х	Х					Х	Х	Х	Х	Х	Х	Х		
Increase Detention Time							Х			Х			Х	Х			
Increase Storage						Х		Х	Х						Х	Х	Х
Lower Post Development CN					Х						Х				Х	Х	Х

Low-Impact Development Technique

Low Impact Development objective to Maintain Time of Concentration (Tc)	Balance cut and fill on lot.	Network Smaller Swales	Clusters of Trees and Shrubs in Flow Path	Provide Tree Conservation on Lots	Eliminate Storm Drain Pipes	Disconnect Impervious Areas	Save Trees in Smaller Clusters	Terrace Yards	Drain from House and then Reduce Grades
Minimize Disturbance	Х		Х	Х	Х	Х	Х	Х	
Flatten Grades		Х			Х			Х	Х
Reduce Height of Slopes					Х			X	Х
Increase Flow Path (Divert and Redirect)		Х	Х		Х	X	Х		Х
Increase Roughness "n"			Х	X	X	Х	Х		

Summary of LID Techniques

- (1) Recalculate Postdevelopment CN based on LID land use.
- (2) Increase Travel Time (TT) using LID techniques to achieve the same Tc as Existing conditions.
- (3) Retention: Provide permanent storage (Infiltration/Retention) using LID techniques to maintain the CN and runoff volume of existing conditions.
- (4) Detention: Provide additional detention storage to maintain the same peak discharge as existing conditions.

VIEW OF LOT WITH STORAGE AND BIORETENTION

BMP Evaluation Method

Existing Flow &HSPF LANDPollutant LoadsSIMULATION

– Unit-Area Output by Landuse –

SITE-LEVEL LAND/BMP ROUTING

100

2/20/99

Cost/Benefit Assessment of LID design

6/20/99

Simulated Flow/Water Quality Improvement

10/20/99

2/20/00

6/20/00

10/20/00

Simulated Surface Runoff

BMP DESIGN – Site Level Design –

Ready

Other Models

- PC SWMM/Permeable Pavers (Unilock)
- PCSLAMM/(UAB)
- SWMM for Microscale Practices (USEPA) OPTIMIZATION!!
- TR-20 Windows (NRCS)
- EPA SWMM Optimization
- Music (Monash University)
- Delaware Conservation and LID Model (TR-20)

Lumped or Specific Issues? How do we evaluate/monitor/model/ review/determine effectiveness

Hoffman and Crawford, 2000

Existing Problems and Future High Risks

Hoffman and Crawford, 2000

Oversize Pipes

Remove Large / Impervious Areas Comparison of Conventional and LID Strategies An estimate of imperviousness can be derived directly from the satellite image for developed areas. (Water bodies from the USGS topographic maps are overlaid for orientation, and areas identified as undeveloped in the National Land Cover dataset are left white.)

Soil moisture maps can be generated using the vegetation and surface temperature data with a surface climate model. The gray-scale image is dark for surfaces with a dried out top layer and bright or white for surfaces that are wet. This information can be used to locate areas with very moist surface layers near identified wetlands that can be easily converted to wetlands themselves.

woody wetlands classified by the National Land Cover Dataset (NLCD)

forested, non-tidal wetlands classified by the Army Corps of Engineers

Ground Truthing Image

$$Q = \frac{\left(P - I_a\right)^2}{\left(P - I_a\right) + S}$$

$$S = \frac{1000}{CN} - 10$$

$$Q = \frac{\left(P - I_a\right)^2}{\left(P - I_a\right) + S} - R$$