

SC Department of Health and Environmental Control

Philip Services Corporation (PSC) Site aka ThermalKEM Project Manager Lucas Berresford August 26, 2014

Meeting Goals

- Site History
- Remedial Investigation Results
- Evaluation of Remedial Alternatives
- Proposed Remedy
- Start Public Comment Period

1979 Aerial Photo

Site History

- 1966-Quality Drum Storage, Treatment and Recycling
- 1981-Hazardous Waste Incinerator
- 1983- Stablex Inc
- 1987 ThermalKEM
- 1995 PSC
- 1998 Incinerator Closure Plan Submitted

 $Promoting \ and \ protecting \ the \ health \ of \ the \ public \ and \ the \ environment$

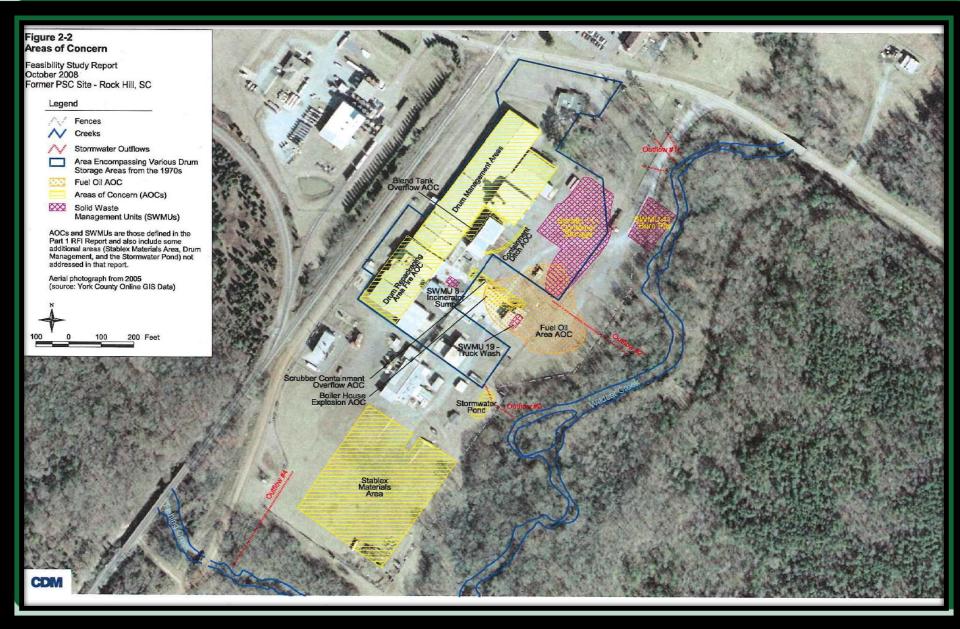
Site History

- June 2003 PSC files for bankruptcy
 protection
- Dec 2003 Bankruptcy Settlement
 - Established Trustee
 - Established Trust Account (approximately \$4.3 M)
 - DHEC assigned as the Lead Agency

Post Operational History

- December 2003 DHEC continues Operation of the Treatment System
- 2004 Removal of Incinerator Building and Start of Remedial Investigation (RI)
- Upgrades to Existing Groundwater Treatment System
- 2008 Remedial Investigation Report
- 2011 Feasibility Study
- 2014 Proposed Plan

Remedial Investigation Results

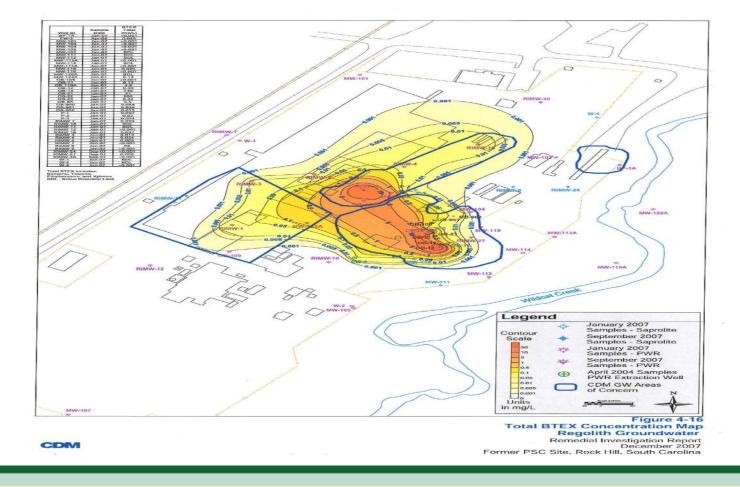

- Groundwater Assessment
- Surface Water Assessment
- Soil Assessment

Areas of Concern

- Stablex Materials Area
- Truck Wash
- Stormwater Pond
- Drum Repackaging Area (Fire Area)
- Drum Management Area
- Contaminant Ditch Area
- Container Storage Area
- Incinerator Sump Area
- Fuel Oil Area

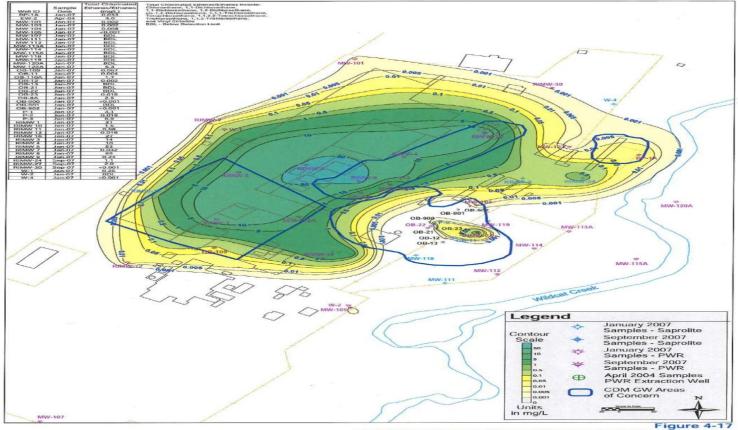
Groundwater Sampling

- Samples were Collected from the 54 monitoring wells
- Elevated levels of SVOCs and VOCs

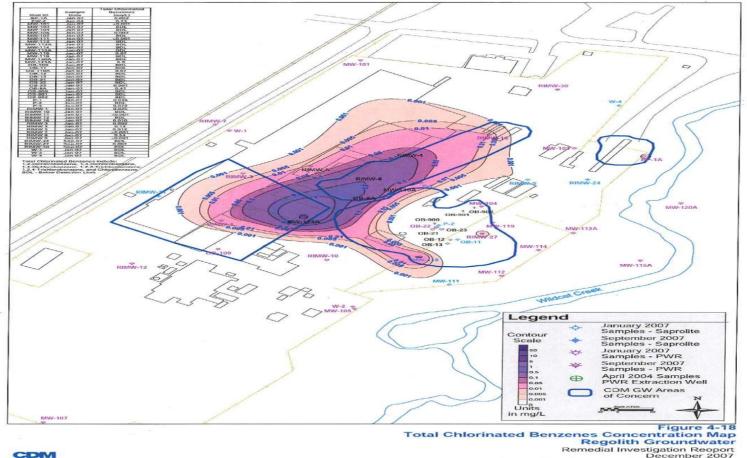


Contaminants in Groundwater

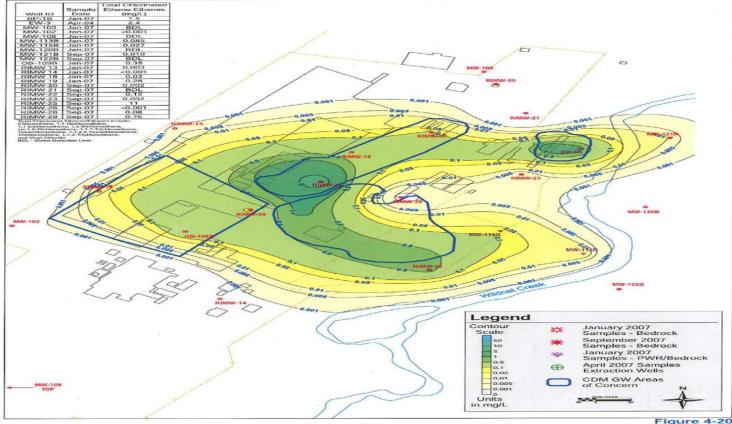
- BTEX Benzene, toluene, ethylbenzene, and xylene.
- Chlorinated ethenes and ethanes (CEE)– Chloroethane; 1,1-dichloroethane; 1,2-dichloroethane; 1,1dichloroethene; cis-1,2-dichloroethene; 1,1,2,2tetrachloroethane; tetrachloroethene; 1,1,1trichloroethane; trichloroethene; 1,1,2-trichloroethane; and vinyl chloride.
- Chlorinated benzenes (CB)– Chlorobenzene; 1,2dichlorobenzene; 1,3-dichlorobenzene; 1,4dichlorobenzene; 1,2,3-trichlorobenzene; and 1,2,4trichlorobenzene.



BTEX Groundwater Concentration

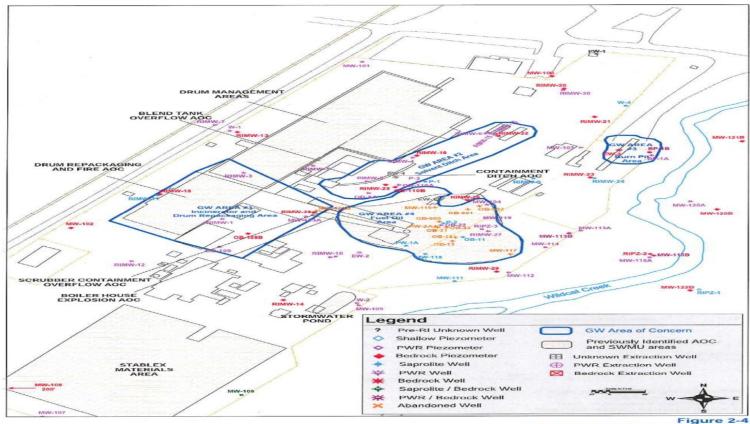

Groundwater Chlorinated Ethenes

Total Chlorinated Ethene/Ethanes Concentration Map Regolith Groundwater Remedial Investigation Report December 2007 Former PSC Site, Rock Hill, South Carolina


Chlorobenzene Groundwater Concentrations

December 2007 Former PSC Site, Rock Hill, South Carolina

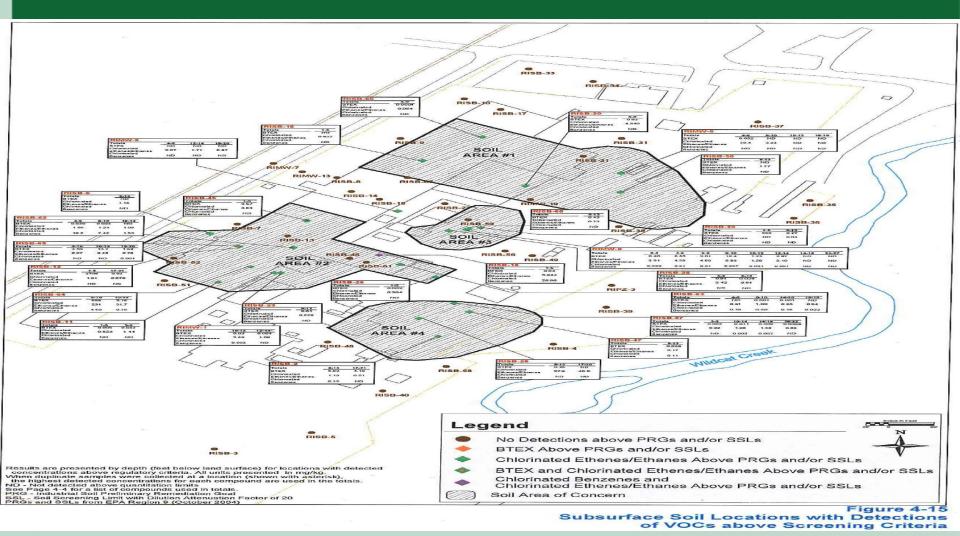
Chlorinated Ethene Bedrock Groundwater Concentrations



Total Chlorinated Ethene/Ethane Concentration Map Bedrock Groundwater Remedial Investigation Report December 2007 Former PSC Site, Rock Hill, South Carolina

Groundwater Areas of Concern

Groundwater Areas of Concern


Feasibility Study Report October 2008 Former PSC Site, Rock Hill, South Carolina

Soil Areas of Concern

Contaminants in Soil

- BTEX
- Chlorinated ethenes and ethanes (CEE)
- Chlorinated benzenes (CB)
- Metals

Stream Sampling

- 23 screening samples collected from Fishing Creek
- 59 screening samples collected from Wildcat Creek
- Surface water and sediment samples collected showed no compounds elevated above background

Remedial Action Objectives

- Minimize potential for human contact with COCs in soil.
- Minimize future releases of COCs from soil to groundwater and from groundwater to surface water.
- Prevent human exposure to groundwater having concentrations in excess of remedial goals (MCLs)
- Restore groundwater to drinking water standards (MCLs).
- Minimize future releases of COCs from soil and groundwater to indoor air.

Evaluation of Remedial Alternatives

 $Promoting \ and \ protecting \ the \ health \ of \ the \ public \ and \ the \ environment$

Remedial Alternatives Soil

- No Action
- Institutional Controls
- Source Containment
- Soil Excavation and Onsite Treatment
- Soil Excavation and Offsite Disposal
- Soil Vapor Extraction
- In-situ Thermal Treatment

Remedial Alternatives Groundwater

- No Action
- Institutional Controls and Long Term Monitoring
- Hydraulic Containment
- In-Situ Chemical Oxidation
- In-Situ Air Sparging
- Permeable Reactive Barrier Wall

Additional Evaluation of Remedial Alternatives

- No one catch all remedy for treatment
- Develop additional alternatives

Combined Alternatives Common Components

- Thermal enhanced multi-phased extraction (MPE) – Fuel Oil Area
- Excavation of metals contaminated soils
- Soil vapor extraction in burn pit area, if necessary
- Monitoring
- Deed Restrictions

Remedial Alternatives Combinations

- Alternative 1 Hydraulic Containment, Removal, SVE and Deep Soil Mixing
- Alternative 2 Removal, SVE and Air Sparging
- Alternative 3 Hydraulic Containment, In-Situ Thermal Treatment

Alternative 1

Hydraulic Containment, Select Excavation, SVE, Deep Soil Mixing

- Excavation and offsite disposal of VOC Principal Threat Source Material (PTSM). VOCs whose concentration exceeds 1,000 times the corresponding SSL
- Deep soil mixing with oxidant in VOC impacted areas in soil and regolith groundwater outside of the Burn Pit and Fuel Oil areas.
- Hydraulic containment with onsite physical/chemical treatment for both the regolith and bedrock hydraulic zones.

Alternative 2 Hydraulic Containment, Select Excavation, SVE, and Air Sparging

- Excavation and offsite disposal of VOC PTSM,
- SVE for VOC impacted soil areas above the water table,
- Air sparing for VOC impacted areas in regolith groundwater,
- Bedrock groundwater containment

Alternative 3 In-Situ Thermal Treatment

- In situ thermal treatment for select areas to treat for VOCs in soil and regolith groundwater.
- Hydraulic containment with onsite physical/chemical treatment for both the regolith and bedrock hydraulic zones

Evaluation Criteria

- Overall Protection of Human Health and Environment
- Compliance with State and Federal Regulations
- Reduction of contaminant toxicity, mobility, and volume through treatment
- Short-Term Effectiveness
- Long-Term Effectiveness
- Implementability
- Cost
- Community Acceptance

Protection of Human Health and Environment Compliance with ARARs

- All combined alternatives are effective in being protective of Human Health and the Environment and comply with ARARs
- Alternative 3 is best because it reduces contamination levels in soils

Reduction of Mobility, Toxicity and Volume by Treatment

- All remedies would reduce M/T/V
- Alternative 3 provides more treatment of contamination
- Alternatives 1 and 2 rely on removal and placement of material in an acceptable disposal facility

Short Term Effectiveness

- All Alternatives would involve minimal short term risk to site workers
- Alternative 3 is slightly more effective because it does not involve the direct excavation and handling of VOC impacted material

Long Term Effectiveness

- Alternatives 1 and 2 May have areas that are difficult to treat due to distribution in subsurface
- Alternative 3 More certainty that contamination within treatment areas is reduced

Implementability

- Alternatives 1 and 2 Subsurface conditions may cause issues with uniform treatment
- Alternative 3 Would require additional data collection to estimate length of operation for system

- Alternative 1 \$43,242,000
- Alternative 2 \$ 28,960,000
- Alternative 3 \$35,854,000

Table 6-5

Comparative Analysis of Soil Alternatives Feasibility Study Report Former PSC Site - Rock Hill, SC

	Criteria Rating						
Remedial Alternative	Overall Protection of Human Health and the Environment	Compliance with ARARs	Long-Term Effectiveness and Permanence	Reduction of M/T/V Through Treatment	Short-Term Effectiveness	Implementability	Approximate Present Worth
1 - No Action	0	0	0	0	0	5	\$418,000
2 - Institutional Controls	1.5	1	1.5	0	3	5	\$604,000
3 - Excavation and Offsite Disposal	5	5	5	4.5	3	3.5	\$32,308,000
4 - Source Containment	2.5	2	2.5	2	3.5	4	\$4,936,000
5 - Source Removal, Ex Situ Treatment, and Onsite Reuse	5	5	. 5	4.5	1	2	\$24,459,000
6A - Soil Vapor Extraction (SVE)	3.5	3.5	3.5	3.5	3	4	\$9,528,000
6B - In Situ Thermal Enhanced SVE	4	4	4	4	3	3	\$45,462,000
Combination Alternative 1, Soil Components: Select Excavation, SVE, and Deep Soil Mixing	4	4	4	4	3	3	\$43,242,000 ¹
Combination Alternative 2, Soil Components: Select Excavation and SVE	3.5	3.5	4	4	3	3	\$28,960,000 ¹
Combination Alternative 3, Soil Components: SVE and In Situ Thermal Treatment	4.5	4.5	4.5	5	3.5	4	\$35,854,000 ¹

Notes:

A ranking of "0" indicates that the criterion is not met while a ranking of "5" indicates that the criterion is completely met.

Combination alternative rankings are based on the soil component only.

¹ Total cost including both soil and groundwater components.

Preferred Remedy

Alternative 3 – Hydraulic Containment, SVE, Thermal-Enhanced MPE, and In Situ Thermal Treatment

- Excavation and offsite disposal of metals contaminated soil exceeding RGs outside of VOC treatment areas,
- Hydraulic containment with onsite physical/chemical treatment for the regolith and bedrock hydraulic zones
- SVE in the Burn Pit Area, if necessary,
- Thermal-enhanced MPE for the Fuel Oil Area,
- In situ thermal treatment for select areas to treat for VOCs in soil and regolith groundwater.
- Groundwater and surface water monitoring.
- Institutional controls

Public Comment Period

Administrative Record

 York County Library Main Branch
 138 East Black Street, Rock Hill

Public Comment Period : August 26,2014 – September 26,2014

Next Steps

- Record of Decision (ROD) : identifies the selected cleanup method after review and consideration of all comments
- Remedial Design (RD) : development of specifications and drawings necessary for construction of the remedy
- Implementation of the Remedy (Funding)

Questions and Comments?

Project Manager : Lucas Berresford berresjl@dhec.sc.gov