a ARCADIS

Infrastructure, environment, buildings

Ms. Carol C. Minsk
Project Manager

Mr. Lucas Berresford
Engineering Associate
Division of Site Assessment and Remediation
South Carolina Department of Health and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201

Subject:
Pilot Study Summary Report
AVX Corporation
Myrtle Beach Facility
801 17 ${ }^{\text {th }}$ Avenue South
Horry County, Myrtle Beach, South Carolina
SCD 062690557

Dear Ms. Minsk and Mr. Berresford:

On behalf of AVX Corporation, ARCADIS respectfully submits five copes of the Pilot Study Summary Report for the above-referenced site. If you have any questions, please contact me at 724.742.9180, ext. 518.

Respectfully,

Ms. Myra Reece, South Carolina Department of Health and Environmental Control
Mr. Larry Ragsdale, South Carolina Department of Health and Environmental Control

Mr. Max Justice, Parker, Poe, Adams \& Bernstein LLP

ARCADIS

Mark B. Hanish
Project Manager

Copies:

Mr. Larry Blue, CHMM, REM, AVX Corporation

Mr. William Popham, ARCADIS

ARCADIS
One Adams Place
310 Seven Fields Blvd
Suite 210
Seven Fields
Pennsylvania 16046
Tel 724.742.9180
Fax 724.742.9189
www.arcadis-us.com

Date:
July 28, 2010

Contact:
Mark B. Hanish

Phone:
724.742.9180, ext. 518

Email:
mark.hanish@arcadis-us.com

Our ref:
B0007393.0000

Infrastructure, environment, buildings
Imagine the result

AVX Corporation

Pilot Study Summary Report

Enhanced Reductive Dechlorination
Myrtle Beach, South Carolina

July 2010

ARCADIS

Jeffrey McDonough, E.I.T. Staff Engineer

Denice Nelson, PhD
Principal Engineer

Mark B. Hanish
Project Manager

William B. Popham
Senior Vice President

Jeff. 8 . Beekher';'R,G.
LiĚensè Number 865

Pilot Study Summary Report
Enhanced Reductive Dechlorination

Prepared for.
AVX Corporation

Prepared by:
ARCADIS
One Adams Place
310 Seven Fields Blvd
Suite 210
Seven Fields
Pennsylvania 16046
Tel 724.742.9180
Fax 724.742.9189

Our Ref.:
B0007393.0000

Date:
July 2010

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

ARCADIS

1. Introduction
1.1 Site Background
1.2 Description of Enhanced Reductive Dechlorination Technology
1.3 Objectives
2. Enhanced Reductive Dechlorination Pilot Study Implementation
2.1 Well Installation
2.2 Injection System Setup
2.3 Injection Summary
2.4 Performance Monitoring
2.5 Assessment of Methane in Vadose Zone Near Injection Wells
3. Enhanced Reductive Dechlorination Pilot Study Results
3.1 Reductive Dechlorination
3.1.1 Dose Response Well Chlorinated Volatile Organic Compound Results
$\begin{array}{lll}\text { 3.1.2 } & \text { Downgradient Performance Monitoring Well Chlorinated Volatile } \\ \text { Organic Compound Results }\end{array}$
3.2 Total Organic Carbon Distribution 11
3.2.1 Dose Response Well Total Organic Carbon Results 12
$\begin{array}{lll}\text { 3.2.2 } & \text { Downgradient Performance Monitoring Well Total Organic Carbon } \\ & 12 \\ \text { Results }\end{array}$
3.2.3 Optimization of Injected Total Organic Carbon Distribution 12
3.3 Operational Monitoring 13
3.4 Results of Soil Gas Sampling for Methane 14
3.5 Future Activities 14
4. Conclusions and Recommendations 15
5. References 16

Tables

Figures

1

Well Details
Performance Monitoring Schedule
Summary of Performance Monitoring Results

Site Location Map

Appendices

A Well Completion Logs
B
Photos
C

ARCADIS

Pilot Study Summary Report

Enhanced Reductive Dechlorination

1. Introduction

ARCADIS, on behalf of the AVX Corporation (AVX), implemented a pilot study in support of the development of a feasibility study (FS) to address off-site dissolved chlorinated volatile organic compounds (VOCs) on the Horry Land Company property located northeast of the AVX facility at $80117^{\text {th }}$ Avenue South, Myrtle Beach, South Carolina (site) (Figure 1). All work was performed with the permission of the property owner (Horry Land Company).

The South Carolina Department of Health and Environmental Control (SCDHEC) originally requested that an FS be conducted for the site in a January 2, 2008 letter. The purpose of the FS is to select the most effective, implementable, and cost efficient remedial strategy to achieve the remedial action objectives (RAOs). The RAOs discussed within the March 2008 FS Work Plan (ARCADIS, 2008) are to:

1. Control the migration of dissolved-phase chlorinated VOCs from leaving the site and attain the SCDHEC Water Classification and Standards - Regulation 61-68 June 25, 2004.
2. Mitigate elevated concentrations of dissolved chlorinated VOCs in off-site groundwater.

This Pilot Study Summary Report (report) summarizes the results of the ongoing pilot study that has been implemented with the objective of evaluating the feasibility of using in-situ enhanced reductive dechlorination (ERD) to address the second RAO. All work was performed in accordance with the May 11, 2009 Addendum 2 to Appendix B (ERD Work Plan) of the FS Work Plan (ARCADIS, 2009a) and the July 2, 2009 Underground Injection Control Permit Application (ARCADIS, 2009b).

1.1 Site Background

A comprehensive summary of the site setting, environmental history, and conceptual site model (CSM) are presented in the FS Work Plan (ARCADIS, 2008). A brief summary of the CSM and information related to the origin, fate, and transport of dissolved chlorinated VOCs off site, which is relevant to the ERD pilot study, is presented below.

Trichloroethene (TCE) and its chlorinated breakdown products (cis-1,2-dichloroethene [cis-1,2-DCE] and vinyl chloride [VC]) are the primary constituents of concern in

ARCADIS

Pilot Study Summary Report

Enhanced Reductive Dechlorination
groundwater at the site. The primary sources of TCE release to the environment are likely:

- The former TCE underground storage tanks reportedly located on the western side of the main building, which is now beneath an area of building expansion.
- A degreasing unit located adjacent to or beneath the AVX main building.

The geology at the site is characterized by alternating beds of sand and clay. The uppermost strata are referred to as terrace deposits (including an upper and lower unit), which extend to approximately 45 feet below ground surface (bgs). The underlying unit is thought to be the Peedee Formation, a Cretaceous-aged marginal marine unit, consisting of sand and clay, similar to the terrace deposits. The unit extends to approximately 275 feet below sea level, below which is the Black Creek Formation.

In the vicinity of the ERD pilot study, the terrace deposits consist of the following:

- from approximately 0 to 8 feet bgs - interbedded silt and/or clay, occasional organic matter, and partings of sand
- from approximately 8 to 28 feet bgs - fine to medium and medium to coarse sand lenses with shell fragments and occasional silt or clay partings
- from approximately 28 to 45 feet bgs - fine sand and silt with locally partially cemented thin beds of silt or clay
- below approximately 45 feet bgs - interbedded sand and silt or clay and locally calcite-cemented siltstone of the Peedee Formation

The bottom 15 to 20 feet of the sandy units immediately above the Peedee formation represents the zone where elevated concentrations of chlorinated VOCs have been observed, which in turn, is the zone targeted for the ERD pilot study.

1.2 Description of Enhanced Reductive Dechlorination Technology

Reductive dechlorination is a microbiological process in which chlorinated compounds are reduced and undergo dechlorination as a result of either microbial metabolism or co-metabolism. ERD is stimulated by injecting a soluble carbon substrate (e.g.,

ARCADIS

molasses, corn syrup, lactate, whey) into the subsurface to create a biological in-situ reactive zone (IRZ). The carbon source is injected to promote the consumption of natural electron acceptors (e.g., oxygen, nitrate, manganese, ferric iron, sulfate, carbon dioxide) by indigenous bacteria within the aquifer matrix. The general sequence of alternative electron acceptor utilization and respiration byproduct formation is as follows (from most thermodynamically favorable to least):

Electron Acceptors		Products
Nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$	\rightarrow	Nitrogen $\left(\mathrm{N}_{2}\right)$
Manganic Manganese $\left(\mathrm{Mn}^{4+}\right)$	\rightarrow	Manganous Manganese $\left(\mathrm{Mn}^{2+}\right)$
Ferric Iron $\left(\mathrm{Fe}^{3+}\right)$	\rightarrow	Ferrous Iron $\left(\mathrm{Fe}^{2+}\right)$
Sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$		Sulfide/Hydrogen Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$
Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$	\rightarrow	Methane $\left(\mathrm{CH}_{4}\right)$

The added organic carbon source stimulates microbial activity, driving the groundwater environment to strongly reducing conditions, establishing an anaerobic IRZ. Within the IRZ, there are two primary processes by which microbes can degrade chlorinated VOCs dissolved in groundwater:

- Co-Metabolism: In this process, chlorinated VOCs are fortuitously degraded by the enzymes and cofactors produced by microbes as they metabolize excess organic carbon.
- Dehalorespiration/Metabolism: In this process, microbes use the chlorinated VOC molecule as an alternate electron acceptor to support respiration under the anaerobic and reducing environment maintained by the presence of excess organic carbon.

The characteristics and extent of an IRZ established are commonly determined by the effectiveness of delivering the carbon source to subsurface microbes. Three basic goals are targeted with the delivery of degradable organic carbon into an aquifer containing targeted chlorinated VOCs:

ARCADIS

Pilot Study Summary Report

Enhanced Reductive Dechlorination

- Overcome the natural recharge of electron acceptors: This includes oxygen, nitrates, and other electron acceptors that tend to support a more aerobic microbial community. As electron acceptors are used up, the environment will become more and more reducing. During this process, the ecology of the microbial community will adapt, encouraging proliferation of the types of bacteria that participate directly in dechlorination reactions.
- Stimulate fermentation and the production of molecular hydrogen: In the presence of excess organic carbon and a strongly reducing environment, fermenting bacteria will harvest energy by splitting organic compounds. This process generates hydrogen. The process of fermentation also generates enzymes, cofactors, alcohols, and other compounds that act as surfactants. This surfactant effect drives the dissolution of adsorbed and non-aqueousphase chlorinated VOC mass, making it available for treatment.
- Stimulate complete dechlorination of the target chlorinated VOCs: Certain anaerobic bacteria can use the hydrogen produced during the fermentation processes as an electron donor and the chlorinated alkenes as electron acceptors for respiration. The bacteria involved in these reactions are referred to as "dehalorespirers," which include bacterial species from several genera, including Desulfuromonas, Dehalospirillum, Dehalococcoides, Dehalobacter, and Desulfomonile. In this process, the hydrogen atoms are substituted for chlorine atoms, resulting in a step-wise chemical reduction of the chlorinated VOCs or other halogenated organic compounds until they are completely converted to harmless end products. In the case of chlorinated alkenes, this follows the path:

$$
\mathrm{TCE} \rightarrow \mathrm{DCE} \rightarrow \mathrm{VC} \rightarrow \text { ethene } \rightarrow \text { ethane }
$$

1.3 Objectives

The objectives of the ERD pilot study were to:

1. Overcome the continuous electron acceptor supply and establish an IRZ.
2. Produce molecular hydrogen to facilitate reductive dechlorination.
3. Achieve complete dechlorination of the target chlorinated VOCs.

ARCADIS

Pilot Study Summary Report

Enhanced Reductive Dechlorination

2. Enhanced Reductive Dechlorination Pilot Study Implementation

To date, the pilot study has included three injection events implemented over a 9month period (July 2009, November 2009, and April 2010) at the five injection wells shown on Figure 2. Each injection event has included the use of a temporary mixing system to dilute a 50 percent concentrated stock solution of molasses to a 2 percent by volume injection concentration.

The targeted radius of influence (ROI) for each injection well was 25 feet. Groundwater modeling using data collected during the tracer testing performed in November 2008 (ARCADIS, 2009c) was conducted prior to beginning dilute molasses injections to estimate the appropriate injection volume required to reach the design ROI. The performance monitoring has included weekly to biweekly groundwater sampling with total organic carbon (TOC) analysis, as well as observation of field parameters (pH , specific conductivity, oxidation reduction potential, dissolved oxygen, and temperature). The performance monitoring program has also included monthly groundwater sampling and analysis of chlorinated VOCs plus dissolved gases (methane, ethane, and ethene), including observation of field parameters.

2.1 Well Installation

Five injection wells, four performance monitoring wells, and two soil gas monitoring points were installed in support of implementation of the ERD pilot study. Well completion logs are provided in Appendix A. Additionally, existing piezometers P-1D through P-3D were incorporated into the monitoring program. The well details for injection wells IW-2D through IW-6D, piezometers P-1D through P-3D, observation wells OW-7D through OW-10D, and soil gas monitoring points SG-101 and SG-102 are included as Table 1. The ERD pilot study well network layout is shown on Figure 3.

2.2 Injection System Setup

Molasses was the organic substrate injected during this ERD pilot study. Molasses is a readily soluble substrate that provides carbon in the form of sugars, such as sucrose. A 50 percent concentrated solution of molasses was delivered to the site and offloaded through filter housings with 100-micron bag filters into a 21,000-gallon storage tank. A high pressure pump was used to meet the flow and pressure demands for delivery of the 50 percent molasses feedstock to meet the incoming dilution water. Once injections began, the 50 percent molasses solution was again filtered through 100-micron bag filters contained within two filter housings that were plumbed in parallel.

ARCADIS

Pilot Study Summary Report

Enhanced Reductive Dechlorination

Abstract

ARCADIS obtained permission from the City of Myrtle Beach to purchase water from a nearby fire hydrant. The City placed a meter on the hydrant to meter water use. This potable water was used to dilute the 50 percent molasses solution to an injection concentration of 2 percent (by volume) through a set of three in-line static mixers that were plumbed in parallel (Photo 1, Appendix B). Downstream of the inline dilution and mixing, the 2 percent molasses solution was distributed to the five injection wells through an injection manifold that was fitted with a flow control valve and a flow meter for each of the five distribution lines (Photo 1, Appendix B).

Each injection well head was equipped with a gate valve and pressure gauge to further regulate and document the injection pressures. A photo of the typical well head setup is provided in Photo 2, Appendix B.

2.3 Injection Summary

Three injection events have been performed as part of the ongoing pilot test that began in July 2009. Approximately 324,000 gallons of the dilute 2 percent molasses solution were distributed evenly into each of the five injection wells during injection events one and two (approximately 64,800 gallons per injection well). Nearly 370,000 gallons of 2 percent molasses solution was distributed into the five injection wells during injection event three. The largest volume was injected into injection well IW-4D (approximately 86,900 gallons), intermediate volumes were injected into injection wells IW-2D and IW6 D (approximately 75,600 and 77,300 gallons, respectively), and the smallest volumes were injected into injection wells IW-3D and IW-5D (approximately 64,900 gallons each). Some additional detail for each injection event is described briefly below:

- Injection Event \#1 - July 2009: The operational parameters for Injection \#1 are summarized on Figure 4 (using injection well IW-4D as a representative injection location). During this event, injection was conducted simultaneously into all five wells during daytime hours.
- Injection Event \#2 - November 2009: The operational parameters for Injection \#2 are summarized on Figure 5 (using injection well IW-4D as a representative injection location). Similar to the first injection event, injection occurred simultaneously into all five wells during daytime hours.
- Injection Event \#3 - April 2010: The operational parameters for Injection \#3 are summarized on Figure 6 (using injection well IW-4D as a representative injection location). This injection event was conducted non-stop from start to

ARCADIS

Pilot Study Summary Report

Enhanced Reductive Dechlorination
finish, and alternated between simultaneous injections into injection wells IW2D, IW-4D, and IW-6D, and simultaneous injections into injection wells IW-3D and IW-5D to maximize TOC distribution (discussed further in Section 3.2.1).

2.4 Performance Monitoring

A baseline sampling event was conducted, using low-flow sampling methods, prior to initiating the pilot study and included field parameters, geochemical parameters (nitrate, total and dissolved iron, and sulfate), TOC, light gases, and TCE and its daughter products. This baseline sampling event serves as the benchmark by which remedial progress and establishment of the IRZ can be measured.

Multiple parameters were measured as part of the pilot test performance monitoring activities to gauge the effectiveness of the ERD pilot test. Routine parameters measured during the performance monitoring included pH , as well as TOC, light gases, TCE, and associated daughter product concentrations. Grab samples for TOC and field parameters were collected weekly to biweekly using a weighted bailer, and samples for VOCs and light gases were collected monthly using passive diffusion bags.

These parameters were monitored according to the schedule shown in Table 2. The performance monitoring data for the ERD pilot study well network is summarized in Table 3.

2.5 Assessment of Methane in Vadose Zone Near Injection Wells

On June 14, 2010, soil gas was sampled from the two soil gas monitoring points, SG101 and SG-102, for analysis of methane. Before sampling, each of the 1 -inchdiameter, 5 -foot-long soil gas sampling points was purged at a rate of approximately 1 liter per minute over a period of 4 minutes to confirm entry of formation gas into the sampling point. Therefore, approximately 4 liters of gas was purged from each soil gas sampling point prior to sampling. This volume equates to over four sampling point purge volumes.

After purging, the soil gas was sampled by vacuum using a laboratory-provided and cleaned Summa ${ }^{\circledR}$ canister. The initial vacuum on the canister was -35 inches of mercury (Hg). The sample was drawn for approximately 33 minutes with the postsampling vacuum on the canister of approximately -5 inches of Hg .

ARCADIS

Pilot Study
Summary Report
Enhanced Reductive
Dechlorination

The canisters were labeled and shipped by overnight courier to Air Toxics Ltd. in Folsom, California for analysis of methane by Modified American Society for Testing and Materials D-1946 Method.

ARCADIS

Pilot Study Summary Report

Enhanced Reductive Dechlorination

3. Enhanced Reductive Dechlorination Pilot Study Results

Monitoring data were used to assess the performance of the IRZ in achieving reductive dechlorination within the ERD pilot study area. For the purposes of this report, the monitoring wells within the ERD pilot study well network were separated into two categories: observation wells located within the injection ROI (dose response wells) and observation wells downgradient of the injection ROI (downgradient wells). Previously installed piezometers P-1D and P-3D are located side-gradient of the injection wells and were, therefore, not included within this analysis (Figure 3).

- Dose Response Well Network: The wells located within the ROI include observation well OW-7D and pre-existing piezometer P-2D. Observation well OW-7D was not monitored for reductive dechlorination parameters as its primary purpose was to confirm sufficient distribution of organic carbon, thereby confirming overlap of the injection well ROIs (Section 2.2).
- Downgradient Well Network: The observation wells located downgradient of the injected ROI include OW-8D, OW-9D, and OW-10D. Based on the calculated groundwater velocity from the tracer test, observation wells OW-8D and OW-9D are located approximately 40 days groundwater travel time downgradient of the injection well transect, and observation well OW-10D is located approximately 100 days downgradient of the injection well transect.
- Soil Gas Monitoring Points: Soil gas monitoring points SG-101 and SG-102 were installed approximately 10 feet from injection well IW-4D so that the potential of methane migration near the injection wells could be initially assessed.

3.1 Reductive Dechlorination

To date, the pilot study has been successful in achieving complete reductive dechlorination, as evidenced by the presence of ethene. Laboratory analytical reports are attached as Appendix C.

3.1.1 Dose Response Well Chlorinated Volatile Organic Compound Results

The total chlorinated VOC concentration observed in baseline samples at piezometer P-2D (Figure 7) was approximately 20 milligrams per liter (mg / L), comprised predominantly of TCE (approximately 78 percent). Immediately following the first

ARCADIS

Pilot Study Summary Report

Enhanced Reductive
Dechlorination
injection, a significant drop in all chlorinated VOCs was observed, which is likely attributed, in part, to dilution related to the injection into injection well IW-4D, located approximately 25 feet away. The total chlorinated VOC concentration eventually decreased by a factor of 10 (to approximately $2 \mathrm{mg} / \mathrm{L}$) after 250 days and is presently comprised of approximately 40 percent TCE, 15 percent cis-1,2-DCE, and 50 percent VC. As described in Section 1.2, VC is a late stage degradation product of TCE, indicating a strong presence of reductive dechlorination at this location. The most recent sampling event (Day 250) showed a total reduction of approximately 96 percent in TCE concentrations in groundwater from piezometer P-2D ($15 \mathrm{mg} / \mathrm{L}$ to $0.5 \mathrm{mg} / \mathrm{L}$) since the beginning of the pilot test. To date, VC represents approximately 60 percent of the total chlorinated VOC mass.

Transient increases in chlorinated VOC concentrations were observed in groundwater samples from piezometer P-2D throughout the pilot study monitoring program. It is possible for residual chlorinated VOC mass that is present either in the immobile pore spaces of an aquifer or sorbed to soil to diffuse or dissolve back into groundwater for a period of time. Accordingly, following substantial mass removal from forced gradient flushing and reductive dechlorination, this dissolution/diffusion may lead to "rebound" in chlorinated VOC concentrations that could continue until the chlorinated VOC mass in the immobile porosity and the sorbed-phase has been removed or destroyed.

The first observation of rebound occurred prior to injection event two and the immediate decrease in total chlorinated VOC following injection event two may be attributed to both dilution from the second injection event and reductive dechlorination.

The second observation of rebound occurred prior to injection event three; however, the magnitude of the rebound was significantly less than that observed prior to injection event two. This suggests that residual chlorinated VOC mass in this location is being destroyed and biological reductive dechlorination is the dominant mechanism, as evidenced by the presence of VC. Ethene has not been detected at significant concentrations at this location to date. It should be noted, however, that this well is located within the ROI; therefore, is early (i.e., located a short travel time from the injection well) within the IRZ. Concentrations of chlorinated VOCs within this location will undergo further treatment as they continue to travel downgradient from the injection wells within the IRZ.

As discussed above, observation well OW-7D was not used to measure chlorinated VOC trends. Results of the TOC sampling performed in this well are discussed below in Section 3.2.

Abstract

ARCADIS

\subsection*{3.1.2 Downgradient Performance Monitoring Well Chlorinated Volatile Organic Compound Results}

The total chlorinated VOC concentration observed in baseline samples at the wells located approximately 40 days downgradient of the injection line (observation wells OW-8D and OW-9D) was approximately $10 \mathrm{mg} / \mathrm{L}$ (Figures 8 and 9). As shown on Figures 8 and 9 , no initial decline in total chlorinated VOC concentrations was observed in groundwater samples collected shortly after each injection event. These observation wells are located outside of the injected ROI; therefore, the groundwater near these wells did not experience any dilution effects from the injected fluid. After approximately 40 days following the initial injection, there was a significant decrease in TCE concentrations in groundwater samples from both OW-8D and OW-9D, as well as with a corresponding increase in cis-1,2-DCE concentrations. After approximately 80 days, the primary component of the total chlorinated VOC mass was cis-1,2-DCE (76 percent at OW-8D, and 96 percent at OW-9D). After 150 days, the conversion of cis-$1,2-\mathrm{DCE}$ to VC was observed in groundwater samples from both locations. Ethene was observed in groundwater samples from observation well OW-8D preceding the third injection event (approximately 200 days). The presence of ethene in groundwater samples from this well indicates that complete reductive dechlorination has occurred, which demonstrates that the microbial communities required for the ERD process are present and flourishing within the ERD pilot study area.

The total chlorinated VOC concentration observed during baseline groundwater samples from observation well OW-10D was approximately $35 \mathrm{mg} / \mathrm{L}$ (Figure 10). The first injection did not have an effect on groundwater quality at observation well OW-10D because of its location downgradient of the injection zone (approximately 100 days travel time). After approximately 100 days, a significant decrease in TCE concentrations (96 percent) and corresponding increase in cis-1,2-DCE concentrations were observed in groundwater from observation well OW-10D. A decrease in concentrations of cis-1,2-DCE, as well as with a corresponding increase in concentrations of VC, were observed on Day 200.

Pilot Study Summary Report

Enhanced Reductive Dechlorination

3.2 Total Organic Carbon Distribution

As discussed above, an IRZ is established by successful delivery of TOC to the targeted treatment zone. TOC distribution, therefore, is a critical design parameter as the success of ERD is dependent on the presence of carbon substrate.

ARCADIS

Pilot Study Summary Report

Enhanced Reductive Dechlorination

3.2.1 Dose Response Well Total Organic Carbon Results

As discussed above, piezometer P-2D and observation well OW-7D represent the dose response locations to evaluate TOC arrival during an injection. Piezometer P-2D represents the downgradient TOC response during injection, and observation well OW7D represents the side-gradient TOC response during injection. The objective of monitoring TOC in observation well OW-7D (side-gradient) is to confirm that adequate TOC is delivered between the injection points (i.e., the injected ROI properly overlap).

Data collected from piezometer P-2D, located directly downgradient of injection well IW-4D, indicates that consistent TOC concentrations were maintained directly downgradient of the injection wells (Figure 7). As shown on Figure 11, however, distribution of TOC was not consistently sustained along the line of ambient groundwater flow between the injection wells (a line connecting observation OW-7D and observation well OW-8D) following the first two injection events. Accordingly, these data suggest that full treatment of chlorinated VOCs was not being sustained along thin bands parallel to groundwater flow and located between the injection wells. This lack of treatment sustainability was addressed during the third injection event (discussed in Section 3.2.3).

3.2.2 Downgradient Performance Monitoring Well Total Organic Carbon Results

Observation wells OW-8D and OW-9D each are located on a separate line directly downgradient of the mid-point between injection wells (Figure 3), and can, therefore, be used to assess whether sustainable treatment is occurring along the entire ERD transect. While reductive dechlorination has been demonstrated within these wells, the TOC concentrations suggest that more efficient treatment can likely be achieved with improved delivery and distribution of TOC into the pilot test area. These data were used to optimize the third injection event to achieve better TOC distribution within the pilot test area.

3.2.3 Optimization of Injected Total Organic Carbon Distribution

Groundwater modeling was performed using data collected following the first and second injection event to assess both the best method of delivery and optimum injection volume required to confirm longer-term sustainable distribution of TOC between the injection wells. The modeling results indicated that the upper confining clay layer at this location, coupled with the large injection volumes, were possibly causing hydraulic zones of stagnation at the mid-point between injection wells. Accordingly, the implementation of the third injection event was modified to avoid

Abstract

ARCADIS hydraulic interferences created by adjacent injection wells by alternating simultaneous injection into injection wells IW-2D, IW-4D, and IW-6D, followed by simultaneous injection into injection wells IW-3D and IW-5D. In addition, a larger volume of injected fluid was delivered to injection wells IW-2D, IW-4D, and IW-6D during this event to confirm that the targeted ROI was achieved.

Real-time data collection via a continuously logging probe was used during the injection event to verify arrival of the injected fluid into observation well OW-7D by evaluating changes in specific conductivity of the groundwater within that well. In addition, composite groundwater samples were collected and sent for laboratory analysis of TOC based upon the observed real-time changes in specific conductivity. The specific conductivity results and TOC results for OW-7D are presented on Figure 12. The analytical results show that the baseline TOC concentration and specific conductivity at observation well OW-7D was approximately $460 \mathrm{mg} / \mathrm{L}$ and 1 milliSemens per centimeter degree Celsius ($\mathrm{mS} / \mathrm{cm}^{\circ} \mathrm{C}$), respectively. The injection solution contained a TOC concentration and specific conductivity of $7,000 \mathrm{mg} / \mathrm{L}$ and 3 $\mathrm{mS} / \mathrm{cm}^{\circ} \mathrm{C}$, respectively. A noticeable increase in specific conductivity ($4 \mathrm{mS} / \mathrm{cm}^{\circ} \mathrm{C}$) and TOC ($1,000 \mathrm{mg} / \mathrm{L}$) were observed at observation well OW-7D following injection of approximately 75,000 gallons of solution. These data indicate that successful distribution of TOC was achieved between the injection wells during the third injection event.

Enhanced Reductive
Dechlorination

3.3 Operational Monitoring

In addition to TOC and chlorinated VOC trends, data, including groundwater pH and dissolved methane concentrations, were used to track the performance of the IRZ. The majority of pH measurements during the performance monitoring period are consistent with pH values amenable to microbiological activity (between 5.5 and 9). The only variation occurred at OW-8D (Figure 8) where more alkaline pH readings (approximately 12) were detected. Well construction materials, specifically bentonite, can sometimes create local alkaline pH within the well column (i.e., alkalinity is local to observation well OW-8D). To verify this was the case, observation well OW-8D was sampled using low-flow methodology during the two most recent sampling events. The pH dropped dramatically after purging, and subsequent downhole field parameters suggest that a more neutral pH is representative of the surrounding aquifer (Figure 8).

The presence of methane is used to indicate whether the reducing conditions conducive to reductive dechlorination have been achieved within the IRZ. Methane has been observed in all wells above baseline conditions, and, as discussed above, reductive dechlorination is occurring within all the pilot test wells. Accordingly, the

ARCADIS

Enhanced Reductive Dechlorination
reducing environment required for the ERD process to occur has been established throughout the pilot test area.

3.4 Results of Soil Gas Sampling for Methane

Methane was detected in both soil gas sampling points SG-101 and SG-102 at 12 percent of the total volume of gas in the sample. This relatively elevated concentration of methane provides further proof that the ERD process is producing substantial amounts of methane, as intended. These elevated methane concentrations also indicate that methane gas can migrate through the relatively low-permeability clayey Upper Terrace Deposit confining unit. Furthermore, these data suggests that if ERD is implemented as a final remedy, methane monitoring and potentially methane abatement may be necessary if injection wells are installed in the vicinity of on-grade or sub-grade structures.

3.5 Future Activities

The pilot test will continue with monthly TOC, VOC, and light gases (methane, ethane, ethene) monitoring to document the continued progress of the ERD process. The frequency of monitoring of some parameters, particularly VOCs and light gases, may be reduced in the near future.

ARCADIS

Pilot Study Summary Report

Enhanced Reductive Dechlorination

4. Conclusions and Recommendations

The following presents the conclusions of the ERD pilot study and provides recommendations on how to proceed to a potentially broader scale implementation of an ERD remedy:

- The purpose of implementing the ERD pilot study was to develop more sitespecific data in support of recommending the ERD technology to address the second RAO. The ERD pilot study accomplished the second RAO in the vicinity of the study area.
- ERD objectives were achieved. Reducing conditions characterized by the presence of TOC and methane have been achieved at distances equivalent to at least 100 days groundwater travel time downgradient from the injection well transect (as witnessed at observation well OW-10D). Complete reductive dechlorination from TCE to ethene has been observed at many locations and TCE degradation and resulting VC generation has been observed at every location. Data strongly suggests that the ERD technology can be successfully implemented within groundwater in off-site areas northeast of $17^{\text {th }}$ Avenue South. Based on this, an ERD interim remedial measure should be considered pending the timing submittal, review, public comment, and SCDHEC approval of the FS.
- The injection concentration of 2 percent by volume is appropriate for any broader scale implementation of an ERD system.
- Future injections along injection well transects should be staggered similar to the third injection event. In doing so, the potential negative effect of hydraulic stagnation should be eliminated and delivery and sustainability of TOC between injection wells should be greatly improved.
- The ERD pilot study should continue with a potentially reduced monitoring frequency for VOCs and light gases from once per month to once every 2 months.
- Full-scale design of ERD should consider the potential effect of methane gas migration into the vadose zone and incorporate methane monitoring.

ARCADIS

Pilot Study
Summary Report
Enhanced Reductive Dechlorination

5. References

ARCADIS. 2009a. Addendum 2 to Appendix B (Enhanced Reductive Dechlorination Work Plan) of the March 2008 Feasibility Study Work Plan. May 11.

ARCADIS. 2009b. Underground Injection Control Permit Application: Modification of Enhanced Reductive Dechlorination Pilot Study. July 2.

ARCADIS. 2009c. Tracer Test Summary Report. March.

ARCADIS. 2008. Feasibility Study Work Plan. March.

ARCADIS

Tables

Table 1
Well Details

Pilot Study Summary Report
 AVX Corporation
 Myrtle Beach, South Carolina

Injection Well	Observation Well/Piezometerl Point	Approximate Screened Interval	Approximate Distance from Injection Well or Injection Well Transect Line	Estimated Travel Time from Edge of Injection Well ROI	Purpose
Five Injection Wells (screened from ~24 to 39 feet bgs) - IW2D through IW-6D	OW-7D	24 to 39 feet bgs	25 feet	within IW ROI	Injection-Response Well to confirm ROI
	P-2D	31 to 41 feet bgs	25 feet	within IW ROI	
	P-1D	31 to 41 feet bgs	25 feet	Side-Gradient Near IW ROI	Evaluate SideGradient Effects
	P-3D	35 to 45 feet bgs	25 feet	Side-Gradient Near IW ROI	
	OW-8D	24 to 39 feet bgs	50 feet	Approx. 40 Days	Evaluate Downgradient Transport
	OW-9D	24 to 39 feet bgs	50 feet	Approx. 40 Days	
	OW-10D	24 to 39 feet bgs	85 feet	Approx. 100 Days	
	SG-101 and SG-102	4 to 5 feet bgs	10 feet	NA	Evaluation of Methane Production/Migration

Notes:

IW = Injection Well
OW = Observation Well
P = Piezometer
SG = Soil Gas Point
$\mathrm{ROI}=$ radius of influence
bgs = below ground surface
NA = not applicable

Table 2

Performance Monitoring Schedule
Pilot Study Summary Report
AVX Corporation
Myrtle Beach, South Carolina

			Baseline Sampling	ERD Pilot Test Sampling Frequency		
Wells	Well Depth from TOC (feet bgs)	Location	Baseline Analytes	Twice Monthly	Monthly	As-Needed
All New Injection Wells	39	Injection Well Transect	1,2,3,4,5,6,7	6, 7 (only at 1 Injection Well)		
OW-7D	39	In ROI for Injection Wells (side gradient)	1,2,3,4,5,6,7	6, 7		1,2,3,4,5
P-2D	41	In ROI for Injection Wells (down gradient)	1,2,3,4,5,6,7	6, 7	1,2,6,7	3,4,5
OW-8D	39	Downgradient of Injection Well Transect (40 day groundwater travel time)	1,2,3,4,5,6,7	6,7	1,2,6,7	3,4,5
OW-9D	39	Downgradient of Injection Well Transect (40 day groundwater travel time)	1,2,3,4,5,6,7	6,7	1,2,6,7	3,4,5
OW-10D	39	Downgradient of Injection Well Transect (100 day groundwater travel time)	1,2,3,4,5,6,7	6, 7	1,2,6,7	3,4,5
P-1D	41	Side Gradient Near IW ROI	1,2,3,4,5,6,7	6,7	1,2,6,7	3,4,5
P-3D	45	Side Gradient Near IW ROI	1,2,3,4,5,6,7	6,7	1,2,6,7	3,4,5

Notes:
1 - volatile organic compounds (VOCs) ${ }^{\text {a }}$
2 - Dissolved gases (methane, ethane, ethene) ${ }^{\text {a }}$
3 - Anions (bromide, chloride, fluoride, nitrate, nitrite, phosphate, sulfate); alkalinity (total and bicarbonate) ${ }^{\text {b }}$
4 - Alkalinity (total and bicarbonate) ${ }^{\text {b }}$
5 - Dissolved and total iron and manganese
6 - Total Organic Carbon (TOC) ${ }^{\text {C }}$
7 - Field parameters (pH , specific conductivity) ${ }^{\text {d }}$

Additional Notes

a. VOCs and dissolved gases will be sampled using passive diffusion bags.
b. Biogeochemical parameters will be sampled as needed using low flow methodology
if VOC or TOC data indicate that enhanced dechlorination is not progressing in a particular location.
c. TOC will be grab sampled using bailers.
d. Field parameters will be sampled downhole using a multi-parameter meter.
$\mathrm{ROI}=$ radius of influence

Location ID: Date Collected:	USEPAISCDHEC MCL	Units	BATCH 07/25/09	BATCH SAMPLE $07 / 23109$	BATCH SAMPLE 0772409	INJECTATE CONFIRM $11 / 04109$	INJECTATE (110709) 1107109	$\begin{aligned} & \text { IW-2D } \\ & \text { 07720109 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { WW-2D } \\ \text { 11116109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { WW-2D } \\ \text { 11/23/09 } \\ \hline \end{gathered}$	$\begin{gathered} \text { iw-2D } \\ \text { 11130109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { WW-2D } \\ \text { 1211409 } \\ \hline \end{gathered}$	$\begin{gathered} \text { WW-2D } \\ \text { 12/2409 } \\ \hline \end{gathered}$	$\begin{gathered} \text { IW-20 } \\ \text { 12128109 } \end{gathered}$	$\begin{array}{r} \text { IW-2D } \\ 01104110 \\ \hline \end{array}$	$\begin{array}{r} \text { IW-2D } \\ \text { 011810 } \\ \hline \end{array}$	$\begin{array}{r} \text { IW-2D } \\ \text { 020510 } \\ \hline \end{array}$	$\begin{gathered} \text { ww-2D } \\ \text { 02116110 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { IW-2D } \\ & \text { 03/04410 } \end{aligned}$	$\begin{gathered} \text { ww-2D } \\ \text { 03/29110 } \\ \hline \end{gathered}$
1,1,1, 1	200	Hgh	NA	NA	NA	NA	NA	100 U	NA											
$\frac{1}{1,1,2,2, \text {-etrachloroethane }}$		Hgh	NA	NA	NA	NA	NA	100 U	NA											
$\frac{1,1,2-\text { Trichloroethane }}{}$	5	Hgh	NA	NA	NA	NA	NA	100 U	NA											
1,1--Dichloroethane		Hgh	NA	NA	NA	NA	NA	100 U	NA	${ }^{\mathrm{NA}}$	NA									
$\frac{1,1-\text {-icichloroethene }}{\text { a }}$	7	нgh	NA	NA	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	100 U 100 u	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	NA	$\stackrel{\text { NA }}{\text { NA }}$	NA	NA	$\stackrel{N A}{N A}$	NA	NA NA	NA	$\frac{\mathrm{NA}}{\text { NA }}$
	\cdots	$\frac{\mathrm{pgh}}{\mathrm{Hgh}}$	NA	NA	NA	NA	NA	${ }_{1000}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	NA	NA	${ }_{\text {NA }}$	NA					
1,2,3.-Trichloropropane		Hgh	NA	NA	NA	NA	NA	100 U	NA											
1,2,4-7Tichlorobenzene	70	Mgh	NA	NA	NA	NA	NA	100 U	NA											
1,2,4,-Trimethybenzzene		Mgh	NA	NA	NA	NA	NA	${ }^{1000}$	NA											
1,2--Dibromo-3-chloropropane	0.2	Mgh	NA	NA	NA	NA	NA	${ }_{500 \mathrm{U}}$	NA											
1,2-Dibromoethane	0.05	Hgh	NA	NA	NA	NA	NA	100 U	${ }^{\mathrm{NA}}$	NA	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	${ }^{\mathrm{NA}}$	${ }^{\text {a }}$	NA	NA	NA
	6	Hgh	NA	NA	NA	NA	NA	${ }_{1}^{1000}$	NA	${ }_{\text {NA }}$	NA	${ }^{\text {NA }}$	$\stackrel{N A}{\text { NA }}$							
1,2-Dichloroporopane	5	Hg/	NA	NA	NA	NA	NA	100 U	NA											
1,3,5-TTrimethybenzene		mgl	NA	NA	NA	NA	NA	100 U	NA		NA									
		$\underline{\mathrm{mgh}}$	NA	NA	NA	NA	NA	1000	NA	$\frac{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N}{\text { NA }}$	NA	$\stackrel{N}{\text { NA }}$	NA	NA	NA	NA	$\frac{N A}{N A}$	$\frac{N A}{\text { NA }}$
1,4 -Dichlorobenzzene	75	Hgh	NA		NA	NA	NA	100 U	NA	,	NA									
2,2-Dichloropropane		Hg/	NA	NA	NA	NA	NA	100 U	NA	NA	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	NA	NA	NA	NA	
2-Butanone		${ }_{\text {Hg/L }}$	NA	NA	NA	NA	NA	${ }^{2,500 \mathrm{U}}$	${ }^{\text {NA }}$	NA	NA	NA	NA	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }_{\text {NA }}$	${ }^{\mathrm{NA}}$	NA	
		Hg/	NA		NA		NA				NA	NA						NA		
4 -Chlorotoluene	.	H90	NA	NA	NA	NA	NA	100 U	NA											
4 4-Methyl-2-pentanone		ugh	NA	NA	NA	NA	NA	500 U	NA											
Acetone		Mg/	NA	NA	NA	NA	NA	2,500 U	NA											
Benzene	5	Hg/	NA	NA	NA	NA	NA	100 U	NA											
Bromobenzene		Hgh	NA	NA	NA	NA	NA	100U	$\stackrel{\text { NA }}{\text { NA }}$	NA										
Bromochioromemane	81	$\frac{\text {-ggl }}{\text { Hgl }}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	$\frac{1000}{1000}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\frac{\mathrm{NA}}{}$									
Bromotorm	${ }^{81}$	Hgh	NA	NA	NA	NA	NA	100 U	NA											
Bromomethane		$\frac{\mathrm{mg} / \mathrm{L}}{\text { gal }}$	${ }_{\text {NA }}^{\text {NA }}$	NA	NA	NA	NA	100 U	NA	${ }^{\text {NA }}$										
Carbon Tetrachloride	5	Hgh	NA	NA	NA	NA	NA	100 U	NA											
Chlorobenzene	100	Hgh	NA	NA	NA	NA	NA	100 U	NA											
chloreethane		${ }_{\text {Hg/L }}$	NA	NA	NA	NA	NA	100 10	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$				
Chlorotorm	86	$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	NA	NA	NA	${ }_{100 \mathrm{U}}^{1000}$	NA	NA	NA	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	NA	NA
cis-1,2-Dichioroethene	70	Hgh	NA	NA	NA	NA	NA	903	NA											
cis-1,3-Dichioropropene		mgh	NA	NA	NA	NA	NA	100 U	NA											
Dibromochloromethane	86	$\frac{\mathrm{Hgh}}{\mu \mathrm{Lg}}$	NA	${ }_{\text {NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{1000} 100$	$\stackrel{\text { NA }}{\text { NA }}$	NA	NA	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$
Dichlorodifluromethane	\cdots	Hg/L	NA	NA	NA	NA	NA	500 U	NA											
Disopropyl ether (IPEE)		Hgg	NA	NA	NA	NA	NA	100 U	NA											
Ethexienzene	100		NA	NA	${ }_{\text {NA }}$	NA	NA	${ }_{1000}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	NA	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$
Iodomethane		Hgg	NA	NA	NA	NA	NA	100 U	NA											
$\frac{\text { sopropylibenzene }}{}$		$\frac{\mathrm{Hg} / \mathrm{L}}{\text { gal }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$ NA	${ }_{\text {NA }}$ NA	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	100 U 200 u	$\frac{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$ NA	$\frac{N A}{N A}$	$\stackrel{N A}{N A}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{N A}{N A}$	$\stackrel{N A}{N A}$	$\frac{N A}{N A}$	$\stackrel{N A}{N A}$
		$\frac{\text { Lggh }}{\text { Hght }}$	NA	NA	NA	NA	NA	${ }^{2000}$	NA											
Methylene Chloride	$\stackrel{5}{4}$	$\frac{\mathrm{mg} / \mathrm{L}}{4 \mathrm{gan}}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	-34.0 J 100 u	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	NA
n-Butylenzene		Hgh	NA	NA	NA	NA	NA	100 U	NA											
n.-Propybenzene												NA	NA							

Pilot Study Summary Report
AVX Corporation
Myrtle Beach, South Carolina

Location ID: Date Collected:	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { US }}$	Units	BATCH 07/25/09	BATCH SAMPLE 0712309	BATCH SAMPLE $07 / 24 / 09$	INJECTATE CONFIRM $11 / 04 / 09$	INJECTATE (110709) 1110709	$\begin{aligned} & \text { IW-2D } \\ & \text { 07720109 } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { 1W-2D } \\ \text { 111660909 } \\ \hline \end{array}$	$\begin{array}{r} \text { IW-2D } \\ \text { 111/230909 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { w-2D } \\ 11 / 30109 \end{array}$	$\begin{gathered} \text { IW-2D } \\ \text { 122141090 } \\ \hline \end{gathered}$	$\begin{array}{r} \text { IW-2D } \\ \text { 121240909 } \\ \hline \end{array}$	$\begin{array}{r} \text { IW-2D } \\ \text { 121288090 } \\ \hline \end{array}$	$\begin{array}{r} \text { IW-2D } \\ 01104110 \\ \hline \end{array}$	$\begin{gathered} \hline \text { WW-2D } \\ \text { 01118110 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { IW-2D } \\ & \text { 0205100 } \end{aligned}$	$\begin{gathered} \text { IW-2D } \\ 02 / 16110 \end{gathered}$	$\begin{array}{r} \text { IW-2D } \\ 03041010 \\ \hline \end{array}$	$\begin{gathered} \text { ww-2D } \\ \text { 03/29110 } \\ \hline \end{gathered}$
p-soporopyltoluene		Lgl	NA	NA	NA	NA	NA	100 U	NA											
sec-Butybenzene		Mg/	NA	NA	NA	NA	NA	100 U	NA											
Styrene	100	Hg/	NA	NA	NA	NA	NA	100 U	NA											
tert-Butybenzene		Mg/	NA	NA	NA	NA	NA	${ }^{1000}$	NA											
Tetrachloroethene	5	Hgh	NA	NA	NA	NA	NA	100 U	NA											
Toluene	1,000	Mg/	NA	NA	NA	NA	NA	100 U	NA											
trans-1,2-2.ichloroethene	100	Mg	NA	NA	NA	NA	NA	${ }^{32.0 \mathrm{~J}}$	NA											
trans-1,3-D-Dichlororopopene		Mg	NA	NA	NA	NA	NA	100 U	NA											
trans-1,4-D.ichiloro---butene		Mg	NA	NA	NA	NA	NA	500 U	NA											
Trichloroethene	5	Mg/	NA	NA	NA	NA	NA	${ }_{1}^{1,630}$	NA											
Trichlorofluoromethane		Mg/	NA	NA	NA	NA	NA	1000	NA											
Vinyl Chloride	2	нg/	NA	NA	NA	NA	NA	100 U	NA											
				NA		NA	NA	1,400 L	NA											
	\cdots	$\frac{\mathrm{HggL}}{\mathrm{ggl}}$	NA	${ }_{\text {NA }} \mathrm{NA}$	${ }_{\text {NA }} \mathrm{NA}$	NA	NA	${ }^{1,200 \mathrm{~L}}$	${ }_{\text {NA }} \mathrm{NA}$	NA	${ }_{\text {NA }}$ NA	NA	NA	${ }_{\text {NA }} \mathrm{NA}$	NA	NA	NA	${ }_{\text {NA }}$	NA	${ }^{\text {NA }}$
Wetchemistry																				
Alkalinity Bicaribonate as CaCO3		Hght	NA	NA	NA	衰	NA	230,000	NA											
Bromide	\cdots	Hgh	NA	NA	NA	NA	NA	${ }^{2400}$	NA											
chioride	4000		$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{N A}{N A}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	35,000 3200	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{N A}{\text { NA }}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{N A}{N A}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{N A}{N A}$	$\frac{N A}{\text { NA }}$				
Nitrate (as N)	${ }_{\text {4, }}^{10,000}$	Hgh	NA	NA	NA	NA	NA	${ }_{2,800}$	NA											
Nititie (as N)	1,000	${ }_{\text {Hgh }}$	NA	NA	NA	NA	NA	30 J 1000 U	NA	$\stackrel{\mathrm{NA}}{ }$	NA	NA	NA	NA	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$	NA	NA	NA	NA
Sultate	\cdots	Hght	NA	NA	NA	NA	NA	${ }_{\text {¢ }}^{\text {9,200 }}$	NA											
Total Organic Carbon	\cdots	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	NA		NA		NA	NA	NA	NA	NA			NA	3,300	2,600	${ }_{1,500}$	1,100
Total organic Carbon	\cdots	$\frac{\text { Hght }}{\text { Hgl }}$	$\frac{7,000,000}{\text { NA }}$	$\frac{7,800,000}{N A}$	$\frac{7,700,000}{\text { NA }}$	$\frac{7,000,000}{N A}$	$\frac{7,500,000}{N A}$	${ }_{5}^{50,000} 5$	$\frac{4,600,000}{N A}$	$\frac{6,000,000}{\text { NA }}$	$\frac{7,100,000}{\text { NA }}$	$\frac{6,300,000}{N A}$	$\frac{6,100,000}{N A}$	$\frac{5,500,000}{N A}$	$\frac{4,900,000}{\text { NA }}$	$\frac{4,100,000}{N A}$		$\stackrel{N A}{N A}$	${ }_{\text {NA }}^{\text {NA }}$	${ }_{\text {NA }}$
depht to waer	\cdots	${ }_{\text {feet }}^{\text {feet }}$	${ }_{\text {NA }}$ NA	${ }_{\text {NA }} \mathrm{NA}$	$\stackrel{\mathrm{NA}}{93}$	$\frac{8.94}{\text { NA }}$	${ }^{8.88}$	$\stackrel{8.92}{\text { NA }}$	$\stackrel{7.96}{\text { NA }}$	$\frac{6.42}{\text { NA }}$	$\frac{6.24}{N 4}$	¢ ${ }_{\text {6. }}^{\text {NA }}$	$\frac{7.28}{N A}$	5.83 $N A$	$\stackrel{5.68}{\text { NA }}$	5.96	$\stackrel{6.88}{\text { NA }}$			
Dissolved Oxygen		mgl	NA	0.94	0.27	0.46	7.8													
Dissolved Oxygen	\cdots	Mg/	NA	NA	NA	NA	NA	50	NA	NA	NA	${ }_{\text {24,390 }}$	NA	NA	NA	${ }^{1,070}$	NA	NA	NA	NA
-xidation reacuction potentia	\because	$\frac{\mathrm{mv}}{\text { su }}$	$\frac{N A}{\text { NA }}$	NA	NA	NA	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {- }}^{\text {-100.5 }}$ 6.98	NA 5.29	$\stackrel{\mathrm{NA}}{5.52}$	NA 5.63	-130.7 1.86	$\stackrel{\mathrm{NA}}{6.13}$	NA 6.18	NA 6.17	${ }_{\text {- }}^{\substack{\text {-196.3 } \\ 6.31}}$	${ }_{\text {- }}^{\text {-153.2 }}$ 6.41	--166 6.6	150.9 6.64	$\begin{array}{r}\text {-94.2 } \\ \hline 6.64 \\ \hline 6 . \\ \hline\end{array}$
salinity	-	PSU	NA	NA	NA	NA	NA	NA	4.3	5.7		NA	NA	6.2	5.4	NA	NA	NA	NA	NA
speeific conductivity		uSlcm	NA	NA	NA	NA	NA	0.589	7.25	8.9	10.6	11.39	NA	9.44	7.054	9.093	8.875	7.331	${ }_{7} 7.125$	6.465
temperatue		${ }_{\text {OCelcius }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{21.29}$	$\frac{20.1}{\text { NA }}$	${ }_{19}^{19}$	$\frac{20.4}{\text { NA }}$	${ }_{\text {NA }}{ }_{18,31}$	NA	NA	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$	NA	$\stackrel{\text { NA }}{20.2}$	${ }_{\text {NA }}{ }_{18.68}$	${ }_{1}^{\text {NA }} 19.96$
Ethane	\cdots		${ }_{\text {NA }}$	${ }_{\text {NA }}^{\text {NA }}$	NA	NA	${ }_{\text {NA }}$	0.24	$\stackrel{N A}{N A}$	NA	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	NA	NA	NA	NA	NA
Eterene		ught	${ }_{\text {NA }}$					160												

Table 3 Summary of Performance Monitoring Results Pilot Study Summary Report AVX Corporation Myrtle Beach, South Carolina																									
Location ID: Date Collected:		Units	IW-3D 07720109	$\begin{array}{r} \text { IW-3D } \\ \text { 08171709 } \end{array}$	$\begin{gathered} \text { iw-3D } \\ \text { 0903/09 } \end{gathered}$	$\begin{array}{r} \text { IW-3D } \\ \text { O916/109 } \end{array}$	$\begin{array}{r} \text { IW-3D } \\ \text { 09128/09 } \end{array}$	$\begin{gathered} \text { \|W-3D } \\ \text { 10121209 } \end{gathered}$	$\begin{gathered} \substack{\text { IW-3D } \\ \text { 10126609 }} \end{gathered}$	$\begin{array}{r} \text { IW-3D } \\ \text { I11020909 } \\ \hline \end{array}$	IW-4D 07/20/09	IW-4D 11/16/09	$\begin{gathered} \substack{\text { IW-4D } \\ \text { 111/23109 }} \end{gathered}$	$\begin{gathered} \text { IW-4D } \\ \text { 11/30/09 } \end{gathered}$	$\begin{gathered} \text { IW-4D } \\ \text { 12/14/09 } \end{gathered}$	$\begin{gathered} \substack{\text { IW-4D } \\ \text { 12/24109 }} \end{gathered}$	$\begin{array}{r} \text { IW-4D } \\ \text { 122128/09 } \\ \hline \end{array}$	$\begin{gathered} \text { \|w-4D } \\ \text { o104110 } \end{gathered}$	$\begin{gathered} \text { Iw-4D } \\ \text { 0114810 } \end{gathered}$	iw-4D 0205110	IW-4D 02/16/10	$\begin{gathered} \text { Iw-4D } \\ \text { o3/04110 } \end{gathered}$	$\begin{gathered} \text { Iw-4D } \\ \text { 03/29110 } \end{gathered}$	IW-4D $04 / 13 / 10$	$\begin{gathered} \text { IW-4D } \\ \text { 0414 } \\ \hline \end{gathered}$
Volatile Organics																									
	200	${ }_{\text {Lg }}$	${ }_{400 \mathrm{U}}$	NA	${ }_{8000}$	NA	${ }_{\text {NA }}$	NA	NA	${ }_{\text {NA }}$	NA	NA	NA												
1,1,2,2.-Tetrachloroethane		$\mu \mathrm{g} / \mathrm{L}$	400 U	NA	800 U	NA																			
1,1,2.-Tichloroethane	5	ugh	400 U	NA	800 U	NA																			
1,1--Dichloroethane		ugh	${ }^{400 \mathrm{U}}$	NA	${ }^{800}{ }^{0}$	NA																			
1,1--Dichloroethene	7	ugl	400 U	NA	${ }^{8000}$	NA																			
	\cdots	mgl	${ }_{4}^{400 \mathrm{O}}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	$\stackrel{N A}{N A}$	${ }^{\text {NA }}$	${ }^{8000}$	NA	$\frac{\mathrm{NA}}{\mathrm{Na}}$	$\frac{N A}{N A}$	$\frac{\mathrm{Na}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{Na}}{\text { NA }}$	NA	NA	NA	NA	${ }^{\text {NA }}$	NA	$\frac{N A}{N A}$
		Hgh	400 U	NA	800 U	NA																			
$\frac{1,2,4.4 \text { Trichlorobenzzene }}{1,24}$	70	$\frac{\mathrm{Hgh}}{\underline{\mathrm{Hg}} \text { - }}$	$\stackrel{400 \mathrm{U}}{400 \mathrm{U}}$	$\stackrel{N}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	800 U 800 U	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{N A}{\text { NA }}$	$\frac{N A}{N A}$					
1,2-1ibromo-3-chhloropropane	0.2	Hgh	2,000	NA	4,000 U	NA																			
	0.05 600	$\frac{\mathrm{Mgh}}{\mathrm{Hgh}}$	${ }_{400 \mathrm{U}}^{400}$	$\stackrel{N A}{N A}$	$\stackrel{N a}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N a}{\text { NA }}$	$\frac{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N a}{N A}$	${ }^{8000}{ }_{800}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N a}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N a}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\frac{N A}{N A}$	NA	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$
1,2-Dichloroethane		Hgh	400 U	NA	800 U	NA																			
$\frac{1,2-2 \text {-ichloropropopae }}{1,3,5-\text { Trimety }}$	5	$\underline{\mathrm{ggh}}$	$\xrightarrow{400 \mathrm{U}}$	NA	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{\text { NA }}$	800 U 800 U 8	NA	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N 4}$				
		$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	${ }_{4000}$	NA	NA	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	NA	${ }_{8000 \mathrm{U}}^{80}$	${ }_{\text {NA }}$	NA	NA	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	NA			
1,3-Dichloropropane		нgh	400 U	NA	800 U	NA																			
1,4-Dichlorobenzeene	75	mgh	400 U	NA	800 U	NA																			
2,2-Dichloropropane		Hg/	400	NA	${ }^{8000}$	NA																			
2-Butanone	\cdots	Hgh	$10,000 \mathrm{U}$	NA	20,000 U	NA																			
$\frac{2 \text {-Chlorotoluene }}{\text { 2-Hexanone }}$	\cdots	$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	$\frac{400 \mathrm{U}}{2000 \mathrm{U}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{800 \mathrm{U}}{4000 \mathrm{U}}$	${ }_{\text {NA }}^{\text {NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}^{\text {NA }}$	${ }^{\text {NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}^{\text {NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$								
4 -Chlorotoluene	\cdots	Hgh	400 U	NA	${ }^{8000}$	NA																			
4-Methy-2-pentan	\cdots	Hgh	$2,000 \mathrm{U}$	NA	4,000 U	NA																			
Aceione		нgh	10,000 U	NA	20,000 U	NA																			
Senzene	5	$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	${ }_{4000}^{400}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{8000}^{800}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	NA	${ }_{\text {NA }}$	NA	NA	$\frac{N A}{N A}$				
Bromochloromethane		Hgh	400 U	NA	800 U	NA																			
Bromodichloromethane	81	Hgh	400 U	NA	${ }^{8000}$	NA																			
Bromotorm	81	Hgh	400 O	NA	${ }^{8000}$	NA																			
Bromomethane		Hgh	400	NA	8000	NA																			
Carbon Disutite	5	$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	${ }_{4000 \mathrm{U}}^{400}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{8000 \mathrm{U}}^{800 \mathrm{u}}$	$\frac{\mathrm{NA}}{\text { NA }}$	NA												
Chlorobenzene	100	Hgh	400 U	NA	800 U	NA		NA	NA	NA	NA														
Chloroethane		ugh	400 U	NA	800 U	NA				NA	NA	NA													
Chiorotorm	86	Hgh	4000	NA	${ }^{8000}$	NA																			
anoromethane		Hgh	200	NA	${ }^{3000}$	NA	${ }^{\text {NA }}$	NA	NA	NA															
cisili,--ichioroenene	10	$\underline{\mu g / 2}$	1,960	NA	\%,	NA	NA	NA	${ }^{N A}$	NA	NA	${ }^{\text {A }}$	NA	NA	NA	,	NA	${ }^{\text {NA }}$	NA						
Dibromochloromethane	86	$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	400 U	NA	${ }^{\text {NA }}$	$\stackrel{N A}{N A}$	NA	$\stackrel{N}{\text { NA }}$	$\stackrel{N A}{ }$	${ }^{\text {NA }}$	${ }_{8000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	NA	NA	NA	${ }^{\text {NA }}$	$\stackrel{N A}{\text { NA }}$
Dibromomethane		Hgh	400 U	NA	800 U	NA																			
Dichlorodifluromethane		ugh	2,000	NA	4,000	NA		NA																	
Dissopropyl ether (DIPE)		Hgh	400 U	NA	800 U	NA																			
	700	$\frac{\mathrm{Hgh}}{\mathrm{Hg} /}$	${ }_{400 \mathrm{U}}^{400}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{N A}{N A}$	$\stackrel{N A}{N A}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{8000 \mathrm{U}}^{80}$	$\frac{N A}{N A}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{N A}{N A}$	$\frac{N A}{N A}$	NA	NA	NA	NA	NA
Iodomethane		Hgl	400 U	NA	800 U	NA																			
Isopropybenzen		mg/	400 U	NA	${ }^{800 \mathrm{U}}$	NA																			
m-p-p-xylene		mgl	800 U	NA	${ }^{1,600}$ U	NA																			
Methy lert-butyl ethel		ugh	400 U	NA	${ }^{800 \mathrm{U}}$	NA																			
Meihyene Chioride	5	$\stackrel{\text { Hggh }}{\text { Hgh }}$	$\stackrel{2,000 \mathrm{U}}{400 \mathrm{U}}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }^{39220}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$			
N-putrybenzene		H9L	400 U	NA	800 U	NA																			
n-Propylbenzeene																									

Pilot Study Summary Repor
AVX Corporation
AVX Corporation
Myrtle Beach, South Carolina

Location ID: Date Collected	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { U }}$	Units	$\begin{aligned} & \text { IW-3D } \\ & \text { 07/20009 } \end{aligned}$	$\begin{gathered} \text { IW-3D } \\ \text { 0817109 } \end{gathered}$	$\begin{array}{r} \text { IW-3D } \\ \text { 09030909 } \\ \hline \end{array}$	$\begin{array}{r} \text { IW-3D } \\ \text { o916/09 } \\ \hline \end{array}$	$\begin{array}{r} \text { IW-3D } \\ \text { 09/28/109 } \\ \hline \end{array}$	$\begin{gathered} \text { IW-3D } \\ \text { 10121209 } \end{gathered}$	IW-3D ${ }^{\text {10126609 }}$	$\begin{gathered} \text { iw-3D } \\ \text { 11102009 } \end{gathered}$	$\begin{array}{r} \text { IW-4D } \\ \text { 07720109 } \\ \hline \end{array}$	IW-4D	IW-4D 11/23/09	\|w-4D 11/30/09	$\begin{gathered} \text { iw-4D } \\ \text { 12214109 } \end{gathered}$	$\begin{gathered} \text { IW-4D } \\ \text { 1212409 } \end{gathered}$	IW-4D 12/28/09	IW-4D 01/04/10	IW-4D $01 / 18 / 10$	Ww-4D 0210510	iw-4D 021610	IW-4D 03104110	We-4D 0	iw-4D 0413130	iw-4D 0414140
Volatile Organics ${ }^{\text {dele }}$																									
	\cdots	${ }_{\text {Hght }}^{\text {Hght }}$	400 U	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{8000}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$							
Sec-Buylilenzene		Hgh	400 U	NA	800 U	NA																			
Styrene	100	Hg/	400 U	NA	800 U	NA																			
tert-Butybenzene		$\mu \mathrm{g} / \mathrm{L}$	400 U	NA	800 U	NA																			
Tetrachloroethene	5	Hgh	400	NA	${ }^{8000}$	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA												
Toluene	1.000	Hght	$\stackrel{4000}{1045}$	NA	NA	NA	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	${ }^{8000}$	NA	${ }^{\text {NA }}$	$\stackrel{\mathrm{NA}}{ }$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	$\stackrel{N A}{ }$	NA	NA	NA
trans-1,-2-1.ichloroemene	100	H9/	1045	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{296}$	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$	NA	NA	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	NA
trans-1,3--icichloropropen		нgh	4000	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	NA	${ }^{\text {NA }}$	8000	NA	${ }^{\mathrm{NA}}$	NA	NA	NA	NA	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	NA	${ }^{\text {NA }}$	NA	NA	NA
		Hgh	${ }^{2,000}$	NA	NA	${ }^{\mathrm{NA}}$	NA	NA	${ }^{\text {NA }}$	NA	${ }^{4.0000}$	NA	${ }^{\mathrm{NA}}$	${ }_{\text {NA }}$	NA	${ }^{\mathrm{NA}}$	NA	NA	NA	NA	NA	NA	$\stackrel{\mathrm{NA}}{ }$	NA	NA
Trichioreethene ${ }^{\text {Trichlorfluromethane }}$	5	${ }_{\text {Hgh }}$	4,690	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	NA	14,900	NA	${ }^{\text {NA }}$	NA											
Vinyl Chloride	2	Hgl	400 U	NA	800 U	NA																			
Inorganics - T																									
ron		$\frac{\mathrm{Hgh}}{\log }$	2,000L	${ }_{\text {NA }}$	NA	NA	${ }_{\text {NA }}$	1,000 65	NA																
		$\mu \mathrm{g} / 2$	${ }^{1,400 \mathrm{~L}}$	NA	1,600 L	NA																			
Alkainity Bicarbonate as CaC		${ }^{\mu g / L}$	220,000	NA		NA	NA	NA	NA	NA					NA	NA	NA							NA	
Bromide		ugll	200 J	NA	220 J	NA																			
Chioride		mg/L	35,000	NA		NA		NA	NA	NA															
Fluoride	4.000	нght	310 J 500 U	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	$\stackrel{N A}{N A}$	300 J 3 000	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }^{\text {NA }}$	NA	NA			
Nitrate (as N)	${ }^{1,0,000}$	$\stackrel{\text { Lggt }}{\text { Hght }}$	${ }_{5000}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }^{3,700}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	NA	${ }_{\text {NA }}$							
Phosphate		Mgh	${ }^{1,000 \mathrm{U}}$	NA	1,000 U	NA																			
Sutate	.-	Hg/L	10,000	NA	19,000	NA	${ }^{\text {NA }}$																		
Total Organic Carbon		Mgh	NA	8,400	7,800	6,300	4,300	8,300	7,600																
Total organic Carbon	\cdots	Hg/	5,000 U	10,000,000	14,000,000	15,000,000	${ }^{6,100}$	6,800,000	5,900,000	5,300,000	5,000 U	4,900,000	11,000,000	13,000,000	12,000,000	11,000,000	11,000,000	10,000,000	10,000,000		NA		NA		
Field Parameters					NA	NA	NA		NA		800 L		NA												
depph to water		feet	NA	9.89	9.89	9.94	9.19	7.46	7.62	7.6	${ }^{8.21}$	6.83	6.65	6.91	7.89	NA	NA								
depph to water	.	feet bgs	${ }^{9.52}$	${ }^{0.86}$	NA	11.12	${ }^{9.96}$	10.71	10.18	NA	9.79	NA	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	NA						
Dissolved Oxygen	\cdots	mgh	NA	1.27	0.11	0.34	5.82	NA	NA																
Dissoved Oxysen		$\stackrel{\text { mght }}{\text { mV }}$	${ }_{-150}$	${ }_{167}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	${ }^{300}$	${ }_{203,7}^{403}$	$\xrightarrow{360} \begin{aligned} & \text { 175.2 }\end{aligned}$	${ }^{660}{ }_{10.8}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{-020}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {IT, } 1500}^{\text {- }}$	$\frac{\mathrm{Na}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\xrightarrow{1,1050}$	${ }_{\text {178 }}$	$\stackrel{\text { NA }}{156}$		NA 158.	NA	$\stackrel{N A}{N A}$
pH		su	7.4	4.93	NA	5.5	5.63	5.71	6.09	NA	6.83	5.27	5.38	5.61	5.43	5.56	5.87	5.87	5.91	5.95	6.14	6.25	6.4	NA	NA
salinity		psu	NA	5.1	${ }^{9.7}$	${ }^{8.3}$	NA	NA	10.4	${ }^{9.2}$	NA														
speectic conductivit		usicm	0.568	6.915	NA	13.79	13.71	12	11.67	NA	0.688	${ }_{8}^{8.26}$	14.4	10.9	17.64	NA	14.73	12.78	14.87	14.66	12.98	12.92	${ }_{11.41}$	NA	NA
lemperature		${ }^{\text {co }}$	NA	NA	NA	NA	${ }_{\text {NA }}$	NA	NA	NA	NA	$\frac{20.2}{14}$	18.4	19.5	NA	${ }^{\text {NA }}$									
Etenene		$\frac{\mathrm{ug}}{\mathrm{ggh}}$	${ }_{1}^{2.1}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$	${ }^{3} 16$	${ }_{\text {NA }}$	${ }_{\text {NA }} \mathrm{NA}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}^{\text {NA }}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{\text {NA }}^{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$				

Table 3 Summary of Performance Monitoring Results Pilot Study Summary Report AVX Corporation Myrtle Beach, South Carolina																										
Location ID: Date Collected:	$: \begin{gathered} \text { USEPAASCDHEC } \\ \text { MCL } \end{gathered}$	Units	$\begin{gathered} \text { IW-4D } \\ \text { 0411810 } \\ \hline \end{gathered}$	$\begin{array}{r} \text { WW-4D } \\ \text { 04191010 } \\ \hline \end{array}$	$\begin{gathered} \text { IW-5D } \\ \text { 0712010909 } \end{gathered}$	$\begin{array}{r} \text { IW-5D } \\ \text { 0416610 } \end{array}$	$\begin{array}{r} \text { IW-5D } \\ \text { 04117100 } \\ \hline \end{array}$	$\begin{array}{r} \text { IW-6D } \\ \text { 07720009 } \\ \hline \end{array}$	$\begin{array}{r} \text { ow-7D } \\ \text { 071200909 } \end{array}$	$\begin{gathered} \text { OW-7D } \\ \text { 07725109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-7D } \\ \text { 0817109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { OW-7D } \\ \text { 0990309 } \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-7D } \\ \text { 091/6109 } \end{gathered}$	$\begin{gathered} \text { ow-7D } \\ \text { 09128109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { OW-7D } \\ \text { 101120909 } \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-7D } \\ \text { 10126609 } \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-7D } \\ \text { 11102109 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ow-70 } \\ & \text { 1110709 } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \text { ow-70 } \\ \text { 111160909 } \end{array}$	ow-7D 11/23109	$\begin{gathered} \text { ow-70 } \\ \text { 11/30109 } \\ \hline \end{gathered}$	ow-7D 1214109	$\begin{gathered} \text { ow-7D } \\ \text { 12124/09 } \end{gathered}$	$\begin{gathered} \text { ow-7D } \\ \text { 12128/109 } \\ \hline \end{gathered}$	ow-7D 0104110	$\begin{gathered} \text { ow-70 } \\ \text { 0111810 } \end{gathered}$
Velatile Organics																										
$\frac{1}{1 / 1,1-\text { Trichloroethane }}$	200	Hgh	NA	NA	100 U	NA	NA	${ }_{20.00}^{20.0}$	200 U	NA																
$\frac{1,1,2,2 . \text { Tertachloroethane }}{1 / 1.2}$		Hgll	NA	NA	100U	NA	NA	${ }^{20.00}$	${ }^{200 \mathrm{U}}$	NA																
$\frac{1,1,2 \text {-T.ichloroethane }}{11 \text { - }}$	5	$\frac{\mathrm{mg} / \mathrm{L}}{\text { gol }}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{100 \mathrm{U}}{100 \mathrm{U}}$	$\frac{N A}{N A}$	$\frac{N A}{\text { NA }}$	$\xrightarrow{20.0 \mathrm{U}}$	$\frac{200 \mathrm{U}}{200 \mathrm{U}}$	$\frac{N A}{N A}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{N A}{N A}$	$\frac{N A}{N A}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{N A}{N A}$				
1,1-Dichloroethene	7	Hgh	NA	NA	100 U	NA	NA	20.00	200 U	NA																
			$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	100 u 100 U	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{Na}}{\text { NA }}$	$\stackrel{20.0 \mathrm{u}}{20.0 \mathrm{u}}$	$\frac{200 \mathrm{U}}{200 \mathrm{U}}$	$\stackrel{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{Na}}{\text { NA }}$										
$\frac{1}{1,2,3-\text { Trichloroporopane }}$			NA	NA	100 U	NA	NA	${ }^{20.00}$	${ }_{200 \mathrm{U}}$	NA	NA	NA	NA	${ }^{\text {NA }}$	NA											
1, $1,2,4,-\mathrm{Trichlororobenzene}$	70	Hgh	NA	NA	100 U	NA	NA	${ }^{20.00}$	200 U	NA																
1,2,4-Trimethybenzene		Hg/L	NA	NA	${ }^{100 \mathrm{U}}$	NA	NA	${ }^{20.00}$	$\stackrel{200 \mathrm{U}}{2000}$	NA		NA	NA													
	0.2	$\frac{\mathrm{Hg} / \mathrm{L}}{\text { gal }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	500U 100 U	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{100 \mathrm{U}}$	$\stackrel{1}{1,000 \mathrm{U}}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{N}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	¢	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	NA	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$
1,2-Dichlorobenzene	600	${ }_{\text {mgh }}$	NA	NA	100 U	NA	NA	20.0 U	200 U	NA																
1,2-Dichloroethane	5	Hg/	NA	NA	100 U	NA	NA	20.0 U	200 U	NA																
	5	-ggl	${ }_{\text {NA }}^{\text {NA }}$	$\stackrel{N A}{N A}$	${ }^{1000}$	$\stackrel{N A}{N A}$	NA	${ }^{20.0}{ }^{200}$	2000 2000 204	${ }_{\text {NA }}$	${ }_{\text {NA }}^{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	NA	$\stackrel{N A}{N A}$	${ }_{\text {NA }}^{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }^{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }^{\text {NA }}$	${ }_{\text {NA }}^{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$
	\cdots	$\stackrel{\text { Hgh }}{\underline{H g h}}$	${ }^{N A}$	${ }_{\text {NA }}$	${ }_{1000} 100$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }_{20.00 \mathrm{U}}^{20.0}$	${ }_{2000}^{2000}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$						
1.3 -Dichloropropane		Hg/	NA	NA	100 U	NA	NA	${ }^{20.0}{ }^{\text {U }}$	200 U	NA																
1, ${ }^{\text {1,--Dichiororobenzene }}$	75	$\xrightarrow{\text { Hg/L }}$	NA	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{1}^{1000}{ }^{100 \mathrm{U}}$	¢ $\begin{gathered}\text { NA } \\ \text { NA }\end{gathered}$	NA	${ }_{20.00}^{20.0}$	${ }_{2}^{2000}$	$\frac{\mathrm{NA}}{\text { NA }}$	NA	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	NA NA	$\stackrel{N}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	-	$\stackrel{N}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	NA NA	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	NA	NA	NA
2-Butanone		${ }_{\text {ugh }}$	NA	NA	${ }^{2,500 \mathrm{U}}$	NA	NA	500 U	5.000 U	NA																
2.Chlorotoluene	\cdots	${ }_{\text {Hg/ }}$	NA	NA	100 U	NA	NA	20.0 U	200 U	NA																
2-Hexanone	\cdots	Mg/	NA	NA	500U	NA	NA	100 U	${ }^{1.0000}{ }^{1000}$	NA																
$\frac{4-C h i o r o t i l u e n e ~}{4-\text { Methy } 2 \text {-2pentanone }}$	\cdots	-	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{5}^{1000}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{20.0}{100 \mathrm{U}}$	$\stackrel{\text { 200U }}{1,000 \mathrm{U}}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$
Aceione		Hgh	NA	NA	$\stackrel{2,500 \mathrm{U}}{ }$	NA	NA	500 U	${ }_{5}^{5,000 \mathrm{U}}$	NA																
Benzene	5	Hg/L	NA	NA	100 U	NA	NA	20.0 U	200 U	NA																
Bromobenzene		$\frac{\text { Hgh }}{\text { Hgh }}$	$\stackrel{N A}{N A}$	$\stackrel{N}{\text { NA }}$	${ }_{1000} 100$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{20.00}^{20.0}$	${ }_{2}^{2000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }} \mathrm{NA}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$
Bromodichloromethane	81	Hg/	NA	NA	100	NA	NA	${ }^{20.0}{ }^{2004}$	${ }^{200 \mathrm{U}}$	NA																
Bromotorm	81	нg/L	NA	NA	${ }_{100 \mathrm{U}}$	NA	NA	20.0	2000	NA																
Camomelane		$\frac{\text { Lgit }}{\text { get }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	1000	NA	NA	${ }^{20.00}$	${ }^{2000}$	$\frac{N A}{N A}$	$\frac{N A}{\text { NA }}$	$\frac{N A}{N A}$														
Carbon Tetrachloride	5	${ }_{\text {Hgh }}$	NA	${ }^{\text {NA }}$	${ }_{1000}$	${ }^{\text {NA }}$	NA	${ }^{20.0}$	${ }^{2000}$	NA	,	NA	,	NA												
Chlorobenzene	100	Hgh	NA	NA	100 U	NA	NA	20.00	200 U	NA																
Chloroethane	86	Hgh	${ }^{\text {NA }}$	NA	100 U	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{20.0}$	200	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	NA	${ }^{\mathrm{NA}}$	NA	NA	${ }^{\mathrm{NA}}$	NA	${ }^{\text {NA }}$	NA	NA	NA	NA	A	NA	NA	
Chloromethane	-	$\frac{\text { mgh }}{49 \mathrm{~L}}$	NA	${ }^{\text {NA }}$	${ }_{1000}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }_{20.0 \mathrm{u}}$	200 U	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$				
cis-1,2-Dichloroethene	70	Hg/	NA	NA	676	NA	NA	${ }^{117}$	${ }^{1,470}$	NA	碞	NA	NA	NA	NA	NA										
(is-1,3.-Dichloropropene		Hgh	NA	NA	$\frac{1000}{1004}$	$\stackrel{N A}{N A}$	${ }^{\text {NA }}$	$\stackrel{20.0}{2000}$	200	NA	${ }^{\text {NA }}$	NA														
Dibromochioromethane	86	$\frac{\text { Hgh }}{\text { Hgh }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{1000} 100$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{20.00}^{20.0}$	${ }_{2000}^{200 \mathrm{U}}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$
Dichlorodituromethane	\cdots	${ }_{\text {Hgh }}$	NA	NA	${ }^{500 \mathrm{U}}$	NA	NA	100 U	${ }^{1,000 \mathrm{U}}$	NA																
Disopropl ether ((DPE)	700	$\frac{\text { Mgg }}{\text { Hgh }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{1000}{100 \mathrm{U}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\stackrel{20.0 \mathrm{u}}{20.0 \mathrm{U}}$	${ }_{2}^{2000}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$
Hexachloroutadiene		Hg/L	NA	NA	100 U	NA	NA	20.0 U	200 U	NA																
Iodomethane	-	Hg/L	NA	NA	${ }_{100 \mathrm{U}}$	NA	NA	${ }^{20.00}$	${ }^{2000}$	NA																
Sisopropylenzene	\cdots	$\frac{\mathrm{Hgh}}{\text { Hgl }}$	${ }_{\text {NA }}$	NA	${ }_{1000}^{100}$	$\stackrel{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{20.0}{40.0}$	${ }_{4000}^{200}$	$\stackrel{\text { NA }}{\text { NA }}$	NA	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	NA	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$
Methy lert-buty ethel		Hgl	NA	NA	100 U	NA	NA	${ }^{20.00}$	${ }^{2000}$	NA																
Nethylene Chloride	5	$\frac{\mathrm{Hg} / \mathrm{L}}{\text { gol }}$	$\frac{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	32.0 J 100 J	$\frac{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	10.2J	${ }^{60.0 \mathrm{~J}} 20$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{N(}{N A}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\frac{N A}{N A}$	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA	NA	${ }^{\text {NA }}$
Naphralene		$\stackrel{\text { Hgh }}{\text { Hgh }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	${ }_{1000}^{1000}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	$\stackrel{20.0 \mathrm{U}}{20.0}$	${ }_{2000}^{2000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N}{N A}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	NA	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$
n-Propylbenzene																										

Summary of Performance $\begin{gathered}\text { Table } 3\end{gathered}$

Pilot Study Summary Repon
AVX Corporation
AVX Corporation
Myrtle Beach, South Carolina

Location ID: Date Collected	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { UC }}$		$\begin{array}{r} \text { IW-4D } \\ \text { 0411810 } \\ \hline \end{array}$	$\begin{array}{r} \text { IW-4D } \\ \text { 0441910 } \\ \hline \end{array}$	$\begin{aligned} & \text { IW-5D } \\ & \text { 07120090 } \end{aligned}$	$\begin{gathered} \text { iw-5D } \\ \text { o416610 } \\ \hline \end{gathered}$	iw-5D 0417170	$\begin{gathered} \text { IW-6D } \\ \text { 0720009 } \end{gathered}$	$\begin{aligned} & \text { OW-7D } \\ & 0712009 \end{aligned}$	$\begin{aligned} & \text { OW-7D } \\ & \text { o7/2509 } \end{aligned}$	Ow-7D	ow-7D	ow-7D 09116109	ow-7D 09128109	$\begin{gathered} \text { ow-7D } \\ \text { 1011200 } \end{gathered}$	$\begin{gathered} \text { ow-7D } \\ \text { 10126/109 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ow-7D } \\ & \text { 11020909 } \\ & \hline \end{aligned}$	ow-7D 11107109	ow-7D 111/6109	$\begin{gathered} \text { OW-7D } \\ \hline 112309 \end{gathered}$	$\begin{aligned} & \text { ow-7D } \\ & \text { 11/30109 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { ow-7D } \\ \text { 12214109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-7D } \\ \text { 121/24109 } \end{gathered}$	OW-7D $12 / 28109$	ow-70 0104110	$\begin{gathered} \text { ow-7D } \\ \text { 01/1810 } \end{gathered}$
		${ }_{\text {Lgot }}^{\text {ught }}$	NA	NA	100 U	NA	NA	${ }_{20.0 \mathrm{U}}$	200 U	NA																
Strrene	100	woh	NA		100 U	NA	NA			NA		NA	NA	NA	NA	NA		NA	NA							
tyluenzene		Mg/	NA		100 U	NA		20.0 U				NA	NA	NA							NA		NA		NA	NA
Terachloroethene	5	Hgh	NA	NA	100 U	NA	NA	${ }^{20.00}$	200 U	NA	${ }^{\text {NA }}$	NA	NA	NA	NA	NA	NA									
Toluene	1.000	щgh	NA	NA	100 U	NA	NA	20.0 U	200 U	NA																
trans-1,2-Dichloroethene	100	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	56.0 J	NA	NA	20.00	${ }^{148 \mathrm{~J}}$	NA																
trans-1,3-2ichloropropene		$\mu \mathrm{g} / \mathrm{L}$	NA	NA	100 U	NA	NA	${ }^{20.0}$	200 U	NA																
trans-1,4,-icichloro-2-butene		Mg/	NA	NA	500 U	NA	NA	100 U	1,000 U	NA																
Trichloroethene	5	${ }_{\text {Hg/ }}$	NA	NA	1,350	NA	NA	301	3,080	NA																
Trichlorofluoromethane		Hg/	NA	NA	100 U	NA	NA	20.0 u	200 U	NA																
Manganese	\cdots	mgh	NA	NA	57.0 L	NA	NA	68.0 L	59.0 L	NA																
Inorganics - Dissolved					${ }^{1,400} \mathrm{~L}$	NA		1,600 L	1,500 L	NA																
Wet Chemistry																										
Akainity as cacos	.-	Hgh	NA	NA	${ }^{240,000}$	NA	NA	${ }^{27,000}$	${ }^{240,000}$	NA																
Akainity Bicarbonate as cace	-	Mgh	NA	NA	24,000 160 10	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { 27,000 }}{1700}$	$\stackrel{\text { 240,000 }}{200}$	NA	NA	$\stackrel{\text { NA }}{ }$	NA	$\stackrel{N A}{N A}$	$\stackrel{\mathrm{NA}}{ }$	NA	NA	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	NA	NA	NA	NA	$\stackrel{\text { NA }}{ }$	NA	NA
Chloride		щgh	NA	NA	38,000	NA	NA	35,000	35,000	NA																
Fuoride	4,000	mgh	NA	NA	280 J	NA	NA	290 J	${ }^{250 \mathrm{~J}}$	NA																
Nitate cas N)	10,000	Lg/	NA	NA		NA	NA	6,000	1,000	NA	${ }^{\text {NA }}$	NA	NA													
Nine as	1,000	нgh	NA	NA	5000	NA																		NA	NA	
Shosphat	\because	${ }_{\text {Lgot }}^{\text {Legh }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }^{1,0000}{ }^{15000}$	$\stackrel{\text { NA }}{ }$	${ }_{\text {NA }}$	${ }^{1.0000}$	${ }_{1}^{1,00000}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{N A}{N A}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	$\frac{N A}{N A}$
Total Organic Carbon		нg/	7,900	7,900	NA	7,700	7,000	NA																		
Total Organic Carbo		,			5.000 U		NA	900 J	5.000 U	15,000	27,000	34,000	28,000	20,000	11,000	17,000	${ }^{13,000}$	260,000	490,000	10,000	10,000	4,100,000	87,000 M	70,000	72,000	
Iotele Phosphate as P04-P	-	ugh	NA	NA	880 L	NA	NA	1,100 L		NA		NA	NA	NA	NA											
depth to water	-	feet bgs	NA	NA	10.05	NA	NA	9.47	NA	9.58	9.09	${ }^{9.64}$	10.26	${ }^{9,062}$	10.28	10.13	NA									
Dissolved Oxygen		mg L	NA	${ }^{\mathrm{NA}}$	NA	NA	NA	NA	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$															
Dissolved Oxygen	-	Mg/	NA	NA	${ }^{100}$	NA	NA	170	NA	110	${ }_{130}^{130}$	${ }_{210}^{210}$	${ }^{350}$	$\xrightarrow{2,040}$	${ }^{280}$	${ }^{250}$	NA	NA	NA	NA	NA	${ }^{20,100}$	NA	NA	NA	${ }^{290}$
${ }^{\text {oxidation reduction potentia }}$		mV	NA	NA	${ }^{-10997}$	NA	$\frac{\mathrm{NA}}{\text { NA }}$	- $\begin{array}{r}\text {-.98 } \\ 6.89\end{array}$	$\stackrel{N A}{\text { NA }}$	$\xrightarrow{-98.5}$	$\stackrel{-217.2}{6.49}$		$\stackrel{-249.8}{\substack{6.61}}$			${ }^{244.9}$	${ }_{\text {NA }}^{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}{ }_{6}$	NA 5.91	NA 6.15	-135.6	$\stackrel{N A}{603}$	NA	NA	
salinity		Psu	NA	NA	$\stackrel{\text { NA }}{ }$	NA	NA	NA	NA	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	NA	$\stackrel{\text { NA }}{ }$	${ }_{\text {NA }}$	NA	NA	NA	NA	${ }_{0} 0.8$	1.6	0.6	NA	NA	0.5	${ }_{0} 0.6$	NA
specific conductivity	\cdots	us/cm	NA	NA	0.627	NA	NA	0.678	NA	0.632	1.171	1.174	0.829	0.937	0.799	${ }^{1.162}$	NA	NA	2.2	2.967	1.2	7.532	1.667	1.05	${ }_{1}^{1.323}$	1.089
temperature			NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	NA	NA	NA	NA	25.4	24	${ }_{\text {23, }}^{23}$	NA	${ }^{\text {NA }}$	NA	NA	NA							
Ethene		ugh	NA	NA	1.3	NA	NA	0.45	1.6	NA																
Methane			NA	NA	48	NA	NA	54	140	NA																

Location ID: Date Collected:	$\underset{\text { MSL }}{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}$	Units	$\begin{gathered} \text { ow-7D } \\ \text { 0220510 } \end{gathered}$	$\begin{array}{r} \text { ow-7D } \\ \text { 0221610 } \end{array}$	ow-7D 0310410	ow-70 03129110	ow-7D 04113110	ow-70 041610	$\begin{gathered} \text { ow-7D } \\ \text { 04417110 } \end{gathered}$	$\begin{gathered} \text { ow-7D } \\ \text { o418110 } \end{gathered}$	$\begin{gathered} \text { OW-7D } \\ \text { 04/19110 } \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-8D } \\ 07 / 20109 \end{gathered}$	$\begin{gathered} \text { OW-8D } \\ \text { 07/25/09 } \\ \hline \end{gathered}$	ow-8D 0817109	ow-8D 09/01/09	ow-8D 09116/09	$\begin{gathered} \text { ow-8D } \\ \text { 09128109 } \end{gathered}$	$\begin{gathered} \text { ow-8D } \\ \text { 10112109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { OW-8D } \\ \text { 10126/09 } \end{gathered}$	$\begin{gathered} \text { ow-8D } \\ 11102109 \\ \hline \end{gathered}$	OW-8D 11/07/09	Ow-8D 11/16/09	$\begin{gathered} \text { OW-8D } \\ 111 / 23 / 09 \\ \hline \end{gathered}$	Ow-8D 11/30/09	ow-8D 12214099	$\begin{gathered} \text { ow-8D } \\ \text { 121/24109 } \\ \hline \end{gathered}$
Volatie Organics		\%	NA	NA	NA	NA			NA	NA	NA	400 U	NA	NA	1.000 U	NA	1.000 U	NA	NA	NA	NA	1.000 U	NA			
	200	$\stackrel{\text { Hght }}{\text { Hgh }}$	NA	400 U	NA	NA	${ }_{1,000 \mathrm{U}}$	NA	${ }_{1,000}^{1,000}$	${ }^{\text {NA }}$	NA	NA	NA	${ }_{1,000 \mathrm{U}}$	NA	NA	NA	NA								
1,1,2,2.-Terachathoreeth		Hgh	NA	,	400 U	NA	NA	1,000	NA	$1,000 \mathrm{U}$	NA	相	W	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA							
1,1,2-T.ichioloreethane	5	Mgh	NA	400	NA	NA	${ }^{1,000}$	NA	1,00	NA	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	$\stackrel{\text { NA }}{\text { NA }}$								
	7	${ }_{\text {Hggh }}^{\text {Hght }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{4000}^{400}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	${ }_{1}^{1,0000 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{1,1,000 \mathrm{U}}^{1}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	${ }_{1}^{1,0000 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$			
1,1--Dichloropropene		нgh	NA	400 U	NA	NA	${ }^{1,000}$ U	NA	${ }^{1,000}$ U	NA	NA	NA	NA	1,000 U	NA	NA	NA									
1,2,3,-Trichlorobenzene	.	${ }_{\text {ugh }}$	NA	400 U	NA	NA	${ }^{1,000}{ }^{1}$	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA	${ }^{1,000}{ }^{\text {U }}$	NA	NA	${ }^{\text {NA }}$									
1,2,3-7Trichloropropane		ugh	NA	400 U	NA	NA	${ }^{1,0000}$	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }^{1,0000}$	NA	NA	NA	NA								
1,2,4-Trichlorobenzene	70	ugh	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	NA	${ }^{\mathrm{NA}}$	NA	NA	4000	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	${ }^{1,0000}$	NA	NA	NA	${ }^{\text {NA }}$	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA
1,2,4-7rimethybenzene		pgh	NA	400 O	NA	NA	${ }^{1,000}{ }^{100}$	NA	${ }^{1,000}{ }^{100}$	NA	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA								
1,2--ibromo-3-chhoropropane	0.2	Hgh	NA	${ }^{2,000 \mathrm{U}}$	NA	NA	${ }^{5,000 \mathrm{U}}$	NA	${ }^{5,000 \mathrm{U}}$	NA	NA	NA	NA	${ }_{5}^{5,000 \mathrm{U}}$	NA	NA	NA	NA								
1, 1,--Dibromoethane	0.05	- Mgh	NA	NA	NA	${ }^{\text {NA }}$	NA	NA	NA	$\stackrel{\mathrm{NA}}{\mathrm{Na}}$	$\stackrel{N A}{N A}$	400	NA	NA	${ }^{1,0000}$	NA	1,000 ${ }^{1,0000}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	${ }_{1}^{1,0000}$	NA	NA	NA	
$\frac{1,}{1,2-\text {-icichiorobenzene }}$	5	$\frac{\mathrm{Hgh}}{40 \mathrm{~L}}$	$\stackrel{N}{\text { NA }}$	NA	NA	$\stackrel{\text { NA }}{ }$	NA	NA	$\stackrel{N A}{ }$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{4000}$	$\stackrel{\text { NA }}{ }$	${ }_{\text {NA }}$	${ }_{1}^{1,0000}$	$\stackrel{N A}{N A}$	${ }_{1,0000}$	NA	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }^{1,0000}$	NA	NA	NA	$\stackrel{N A}{\text { NA }}$
1, 1,--icichloropropane	5	${ }_{\text {Hgh }}$	NA	400 U	NA	NA	$1,000 \mathrm{U}$	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA	1,000 U	NA	NA	NA	NA								
1,3,5-Trimethybenzene		Hgh	NA	NA		NA			NA	NA	NA		NA	NA	1,000 U		${ }^{1,0000}$	NA	NA	NA	NA	1,000	NA	NA	NA	
$\frac{1,5-5 i c h o r o b e n z e n e ~}{\text { 13, }}$	-	-	NA	NA	NA	$\stackrel{N}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	${ }_{\text {NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{\text { NA }}{\text { Na }}$	${ }_{4000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{1}^{1,0000}$	$\stackrel{N}{\text { NA }}$	${ }_{1}^{1,0000 \mathrm{U}}$	$\stackrel{N}{N A}$	$\stackrel{\text { NA }}{ }$	$\stackrel{N}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	${ }_{1}^{1,0000 \mathrm{U}}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$	$\frac{\mathrm{NA}}{\text { NA }}$
	75		NA	400 U	NA	NA	${ }^{1,0000}$	NA	${ }_{1}^{1,000}$ U	NA	NA	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	NA									
2,2.-Dichloropropane		нgh	NA	400 U	NA	NA	${ }^{1.0000}$	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }^{1.0000}$	NA	NA										
2-Butanone		нgh	NA	10,000 U	NA	NA	$25,000 \mathrm{U}$	NA	25,000 U	NA	NA	NA	NA	25,000 U	NA	NA	NA	NA								
2-Chlorototuene		нgh	NA	400 U	NA	NA	${ }^{1,0000}$	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	NA	NA	$1,000 \mathrm{U}$	NA	NA	NA									
$\frac{2-H e x a n o n e ~}{\text {-Chorotume }}$		Hgh	NA	2,000 U	NA	NA	${ }^{5,000 \mathrm{U}}$	NA	5,000 U	NA	NA	NA	NA	${ }^{5,000 \mathrm{U}}$	NA	NA	NA									
$\frac{4-C h i o r o t o l u e n e ~}{4-\text { Methl }}$-2-pentanone	.	${ }_{\text {Lggh }}^{\text {Hght }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{2}^{40000}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{5}^{1,0000 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {c, }}^{1,0000}{ }^{1000}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{5}^{1,0000 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$			
Actoone		Hgh	NA	10.000 U	NA	NA	$25,000 \mathrm{U}$	NA	25,000 U	NA	NA	NA	NA	$25,000 \mathrm{U}$	NA	NA	NA									
Benzene	5	Hg/L	NA	400 U	NA	NA	${ }^{1,000}{ }^{\text {U }}$	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA								
Bromobenzene		Hgh	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{4}^{4000}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$1,000 \mathrm{U}$ $1,000 \mathrm{U}$	$\frac{\mathrm{NA}}{\text { NA }}$	$1,000 \mathrm{U}$ $1,000 \mathrm{U}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	1,000 ${ }^{1,000}$	NA	NA	NA				
Bromochorioromethane	81	$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	$\stackrel{N}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{N}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{N}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }^{4000}$	$\stackrel{N A}{\text { NA }}$	NA	${ }_{1}^{1,000}{ }^{1}$	${ }^{\text {NA }}$	${ }_{1,1000 \mathrm{U}}$	NA	NA	NA	NA	${ }_{1}^{1,000}{ }^{1}$	NA	NA	NA	$\stackrel{N A}{ }$
Bromotorm	81	Hg/L	NA	400 U	NA	NA	${ }^{1,0000}$	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	NA	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA								
Bromomethane		Hgh	NA	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	NA	NA	400	NA	NA	${ }^{1,000}{ }^{10}$	NA	${ }_{1}^{1,000}$	NA	NA	NA	NA	${ }^{1,000}{ }^{10}$	NA	NA	NA	
Carbon Disulife		- Mgh	${ }^{\text {Na }}$	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	${ }^{400 \mathrm{O}}$	NA	${ }^{\mathrm{NA}}$	${ }_{1}^{1,0000}$	$\stackrel{N A}{N A}$	${ }^{1,000 \mathrm{U}}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	${ }_{1}^{1,0000}$	${ }^{\text {NA }}$	NA	NA	NA			
Cathon errachoride	100	$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{400 \mathrm{U}}$	NA	${ }_{\text {NA }}$	${ }_{1}^{1,000 \mathrm{U}}$	NA	${ }_{1,000}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }_{1}^{1,0000}$	${ }_{\text {NA }}$	$\frac{N A}{N A}$	$\frac{N A}{N A}$	
Chloroethane		सgh	NA	400 U	NA	NA	$1,000 \mathrm{U}$	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA								
Chloriorm	86	ugh	NA	400 U	NA	NA	${ }^{1,000}{ }^{1}$	NA	${ }^{1,000}$	NA	NA	NA	NA	${ }^{1,000}{ }^{1,0}$	NA	NA	NA									
Chioromethane	70	- H	NA	$\frac{400}{2120}$	NA	NA	${ }^{1,0000}$	NA	1,000	NA	NA	NA	NA	-1,000	NA	NA	NA	NA								
		$\frac{\mathrm{Hgh}}{\log }$	NA									NA	NA	${ }_{1}^{1.000 \mathrm{U}}$	NA	NA	NA									
Dibromochioromethane	86	Hgh	NA	400 U	NA	NA	${ }^{1,000}{ }^{\text {U }}$	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA								
Dibromomethane		-ggh	${ }_{\text {NA }}$	NA	$\stackrel{N A}{N A}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{4000}$	NA	NA		${ }^{\text {NA }}$	-	NA	$\stackrel{N A}{N A}$	NA	NA	${ }_{\text {1,000 U }}$	NA	NA	NA	
Disoropopy ether (IPIE)		${ }_{\text {Lght }}$	NA	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	NA	NA	${ }_{400 \mathrm{U}}$	NA	NA	${ }_{1}^{1,000}{ }^{\text {U }}$	NA	${ }_{1,0000}$	NA	NA	NA	NA	${ }_{1}^{1,000}{ }^{\text {U }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	NA
Ethybenzene	700	Hgh	NA	400 U	NA	NA	${ }^{1,0000}$	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA								
Hexachlorobutadiene		Hgh	NA	NA	NA	NA	NA		NA	NA	NA	${ }^{400 \mathrm{U}}$	NA	NA	${ }^{1,0000}$	NA			NA	${ }^{\text {NA }}$	NA	${ }^{1,0000 \mathrm{U}}$	${ }^{\text {NA }}$	NA		
Isopropylbenzene	-	Hgh	NA	400 U	NA	NA	${ }_{1,000 \mathrm{U}}$	NA	$\stackrel{1,000 \mathrm{U}}{ }$	NA	NA	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	NA	NA								
m-p-xylene		Hgh	NA	$800 \cup$	NA	NA	$2,000 \mathrm{U}$	NA	2,000 U	NA	NA	NA	NA	$2,000 \mathrm{U}$	NA	NA	NA	NA								
Meety tert-butyl ethel		Hgh	NA	${ }^{400 \mathrm{U}}$	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	${ }^{1,0000}$	NA	NA	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	NA	NA								
Methylene Chloride	5	$\frac{\mathrm{mgh}}{\text { gat }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	188 J 400 U	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{\text {5,000 }}{ }_{1000 \mathrm{U}}^{1000}$	$\stackrel{N A}{N A}$		$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{15,000 \mathrm{U}}{1000 \mathrm{U}}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$			
	\cdots	Hgh	NA	400 U	NA	NA	${ }_{1,000 \mathrm{U}}$	NA	${ }_{1}^{1,000}{ }^{1,0}$	NA	NA	NA	NA	${ }_{1}^{1,000}{ }^{\text {U }}$	NA	NA	NA	NA								
n-Propybenzene			NA	400 U	NA	NA	1,000	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	NA	NA	1,000 U	NA	NA	NA	NA								

Pilot Study Summary Repon
AVX Corporation
Myrtle Beach, South Carolina

Location ID: Date Collected	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { U }}$	Units	$\begin{array}{r} \text { ow-70 } \\ \text { 0205510 } \end{array}$	$\begin{array}{r} \text { ow-70 } \\ 0211610 \end{array}$	$\begin{array}{r} \text { ow-7D } \\ \text { 0330410 } \\ \hline \end{array}$	$\begin{gathered} \text { ow-7D } \\ \text { 03/29/10 } \end{gathered}$	$\begin{array}{r} \text { ow-7D } \\ \text { o4131310 } \\ \hline \end{array}$	ow-7D 04116110	ow-7D 0411710	ow-7D 0411810	ow-7D 0411910	ow-8D 0772009	ow-8D 07125109	ow-8D 08177109	ow-8D 0910109	ow-8D 0916109	ow-8d 09128109	$\begin{gathered} \text { ow-8D } \\ \text { 1012209 } \\ \hline \end{gathered}$	$\begin{gathered} \text { OW-8D } \\ \text { 10126/09 } \end{gathered}$	$\begin{gathered} \text { OW-8D } \\ 11102109 \\ \hline \end{gathered}$	ow-8D 11107109	$\begin{gathered} \text { ow-8D } \\ 11116 / 09 \\ \hline \end{gathered}$	OW-8D 11/23/09	$\begin{gathered} \text { ow-8D } \\ \text { 11/30/09 } \end{gathered}$	$\begin{array}{\|c} \text { ow-8D } \\ \text { 122141099 } \\ \hline \end{array}$	$\begin{gathered} \text { ow-8D } \\ \text { 12/2/2409 } \\ \hline \end{gathered}$
		Hggt	${ }_{\text {NA }} \mathrm{NA}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }} \mathrm{NA}$	NA	NA	400 U	NA	NA	${ }_{1}^{1,0000}$	NA	${ }_{1}^{1,0000}$	NA	NA	NA	NA	${ }_{1}^{1,0000}$	NA	NA	NA	NA			
Styrene	100	Hgh	NA	400 U	NA	NA	${ }^{1,0000}$	NA	${ }^{1,0000}$	NA	NA	NA	NA	${ }^{1,000}{ }^{\text {U }}$	NA	NA	NA									
	5	$\frac{\mu \mathrm{gh}}{\underline{\text { gqu }}}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\xrightarrow{4000}$	$\stackrel{N}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	- $1,000 \mathrm{U}$	$\stackrel{\text { NA }}{\text { NA }}$	1,000 ${ }^{1,000}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{1,000 \mathrm{U}}{1,000 \mathrm{U}}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	¢	
Toluene	1.000	Hgh	NA	400 U	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	1.000 U	NA	NA	NA	NA	${ }_{1}^{1,0000}$	NA	NA	NA	NA								
tras-1,2--ichichoreethene	100	Mg/L	NA	168 J	NA	NA	490 J	NA	${ }^{230 \mathrm{~J}}$	NA	NA	NA	NA	160 J	NA	NA	NA	NA								
Trans-1,3-Dichioropra		Hgh	NA	400 U	NA	NA	${ }^{1,0000}$	NA	${ }^{1,0000}$	NA	NA	NA	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA								
trans-1,4-2ichilio-a-2.butene		Hg/	NA	$\stackrel{N A}{N A}$	${ }^{\text {NA }}$	NA	$\stackrel{\mathrm{NA}}{\text { NA }}$	NA	NA	NA	NA	${ }_{\text {2,0,900 }}^{5}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	5,000	${ }_{\text {NA }}$	${ }_{\text {5,000 }}^{1,000 \mathrm{U}}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	NA		NA	$\stackrel{\mathrm{NA}}{ }$	${ }^{\mathrm{NA}}$	
Trichloroeftene Trihlorotuoromethane	5		$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	NA	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\xrightarrow{\text { 5,940 }} 400 \mathrm{u}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{18,100}{1,000}$	$\stackrel{N A}{N A}$	${ }_{1}^{1,0000}{ }^{\text {a }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{1,010}{1,000}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$			
	2	Mg/	NA	400 U	NA	NA	${ }_{1}^{1,000}{ }^{\text {U }}$	NA	${ }_{390}$	NA	NA	NA	NA	${ }_{1}^{1,3,50}$	NA	NA	NA	NA								
Iron Manganese	\cdots	$\frac{\mu g \mathrm{~L}}{\mathrm{Hgh}}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	NA	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }_{5}^{1,600}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA										
	-	Mg/	NA	1,300 L	NA																					
Wetchemistry																										
Alkalinity Bicarbonate as Caco.		Mg/	NA	230,000	NA																					
Bromide		Hgh	${ }^{\text {NA }}$	NA	NA	NA	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	$\stackrel{2105}{ }$	${ }^{\text {NA }}$	NA	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	NA	NA	NA	NA	NA	
Choride		Hgh	NA	-3,000	NA																					
Nitrate (as N I	$\frac{4,000}{10,000}$		${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	NA	${ }_{410}$	${ }_{\text {NA }}$	NA	NA	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	
Nititie (as N)	1,000	Mg/	NA	500 U	NA																					
Phospha		$\frac{\mathrm{Hgh}}{190}$	NA	${ }_{\text {NA }}^{\text {NA }}$					NA	NA	NA	${ }_{\text {1,000 }}^{13,00}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { Na }}$		NA			$\stackrel{N A}{N A}$		NA				
Total Organic Carbon		H9,	${ }_{6}^{6.4}$	130	52	3,600	460	330	76	${ }_{940}$	1,500	$\stackrel{\text { NA }}{\text { NA }}$	NA													
Total organic Carbon		Mg/	NA	NA	NA	NA	NA	NA	$\stackrel{\mathrm{NA}}{ }$	NA	NA	${ }_{1,100 \mathrm{~J}}$	4,100 J	10,000	${ }^{9,000}$	${ }^{9,600}$	${ }^{10,000}$	6,100	27,000	${ }^{34,000}$	${ }^{38,000}$	380,000	54,000	18,000	17,000	13,000 M
Field Parameters																										
deppth to water		feet	6.25	${ }^{6.1}$	6.35	7.34	NA	9.34	9.27	9.31	${ }_{8,33}$	6.79														
deprfo waier		${ }_{\text {feer }}^{\text {mglt }}$	$\stackrel{\text { NA }}{0.25}$	$\stackrel{\text { NA }}{0.05}$	$\stackrel{N}{0.38}$	$\stackrel{\text { NA }}{11.09}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{8.98}{\text { NA }}$	${ }_{\text {¢ }}^{\text {NA }}$	$\stackrel{10.25}{\text { NA }}$	$\stackrel{9.57}{\text { NA }}$	${ }_{\text {L }}^{10.25}$	$\stackrel{10.1}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	
Dissolved Oxygen		Hgh	NA	380	140	${ }^{350}$	180	1,450	${ }^{240}$	360	NA	NA	NA	NA	NA	24,000	NA									
oxidation reduction potentia	-	mV	-230.4	-213.5	${ }_{-155.1}$	${ }^{-123.7}$	NA	NA	NA	NA	NA	NA	${ }^{-103.3}$	${ }_{-235.6}$	79.8 7	${ }_{\substack{\text { 301.1 } \\ \text { 301. }}}$	-303	$\stackrel{-253,7}{ }$	$\stackrel{-255}{ }$	NA	NA	NA	NA	NA	${ }^{-223.6}$	NA
${ }_{\text {grem }}^{\text {sain }}$	\cdots	SUS	6.35	6.93	6.93	5.74	NA	${ }^{N A}$	NA	NA	NA	NA	7.21 0. 1	7.36	7.22	7.44	7.14	7.18	\% 6.52	$\frac{\mathrm{NA}}{\mathrm{NA}}$	${ }^{\text {NA }}$	6.66	6.81	${ }^{7.45}$	10.68	$\frac{11.94}{104}$
sspecific conductivity		${ }_{\text {uscm }}$	$\stackrel{1.47}{ }$	${ }_{1}^{1.064}$	${ }^{0.326}$	$\stackrel{\text { ¢ }}{5}$	NA	NA	NA	NA	NA	NA	${ }^{0.602}$	${ }^{0.569}$	${ }^{0.551}$		${ }^{0.605}$	0.544	1.805	NA	NA	${ }_{0}^{0.864}$	${ }_{0}^{0.661}$	${ }_{0} 0.6$	${ }^{1.455}$	$\stackrel{2.001}{ }$
temperature		${ }^{\circ} \mathrm{C}$	NA	23.5	${ }^{23.3}$	${ }^{23.4}$	NA																			
	Dissolved Gases																									
Ethane																										
Ethene		ugh	NA	NA	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	NA	${ }_{\text {NA }}$	2.4	NA	${ }_{\text {NA }}$	${ }_{\text {c }}^{6.3}$	NA	4.7	NA	${ }_{5}^{5.5}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }^{14}$	NA	NA	18	NA			
vethane			NA	NA	NA		NA	NA	NA	NA		150	NA	NA	160	NA	190	NA	310	NA	NA	1,200	NA	NA	8,400	NA

Location ID:	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { U }}$	Units	ow-8D 12/28109	Ow-8D 010410	$\begin{array}{r} \text { ow-8D } \\ \text { 01/181010 } \\ \hline \end{array}$	$\begin{gathered} \text { ow-8D } \\ \text { 0220510 } \end{gathered}$	OW-8D 02/16/10	ow-8D 0310410	ow-8D 03129110	OW-8D 04/13/10	OW-8D 04/19/10	OW-9D 07/20/09	OW-9D 07/25/09	OW-9D 08/17/09	OW-9D 09/01/09	OW-9D 09/16/09	OW-9D 09/28/09	ow-9D 10112109	OW-9D	ow-9D 1110209	$\begin{gathered} \text { OW-9D } \\ 11107109 \\ \hline \end{gathered}$	ow-9D 11/1/6099	ow-9D 11/23/109	ow-9D 11/30109	$\begin{gathered} \text { ow-9D } \\ \text { 12/14409 } \end{gathered}$	$\begin{gathered} \text { ow-9D } \\ \text { 121/24109 } \\ \hline \end{gathered}$
		$\xrightarrow{\text { Mg }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{1}^{1,0000}{ }^{1,00}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{1}^{1,0000 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{8000}^{800}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{8000}^{800}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{8000}{ }^{800}$	$\stackrel{\text { NA }}{\text { NA }}$									
Strene	100	Hg/	NA	NA	NA	NA	NA	${ }^{1,0000}$	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	800 U	NA	800 U	NA	NA	NA	NA	${ }^{800 \mathrm{U}}$	NA	NA	NA	NA
tert-Butybenzene		Hgh	NA	NA	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	800 U	NA	800 U	NA	NA	NA	NA	${ }^{800 \mathrm{U}}$	NA	NA	NA	NA
Tetrachloroethene	5	Mg/	NA	NA	NA	NA	NA	${ }^{1,000}{ }^{\text {U }}$	NA	NA	NA	${ }^{1,0000}$	NA	NA	800 U	NA	800 U	NA	NA	NA	NA	${ }^{800 \mathrm{U}}$	NA	NA	NA	
Toluene	1,000 100	Mgh	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\mathrm{NA}}{160 \mathrm{~J}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$1,000 \mathrm{U}$ 1.000 U	$\stackrel{N A}{224}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$1,000 \mathrm{U}$ 170 J	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	800 U 400 J	$\frac{\mathrm{NA}}{\text { NA }}$	800 U 55 J	$\frac{\mathrm{NA}}{\text { NA }}$	${ }^{800 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$			
			$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }_{1}^{1,0000}$	NA	NA	NA	1.000 U	NA	NA	800 U	NA		NA	NA	NA	NA	800 U	NA	NA	NA	${ }^{\text {NA }}$
trans-1,--bichloro-2-butene		Hgh	NA	NA	NA	NA	NA	5.000 U	NA	NA	NA	${ }^{5}, 000 \mathrm{U}$	NA	NA	4.000 U	NA	4.000 U	NA	NA	NA	NA	4.000 U	NA	NA	NA	
Ehloreetrene	5	ugh	NA	NA	NA	NA	NA	490 J	1,530	NA	NA	${ }_{8}, 420$	NA	NA	16,700	NA	1,250	NA	NA	NA	NA	384 J	NA	NA	NA	
Trichlorofluoromeltane		Mg/	NA	NA	NA	NA	NA	1,000 U		NA	NA	${ }^{1,0000}$	NA	NA	800 U	NA	800 U	NA	NA	NA	NA	${ }^{800 \mathrm{U}}$	NA	NA	NA	NA
Manganese	\cdots	Hg/	NA	59.0 L	NA																					
Wet Chemistry																										
	-	нg/	${ }^{\mathrm{NA}}$	NA	NA	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	${ }^{\text {NA }}$	${ }^{250,000}$	${ }^{\mathrm{NA}}$	NA	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	NA	NA						
Akainity Bicaroonate as caco		${ }_{\text {Hght }}^{\text {Hgh }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	${ }^{250,000}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	NA														
Chloride		Mg/	NA	41,000	NA																					
Fuoride	4,000	Mg/	NA	${ }^{370} \mathrm{~J}$	NA																					
Nititie (as N)	1,000	Hght	NA	NA	NA	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	NA	${ }_{\text {NA }}$	${ }_{680} 800$	${ }_{\text {NA }} \mathrm{NA}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$ NA	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }} \mathrm{NA}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	${ }_{\text {NA }} \mathrm{NA}$				
Phosphate		Hg/	NA	${ }^{\text {NA }}$	NA	${ }^{1.0000}$	NA																			
		¢g/	NA		NA												NA	NA	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA		
Toatal Organic Carbon		$\frac{\mathrm{mgh}}{\mu \mathrm{g} \text { ¢ }}$	${ }_{\text {11,000 }}$	${ }_{3,600 \mathrm{~J}}$	${ }_{38,000}$	$\stackrel{20}{\text { NA }}$	$\stackrel{3}{\text { NA }}$	$\stackrel{\text { 2,000 }}{\text { NA }}$	$\stackrel{\text { 2,000 }}{\text { NA }}$	$\stackrel{\text { 1,000 }}{\text { NA }}$	$\stackrel{\text { e,ou0 }}{\text { NA }}$	${ }_{5.000 \mathrm{U}}^{\text {N }}$	$\stackrel{\text { NA, }}{2000}$	${ }_{35,000}$	${ }^{\text {32,000 }}$	${ }_{34,000}$	${ }^{\text {N0,000 }}$	${ }_{\text {N, }}^{19.000}$	${ }_{\text {N1,000 }}$	${ }_{\text {N1,000 }}$	N, ${ }_{\text {NA }}$	${ }_{\text {22,000 }}^{\text {NA }}$	${ }_{31,000}$	${ }_{\text {10,000 }}$	$\stackrel{\text { 4,700,000 }}{ }$	$\xrightarrow{\text { Na }}$
total Phosphate as PO4.P		Hg/	NA	${ }^{860 \mathrm{~L}}$	NA																					
Field Parameters																										
$\frac{\text { deph ho } \text { Water }}{\text { dept }}$		${ }_{\text {feet bgs }}^{\text {feet }}$	6.87 NA	${ }^{7} .01$	${ }^{6.97}$	$\stackrel{6.33}{N A}$	${ }^{6.13}$ NA	$\stackrel{6.4}{\text { NA }}$	7.35 NA	NA	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}^{\text {N, }}$	$\stackrel{\mathrm{NA}}{9.39}$	$\stackrel{N}{\text { NA }}$	${ }_{10.62}^{\text {NA }}$	$\stackrel{\text { NA }}{9.96}$	${ }_{\text {NA }}{ }_{10.65}$	${ }_{\text {NA }}{ }_{10.49}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {¢ }}^{\text {NA }}$	${ }_{\text {9. }}^{\text {NA }}$	${ }_{\text {9. }}^{\text {NA }}$	${ }_{\text {E }}^{8.71}$	$\frac{7.14}{\text { NA }}$
Dissolved Oxygen	\cdots	mgl	NA	NA	NA	1.79	0.03	0.19	0.93	NA																
Dissolved Oxygen		Hg/	NA	NA	360	NA	320	210	530	${ }^{230}$	${ }^{1,720}$	270	190	NA	NA	NA	NA	NA	${ }^{20,970}$	NA						
oxidation reaction potentia	\cdots	mV	NA	NA	${ }^{-309.6}$	- 194	${ }^{-334.6}$	-248.3	${ }^{-195.9}$	NA	NA	NA	-99.1	-85.9	${ }^{-131.1}$	-279	${ }^{-301.2}$	${ }^{219.8}$	${ }^{262.7}$	NA	NA	NA	NA	NA	${ }^{-206.6}$	NA
pH	\cdots	SU	${ }^{7}, 48$	${ }_{0.53}$	${ }^{11,33}$	6.31	11.8	5.81	5.75	NA	NA	NA	${ }^{6.82}$	7.09	7.16	7.02	7.02	${ }^{6.98}$	7.16	NA	${ }^{\text {NA }}$	6.74	6.76	6.91	6.24	${ }_{6.81}^{6.8}$
sainity	\cdots	${ }_{\text {PSU }}$	0.4 0 0	0.6 1.264	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA	NA	NA	NA	$\begin{array}{r}\text { NA } \\ \hline 0.727\end{array}$	NA	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	0.4 0.711	0.4 0.97	0.4	$\begin{array}{r}\text { NA } \\ \hline 809 \\ \hline 8 \\ \hline\end{array}$	NA 085 8.5			
Spectic conducivily		${ }^{\text {ustam }}$	$\stackrel{\text { NA }}{ }$	${ }_{\text {che }}^{\text {1.264 }}$	${ }_{\text {NA }}^{\text {NA }}$		$\stackrel{\text { NA }}{ }$	$\stackrel{5}{\text { NA }}$	${ }_{\text {c }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$			${ }_{\text {O }} \mathrm{Na}$	NA	${ }_{\text {NA }}$	$\stackrel{.095}{\text { NA }}$	$\frac{0.732}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	-0.715	0.77 2.8 2.8	$\stackrel{.0 .}{23.5}$	8.999	
Emane	\because	$\frac{\mathrm{Mgh}}{\mathrm{LO} / \mathrm{L}}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{\text {NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{2}{110}$	$\stackrel{N A}{N A}$	$\frac{1.8}{140}$		$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }^{0.27}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{N A}{N A}$	${ }_{0}^{0.46}$	$\frac{N A}{N A}$	${ }^{0.36}$	$\frac{N A}{N A}$	${ }_{\text {O. }}^{3.26}$	$\frac{N A}{N A}$	$\frac{\text { NA }}{\text { NA }}$		$\frac{N A}{N A}$	$\frac{N A}{N A}$	${ }_{48}^{2.3}$	
Methane		ugl	NA	NA	NA	7,700	NA	5,700	3,500	NA	NA	64	NA	NA	130	NA	110	NA	76	NA	NA	200	NA	NA	240	NA

Table 3 Summary of Performance Monitoring Results Pilot Study Summary Report AVX Corporation Myrtle Beach, South Carolina																										
Location ID: Date Collected:	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{ }$	Units	$\begin{gathered} \text { OW-9D } \\ \text { 12128/109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { Ow-9D } \\ \text { 0110410 } \\ \hline \end{gathered}$	$\begin{gathered} \text { OW-9D } \\ \text { 010510 } \end{gathered}$	$\begin{gathered} \text { ow-9D } \\ \text { 0111810 } \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-9D } \\ \text { 020105110 } \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-9D } \\ 0216110 \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-9D } \\ \text { 03104110 } \\ \hline \end{gathered}$	$\begin{gathered} \text { OW-9D } \\ \text { 03/29110 } \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { ow-9D } \\ \text { 04113110 } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { ow-9D } \\ \text { 04119110 } \\ \hline \end{gathered}$	$\begin{gathered} \text { OW-100 } \\ 07120109 \end{gathered}$	$\begin{array}{r} \text { OW-100 } \\ 0712509 \\ \hline \end{array}$	$\begin{array}{r} \text { OW-10D } \\ \text { O8171709 } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { ow } \\ \hline 990109 \end{array}$	$\begin{aligned} & \text { ow-100 } \\ & \text { 09116609 } \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { ow-100 } \\ \text { 09128/09 } \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OW-10D } \\ & \text { 1011209 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OW-10D } \\ & \text { 10126609 } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { ow-100 } \\ \text { 111020909 } \\ \hline \end{array}$	$\begin{aligned} & \text { OW-10D } \\ & \text { 1107009 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OW-10D } \\ & \text { 11/16109 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ow-100 } \\ & \text { 11123/09 } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { OW-10D } \\ \text { 11/30109 } \\ \hline \end{array}$	$\begin{aligned} & \text { OW-10D } \\ & \text { 12/14109 } \\ & \hline \end{aligned}$
Volatie Organics		Mg/	NA	NA																						
1,1,1,-Trichloroethane	200	Hgh	NA	NA	800 U	NA	NA	NA	${ }_{8000}$	NA	NA	NA	4,000 U	NA	NA	${ }_{1}^{1,000}$	NA	${ }_{1}^{1,000}$ U	NA	NA	NA	NA	${ }_{1}^{1,000}{ }^{\text {U }}$	NA	NA	
		Hgh	NA	NA	8000	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	NA	$\frac{800 \mathrm{U}}{800 \mathrm{U}}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	NA	$\frac{4,000 \mathrm{U}}{4}$	NA	$\frac{\mathrm{NA}}{\text { NA }}$		$\frac{\mathrm{NA}}{\text { NA }}$	1,000U	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{\text {1, }}^{1,000 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$
$\frac{1}{1,1,2-\text { Trichloroethane }}$	5	- Hgh	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }^{8000}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }^{8000}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{4,0000}^{4}$	$\stackrel{N}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{1}^{1,0000}$	$\stackrel{N A}{N A}$	${ }_{1}^{1,0000}$	$\stackrel{N A}{\text { NA }}$	NA	NA	$\stackrel{\text { NA }}{ }$	$\stackrel{1,000 \mathrm{U}}{1,00}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	NA
1,1--ichloroethene	7	Hgh	NA	NA	${ }^{8000}$	NA	NA	NA	${ }^{8000}$	NA	NA	NA	$4,000 \mathrm{U}$	NA	NA	1.000 U	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA
1,1-D.ichloropropene		Hgh	NA	$\stackrel{\text { NA }}{ }$	${ }_{8}^{8000}$	NA	NA	NA	${ }_{8000}^{800}$	NA	NA	NA	${ }_{4}^{4,000}{ }^{4,000}$	NA	$\stackrel{\text { NA }}{ }$, $1,000 \mathrm{U}$	$\stackrel{\text { NA }}{1}$	$\frac{1,000 \mathrm{U}}{1,000}$	${ }^{\text {NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	${ }^{1,000 \mathrm{U}}$	NA	$\stackrel{\text { NA }}{ }$	NA
$\frac{1,}{1,2,3.7 \text { ITChiorobenzene }} 1$			${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{8000}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	NA	${ }_{8000 \mathrm{U}}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{ }$	NA	${ }_{4}^{4,0000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{1,000 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{1,1,000 \mathrm{U}}^{1}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{1,000 \mathrm{U}}^{1,000}$	$\stackrel{N A}{\text { NA }}$	NA	${ }_{\text {NA }}$
1,2,4-TTichlorobenzene	70	Hg/	NA	NA	800 U	NA	NA	NA	${ }^{8000}$	NA	NA	NA	$4,000 \mathrm{U}$	NA	NA	$1,000 \mathrm{U}$	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA	${ }^{1,000}{ }^{\text {U }}$	NA	NA	NA
1,2,4-T-Timethybenzene		Hgh	NA	NA	${ }^{8000}$	NA	NA	NA	800 U	NA	NA	NA	$4,000 \mathrm{U}$	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA
$\frac{1,2-\text { Dibromo-3--chloropropane }}{1,2}$	0.2	mgh	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{4}^{4.000 \mathrm{U}}$	${ }^{\text {NA }}$	$\stackrel{\mathrm{NA}}{ }$	N4	4,000 U	N4	N4	NA	${ }^{20,000 \mathrm{U}}$	N4	NA	5,000		5,	$\stackrel{N A}{N A}$	NA		NA	${ }_{5}^{1.0000}$			NA
$\frac{1,}{1,2-\text {-ibiromoeithane }}$	600	$\frac{\mathrm{Hg} \text { ght }}{\text { Hgh }}$	NA	${ }_{\text {NA }}$	${ }_{8000} 800$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{8000} 800$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	4.0000	$\stackrel{\text { NA }}{ }$	$\stackrel{N}{\text { NA }}$	${ }_{1,1,000}^{1}$	${ }_{\text {NA }}$	${ }_{1,0000}^{1,000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }_{1,0000}^{1,000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$
1,2-Dichloroethane	5	Hgh	NA	NA	800 U	NA	NA	NA	${ }^{8000}$	NA	NA	NA	4,000 U	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	NA	NA	$\stackrel{1,000 \mathrm{U}}{ }$	NA	NA	NA
1,2-Dichiorororopane	5	нght	${ }^{\text {NA }}$	NA	800 U 8000	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	800 U 800 800	NA	NA	${ }^{\text {NA }}$	${ }^{4.000 \mathrm{U}}$	NA	NA	1,000	NA	1,000 ${ }_{\text {, }}^{1,000}$	NA	NA	,	NA	${ }_{\text {1, } 1,000 \mathrm{U}}$	NA	NA	NA
		Hg/2	${ }^{\text {NA }}$	NA		${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$	NA		${ }^{\text {NA }}$		${ }^{\text {NA }}$														
$\frac{13}{13-\text {-ichiororomane }}$		$\frac{902}{4}$	NA	NA	${ }_{8000}$	NA	NA	NA	${ }^{8000}$	NA	NA	NA	${ }_{4}^{4.0000}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	${ }_{1,1,000 \mathrm{U}}$	${ }_{\text {NA }}$	${ }_{1,10000}$	$\stackrel{N}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{1,000 \mathrm{U}}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$
1,4-Dichiorobenzene	75	нgh	NA	NA	800 U	NA	NA	NA	800 U	NA	NA	NA	4,000 U	NA	NA	${ }^{1,000}{ }^{\text {U }}$	NA	${ }^{1,000}$ U	NA	NA	NA	NA	${ }^{1,000} \mathrm{U}^{\text {a }}$	NA	NA	NA
2,2-Dichloroporopane		Hg/L	NA	NA	800 U	NA	NA	NA	800 U	NA	NA	NA	${ }^{4,000}{ }^{\text {U }}$	VA	NA	$1,000 \mathrm{U}$	NA		NA	NA		NA	${ }^{1,000 \mathrm{U}}$		NA	NA
$\frac{2 \text { 2-butanone }}{\text { 2-chanemen }}$	-	Hgh	NA	NA	20,000 U	NA	NA	NA	${ }^{20,000}{ }^{0}$	NA	NA	NA	$100,000 \mathrm{U}$	NA	${ }^{\text {NA }}$	${ }^{25,000 \mathrm{U}}$	${ }^{\text {NA }}$	${ }_{\text {25,000 U }}$	NA	NA	${ }^{\text {NA }}$	NA	${ }_{25,000 \mathrm{U}}$	NA	NA	$\frac{\mathrm{NA}}{\text { NA }}$
${ }^{2}$-Hexanone	-	Mght	NA	NA	${ }_{4}^{4,000 \mathrm{U}}$	NA	NA	NA	4.000 U	NA	NA	NA	${ }^{4,0,000}$ U	NA	NA	$\stackrel{1}{5.000 \mathrm{U}}$	NA	${ }_{5}$	NA	NA	NA	NA	${ }_{5}^{1,000}{ }^{\text {U }}$	NA	NA	NA
4 -Chlorotoluene		Hgh	NA	NA	${ }^{800} \mathrm{U}^{\text {a }}$	NA	NA	NA	800 U	NA	NA	NA	4.000 U	NA	NA	${ }^{1,000}$	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }^{1,0000}$	NA	NA	NA
4-Methy-2-pentanone		Hg/L	NA	NA	4,000 U	NA	NA	NA	4,000 U	NA	NA	NA	20,000 U	NA	NA	5,000 U	NA	5,000 U	NA	NA	NA	NA	5,000 U	NA	NA	NA
Actone		Hgh	NA	NA	20,000 U	NA	NA	NA	20,000 U	NA	NA	NA	100,000 U	NA	NA	25,000 U	NA	25,000 U	NA	NA	NA	NA	25,000 U	NA	NA	NA
${ }^{\text {Benzene }}$ Bromobenzene	5	$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{8000} 80$	$\stackrel{\mathrm{NA}}{\text { NA }}$	NA	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{8000}{ }^{800}$	$\stackrel{N}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\text { NA }}$	NA	${ }_{4}^{4,0000 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{\text {L }}^{1,000 \mathrm{U}} 1.000 \mathrm{U}$	$\stackrel{\mathrm{NA}}{\text { NA }}$		$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	NA	$\frac{\mathrm{NA}}{\text { NA }}$	$1,000 \mathrm{U}$ $1,000 \mathrm{U}$	${ }_{\text {NA }}^{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	NA
Bromochloromethane		Hgh	NA	NA	800 U	NA	NA	NA	${ }^{8000}$	NA	NA	NA	4,000 U	NA	NA	$\stackrel{1,000}{ }$	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA	${ }_{1}^{1,0000}$	NA	NA	NA
Bromodichloromethane	81	нgh	NA	NA	800 U	NA	NA	NA	${ }^{8000}$	NA	NA	NA	4,000 U	NA	NA	${ }^{1,000}$	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }^{1,0000}$	NA	NA	NA
Bromotorm	81	Hgh	NA	NA	800 U	NA	NA	NA	800 U	NA	NA	NA	4,000 U	NA	NA	${ }^{1,000} \mathrm{U}$	NA	${ }^{1,000}$	NA	NA	NA	NA	1,000 U	NA	NA	NA
Bromomethane		Hgh	${ }^{\mathrm{NA}}$	NA	8000	NA	NA	NA	8000	NA	NA	NA	4,000 U	${ }^{\mathrm{NA}}$	NA	${ }_{1}^{1,0000}$	${ }^{\mathrm{NA}}$	${ }_{1}^{1,000}$	NA	NA	NA	NA	${ }_{1}^{1,000}$	${ }^{\mathrm{NA}}$	NA	${ }^{\mathrm{NA}}$
Caron inumital	5	$\frac{\mathrm{Hgh}}{\operatorname{Lgh}}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{8000 \mathrm{U}}^{800}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{8}^{8000}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{4}^{4.0000}{ }^{\text {U }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{1,0000}^{1,000}$	${ }_{\text {NA }}$	${ }_{1,1,000}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	${ }_{1,1,000 \mathrm{U}}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	
Chlorobenzene	100	Hgh	NA	NA	${ }^{8000}$	NA	NA	NA	800 U	NA	NA	NA	$4,000 \mathrm{U}$	NA	NA	$1 ., 000 \mathrm{U}$	NA	1,000 U	NA	NA	NA	NA	$1,000 \mathrm{U}$	NA	NA	NA
Chioroethane	86	Hgh	NA	NA	800	NA	NA	NA	${ }^{8000}$	${ }^{\mathrm{NA}}$	NA	NA	4,000	NA	NA	1,0000	NA	1,000	NA	NA	NA	NA	${ }^{1,0000}$	NA	NA	${ }^{\mathrm{NA}}$
Chioroimema	86	$\frac{\mathrm{Hgh}}{\log }$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	${ }_{8000}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{8000 \mathrm{U}}^{80}$	${ }^{\text {NA }}$	$\stackrel{N}{N A}$	$\stackrel{N A}{ }$	${ }_{4,0000 \mathrm{U}}^{4}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{1}^{1,0000}{ }_{1}$	$\stackrel{N A}{\text { NA }}$	${ }_{1}^{1,0000}$	$\stackrel{N A}{ }$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{1,0000 \mathrm{U}}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{ }$
cis-1,2-D-ichioroeetene	70	Hgh	NA	NA	14,100	NA	5,520	NA	2,690	2,930	NA	NA	${ }_{6,720}^{6000}$	NA	NA	${ }_{6,290}$	NA	$\stackrel{\text { 5,050 }}{ }$	NA	NA	NA	NA	17,200	NA	NA	NA
(is-1,3.-Dichiorororopene	86	-ggh	NA	NA	800	NA	NA	${ }^{\mathrm{NA}}$	800	NA	NA	NA	${ }_{4}^{4,0000}$	NA	${ }^{\mathrm{NA}}$	${ }_{1}^{1,0000}$	NA	${ }_{1}^{1,0000}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	NA	NA	${ }_{1}^{1,0000}$		${ }^{\text {NA }}$	${ }^{\text {NA }}$
Dibromomethane		\%gh	NA	NA	800 U	NA	NA	NA	800 U	NA	NA	NA	${ }_{4}^{4.000 ~}{ }^{\text {U }}$	NA	NA	${ }_{1.0000}$	NA	${ }_{1}^{1.0000}$	NA	NA	NA	NA	${ }_{1}^{1,0000}$	NA	NA	NA
Dichlorodifluormethane		нgh	NA	NA	4,000 U	NA	NA	NA	4,000 U	NA	NA	NA	$20,000 \mathrm{U}$	NA	NA	5,000 U	NA	5,000 U	NA	NA	NA	NA	5,000 U	NA	NA	NA
Disopropyl ether (DIPE)		${ }_{\text {Hgh }}$	NA	NA	${ }^{8000}$	${ }^{\text {NA }}$	NA	NA	${ }^{8000}$	${ }^{\text {NA }}$	NA	NA	${ }^{4,000}$	${ }^{\text {NA }}$	NA	1,000 U	NA	1,000 U	NA	NA	NA	NA	${ }^{1,000}{ }^{1000}$	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$	NA
Ethylenzene	100	$\frac{\mathrm{Hg} \text { g }}{\operatorname{Lg} \mathrm{L}}$	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{8000 \mathrm{U}}^{800}$	$\frac{N A}{N A}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{8000 \mathrm{U}}^{800 \mathrm{O}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{4}^{4.0000}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{\frac{1}{1,0000}} 1$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{1,0000}{ }_{1}^{1,000}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	NA	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{1,0000 \mathrm{U}}^{1.0}$	NA	NA	$\frac{\mathrm{NA}}{\text { NA }}$
Hexachioroutadiene		${ }_{\text {Hgh }}$	NA	${ }_{\text {NA }}$	800 U	NA	NA	${ }_{\text {NA }}$	${ }_{8000}$	NA	NA	NA	4.000 U	NA	NA	${ }_{1}^{1,0000}$	NA	${ }_{1}^{1,0000}$	NA	NA	NA	NA	${ }_{1,0000}$	NA	NA	
lsopropylibenzene	\cdots	нgh	NA	NA	800 U	NA	NA	NA	800 U	NA	NA	NA	4,000 U	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }_{1,000 \mathrm{U}}$	NA	NA	NA
m-p-pxylene	\cdots	mgh	NA	NA	1,600 U	NA	NA	NA	1,600 U	NA	NA	NA	${ }^{8,000}{ }^{\text {U }}$	NA	NA	2,000 U	NA	$\stackrel{2,000 \mathrm{U}}{ }$	NA	NA	NA	NA	${ }^{2,000}{ }^{\text {U }}$	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$
Methy tert-buty ethel	5		$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{4}^{80000}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{4}^{80000 \mathrm{U}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }^{4,000 \mathrm{U}}{ }^{1,800 \mathrm{~J}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{1,000 \mathrm{U}}{5.000 \mathrm{U}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{1.000 \mathrm{U}}{120 \mathrm{~J}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	¢, ${ }_{\text {L,000 U }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$
Naphthalene	\cdots	Hgh	NA	NA	800 U	NA	NA	NA	800 U	NA	NA	NA	4,000 U	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }^{1,000}{ }^{\text {U }}$	NA	NA	NA
$\frac{n-\text {-Sutybenzene }}{\text { neprepen }}$.	Hght	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	800 U 800 U	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	800 U 800 U	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\frac{4,000 \mathrm{U}}{4,000 \mathrm{U}}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\frac{1,000 \mathrm{U}}{1,000}$	$\stackrel{N A}{N A}$	$\frac{1,000 \mathrm{U}}{1,000}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{1}^{1,0000 \mathrm{U}}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$

Pilot Study Summary Repo
Myrtle Eeach, South Carolina

	$\underset{\substack{\text { USPAISCDHEC } \\ \text { MCL }}}{\substack{\text { and } \\ \hline}}$	Units	$\begin{gathered} \text { ow-9D } \\ \text { 12128109 } \\ \hline \end{gathered}$	ow-90 0104110	ow-9D 010510	ow-9D 0118110	ow-9D 020510	ow-9D 0216110	ow-9D 0310410	ow-9D 03/29/10	ow-9D 04/13/10	ow-9D 0419910	ow-10D 07720109	ow-10D 07125109	ow-10D 081/7109	OW-10D 09/01/09	OW-10D 09/16/09	OW-10D 09/28/09	ow-10D 1011209	ow-10D 10126609	OW-10D 11/02/09	OW-10D 11/07/09	ow-10D 11/16/109	ow-10D 1112309	ow-10D 11/30109	ow-10D 1221409
		${ }_{\text {Hght }}^{\text {Hgh }}$	$\stackrel{N A}{\text { NA }}$	${ }_{\text {NA }}$	${ }^{8000}$	${ }_{\text {NA }}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{8}^{8000} \mathrm{U}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{4}^{4,0000}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{1}^{1,0000}{ }^{1}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{1}^{1,000}{ }^{1}$	${ }_{\text {NA }} \mathrm{NA}$	${ }_{\text {NA }} \mathrm{NA}$	NA	NA	${ }_{1,10000}^{1}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$
Styrene	100	Hg/	NA	NA	800 U	NA	NA	NA	800 U	NA	NA	NA	4,000 U	NA	NA	${ }^{1,0000}$	NA	${ }^{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }^{1,000}{ }^{\text {U }}$	NA	NA	NA
ter-butybenzene		нg/	NA	NA						NA	NA	NA				${ }^{1,0000}$	NA	${ }^{1,000}{ }^{100}$	NA		NA	NA	${ }^{1,000}{ }^{100}$	NA	NA	
Terachioreetene	${ }_{1}$.		$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{8000 \mathrm{U}}$	$\stackrel{\text { NA }}{ }$	NA	${ }_{\text {NA }}$	${ }_{8000 \mathrm{U}}^{800}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	$\stackrel{\text { NA }}{ }$	${ }_{4}^{4,0000 \mathrm{U}}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{1}^{1,0000 \mathrm{U}}$	${ }_{\text {NA }}$	${ }_{1,000 \mathrm{U}}^{1,000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$	${ }_{1,0000}$	$\stackrel{\text { NA }}{ }$	${ }_{\text {NA }}$	${ }_{\text {NA }}$
trans-1.2-Dichloroethene	100	${ }_{\text {Lg }}^{\text {Hgh }}$	NA	NA	${ }_{344 \mathrm{~J}}$	NA	${ }_{192 \mathrm{~J}}$	NA	${ }^{800} \mathrm{U}$	${ }^{98.0 \mathrm{~J}}$	NA	NA	${ }_{4000 \mathrm{~J}}$	NA	NA	${ }_{430 \mathrm{~J}}$	${ }^{\text {NA }}$	${ }_{410 \mathrm{~J}}$	NA	NA	NA	NA	${ }_{330 \mathrm{~J}}$	NA	NA	NA
trans-1,3.-Dichloropropene		щgh	NA	NA	800 U	NA		NA	800 U	NA	NA	NA	4.000 U	NA	NA	1,000 U	NA	$1,000 \mathrm{U}$	NA	NA	NA	NA	$1,000 \mathrm{U}$	NA	NA	NA
trans-1,4-Dicichloro--bute		Hg/	NA	NA	4.000 U	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	4.000 U		NA	NA	$20,000 \mathrm{U}$	NA	NA	${ }_{5} 5,000 \mathrm{U}$	NA	${ }^{5,000 \mathrm{U}}$	NA	NA	NA	NA	5,000 U	${ }^{\text {NA }}$	NA	NA
Tichioroethene ${ }^{\text {Trichlorofluromethane }}$	5	нgh	$\stackrel{N A}{N A}$	$\stackrel{N}{\text { NA }}$	2,700	$\stackrel{N A}{N A}$	4,990	NA	(3,310	${ }_{\text {1, }, \text { S30 }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{28,100}$	$\stackrel{N A}{N A}$	NA	23,000	NA	25,500	${ }^{\text {NA }}$	NA	NA	${ }^{\mathrm{NA}}$	1,020 1	${ }^{\text {NA }}$	${ }^{\text {NA }}$	
Tirichiorofluromethane	2	${ }_{\text {Hght }}^{\text {Hgh }}$	NA	NA	$\stackrel{8,830}{ }$	NA	${ }_{3,280}$	NA	$\frac{80,970}{}$	2,810	NA	NA	4.0000	NA	NA	${ }_{1}^{1,000}{ }^{1}$	NA	${ }_{1,000 \mathrm{U}}$	NA	NA	NA	NA	${ }_{4}^{1.060 \mathrm{~J}}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA
		$\underline{\mathrm{ggh}}$	NA	2,100	NA																					
Alalinity as CaCO3		$\frac{\mu g h L}{\mu g / 2}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}^{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{2900,000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$				
Bromide	-	mgh	NA	${ }^{250 \mathrm{~J}}$	NA																					
Chloride		mg/	NA	NA	NA		NA	NA	NA	NA	NA	NA		NA		NA	NA	NA	NA							
Fuoride	4,000	$\underline{\mathrm{mg} /}$	NA	${ }^{3000}$	NA																					
Nititite (as N)	1,000	-	${ }_{\text {NA }}$	NA	500 U	NA	NA	NA	NA	NA	NA	${ }_{\text {NA }}$														
Phosphate		Mg/	NA	1.000 U	NA																					
Sulfate		Mg/	NA	26,000	NA																					
Total Organic Carbon		ugh	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	NA		${ }^{15}$	70	${ }^{21}$	4,600	4,000	4,100	NA	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA								
	.	${ }_{\text {Lggh }}^{\mu \mathrm{mg}}$	$\frac{43,000}{\text { NA }}$	$\stackrel{13,000}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{180,000}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{9020}^{800 \mathrm{~L}}$	$\frac{16,000}{\text { NA }}$	$\frac{38,000}{\text { NA }}$	$\frac{31,000}{\text { NA }}$	${ }_{\text {15,000 }}^{\text {NA }}$	$\frac{21,000}{\text { NA }}$	$\frac{18,000}{\text { NA }}$	$\frac{13,000}{\text { NA }}$	$\frac{15,000}{\text { NA }}$	$\frac{13,000}{\text { NA }}$		$\frac{11,000}{\text { NA }}$	$\stackrel{\text {, }{ }_{\text {NA }} \text { (}}{ }$	$\frac{10,000}{\text { NA }}$
Field Parameters																										
$\frac{\text { depth to water }}{\text { depth to water }}$.	${ }_{\text {feet }}^{\text {feet bgs }}$	¢, $\begin{gathered}\text { 6.72 } \\ \text { NA }\end{gathered}$	$\stackrel{7,36}{\text { NA }}$	NA	$\frac{8.09}{\text { NA }}$	¢, ${ }_{\text {6. }}^{\text {NA }}$	$\stackrel{6.48}{\text { NA }}$	$\frac{6.73}{N A}$	$\frac{7.71}{}{ }^{\text {NA }}$	NA	NA	$\stackrel{\text { NA }}{0.66}$	NA	$\stackrel{\mathrm{NA}}{8.97}$	$\stackrel{\mathrm{NA}}{9.63}$	${ }_{10}^{\text {NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{\mathrm{NA}}{10.34}$	${ }_{1}^{\text {NA }}$	NA	$\stackrel{N A}{N A}$	${ }_{\text {9, }}^{\text {NA }}$	$\stackrel{9.34}{\text { NA }}$	$\stackrel{9.34}{\text { NA }}$	NA
Dissolved oxygen		mgh	NA	NA	NA	NA	0.11	0.1	0.66	0.09	NA															
Dissolved Oxygen		Hg/	NA	NA	NA	190	NA	NA	NA	NA	NA	NA	90	NA	120	580	110	${ }_{1,840}$	${ }^{240}$	370	NA	NA	NA	NA	NA	${ }^{30,050}$
oxidation reauction potentia	\cdots	mV	NA	${ }^{\text {NA }}$	NA	${ }^{-282.3}$	-144.8	${ }^{-217.4}$	-189	${ }^{-178.6}$	NA	NA	$\stackrel{-95.4}{-9}$	NA	${ }_{-148.4}$	${ }_{-123.7}$	-300.2	${ }_{\text {-322,5 }}$	${ }_{\text {143,2 }}^{120}$	${ }^{-110.7}$	NA	${ }^{\mathrm{NA}}$	NA	NA	${ }^{\text {NA }}$	${ }_{\text {-157.9 }}^{15}$
pH	\cdots	su	6.95	6.17	NA	6.91	6.93	6.97	6.92	5.69	NA	NA	${ }^{6.8}$	${ }^{\text {NA }}$	6.98	7.24	7.08	7.03	6.97	7.13	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	6.79	6.89	7	6.75
salinity	\cdots	PSU	0.4 0.4 0	0.4 0.4 0.51	NA	${ }^{\text {NA }}$	NA	NA	NA	$\stackrel{\mathrm{NA}}{ }$	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	NA	NA	NA	NA	NA 0.717	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$	0.4 0.7 0	0.3 0.641	${ }_{0}^{0.3}$	NA
Speatic conductiviy		${ }_{\text {Uslcm }}{ }^{\text {c/ }}$	0.81	0.851	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{0.681}{\text { NA }}$	0.745	0.704	${ }^{0.78}$	$\stackrel{8.57}{84}$	${ }^{\text {NA }}$	NA	0.751	${ }^{\mathrm{NA}}$	$\stackrel{0.69}{\text { N4 }}$	0.618	-0.617	${ }_{0}^{0.678}$	$\frac{0.721}{N 4}$	$\frac{0.747}{N 4}$	$\frac{N A}{\text { NA }}$	NA	-0.724	0.664	-0.7	
temperature		${ }^{\text {celcius }}$	${ }_{23}{ }^{\text {23 }}$	${ }_{22} 2.2$	${ }_{\text {NA }}$	${ }_{24}{ }^{\text {a }}$ A	${ }_{23.73}$	${ }_{24}{ }^{\text {a }}$	19.75	${ }_{21.64}$	NA	NA	$\stackrel{\text { NA }}{ } 2.69$	NA	22.74	22.82	25.15	24.07	${ }_{2} 2$	23.17	NA	NA	NA	$\stackrel{22.1}{22 .}$	NA	${ }_{21.4}$
Dissolved Gases																										
Ethene		$\frac{\mathrm{ugh}}{\mathrm{Hgh}}$	NA	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{38}^{1.2}$	${ }_{\text {NA }}$	19	14	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{6.4}^{6}$	NA	${ }_{\text {NA }}$		${ }_{\text {NA }}$	${ }_{5}^{0.4}$	${ }_{\text {NA }}$	${ }^{0.46}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{5}^{0.4}$	NA	${ }_{\text {NA }}$	${ }_{8.4}^{0.6}$
Methane		ugh	NA	NA	NA	NA	830	NA	1,200	680	NA	NA	240	NA	NA	200	NA	170	NA	140	NA	NA	220	NA	NA	230

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Location ID: \\
Date Collected:
\end{tabular} \& \[
\underset{\text { MSL }}{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}
\] \& Units \& \[
\begin{aligned}
\& \text { ow-100 } \\
\& \text { 12124109 } \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
ow-10D \\
12/28/09
\end{tabular} \& \begin{tabular}{l}
ow-10D \\
0110410
\end{tabular} \& \begin{tabular}{l}
ow-10D \\
0105510
\end{tabular} \& \begin{tabular}{l}
OW-10D \\
01/18/10
\end{tabular} \& \[
\text { ow- } 10 \mathrm{D}
\]
\[
0210510
\] \& \[
\begin{array}{r}
\text { Ow-10D } \\
\text { O2216110 } \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\text { Ow-100 } \\
\text { O330410 } \\
\hline
\end{array}
\] \& ow-10D
\[
03129110
\] \& ow-100
04413130 \& ow-10D
04/19190 \& \[
\begin{gathered}
\mathrm{P}-1 \mathrm{D} \\
\text { 11105108 } \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { P-1D } \\
\& 07120109
\end{aligned}
\] \& \[
\begin{gathered}
\text { P-1D } \\
\text { 07/25109 } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { P-1D } \\
\text { 08177109 } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { P-1D } \\
\text { 09010909 } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { P-1D } \\
\text { 0916609 } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { P-1D } \\
\text { 09128109 } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{P}-1 \mathrm{D} \\
\text { 101212099 } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{P}-1 \mathrm{D} \\
101266909
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{P}-1 \mathrm{D} \\
11102109 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { P-1D } \\
\text { 11107/09 }
\end{gathered}
\] \& \[
\begin{gathered}
\text { P-1D } \\
\text { 11/16/09 } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { P-1D } \\
\text { 11123109 } \\
\hline
\end{gathered}
\] \\
\hline Volatie Organics \& \& \& NA \& NA \& NA \& \({ }^{1.000 ~ U ~}\) \& NA \& \& NA \& 800 O \& NA \& NA \& NA \& \({ }^{10.0 \mathrm{O}}\) \& \& \& NA \& O. u \& NA \& 10.0 \({ }^{\text {u }}\) \& NA \& NA \& NA \& \& \& \\
\hline \& 200 \& \({ }_{\text {Lg }}^{\text {Hgh }}\) \& NA \& NA \& NA \& \({ }_{1}^{1,000}{ }^{\text {U }}\) \& NA \& NA \& NA \& \({ }_{800 \mathrm{U}}\) \& NA \& \({ }^{\text {NA }}\) \& NA \& \({ }^{10.00}\) \& 10.0 U \& NA \& NA \& \({ }^{10.00}\) \& NA \& 10.00 \& NA \& NA \& NA \& NA \& 10.0 O \& \\
\hline 1,1,2,2,-Tetrachloroeth \& \& Hgh \& NA \& NA \& NA \& \(1,000 \mathrm{U}\) \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.0 U \& NA \& NA \& \({ }^{10.0}\) \& NA \& 10.0 U \& NA \& NA \& NA \& NA \& 10.0 O \& NA \\
\hline 1,1,2-T.ichioloreethane \& 5 \& Mgh \& NA \& NA \& NA \& \({ }^{1,000}\) \& NA \& NA \& NA \& \({ }^{8000}\) \& NA \& NA \& NA \& 10.0 \& \({ }^{10.00}\) \& NA \& NA \& 10.0 U \& NA \& 10.0 \& NA \& NA \& \({ }^{\mathrm{NA}}\) \& NA \& \({ }^{10.00}\) \& \(\stackrel{N A}{\text { NA }}\) \\
\hline \& 7 \& \(\frac{\mathrm{Mgh}}{\mathrm{Hg} \text { L }}\) \& \(\stackrel{\text { NA }}{\text { NA }}\) \& \(\stackrel{N A}{\text { NA }}\) \& \(\stackrel{\text { NA }}{\text { NA }}\) \& \({ }_{1}^{1,0000 \mathrm{U}}\) \& \(\stackrel{\text { NA }}{\text { NA }}\) \& \(\stackrel{\text { NA }}{\text { NA }}\) \& \(\stackrel{N}{\text { NA }}\) \& \({ }_{8000}^{800}\) \& \(\stackrel{N A}{\text { NA }}\) \& \(\stackrel{\text { NA }}{\text { NA }}\) \& \(\stackrel{N A}{N A}\) \& \(\frac{10.0 \mathrm{O}}{10.0}\) \& \({ }_{0}^{0.9000}\) \& \(\stackrel{\text { NA }}{\text { NA }}\) \& \(\stackrel{\text { NA }}{\text { NA }}\) \& \(\stackrel{10.0 \mathrm{U}}{10.0}\) \& \(\stackrel{N A}{\text { NA }}\) \& \(\frac{10.00}{10.00}\) \& \(\stackrel{\text { NA }}{ }\) \& \(\stackrel{N A}{N A}\) \& \(\stackrel{\text { NA }}{\text { NA }}\) \& \(\stackrel{\text { NA }}{\text { NA }}\) \& \({ }_{10}^{1.200 ~}\) \& \({ }_{\text {NA }}\) \\
\hline 1,1--Dichloropropene \& \& нgh \& NA \& NA \& NA \& \({ }^{1,000}\) U \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.0 U \& NA \& NA \& 10.0 U \& NA \& 10.0 u \& NA \& NA \& NA \& NA \& \({ }^{10.0}{ }^{\text {a }}\) \& \\
\hline 1,2,3,-Trichlorobenzene \& . \& \({ }_{\text {ugh }}\) \& NA \& NA \& NA \& \({ }^{1,000}{ }^{\text {U }}\) \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.00 \& 10.0 U \& NA \& NA \& 10.0 U \& NA \& 10.00 \& NA \& NA \& NA \& NA \& 10.00 \& \\
\hline 1,2,3-7Trichloropropane \& \& ugh \& NA \& NA \& NA \& \({ }_{1}^{1,000}{ }^{10}\) \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.0 U \& NA \& NA \& 10.0 U \& NA \& \({ }^{10.0}{ }^{\text {U }}\) \& NA \& NA \& NA \& NA \& \({ }^{10.00}\) \& NA \\
\hline 1,2,4-Trichlorobenzene \& 70 \& ugh \& NA \& NA \& NA \& \({ }^{1,000}{ }^{1,000}\) \& NA \& NA \& NA \& 800 \& NA \& NA \& NA \& \({ }^{10.00}\) \& \({ }^{10.00}\) \& NA \& NA \& 10.0U \& NA \& 10.0 \& \({ }^{\text {NA }}\) \& \({ }^{\text {NA }}\) \& NA \& NA \& \({ }^{10.00}\) \& NA \\
\hline 1,2,4-7rimethybenzene \& \& pgh \& NA \& NA \& NA \& \({ }^{1,000}{ }^{100}\) \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 \({ }_{\text {10, }}\) \& \({ }_{\text {10.0U }}^{10.0}\) \& NA \& NA \& 10.0 \({ }^{100 \mathrm{U}}\) \& NA \& 10.0 \& NA \& NA \& NA \& NA \& \({ }^{10.00}\) \& NA \\
\hline 1,2-Dibromo-3-chloropropal \& 0.2 \& Hgh \& NA \& NA \& NA \& \({ }^{5,000}{ }^{\text {U }}\) \& NA \& NA \& NA \& 4,000 U \& NA \& NA \& NA \& 50.0

100 \& ${ }^{50.0 \mathrm{U}}$ \& NA \& NA \& 50.0 ${ }^{\text {U }}$ \& NA \& 50.0 \& NA \& NA \& NA \& NA \& ${ }_{50.0 \mathrm{U}}$ \& NA

\hline 1, 1,--Dibromoethane \& 0.05 \& - Mgh \& NA \& NA \& NA \& ${ }^{1,0000}$ \& $\stackrel{\mathrm{NA}}{\mathrm{Na}}$ \& NA \& NA \& ${ }^{800 \mathrm{U}}$ \& ${ }^{\text {NA }}$ \& NA \& NA \& | 10.0 U |
| :--- |
| 1000 | \& 10.0U \& NA \& NA \& | 10.0 U |
| :---: |
| 1000 |
| 100 | \& ${ }^{\text {NA }}$ \& 10.0U \& NA \& NA \& NA \& NA \& 10.0U \& NA

\hline $\frac{1,}{1,2-\text {-icichiorobernene }}$ \& 5 \& - Mg/ \& NA \& NA \& NA \& ${ }_{1}^{1,0000 \mathrm{U}}$ \& NA \& ${ }^{\mathrm{NA}}$ \& ${ }^{\text {NA }}$ \& 8000 \& NA \& NA \& NA \& ${ }^{10.000}$ \& ${ }_{10.0 \mathrm{U}}^{10.0}$ \& NA \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\frac{10.0}{10.0}$ \& NA \& ${ }^{10.00}$ \& NA \& NA \& NA \& NA \& 10.0) \& NA

\hline 1,2--ichioloropropane \& 5 \& Hgh \& NA \& NA \& NA \& 1,000 U \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.0 U \& NA \& NA \& 10.0 U \& NA \& 10.0 U \& NA \& NA \& NA \& NA \& 10.0 U \& NA

\hline $1,1,5,-$ Trimethylbenzene \& \& ugh \& NA \& NA \& NA \& ${ }^{1,000}{ }^{10}$ \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.00 \& NA \& NA \& 10.0 U \& NA \& 10.0 u \& NA \& NA \& NA \& NA \& 10.0 U \&

\hline $\frac{1,}{13-\text {-ichinorobenzene }}$ \& \& $\frac{\mathrm{Hgh}}{-190}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\frac{N A}{N A}$ \& $\frac{N A}{N A}$ \& ${ }_{1}^{1,0000 \mathrm{U}}$ \& $\frac{\mathrm{NA}}{\text { NA }}$ \& $\frac{\mathrm{NA}}{\text { NA }}$ \& $\frac{N A}{N A}$ \& ${ }_{8000} 8$ \& $\stackrel{N A}{N A}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\frac{N A}{N A}$ \& ${ }_{\text {10.0U }}^{1000}$ \& $\frac{10.00}{1000}$ \& $\stackrel{N A}{N A}$ \& $\stackrel{N A}{N A}$ \& 10.0 \& $\frac{N A}{N A}$ \& $\frac{10.00}{1000}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{N A}{N A}$ \& $\stackrel{N A}{N A}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\frac{10.0 \mathrm{U}}{10.0 \mathrm{u}}$ \& $\frac{\mathrm{NA}}{\text { NA }}$

\hline \& 75 \& \& ${ }_{\text {NA }}$ \& ${ }_{\text {NA }}$ \& ${ }_{\text {NA }}$ \& ${ }_{1}^{1,0000}$ \& NA \& ${ }_{\text {NA }}$ \& NA \& 800 U \& NA \& NA \& NA \& ${ }_{10.0}$ \& ${ }^{10.00}$ \& NA \& ${ }^{\text {NA }}$ \& 10.0 U \& NA \& 10.00 \& NA \& NA \& NA \& ${ }^{\text {NA }}$ \& 10.0 u \&

\hline $\frac{1}{2,2 \text {-Dichichoropropane }}$ \& \& mgh \& NA \& NA \& NA \& ${ }^{1.0000}$ \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.00 \& NA \& NA \& 10.0 U \& NA \& 10.00 \& NA \& NA \& NA \& NA \& ${ }^{10.00}$ \&

\hline 2-Butanone \& \& нgh \& NA \& NA \& NA \& \& NA \& NA \& NA \& 20,00 \& NA \& \& \& \& \& NA \& NA \& \& NA \& \& NA \& NA \& NA \& NA \& U \& NA

\hline 2-Chlorotolue \& \& нgh \& NA \& NA \& NA \& ${ }^{1,0000}$ \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.0 U \& NA \& NA \& 10.0 U \& NA \& 10.0 u \& NA \& NA \& NA \& NA \& 10.00 \&

\hline $\frac{\text { 2-Hexanone }}{\text { 4-Chororoul }}$ \& \& Hgh \& NA \& NA \& NA \& ${ }^{5,000}{ }^{\text {U }}$ \& NA \& NA \& NA \& 4.000 U \& NA \& NA \& NA \& ${ }^{50.00}$ \& ${ }^{50.0 \mathrm{U}}$ \& NA \& NA \& ${ }^{50.0 \mathrm{U}}$ \& NA \& 50.0 \& NA \& NA \& NA \& NA \& ${ }_{50.00}$ \& NA

\hline $\frac{4-C h i o r o t o l u e n e ~}{4-\text { Methl }}$-2-pentanone \& . \& ${ }_{\text {Lggh }}^{\text {Hght }}$ \& $\frac{\mathrm{NA}}{\text { NA }}$ \& $\stackrel{N A}{N A}$ \& $\frac{\mathrm{NA}}{\text { NA }}$ \& ${ }_{5}^{1,0000 \mathrm{U}}$ \& NA \& $\stackrel{N A}{\text { NA }}$ \& $\stackrel{N A}{\text { NA }}$ \& ${ }_{4}^{80000}$ \& NA \& $\stackrel{N A}{\text { NA }}$ \& $\stackrel{N A}{\text { NA }}$ \& $\frac{10.0 \mathrm{U}}{50.0 \mathrm{U}}$ \& ${ }_{50.00}^{10.0}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{N A}{N A}$ \& | 10.0 U |
| :--- |
| 50.0 U | \& $\stackrel{N A}{\text { NA }}$ \& $\frac{10.00}{50.00}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{N A}{N A}$ \& $\stackrel{10.00}{50.0 \mathrm{u}}$ \& ${ }_{\text {NA }}$

\hline Actione \& \& ugh \& NA \& NA \& NA \& $25,000 \mathrm{U}$ \& NA \& NA \& NA \& $20,000 \mathrm{U}$ \& NA \& NA \& NA \& 250 \& 250 U \& NA \& NA \& 250 U \& NA \& 250 U \& NA \& NA \& NA \& NA \& 250 U \&

\hline Benzene \& 5 \& нgh \& NA \& NA \& NA \& ${ }^{1,000}$ U \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.0 U \& NA \& NA \& 10.0 U \& NA \& 10.0 u \& NA \& NA \& NA \& NA \& 10.0 U \& NA

\hline Bromobenzene \& \& Hgh \& NA \& NA \& NA \& ${ }^{1,000 ~ U}$ \& NA \& NA \& NA \& ${ }^{800} \mathrm{U}$ \& NA \& NA \& NA \& ${ }^{10.00}$ \& ${ }^{10.00}$ \& NA \& NA \& 10.0 U \& NA \& 10.0 \& NA \& NA \& NA \& NA \& ${ }^{10.00}$ \&

\hline Bromochloromethane \& \& Hgh \& ${ }^{\text {NA }}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{N A}{N A}$ \& ${ }^{1,0000 \mathrm{U}}$ \& NA \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& 800 U \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{N A}{N A}$ \& 10.0U \& 10.0 ${ }^{10.0 \mathrm{u}}$ \& $\frac{\mathrm{NA}}{\text { NA }}$ \& $\frac{\mathrm{NA}}{\mathrm{NA}}$ \& | 10.0 U |
| :--- |
| 10.0 u | \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\frac{10.0 \mathrm{u}}{10.0 \mathrm{u}}$ \& NA \& ${ }^{\text {NA }}$ \& ${ }^{\text {NA }}$ \& ${ }^{\text {NA }}$ \& ${ }^{10.0 \mathrm{U}}$ \& $\stackrel{N A}{N A}$

\hline Bromodichloromethane \& ${ }_{81}^{81}$ \& \& $\stackrel{N A}{\text { NA }}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{N A}{\text { NA }}$ \& ${ }_{1}^{1,0000 \mathrm{U}}$ \& $\stackrel{N A}{\text { NA }}$ \& $\stackrel{N A}{N A}$ \& NA \& 8800 \& $\stackrel{N A}{ }$ \& NA \& $\stackrel{N A}{ }$ \& ${ }^{10.00} 10$ \& ${ }^{10.00} 10$ \& $\stackrel{N A}{N A}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\xrightarrow{10.00}$ \& $\stackrel{N A}{N A}$ \& ${ }_{10.00}$ \& NA \& NA \& NA \& NA \& $\stackrel{10.0}{10}$ \& NA

\hline Bromomethane \& \& Hgh \& NA \& NA \& NA \& ${ }^{1,0000}$ \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.0 U \& NA \& NA \& 10.0 U \& NA \& 10.0 u \& NA \& NA \& NA \& NA \& 10.0 U \&

\hline Carbon Disulicide \& \& Hgh \& NA \& NA \& NA \& ${ }^{1,0000}$ \& NA \& NA \& NA \& 8000 \& \& \& \& 10.00 \& 10.00 \& NA \& NA \& 10.00 \& NA \& 10.00 \& \& NA \& NA \& NA \& ${ }^{10.0}$ \& NA

\hline Carbon Terrachloide \& 5 \& Mgh \& NA \& NA \& NA \& ${ }_{1}^{1,000 \mathrm{U}}$ \& NA \& NA \& ${ }^{N A}$ \& 800 U \& ${ }^{\mathrm{NA}}$ \& NA \& NA \& 10.00 \& 10.0 U \& NA \& NA \& ${ }^{10.0}{ }^{100}$ \& NA \& ${ }^{10.00}$ \& NA \& NA \& NA \& NA \& ${ }^{10.00}$ \& NA

\hline Chlorobenzene \& 100 \& - Mg, \& NA \& NA \& NA \& ${ }_{1}^{1,000 \mathrm{U}}$ \& NA \& ${ }^{\text {NA }}$ \& ${ }^{\mathrm{NA}}$ \& ${ }_{8}^{8000}{ }^{800}$ \& NA \& NA \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{10.00}{10.0}$ \& \& $\stackrel{\mathrm{NA}}{\mathrm{NA}}$ \& $\frac{N A}{N A}$ \& $\frac{10.00}{10.0}$ \& NA \& \& NA \& NA \& NA \& NA \& \&

\hline Chlorotorm \& 86 \& - Hght \& NA \& NA \& NA \& ${ }_{1,000 \mathrm{U}}$ \& NA \& NA \& NA \& 800 U \& NA \& $\stackrel{\text { NA }}{ }$ \& $\stackrel{N A}{\text { NA }}$ \& ${ }_{10.00}^{10.0}$ \& ${ }_{10.00}^{10.0}$ \& $\stackrel{N}{N A}$ \& $\stackrel{N}{N A}$ \& $\stackrel{10.0}{10.0}$ \& $\stackrel{N A}{N A}$ \& $\stackrel{10.00}{10.0}$ \& $\stackrel{N A}{\text { NA }}$ \& $\stackrel{N A}{\text { NA }}$ \& $\stackrel{N A}{\text { NA }}$ \& $\stackrel{N A}{N A}$ \& $\stackrel{10.00}{10.0}$ \& NA

\hline \& \& Hgh \& NA \& NA \& NA \& ${ }_{1}^{1,000 \mathrm{U}}$ \& NA \& \& NA \& \& \& NA \& NA \& 10.0 \& 10.0 U \& NA \& NA \& 10.0 \& NA \& 10.0U \& NA \& ${ }^{\text {NA }}$ \& NA \& NA \& 10.00 \&

\hline Cis-1,---1ichloroemene \& 10 \& - mgh \& NA \& NA \& NA \& ${ }^{11,500}$ \& ${ }^{\text {NA }}$ \& ${ }_{14,900}$ \& ${ }^{\text {NA }}$ \& 11,900 \& 12,800 \& ${ }^{\text {NA }}$ \& NA \& ${ }^{124}$ \& ${ }^{158}$ \& ${ }^{\text {NA }}$ \& \& 231 \& ${ }^{\mathrm{NA}}$ \& 172 \& ${ }^{\text {NA }}$ \& NA \& ${ }^{\text {NA }}$ \& ${ }^{\text {NA }}$ \& ${ }^{3} 50$ \& ${ }^{\mathrm{NA}}$

\hline Cis-1,--ichiolororopene \& 86 \& $\frac{\mathrm{Hgh}}{40 \mathrm{~L}}$ \& $\frac{\text { NA }}{\text { NA }}$ \& $\frac{N A}{N A}$ \& $\frac{N A}{N A}$ \& ${ }_{1}^{1,0000 \mathrm{u}}$ \& $\frac{N A}{N A}$ \& $\frac{N A}{N A}$ \& $\frac{N A}{N A}$ \& ${ }_{8000 \mathrm{U}}^{8}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\frac{N A}{N A}$ \& $\frac{N A}{N A}$ \& ${ }^{10.00}$ \& ${ }^{10.00}$ \& $\frac{N A}{N A}$ \& $\frac{N A}{N A}$ \& $\xrightarrow{10.0 \mathrm{u}}$ \& $\frac{N A}{N A}$ \& $\stackrel{10.00}{1000}$ \& $\frac{\mathrm{NA}}{\text { NA }}$ \& $\frac{N A}{N A}$ \& $\frac{N A}{N A}$ \& $\frac{N A}{N A}$ \& ${ }^{10.00}$ \&

\hline Dibromomethal \& \& Mgh \& NA \& NA \& NA \& ${ }^{1,0000}$ \& NA \& NA \& NA \& 800 \& NA \& NA \& NA \& ${ }^{10.00}$ \& ${ }^{10.00}$ \& NA \& NA \& 10.0 U \& NA \& ${ }_{10.00}$ \& NA \& NA \& NA \& NA \& ${ }^{10.0 \mathrm{U}}$ \&

\hline Dichlorodifiuromethane \& \& mgh \& NA \& NA \& NA \& ${ }_{5}^{5,000}$ U \& NA \& NA \& NA \& 4.000 U \& NA \& NA \& NA \& ${ }^{50.00}$ \& 50.0 U \& NA \& NA \& 50.0 U \& NA \& ${ }^{50.00}$ \& NA \& NA \& NA \& NA \& ${ }^{50.00}$ \&

\hline Disoopropy ether ((1PE) \& \& Hgh \& NA \& NA \& NA \& ${ }^{1,000} \mathrm{U}^{1}$ \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.00 \& NA \& NA \& 10.0 U \& NA \& 10.0 u \& NA \& NA \& NA \& NA \& 10.0 u \&

\hline Ethybenzene \& 700 \& Hgh \& NA \& ${ }_{\text {NA }}$ \& NA \& ${ }_{1}^{1,000 \mathrm{U}}$ \& NA \& NA \& $\stackrel{\text { NA }}{ }$ \& ${ }^{8000}$ \& NA \& NA \& ${ }^{\text {NA }}$ \& - 10.0 U \& 10.0 \& $\stackrel{N A}{N A}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& | 10.0 U |
| :--- |
| 1000 |
| 100 u | \& $\stackrel{N A}{N A}$ \& | 10.0U |
| :--- |
| 10000 |
| 1000 | \& $\frac{\mathrm{NA}}{\text { NA }}$ \& ${ }^{\text {NA }}$ \& $\frac{N A}{N A}$ \& NA \& 10.0u \&

\hline Hexamemetrane \& \& \& NA \& NA \& NA \& ${ }_{1}^{1,0000}$ \& ${ }_{\text {NA }}$ \& ${ }_{\text {NA }}$ \& NA \& 800 U \& ${ }_{\text {NA }}$ \& ${ }_{\text {NA }}$ \& NA \& 10.0 U \& 10.0 U \& NA \& NA \& 10.0 U \& NA \& 10.00 \& NA \& NA \& NA \& NA \& ${ }^{10.0 \mathrm{U}}$ \& NA

\hline sopropylbenzene \& \& Mgh \& NA \& NA \& NA \& ${ }^{1,000}$ U \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.00 \& ${ }^{10.00}$ \& NA \& NA \& ${ }^{10.00}$ \& NA \& 10.0 U \& NA \& NA \& NA \& NA \& 10.0 U \& NA

\hline m-p-xylene \& \& ugh \& NA \& NA \& NA \& 2,000 U \& NA \& NA \& NA \& ${ }^{1,600}$ U \& NA \& NA \& NA \& ${ }^{20.0}$ \& ${ }^{20.0}$ \& NA \& NA \& 20.0 \& NA \& 20.00 \& NA \& NA \& ${ }^{\text {NA }}$ \& NA \& ${ }^{20.0}{ }^{\text {u }}$ \& NA

\hline Meety tert-butyl ethel \& \& Hgh \& NA \& NA \& NA \& ${ }^{1,0000}$ \& NA \& NA \& NA \& 8000 \& ${ }^{\text {NA }}$ \& NA \& NA \& ${ }^{10.00}$ \& ${ }^{10.00}$ \& NA \& NA \& 10.0 ${ }^{1000}$ \& NA \& 10.0 \& NA \& NA \& NA \& NA \& ${ }^{10.00}$ \& NA

\hline Methylene Chloride \& 5 \& $\frac{\mathrm{mgh}}{40 \mathrm{~L}}$ \& $\frac{\mathrm{NA}}{\text { NA }}$ \& $\frac{\mathrm{NA}}{\text { NA }}$ \& $\frac{\mathrm{NA}}{\text { NA }}$ \& ${ }^{\text {5,000 U }} 1.000 \mathrm{U}$ \& NA \& $\stackrel{\text { NA }}{\text { NA }}$ \& NA \& 4,000 U

800 U \& ${ }^{176 \mathrm{~J}^{\text {N }}}$ \& NA \& NA \& \begin{tabular}{l}
50.0

10.00

\hline

 \& ${ }_{\substack{3.20 \mathrm{~J} \\ 10.0 \mathrm{U}}}$ \& NA \& $\stackrel{N}{\text { NA }}$ \&

50.0

10.0 U

\hline

 \& $\stackrel{\text { NA }}{\text { NA }}$ \& 50.0U \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{N A}{N A}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \& $\stackrel{\text { NA }}{\text { NA }}$ \&

50.0

10.0 u

\hline
\end{tabular} \& $\frac{\mathrm{NA}}{\mathrm{NA}}$

\hline \& \cdots \& Hgh \& NA \& NA \& NA \& ${ }^{1,0000}$ \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.0 U \& 10.0 U \& NA \& NA \& 10.0 U \& NA \& 10.00 \& NA \& NA \& NA \& NA \& 10.0 u \& ${ }^{\text {NA }}$

\hline n-Propylbenzene \& \& \& \& NA \& NA \& 1,000 U \& NA \& NA \& NA \& 800 U \& NA \& NA \& NA \& 10.00 \& 10.00 \& NA \& NA \& $10.0 \cup$ \& NA \& 10.0 U \& NA \& NA \& NA \& NA \& \&

\hline
\end{tabular}

Pilot Study Summary Report
Avx Corporation
AVX Corporation
Myrte Beach, South Carolina

Location ID: Date Collected:	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { Clo }}$	Units	ow-10D 12/24/09	ow-10D 12/28/09	OW-10D 01/04/10	ow-10D 0105110	$\begin{aligned} & \text { ow-100 } \\ & 01118110 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OW-10D } \\ & 02 / 105 / 10 \\ & \hline \end{aligned}$	ow-10D 0211610	ow-10D 0310410	OW-10D 03/29/10	OW-10D 04/13/10	OW-10D 04/19/10	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 11105108 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 07/2010909 } \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ 07 / 25109 \\ \hline \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 0811709 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 09/0109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 09116/109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 0998109 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 10121209 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 10126/109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 11102090 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 11107099 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 111/6109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 11123/09 } \\ \hline \end{gathered}$
Volatil Organics		ugh	NA	NA	NA	1.000 U	NA	NA	NA	800 U	NA	NA	NA	10.0 U	10.0U	NA	NA	10.0U	NA	${ }^{10.00}$	NA	NA	NA	NA	10.00	NA
p-lsopropyltoluene		Hgh	NA	NA	NA	${ }_{1}^{1,000}{ }^{\text {a }}$	NA	NA	NA	${ }_{800 \mathrm{U}}$	NA	NA	NA	10.00	10.00	NA	NA	10.00	NA	10.00	NA	NA	NA	NA	10.0 U	NA
Sec-Butybenzene		щg/	NA	NA	NA	$1,000 \mathrm{U}$	NA	NA	NA	800 U	NA	NA	NA	10.00	10.00	NA	NA	10.0 U	NA	10.0 U	NA	NA	NA	NA	10.0 U	
Strene	100	${ }_{\text {Hg/ }}$	NA	NA	NA	$1,000 \mathrm{U}$	NA	NA	NA	800 U	NA	NA	NA	10.0 U	10.0 U	NA	NA	10.0 U	NA	10.0 U	NA	NA	NA	NA	10.0 u	
letr-Butybenzene		Mg/	NA	NA	NA	1,000 U	NA	NA	NA	800 U	NA	NA	NA	10.00	${ }^{10.00}$	NA	NA	10.0	NA	10.0 U	NA	NA	NA	NA	10.0 U	NA
Terachloreethene	5	Hg/	NA	NA	NA	${ }^{1,0000}$	NA	NA	NA	800 U	NA	NA	NA	10.0 U	$10.0{ }^{\text {u }}$	NA	NA	$10.0{ }^{\text {U }}$	NA	10.0 U	NA	NA	NA	NA	10.0 U	NA
Toluene	1,000	нg/	NA	NA	NA	1,000 U	NA	NA	NA	800 U	NA	NA	NA	10.00	10.00	NA	NA	10.0 U	NA	10.0 U	NA	NA	NA	NA	10.0 U	NA
trans-1,2-Dichloroethene	100	нg/	NA	NA	NA	${ }^{350 \mathrm{~J}}$	NA	350 J	NA	344 J	${ }^{2965}$	NA	NA	10.00	${ }^{10.0}$	NA	NA	10.00	NA	10.00	NA	NA	NA	NA	10.0 U	NA
trans-1,3--ichioloropropene	\cdots	Mgh	NA	NA	NA	${ }^{1,0000}$	NA	NA	NA	8000	NA	NA	NA	10.0	10.0	NA	NA	10.0	NA	10.0	NA	NA	NA	NA	10.0 U	${ }^{\text {NA }}$
trans-1,4-Dichioloro-2-butene		нgh	NA	NA	${ }_{\text {NA }}$	${ }^{5,000 \mathrm{U}}$	${ }_{\text {NA }}$	${ }^{\mathrm{Na}}$	${ }_{\text {NA }}$	4,000 U	NA	NA	${ }^{\text {Na }}$	50.0	${ }^{50.00}$	${ }^{\text {NA }}$	NA	- 50.00	NA	50.0	NA	NA	${ }^{\text {NA }}$	NA	${ }^{50.0}{ }^{\text {U }}$	NA
Tichohloreethene	5	Hg/	NA	${ }^{\mathrm{NA}}$	NA	${ }^{640} \mathrm{~J}$	NA	260 J	${ }^{\text {NA }}$	8000	NA	NA	NA	178	120	NA	NA	17.5	${ }^{\text {NA }}$	${ }^{34.4}$	${ }^{\text {NA }}$	NA	NA	${ }^{\mathrm{NA}}$	${ }_{6.00 \mathrm{~J}}$	NA
Trichlorofluoromethane		Hg/	NA	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	1,000 U	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$	NA	800	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	$\stackrel{10.00}{ }$	$\xrightarrow{10.00}$	${ }^{\text {NA }}$	NA	10.0 ${ }^{100}$	${ }^{\text {NA }}$	${ }^{10.0 \mathrm{O}}$	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$	$10.0{ }^{\text {c }}$	
viny Chiorae	2	Hg/	NA	NA	NA	630 J	NA	760 J	NA	1,940	3,080	NA	NA	10.00	10.00	NA	NA	10.00	NA	10.0 U	NA	NA	NA	NA	10.00	NA
morganics- -otal														A				N4	N							
Manganese		Hght	NA	${ }^{\text {1, }} 7.0 \mathrm{~L}$	NA	NA	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	NA	NA	NA	NA											
Inorganics			NA	1500 L	NA																					
		M9L	NA	N	N	NA	${ }^{N A}$	N	NA	Na	${ }^{\text {Na }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$		${ }_{\text {NA }}$	NA	NA	NA	N	NA	NA	N	NA	Na	
Manganese		нgh	NA	NA	NA		NA	NA			NA	NA	NA	NA	72.0	NA										
Alkalinity as Cac		Hg/L	NA		NA																					
A Akalinit Bicarbonate as Cac		Hg/	NA	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	NA	${ }^{\text {NA }}$	NA	NA	${ }_{\text {NA }}^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{290,000}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	NA	NA	NA	${ }^{\text {NA }}$			
Bromide		$\frac{\mu g h t}{\mu g 1 / 2}$	$\stackrel{N A}{\text { NA }}$	NA	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{20000}{18,000}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	NA	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	NA	NA	NA	NA	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$
Fluoride	4,000	Mg/	NA	${ }^{250} \mathrm{~J}$	NA																					
Nitrate (as N)	10,000	Hgh	NA	500 U	NA																					
Nitrite (as N)	1,000	Mg/	NA	500 U	NA																					
Phosphate		нgh	NA	${ }^{1.0000}$	NA																					
Sulate	\cdots	нgh	NA	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	NA	NA	20,000	NA										
Total Organic Carbon	\cdots	$\frac{\mathrm{Hgh}}{\mu \mathrm{gq/}}$	${ }_{\text {¢, } 700 \mathrm{M}}^{\text {M }}$	$\frac{N(1,300}{}$	${ }_{700 \mathrm{~J}}$	$\stackrel{N A}{N A}$	$\frac{N(}{12,000}$	${ }^{56}$ [16] ${ }^{\text {NA }}$	$\stackrel{5.1}{N A}$	$\frac{8.3}{\text { NA }}$	$\frac{4,500}{\text { NA }}$	$\frac{1,700}{\text { Na }}$	4,800	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\mathrm{NA}}{ }$	NA N4,000	$\frac{\mathrm{NA}}{2.800 \mathrm{~J}}$	$\stackrel{N A}{5,400}$	$\frac{N(100 \mathrm{~J}}{}$	$\frac{\mathrm{NA}}{5,000 \mathrm{U}}$	$\stackrel{N A}{2,300}$	$\xrightarrow{\text { NA }}$	$\stackrel{\text { NA }}{12,000}$	$\stackrel{N,}{\text { N, } 0,00}$	${ }_{2,5000}$	
Total Phosphate as PO4.P		Hg/	NA	950 L	NA																					
Field Parameters																										
jeptht to water		feet	6.87	6.93	${ }^{7} .06$	${ }^{\mathrm{NA}}$	${ }_{\text {F }}^{\text {T.78 }}$	${ }_{6}^{6.42}$	${ }_{6}^{6.19}$	${ }^{6.46}$	${ }_{7}^{7.4}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	NA	${ }^{\mathrm{NA}}$	$\stackrel{N A}{N A}$	NA	${ }^{\text {NA }}$	${ }_{9.23}$	${ }^{9.18}$						
depht lowater ${ }^{\text {Dissolve Oxygen }}$	-		$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	0.23	${ }_{0}$	${ }_{0.48}$	0.12	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }^{9.56}$	15.5	${ }_{\text {P }}^{\text {NA }}$	${ }_{10.18}^{10}$	10	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	${ }_{\text {NA }}$	${ }_{\text {NA }}$
Dissolved Oxygen				NA	NA	NA	540	${ }^{\text {NA }}$									1,870			${ }^{3,540}$		7,550	NA	NA	NA	
oxidation reduction potentia		mV	NA	NA	NA	NA	${ }^{-251.8}$	$\stackrel{-97.3}{ }$	${ }_{-171.7}$	${ }^{-167.5}$	${ }_{157.8}^{151}$	NA	NA	NA	NA	NA	- 190	-106.1	${ }^{-1226.6}$	${ }^{-23.1}$	${ }_{-408.2}$		NA	NA		
${ }^{\text {Pr }}$		SU	${ }^{7} .03$	${ }^{7} .05$	6.78	NA	7	${ }^{7} .04$	${ }^{7.13}$	${ }^{7} .05$		NA	NA	NA		NA	7.26	7.25	5.33	7.05	6.49	8.57	NA	NA	6.82	${ }^{8.32}$
ecific conduciviviv		${ }_{\text {LSU }}^{\text {USICm }}$	${ }^{\mathrm{NA}}$	-	-	$\frac{\mathrm{NA}}{\text { NA }}$	$\begin{array}{r}\text { NA } \\ \hline 0.687\end{array}$	NA	NA 0.625	NA	+ ${ }_{\text {NA }}$	$\frac{\mathrm{NA}}{\mathrm{Na}}$	$\stackrel{N}{\text { NA }}$	NA	NA	NA	NA 0.131	NA	NA	NA 0.119	NA 0.152	NA	${ }_{\text {NA }}$	NA	${ }_{\text {L }}^{1.1}$	
temperatue		${ }^{\circ} \mathrm{C}$	NA	18.9	${ }^{18.7}$																					
temperature		celcius	${ }^{22.7}$	22.9	22.5	NA	23.57	23.32	22.31	19.56	21.2	NA	NA	NA	NA	NA	26.04	22.16	24.3	23.34	23.11	20.22	NA	NA	NA	NA
Dissoived Gases	.-				NA							NA	NA	NA		NA	NA	0.13	NA	0.13	NA	0.091	NA	NA	0.14	NA
hene		ugh	NA	NA	NA	NA	NA	5.8	NA	11		NA	NA	NA	0.27	NA	NA	0.45	NA	0.33	NA	0.29	NA	NA	0.64	NA
Methane	-	ugh	NA	NA	NA	NA	NA	280	NA	240	640	NA	NA	NA	30	NA	NA	46	NA	43	NA	26	NA	NA	44	NA

	$\underset{\text { MSL }}{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}$	Units	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 111/30109 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 12214099 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 121241099} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 121/281099 } \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{P}-1 \mathrm{D} \\ \text { 010410 } \\ \hline \end{array}$	$\begin{gathered} \quad \mathrm{P}-1 \mathrm{D} \\ 01 / 810 \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 0220510 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 0221610 } \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { 0330410 } \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ 03 / 29010 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { o4131010 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 04191010 } \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 1016168 \\ \hline \end{gathered}$	$\begin{aligned} & \text { P-2D } \\ & 07120109 \\ & \hline \end{aligned}$	$\begin{gathered} P-2 D \\ 07 / 25109 \\ \hline \end{gathered}$	$\begin{gathered} P-2 D \\ \text { P8817109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-2D } \\ \text { 090109 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-2 \mathrm{D} \\ \text { 0916/109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-2D } \\ \text { 09288/09 } \end{gathered}$	$\begin{gathered} P-2 D \\ \text { 10121209 } \\ \hline \end{gathered}$	$\begin{gathered} P-2 D \\ \text { 10126609 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-2 \mathrm{D} \\ \text { 11102090 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-2D } \\ \text { 111070909 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-2D } \\ \text { 111/16109 } \\ \hline \end{gathered}$
Volatie Organics		\%	${ }^{\text {Na }}$	NA	NA	NA		NA	NA	NA	10.00	NA	NA	NA	1.000 U	1,000 U	NA	NA	250 O	NA	250 U	NA	NA	NA	NA	200 O
	200	$\stackrel{\text { Hght }}{\text { Hgh }}$	NA	$\stackrel{10.0 \mathrm{U}}{10}$	${ }_{\text {NA }}$	NA	NA	${ }_{1,000 \mathrm{U}}$	${ }_{1}^{1,000}$ U	NA	NA	250 U	NA	250 U	NA	NA	NA	NA	200 U							
1,1,2,2,-Tetrachloroeth		нgh	NA	10.0 U	NA	NA	NA	$1,000 \mathrm{U}$	$1,000 \mathrm{U}$	NA	NA	250 U	NA	250 O	NA	NA	NA	NA	200 U							
1,1,2-T.ichioloreethane	5	Mgh	NA	$10.0 \cup$	NA	NA	NA	${ }^{1,000}$	1,000	NA	NA	${ }^{250 \mathrm{U}}$	NA		NA	NA	NA	NA	$\stackrel{200 U}{2000}$							
	7	${ }_{\text {Hggh }}^{\text {Hght }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{10.0 \mathrm{U}}{10.0}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	${ }_{1}^{1,0000 \mathrm{U}}$	${ }_{1}^{1,0000 \mathrm{U}}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{2500}^{250}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{250}^{250}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{2}^{2000}$			
1,1--Dichloropropene		нgh	NA	10.0 U	NA	NA	NA	${ }^{1,000}$ U	1,000 U	NA	NA	250	NA	250 U	NA	NA	NA	NA								
1,2,3,-Trichlorobenzene	.	нgh	NA	${ }^{10.0}{ }^{\text {U }}$	NA	NA	NA	${ }^{1,000}{ }^{\text {U }}$	${ }^{1,000}$ U	NA	NA	250 U	NA	250	NA	NA	NA	${ }^{\text {NA }}$								
1,2,3-7Trichloropropane		ugh	NA	10.0 U	NA	NA	NA	${ }^{1,0000}$	${ }^{1,000}{ }^{\text {U }}$	NA	NA	250	NA	${ }^{250}$	NA	NA	NA	NA	200 U							
1,2,4-Trichlorobenzene	70	ugh	NA	10.0 U	NA	NA	NA	${ }^{1,0000}$	${ }^{1,000}{ }^{\text {U }}$	NA	NA	$\begin{array}{r}250 \mathrm{U} \\ \hline 250 \\ \hline\end{array}$	NA	-250	NA	NA	NA	NA	0							
1,2,4-7rimethybenzene		pgh	NA	10.0 U 100	NA	NA	NA	${ }_{1}^{1,0000}$	${ }^{1,000 \mathrm{U}}$	NA	NA		NA	$\stackrel{250 \mathrm{U}}{1250 \mathrm{U}}$	NA	NA	NA	NA	${ }^{2000}$							
1,2--ibromo-3-chhoropropane	0.2	Hgh	NA	50.0U	NA	NA	NA	${ }^{5,000 \mathrm{U}}$	${ }^{5,000 \mathrm{U}}$	NA	NA	${ }^{1,250 \mathrm{U}}$	NA	$\stackrel{1,250 \mathrm{U}}{ }$	NA	NA	NA	NA	${ }^{1,0000}$							
$\frac{1,2-\text {-ibromoethane }}{12 \text { - }}$	0.05	- Mgh	NA	NA	NA	${ }^{\text {NA }}$	NA	NA	NA	$\stackrel{\mathrm{NA}}{\mathrm{Na}}$	10.0U	NA	NA	NA	${ }^{1,0000}$	${ }_{\text {1,000 U }}^{1,000}$	${ }^{\text {NA }}$	NA	2750 250 200	NA	- 250 O	NA	NA	NA	NA	$\stackrel{200 \mathrm{U}}{200 \mathrm{U}}$
1,2-Dichloroethane	5	Hgh	NA	10.0 U	NA	NA	NA	${ }^{1,0000}$	1,000 U	NA	NA	250 U	NA	250 U	NA	NA	NA	NA	200 U							
1,2-Dichioropropopane	5	нgh	NA	10.0 U	NA	NA	NA	${ }^{1,000}$	1,000 U	NA	NA	250	NA	250	NA	NA	NA	NA								
1, $1,5.5$ - Timenylbenzene		pgh	NA	+10.0	NA	NA	NA			NA	NA	${ }^{250}$,		NA			NA								
1,	-	Hgh	NA	10.0U	NA	NA	NA	${ }^{1,0000}$	${ }_{1}^{1,0000}$	NA	NA	250	NA	250	NA	NA	NA	NA								
$\frac{1,}{1,4-\text {-icichlororopopenenene }}$	75		${ }_{\text {NA }}$	$\stackrel{10.0 \mathrm{U}}{ }$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{1}^{1,0000}$	${ }_{1}^{1,0000}$	${ }_{\text {NA }}$	NA	250 U	NA	${ }^{250 \mathrm{U}}$	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	200 U							
2, 2,-Dichlororopropane		Hgh	NA	10.0 U	NA	NA	NA	${ }^{1,0000}$	1,000 U	NA	NA	250 U	NA	250 U	NA	NA	NA	NA								
$\frac{\text { 2-Butanone }}{}$			NA	NA	NA		NA	NA	NA	NA	${ }^{250 \mathrm{U}}$	NA	NA	NA	25,000 U	$25,000 \mathrm{U}$	NA	NA	6,25	NA	${ }^{6,250 \mathrm{U}}$	NA	NA	NA	NA	
$\frac{\text { 2-Chlorotiouene }}{\text { 2-Hexano }}$		Hgh	NA	NA	NA	NA	NA	NA		NA	$\stackrel{10.00}{50}$	NA	${ }^{\mathrm{NA}}$	$\frac{N A}{N A}$	${ }^{\text {, }, 0000}$	${ }_{\text {1,000 }}$	NA	NA	${ }^{2500}$	NA	${ }^{2500}$	NA	NA	NA	NA	
4 -Chtorotilue																										
4 -Methyl-2-pentanone	.	Hgh	NA	$\stackrel{50.0 \mathrm{U}}{ }$	NA	NA	NA	${ }_{5}^{1,0000}$	${ }_{5}^{1,0000}$ U	NA	NA	${ }_{1,250 \mathrm{U}}^{2}$	NA	${ }_{1,250 \mathrm{U}}$	NA	NA	${ }^{\text {NA }}$	NA	${ }_{1}^{20000}$							
Actoone		Hgh	NA	250 U	NA	NA	NA	$25,000 \mathrm{U}$	$25,000 \mathrm{U}$	NA	NA	${ }^{6,250 \mathrm{U}}$	NA	${ }^{6,250 \mathrm{U}}$	NA	NA	NA	NA								
Benzene	5	Hgh	NA	10.0 U	NA	NA	NA	${ }^{1,000}$ U	$1,000 \mathrm{U}$	NA	NA	250 U	NA	250 U	NA	NA	NA	NA	O							
Bromobenzene		Hgh	NA	10.0 U	NA	NA	NA	1,000 U	1,000 U	NA	NA	250 U	NA	250 U	NA	NA	NA	NA	200 U							
Bromochloromethane		Hgh	NA	10.0U	NA	NA	NA	${ }^{1,000 \mathrm{U}}$	${ }^{1,000 ~ U}$	NA	NA	$\begin{array}{r}250 \mathrm{U} \\ \hline 250 \\ \hline\end{array}$	NA	250 O 2500	NA	NA	NA	NA	200							
Bromodichloromethane	${ }_{81}^{81}$	$\frac{\text { Hght }}{\text { Hgt }}$	NA	$\stackrel{N A}{N A}$	NA	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	10.0 U 10.0 U	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{1,0000}{ }^{1,000}$	${ }_{\text {1,000 U }}^{1,000}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }^{250 \mathrm{U}}$	$\frac{N A}{\text { NA }}$	${ }_{250 \mathrm{U}}^{250 \mathrm{u}}$	$\stackrel{N A}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{\text {NA }}$	${ }_{200 \mathrm{U}}^{2000}$			
Bromomethane		${ }_{\text {Hght }}$	NA	${ }^{10.00}$	NA	NA	NA	${ }_{1,000 \mathrm{U}}$	${ }_{1}^{1,000}{ }^{\text {U }}$	NA	NA	${ }_{2} 250 \mathrm{U}$	NA	${ }_{250}^{250}$	NA	NA	NA	NA	200 U							
Carbon Disulfide		Hgh	NA	10.0 U	NA	NA	NA	${ }^{1,000}{ }^{1}$	${ }^{1,0000}$	NA	NA	250	NA	250 U	NA	NA	NA	NA								
Carbon Tetrachloride	5	Hgh	NA	10.0 U	NA	NA	NA	1,000 U	1,000 U	NA	NA	250	NA	250	NA	NA	NA	NA	U							
Chlorobenzene	100	mgh	NA	NA	NA	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	${ }_{\text {100 }}^{10.00}$	NA	NA	NA	${ }_{1}^{1,000 \mathrm{U}}$	${ }_{1}^{1,000 \mathrm{U}}$	NA	NA	250 O 250 200	NA	250 O 250 200	NA	NA	NA	NA	200 U
Chioroethane	86	- Mgh	NA	NA	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	NA	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\text { Na }}$	NA	10.0 U 1000 100	$\stackrel{N A}{N A}$	NA	NA	${ }^{1,000 \mathrm{U}}$	${ }^{1,000 \mathrm{U}}$	${ }_{\text {NA }}$	NA	$\begin{array}{r}250 \mathrm{U} \\ \hline 250 \\ \hline\end{array}$	NA	250 U 250	NA	NA	${ }^{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	00
Chloromethane		${ }_{\text {Hght }}$	NA	$\stackrel{10.00}{ }$	NA	NA	NA	${ }_{1}^{1.0000}$	${ }_{1}^{1,000}{ }^{\text {U }}$	NA	NA	250	NA	${ }_{250}$	NA	NA	NA	NA	${ }^{2000}$							
cis-1,2--iichloroethene	70	Hgh	NA	NA	NA	NA	NA	NA	110	NA	${ }^{263}$	${ }^{27.0}$	NA	NA	${ }^{7,510}$	${ }_{4,480}$	NA	NA	2,780	${ }^{\text {NA }}$	570	NA	NA	NA	NA	
Cis-1,3--Dichioloropropene	碞	Hgh	NA	$\stackrel{10.00}{ }$	NA	${ }^{\text {NA }}$	NA	${ }^{1,0000}$	${ }^{1,0000 \mathrm{U}}$	NA	NA	250	A	-250	NA	NA	A									
Siborochoomenane	86	- 9\%	NA	Na	Na	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }_{10.0 \mathrm{U}}^{10}$	$\stackrel{\text { NA }}{ }$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{1}^{1,0000 \mathrm{U}}$		NA	Na		NA	${ }_{250 \mathrm{O}}^{200}$	NA	NA	NA	NA	
Dichloroorifluromethane		Mgh	NA	$\stackrel{50.0 \mathrm{U}}{ }$	NA	NA	NA	${ }_{5}^{1,000}{ }^{\text {U }}$	${ }_{5}^{1,0000}$	NA	NA	${ }^{1,250 \mathrm{U}}$	NA	${ }^{1,250 \mathrm{U}}$	NA	NA	NA	NA	${ }^{1,0000}$							
Disispropyl ether (DIPE)	700	$\frac{\mathrm{Hgh}}{\text { ugh }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\text { NA }}$	10.0 U 10.0 U	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{1}^{1,0000 \mathrm{U}}$	${ }_{\text {1,000 U }}^{1,000 \mathrm{U}}$	NA NA	$\stackrel{\text { NA }}{\text { NA }}$	$\begin{array}{r}250 \mathrm{U} \\ \hline 250 \mathrm{U} \\ \hline\end{array}$	$\stackrel{\text { NA }}{\text { NA }}$	250 U 250 U	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{200 U}{2004}$						
Hexachlorobutadiene		Hgh	NA	${ }^{10.0 \mathrm{U}}$	NA	NA	NA	${ }_{1}^{1,000}{ }^{100}$	${ }_{1}^{1,000} \mathrm{U}$	NA	NA	${ }_{2} 250 \mathrm{U}$	NA	${ }_{250}$	NA	NA	NA	NA	200 U							
lodomethane		$\frac{\mathrm{Hgh}}{\mathrm{gat}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{10.0 \mathrm{U}}{10.0 \mathrm{U}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\frac{1,000 \mathrm{U}}{1,000 \mathrm{U}}$	$\frac{1,000 \mathrm{U}}{1,000 \mathrm{U}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	250 U 250 U	$\frac{\mathrm{NA}}{\text { NA }}$	250 U 250 U	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{2}^{200}$
m-p-x, <xlene	.	Hgh	NA	20.0 U	NA	NA	NA	2,000 U	2,000 U	NA	NA	500 U	NA	500 U	NA	NA	NA	NA	400 U							
Methy ter-butyl ethel	5	$\frac{\mathrm{Hgh}}{\mathrm{Hgh}}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {N }}^{\text {NA.4 }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\xrightarrow{10.0 \mathrm{U}} \mathbf{2}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{5}^{1,0000 \mathrm{U}}$	$\frac{1,000 \mathrm{U}}{470 \mathrm{~J}}$	- $\begin{array}{r}\text { NA } \\ \text { NA }\end{array}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }_{1,250 \mathrm{U}}^{250}$	$\stackrel{\text { NA }}{\text { NA }}$		$\stackrel{\text { NA }}{\text { NA }}$	$\xrightarrow{20000}$			
Naphthalene		Hgh	NA	10.0 U	NA	NA	NA	1,000 U	1,000 U	NA	NA	$\stackrel{250 \mathrm{U}}{ }$	NA	250 U	NA	NA	NA	NA	200 U							
		$\frac{\mathrm{Hg} / \mathrm{L}}{\mathrm{ggl}}$	NA	NA	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	NA	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{N}{\text { NA }}$	10.0 U 10.0 U	NA	NA	NA	${ }_{1}^{1,0000 \mathrm{U}}$	${ }_{1}^{1,0000 \mathrm{U}}$	NA	NA	${ }_{250 \mathrm{U}}^{250}$	NA	$\xrightarrow{250 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	NA	NA	200 U

	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { U }}$		$\begin{gathered} \text { P-1D } \\ 11 / 30109 \end{gathered}$	$\begin{gathered} { }^{\text {P-1D }} \\ \text { 12114109 } \end{gathered}$	$\stackrel{\stackrel{p}{\text { P-10 }}}{\text { 1212409 }}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 121/281099 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ 010410 \end{gathered}$	$\begin{gathered} \text { P-1D } \\ 01 / 1810 \end{gathered}$	$\begin{gathered} \mathrm{P}-1 \mathrm{D} \\ \text { 020510 } \end{gathered}$	$\begin{gathered} \text { P.1D } \\ 0216110 \end{gathered}$	$\begin{aligned} & \text { P-1D } \\ & 0304110 \end{aligned}$	$\begin{gathered} \text { P-1D } \\ 03 / 2910 \end{gathered}$	$\begin{gathered} \text { P-1D } \\ \text { O413130 } \end{gathered}$	$\stackrel{\text { P-10 }}{04191910}$	$\stackrel{\text { P-2D }}{1016168}$	$\begin{gathered} \text { P-2D } \\ \text { 07720109 } \end{gathered}$	$\begin{gathered} \text { P.2D } \\ \text { 07725109 } \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 0817109 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 090109 \end{gathered}$	$\begin{gathered} \mathrm{P}-2 \mathrm{D} \\ \text { 091/6109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 0928109 \end{gathered}$	$\begin{gathered} \mathrm{P} .2 \mathrm{D} \\ \text { 1012109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 1012669 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ \text { 111020909 } \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 110709 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ \text { 11/16109 } \end{gathered}$
${ }^{\text {P/-sopropylouene }}$		-	NA	$\stackrel{\text { NA }}{ }$	NA	NA	NA	NA	NA	NA	$\stackrel{\text { 10.0 }}{10}$	NA	NA	NA	${ }_{1}^{1,0000}$	${ }_{1}^{1,0000}$	NA	NA	${ }^{250 \mathrm{U}}$	NA	${ }^{250}{ }^{25}$	NA	NA	NA	NA	200 U
Styrene	100	Mg/	NA	${ }^{10.0} \mathrm{U}^{1}$	NA	NA	,	${ }_{1}^{1,000 \mathrm{U}}$	${ }^{1,000 \mathrm{U}}$	NA	NA	250 U 250	NA	$\xrightarrow{250 \mathrm{O}}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	${ }^{\mathrm{NA}}$	200 O							
$\frac{\text { Perl-Butybenzene }}{\text { Tetrachloroenene }}$	5	$\frac{\mu g h / ~}{\mu g h}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{N}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	10.0 U 10.0 U	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$, $1,000 \mathrm{U}$	$1,000 \mathrm{U}$ $1,000 \mathrm{U}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	250 O 250 O	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{250 \mathrm{U}}{250 \mathrm{O}}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{200 \mathrm{U}}^{200 \mathrm{U}}$
Toluene	1.000	H9/2	NA	10.0 U	NA	NA	NA	1.000 U	1.000 U	NA	NA	250 U	NA	250	NA	NA	NA	NA								
trans-1,-2-Dichloroethene	100	Mg/	NA	${ }^{10.0} \mathrm{U}^{1}$	NA	NA	NA	540 J	380 J	NA	NA	52.5 J	NA	42.5 J	NA	NA	NA	NA	U							
trans-1,3-Dichiororopropene		$\mu g / 2$	NA	10.0 U	NA	NA	NA	$1,000 \mathrm{U}$	${ }^{1,000}$ U	NA	NA	250 U	NA	250	NA	NA	NA	NA	U							
trans-1,4-D.ichioro-2-butene		Hg/	NA	50.0 ${ }^{1}$	NA	NA	NA	${ }^{5}, 000 \mathrm{U}$	5,000 U	NA	NA	$1,250 \mathrm{U}$	NA	1,250 U	NA	NA	NA	NA								
Trichloroethene	5	Mg/	NA	10.0 U	NA	NA	NA	${ }^{25,800 \mathrm{~J}}$	15,800	NA	NA	${ }^{3,660}$	NA	${ }^{610}$	NA	NA	NA	NA	${ }_{526}$							
Trichlorofluoromethane		Hg/	NA	10.0 u	NA	NA	NA	1,000 U	1,000 U	NA	NA	${ }^{2500}$	NA	$\stackrel{2504}{75}$	NA	NA	NA	NA								
																						NA	NA	NA	NA	NA
	\ldots	Hgh	NA	1,800 L	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	NA	NA	NA	NA												
Alkalinty Bicarionate as Cacos		Hgh	NA	270,000	NA																					
Bromide		Hg/	NA	NA	NA	NA	NA	NA		NA	NA			NA	NA			NA								
cune																				NA	NA					
Alurne	${ }^{4,0000}$	$\xrightarrow{\text { Hght }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{2}^{30700}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{\text {NA }}$
Nititite (as N)	1.000	Mg/	NA	500 U	NA																					
Phosphai		ugh	NA	${ }^{1,000}$ U	NA																					
Sulfate		$\mu \mathrm{g} / \mathrm{L}$	NA	16,000	NA	N4																				
Total Organic Carbon		mgh	NA	${ }^{\text {NA }}$	${ }_{5}^{\text {NA }}$	${ }_{\text {N }}$	${ }_{\text {NA }}^{\text {Na }}$	NA	${ }^{2.8 \mathrm{~J}}$	${ }_{13}^{13}$	${ }^{9.2}$	${ }^{340}$	${ }^{170}$	${ }^{140}$	NA	${ }_{\text {NA }}$	NA	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	NA	NA	NA	$\xrightarrow{\text { NA }}$
Totale organc Carbon	-		${ }_{\text {5,000 }}^{\text {NA }}$	$\frac{1,500,000}{N A}$	5,000 ${ }_{\text {NA }}$	${ }_{\text {c, }}^{\text {WA }}$	$\frac{{ }_{\text {L,100 }}^{\text {NA }}}{}$	$\frac{7,500}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {5,000U }}^{800 \mathrm{~L}}$	$\frac{300,000}{\text { NA }}$	$\frac{\text { Na,000 }}{\text { NA }}$	$\frac{170,000}{\text { NA }}$	$\frac{110,000}{\text { NA }}$	(30,000	$\frac{\text { S6,000 }}{\text { NA }}$	$\frac{\text { ap,ooo }}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	NA	$\frac{\text { S00,000 }}{\text { NA }}$
Field Parameters																										
deppht to water		feet	${ }^{9.21}$	8.19	${ }^{6.6}$	6.74	6.91	7.59	6.15	5.96	6.25	7.25	NA	9.59												
deph do water	\because	feet bgs	$\frac{N A}{N A}$	NA	$\frac{N A}{N A}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	NA	${ }_{6} \mathrm{NA}$	$\stackrel{\text { NA }}{5.83}$	$\stackrel{\text { NA }}{7.53}$	${ }_{3,15}$	$\frac{N A}{N A}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	${ }^{9.2}$	9.75	${ }_{\text {10.32 }}^{10.3}$	${ }^{9.71}$	${ }^{10.39}$	${ }^{10.23}$	NA	NA	${ }^{\text {NA }}$
Dissolved OXYygen	\cdots		NA	${ }^{19,820}$	NA	NA	NA	${ }_{5,760}$	$\stackrel{6}{\text { NA }}$	${ }_{5} \mathrm{NA}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	NA	NA	NA	NA	NA	990	770	$\stackrel{1,000}{ }$	${ }_{1,760}^{1,7}$	${ }_{1}^{1,270}$	${ }_{\text {1,150 }}^{1 / 2}$	NA	NA	NA
oxidation reduction potentia		mV	NA	-98	NA	NA	NA	${ }^{-111.7}$	103.2	${ }^{-188.8}$	-56.2	-98.9	NA	NA	NA	NA	NA	${ }_{10.3}$	${ }^{-119.6}$	-218.1	-215.7	${ }^{2} 205.4$	${ }^{-142.4}$	NA	NA	NA
pH		su	7.92	6.13	7.77	${ }_{7} .32$	${ }^{7} .8$		6.28	7.11	9.56	6.17	NA	NA	NA	NA	NA	5.57	6.75	6.6	6.78	6.71	6.92	NA	NA	5.78
sainily		Psu	${ }^{0.1}$	NA	NA	0.3	0.1			NA	4.3															
specticic conductivity		usicm	0	2.709	0.06	${ }^{0.484}$	0.1124	${ }^{0.149}$	${ }^{0.122}$	${ }^{0.176}$	0.574	0.894	NA	NA	NA	NA	NA	2.085	0.859	${ }^{0.874}$	0.866	0.838	${ }^{0.893}$	NA	NA	0.793
emperatue	\because	${ }^{\circ} \mathrm{C}$	19.8 $N 8$	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	$\frac{\mathrm{NA}}{142}$	NA	${ }_{\text {NA }}$	NA	NA	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	NA	NA	$\stackrel{\mathrm{NA}}{ }$	$\frac{\mathrm{NA}}{2497}$	NA	NA	NA	NA	$\frac{25.4}{154}$
Etrane	\cdots	$\mu \mathrm{gh}$	NA								0.069	0.007 J							0.36	NA	0.42	NA	0.31	NA	NA	0.045
Ethene		ugt	${ }^{\mathrm{NA}}$	${ }_{0}^{0.43}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }^{\mathrm{NA}}$	${ }_{0}^{0.35}$	NA	1.2	8.7	NA	NA	A	4.6	NA	NA	${ }^{6.4}$	NA	46	NA	,	NA	NA	${ }_{4}^{4.3}$
Methane																							1,900			280

Location ID: Date Collected:	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { UC }}$	Units	$\begin{gathered} \text { P-2D } \\ \text { 11/23/09 } \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 11130109 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ \text { 121410909 } \end{gathered}$	$\stackrel{\text { P-2D }}{121 / 2109}$	$\begin{gathered} \text { P-2D } \\ \text { 122128109 } \end{gathered}$	$\begin{gathered} \mathrm{P} .2 \mathrm{D} \\ 0100410 \end{gathered}$	$\begin{gathered} \text { P.2D } \\ \text { 0105100 } \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 01 / 1810 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ \text { 02051010 } \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 021610 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 030410 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 0312910 \\ \hline \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 0413130 \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 0416110 \end{gathered}$	$\begin{gathered} \text { P.2D } \\ \text { O41910 } \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 0419110 \end{gathered}$	P-3D 11105108	$\begin{gathered} \text { P-3D } \\ 07120109 \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 07125/199 } \end{gathered}$	$\begin{gathered} \text { P.3D } \\ 0817109 \end{gathered}$	$\begin{gathered} \text { P-3D } \\ 090109 \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 0916109 } \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 0928809 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-3D } \\ 10 / 12109 \end{gathered}$
Volatile Organics																										
	200	$\stackrel{\text { Hgh }}{\text { qgi }}$	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	${ }^{40.00}$	NA	NA	NA	${ }^{\text {NA }}$	NA	${ }_{2}^{2.000}$	${ }_{5}^{5.000}$	NA	NA	${ }^{20.00}$	NA	${ }_{1000}^{160}$	NA
1,1,2,2,-2.etrachloroeth		Hgh	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.00	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 U	NA	160 U	NA
1,1,2-T. Trichloroethane	5	Hgh	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0 U	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	${ }^{20.0}$	NA	${ }^{160 \mathrm{U}}$	NA
1,1-1.ichloroethane			NA	NA	NA	NA	NA	NA	40.0 U	NA	NA		${ }^{40.00}$	NA			NA	NA	2.00 U	5.00 U	NA		${ }_{5}^{5.20 \mathrm{~J}}$		160	
1,1--Dichloroethene	1	Hgl	NA	NA	NA	${ }_{\text {NA }}$	${ }^{\text {NA }}$	NA	40.00	NA	NA	NA	40.00	NA	NA	NA	NA	${ }^{\text {NA }}$	2.000	${ }^{5.000}$	NA	NA	20.00	NA	160	
1,1--Dichloropropene		нgh	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0 U	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 U	NA	160 U	NA
1,2,3.-Tichlorobenzene		Hg/L	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.00	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 U	NA	${ }^{160 \mathrm{U}}$	
1,2,3.-T Tichloropropane		Hg/	NA	NA	NA	NA	NA	NA	${ }^{40.00}$	NA	NA	NA	${ }^{40.00}$	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	${ }^{20.0}$	NA	160 U	
	70	Hg/L	NA	NA	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	$\frac{40.0 \mathrm{U}}{40.0 \mathrm{U}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{\text {NA }}$	$\frac{40.0 \mathrm{u}}{40.0 \mathrm{u}}$	${ }^{\text {NA }}$	NA	NA	${ }^{\text {NA }}$	NA	2.00	5.00 U 500 500	NA	$\stackrel{N A}{ }$	20.0U	NA	160 ${ }_{\text {160 }}^{160}$	
1,2--Dibromo-3-chloropropane	0.2	Hgh	NA	NA	NA	NA	NA	NA	200 U	NA	NA	NA	200 U	NA	NA	NA	NA	NA	${ }^{10.0}$	${ }^{\text {25.0.0 }}$	NA	NA	100 U	NA	${ }_{8000}$	NA
1,2--Dibromoethane	0.05	Hgh	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.00	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 U	NA	160 U	
(1,-Dichlorobenzene	$\frac{600}{5}$	$\frac{\text { Hgg }}{\text { Hgl }}$	$\frac{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\frac{40.0 \mathrm{U}}{40.0 \mathrm{U}}$	NA	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{40.0 \mathrm{u}}^{40.0}$	$\frac{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{2.00 \mathrm{U}}{2.00 \mathrm{U}}$	5.00 U 5.00 U	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{20.0 \mathrm{U}}{20.0 \mathrm{U}}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }^{160 \mathrm{U}} 10$	NA
1,2-Dichloropropane	5	Hgh	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0 O	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 U	NA	160 U	NA
1,3,5.-Trimethybenzene		${ }_{\text {Hgh }}$	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.00	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	${ }^{20.00}$	NA	160 U	NA
1,3--ichiorobenzene	\cdots	Hgh	NA	NA	NA	NA	NA	NA	$40.0{ }^{4}$	NA	NA	NA	40.00	NA	NA	NA	NA	NA	2.00 U	${ }^{5.000}$	NA	NA	20.0 U	NA	$\frac{1600}{100}$	NA
1,3-Dichioropropane		Hgh	NA	NA	NA	NA	NA	NA	40.0 U	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	NA	40.00	${ }^{\text {NA }}$	NA	NA	NA	NA	200	5.00 U 5 500	${ }^{\text {NA }}$	NA	20.0U	NA	160	
	75	$\frac{\mathrm{Hg} \text { L }}{\text { HgI }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{40.0 \mathrm{U}}{400 \mathrm{u}}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	40.0 u	NA	$\frac{N A}{N A}$	$\frac{N A}{N A}$	$\frac{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	2.00	5.00 U 500 500 U	NA	NA	$\frac{20.00}{2000}$	NA	${ }^{1600}$	${ }_{\text {NA }}$			
$\frac{2,}{2,- \text {-butionorororopane }}$		$\frac{\text { Hgh }}{\text { Hgh }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N}{\text { NA }}$	NA	NA	NA	${ }^{4000}$	NA	${ }_{442}{ }^{\text {J }}$	NA	$\stackrel{439 \mathrm{~J}}{ }$	${ }_{480 \mathrm{~J}}$	$\stackrel{\text { NA }}{ }$	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	${ }^{20.00}$	${ }^{1250}$	NA	NA	${ }^{5000}$	NA	4,000 U	NA
2-Chlorotoluene	\cdots	нg/L	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0 U	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.00	NA	160 U	
2-Hexanone	-	Hgh	${ }^{\mathrm{NA}}$	NA	NA	NA	NA	NA	200	NA	NA	NA	200	NA	NA	NA	NA	NA	10.00	25.0U	NA	NA	100	NA	800	
4-Chiorotouene	\cdots	Hgit	$\stackrel{\mathrm{NA}}{ }$	NA	NA	NA	NA	NA	$\xrightarrow{40.00}$	NA	NA	$\stackrel{\text { NA }}{\text { Na }}$	$\stackrel{40.0}{200}$	NA	NA	$\stackrel{N A}{N A}$	NA	NA	2.00	5.00 U 250 u	NA	NA	$\stackrel{20.00}{1000}$	NA	${ }^{1600}$	NA
Aceione		$\frac{\text { ugh }}{\text { ugh }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	NA	NA	NA	${ }_{1}^{1,000} \mathrm{U}$	NA	${ }^{439 \mathrm{~J}}$	NA	${ }^{290 \mathrm{~J}}$	${ }^{224}$ J	NA	NA	NA	NA	50.0 u	125 U	NA	NA	500 U		${ }^{4.000 \mathrm{U}}$	
Benzene	5	Hgh	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0 U	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 U	NA	160 U	NA
Bromobenzene		Hgh				NA												${ }^{\text {NA }}$								
Bromodichioromane		-							40.0											5.00					160	
Bromomotrm	${ }_{81}$	$\frac{\text { qug }}{\text { ugi }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{40.0 \mathrm{U}}^{40.0}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{40.0 \mathrm{u}}$	${ }_{\text {NA }}$	${ }_{2}^{2.000}$	${ }_{5}^{5.000}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{20}^{20.0}$	${ }_{\text {NA }}$	$\stackrel{1}{160 \mathrm{U}}$	NA				
Bromomethane		Mgl	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0 u	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 u	NA	160 U	
Carbon Disulfide		Hg/L	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	${ }^{\text {NA }}$	40.0 U	NA	NA	${ }^{\mathrm{NA}}$	${ }^{40.00}$	NA	NA	NA	NA	${ }^{\mathrm{NA}}$	2.00 U	5.00 U	${ }^{\text {NA }}$	NA	${ }^{20.0 \mathrm{U}}$	NA	${ }_{1600}^{160}$	NA
Carbon Tetrachloride	5	Hg/L	NA	NA	NA	NA	NA	NA	40.0 U	NA	$\stackrel{N A}{N A}$	NA	40.00	NA	NA	NA	NA	${ }^{\text {NA }}$			NA		20.0 2	NA		
Chlorobenzene	100	$\stackrel{\text { Hgh }}{\text { git }}$								$\stackrel{N A}{N A}$									-	5.5		N			100	
Chlorotorm	86	Hag	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 u		160 u	
Chloromethane		Hgh	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.00	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 U	NA	160 U	
cis-1,2--ichioreethene	70	Hg/L	NA	NA	NA	NA	NA	NA	${ }^{84.0}$	NA	${ }^{309}$	NA	${ }^{298}$	215	NA	NA	NA	NA	${ }^{27.3}$	${ }^{43.6}$	NA	NA	${ }^{836}$	NA	${ }_{1,580}$	${ }^{\mathrm{NA}}$
(is-1,3.-Dichiorororopene	86	$\frac{\mathrm{Hg} / \mathrm{L}}{\text { gal }}$	$\stackrel{N(}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{40.0 \mathrm{U}}{40.0 \mathrm{U}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\frac{40.0 \mathrm{u}}{40.0 \mathrm{u}}$	$\frac{\mathrm{NA}}{\text { NA }}$	2.00 U 2000 	5.00 U 5.00 U	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{20.0 \mathrm{U}}{20.0}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	160 U 160 U					
Dibromomethane		$\frac{\text { ggh }}{}$	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	$\stackrel{40.0}{ }$	NA	NA	NA	NA	NA	${ }_{2}^{2.000}$	${ }_{5.00 \mathrm{U}}^{50 .}$	NA	NA	${ }^{20.00}$	NA	${ }_{160}$	
Dichlorodituoromethane	\cdots	Hgh	NA	NA	NA	NA	NA	NA	200 U	NA	NA	NA	200 U	NA	NA	NA	NA	NA	10.00	25.0 U	NA	NA	100 U	NA	${ }^{800} \mathrm{U}$	NA
Disopropyl ether (DIPE)		Hgl	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.00	NA	NA	NA	NA	NA	2.00 U	${ }^{5.000}$	NA	NA	$20.0{ }^{2}$	NA	160 U	NA
Ethybenzene	700	$\frac{\mathrm{mg} \text { gh }}{}$	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	$\stackrel{40.0 \mathrm{U}}{400}$	NA	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	-6.40J	NA	NA	NA	$\frac{\mathrm{NA}}{\text { Na }}$	NA	2,00U	5.00 U 5000 	${ }^{\text {NA }}$	NA	20.0	${ }^{\text {NA }}$	(160	NA
${ }^{\text {Hex }}$ Hexachiorobutaciene		$\frac{\mathrm{HghL}}{\text { Hgh }}$	$\stackrel{N A}{N A}$	NA	${ }_{\text {NA }}$	NA	NA	NA	40.0 U	NA	NA	NA	${ }^{40.00}$	NA	NA	NA	NA	NA	${ }_{2}^{2.000}$	${ }_{5}^{5.00 \mathrm{U}}$	NA	NA	${ }^{20.00}$		${ }_{160} 100$	
Isopropylbenzene		Hg/L	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0 U	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 U	NA	160 U	NA
m-p-pxylene	\cdots	Hgh	NA	NA	NA	NA	NA	NA	80.00	NA	NA	NA	80.00	NA	NA	NA	NA	NA	4.00 U	10.0	NA	NA	40.0 U	NA	320	NA
Weety lent-uty	5	$\frac{\mathrm{mggL}}{\text { ugh }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{40.0 \mathrm{U}}{200}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	2000	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }^{2.000}$		$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	$\frac{20.0 \mathrm{U}}{100}$	${ }_{\text {NA }}$	${ }^{1600 \mathrm{U}}$	NA
Naphthalene		+gg	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0 U	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	${ }^{20.0}$	NA	160 U	NA
n-Butybenzene		Hgl	NA						40.0	NA	NA	NA	40.00	NA	NA	NA	NA	NA	2.00	5.00	NA	NA	${ }^{20.0}$	NA	1600	NA

Pilot Study Summary Report
AVX Corporation
Myrte Beach, South Carolina

$\begin{gathered} \text { Location ID: } \\ \text { Date Collected: } \end{gathered}$	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { U }}$		$\begin{gathered} \text { P-2D } \\ \text { 11/23/09 } \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 11 / 30109 \end{gathered}$	$\stackrel{\text { P-2D }}{1214109}$	$\begin{gathered} \mathrm{P}-2 \mathrm{D} \\ \text { 12724099 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-2D } \\ \text { 122128/09 } \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 010410 \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 010510 \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 0118100 \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 020510 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 021610 \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 030410 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 0312910 \end{gathered}$	$\begin{gathered} \text { P-2D } \\ 0413110 \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 0416110 \end{gathered}$	$\begin{gathered} \text { P.2D } \\ \text { O419190 } \end{gathered}$	$\begin{gathered} \text { P.2D } \\ 0419110 \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 11105108 } \end{gathered}$	$\begin{gathered} \text { P-3D } \\ 0712009 \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 07725109 } \end{gathered}$	$\begin{gathered} \text { P.3D } \\ \text { 08171709 } \end{gathered}$	$\begin{gathered} \mathrm{P}-3 \mathrm{D} \\ 090109 \\ \hline \end{gathered}$	$\begin{array}{r} \text { P-3D } \\ \text { 0916609 } \\ \hline \end{array}$	$\begin{gathered} \text { P-3D } \\ \text { 09128/09 } \end{gathered}$	$\begin{gathered} \text { P.3D } \\ \text { 10121209 } \end{gathered}$
	\cdots	$\xrightarrow{\text { Mg/L }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{40.0 \mathrm{u}}{40.0}$	$\stackrel{N A}{N A}$	$\stackrel{\mathrm{NA}}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\frac{40.0 \mathrm{U}}{40.00}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	2.00U	5.00 U 5000	$\stackrel{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{N A}{N A}$	$\frac{20.0 \mathrm{u}}{20.0 \mathrm{u}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{160 \mathrm{U}}{160 \mathrm{U}}$	$\frac{\mathrm{NA}}{\text { NA }}$
		${ }_{\text {Mgh }}^{\text {Hgh }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }^{40.00}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }^{40.00} 4$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }^{\text {NA }}$	NA	${ }_{2}^{2.00 \mathrm{U}}$	5.00 U	NA	NA	${ }^{20.00}$	NA	160 U	NA			
Strrene	100	M91	NA	NA	NA	NA	NA	NA		NA	NA	NA	40.0 U	NA	NA	NA	NA	NA			NA	NA	2000	NA	160 U	
tert-Butybe		mgh	NA	NA	NA	NA	NA	NA	40.00	NA	NA	NA	40.00	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 u	NA	160 U	NA
Tetrachloroethene	5	Hg/	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0 U	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 O	NA	160 U	NA
Toluene	1,000	Hg/	NA	NA	NA	NA	NA	NA	40.0 U	NA		NA	40.0 U	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	${ }^{20.00}$	${ }^{\text {NA }}$	${ }^{160 \mathrm{U}^{\text {a }}}$	
trans-1,2-Dichioroethene	100	${ }_{\text {Hg/L }}$	NA	NA	NA	NA	NA	NA	14.0 J	NA	11.6 J	NA	${ }^{18.43}$	${ }^{0.60 \mathrm{~J}}$	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	${ }^{16.6 .6 ~}$	NA	${ }^{38.4 \mathrm{~J}}$	NA
trans-1,3-2iichloropropene		Hg/	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	NA	40.0 U	NA	NA	NA	$40.0{ }^{\text {u }}$	NA	NA	NA	NA	NA	2.00 U	${ }^{5.000}$	NA	NA	20.0 U	NA	${ }^{160 \mathrm{U}^{\prime}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$
trans-1,-4.ichloroo---butene	5	$\underset{\text { Mgh }}{\underline{\mu g h}}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	${ }_{201}^{200}$	$\stackrel{N A}{\text { NA }}$	${ }_{940}$	$\stackrel{N A}{\text { NA }}$	${ }_{9}^{2018}$	${ }_{5} 5$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	${ }_{33.5}^{10.0}$	${ }_{\text {2. }}^{6.80}$	${ }_{\text {NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{100}{578}$	$\stackrel{N A}{N A}$	${ }_{1600 \mathrm{U}}$	$\stackrel{N A}{\text { NA }}$			
TTichlorofluromethane		M9/	NA	NA	NA	NA	NA	NA	40.0 U	NA	NA	NA	40.0U	NA	NA	NA	NA	NA	2.00 U	5.00 U	NA	NA	20.0 U	NA	160 U	NA
Vinyl Choride	2	нg/	NA	NA	NA	NA	NA	NA	263	NA	134	NA	1,730	716	NA	NA	NA	NA	2.00 U	7.90	NA	NA	20.2	NA	160 U	NA
Inorganics - Total																										
roon	.-	Mg/	NA	${ }^{9,600 \mathrm{~L}}$	NA	${ }^{240 \mathrm{~L}}$	${ }^{\text {NA }}$	NA	NA	NA	NA															
Wet Chemistry																										
Alkainity Bicarbonate as CaCO3		$\stackrel{\text { Hgh }}{\mathrm{Hgh}}$	NA	${ }^{N A}$	NA	${ }^{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {NA }}$ NA	NA	$\xrightarrow{3,3000,000}$	NA	${ }^{\text {NA }}$	NA	260,000	NA	NA	NA	NA	NA	NA						
Bromide		Hg/	NA	NA	NA	NA	NA											NA	NA	${ }_{410 \mathrm{~J}}$	NA	NA	NA	NA		
cune									NA		NA	NA				NA					NA					
Alurne	${ }^{4,0000}$	$\xrightarrow{\text { Hght }}$	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }^{85,000} 2{ }^{250}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	${ }_{500 \mathrm{U}}^{200}$	${ }_{\text {NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{\text {NA }}$
Nititite (as N)	1.000	Mg/	NA	2.500 U	NA	500 U	NA	NA	NA	NA	NA															
Phosphai		ugh	NA	15,000	NA	${ }^{1,000}$ U	NA	NA	NA	NA	NA	NA														
Sulfate		$\mu \mathrm{g} / \mathrm{L}$	NA	1,200	NA	NA	NA	NA		NA	NA	NA	NA	14,000	NA	NA	NA	NA	NA							
Total Organic Carbon		mgh	NA	${ }_{\text {Na }}^{\text {Na }}$	${ }_{5}^{500}$		${ }_{4,200000}^{\text {NA }}$	$\frac{\mathrm{NA}}{4.100000}$	$\stackrel{\text { NA }}{ }$		4,200	3,600	4,200	4,500	5,200	5,700	5,900	5,200	NA	${ }^{\text {NA }}$	NA	NA	NA	NA	NA	$\xrightarrow{\text { NA }}$
Totale organc Carbon			$\frac{2,500,000}{\text { NA }}$	$\frac{4,400,000}{\text { NA }}$	$\frac{5,200,000}{\text { NA }}$	NA	$\frac{4,200,000}{N A}$	$\frac{100,000}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{4,400,000}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	${ }_{5}^{5.0000}$	$\frac{190,000}{\text { NA }}$	$\frac{10,000}{\text { NA }}$	$\frac{9,100}{\text { NA }}$	$\frac{1,000}{\text { NA }}$	$\frac{100,000}{\text { NA }}$	$\stackrel{\text { NA }}{\text { N, }}$
Field Parameters																										
deppht to water		feet	${ }^{9.55}$	${ }^{9.59}$	${ }^{8.61}$	7.02	${ }^{7} .13$	7.17	NA	7.95	6.53	6.32	6.62	${ }^{7.57}$	NA	${ }^{\mathrm{NA}}$	NA	NA	NA	NA						
deph do water	\because	feet bgs	$\frac{\mathrm{NA}}{\text { NA }}$	NA	NA	$\frac{N A}{N A}$	${ }^{\mathrm{NA}}$	NA	NA	NA	NA	NA	NA	${ }_{3}{ }_{3}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA	NA	${ }_{\text {8. }}^{8.21}$	${ }^{8.81}$	9.45	${ }_{8.81}$	${ }^{\text {NA }}$
Dissolved OXYygen	\cdots	${ }_{\text {mg }}$	NA	NA	${ }_{\text {10,640 }}$	NA	NA	NA	NA	110	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$	NA	$\stackrel{3.0}{\text { NA }}$	NA	${ }_{1,370}$	${ }_{\text {2,270 }}$	${ }^{2,400}$	${ }^{1,790}$	${ }_{1,780}$						
oxidation reduction potentia		mV	NA	NA	${ }^{-211.4}$	NA	NA	NA	NA	${ }^{-300.8}$	${ }^{-269.3}$	${ }^{1977}$	${ }^{281.4}$	-200.2	NA	${ }^{186.9}$	${ }^{141.2}$	${ }^{1017}$	${ }_{1}^{148.2}$	${ }^{5} 532.6$						
pH		su	5.83	5.84	5.84	5.88	5.86	6.03	NA	5.81	5.77	5.96	5.69	5.66	NA	6.84	6.3	5.56	5.39	5.4						
sainily		psu	4.2	4.1	NA	NA	${ }^{4.3}$	3.9	NA																	
specticic conductivity		usicm	${ }^{0.0076}$	7.2	8.887	NA	7.66	6.03	NA	7.384	${ }^{8.341}$	6.165	${ }^{8.076}$	8.603	NA	0.532	0.052	0.032	0.045	0.043						
emperatue	\because	${ }^{\text {c }}$ C	0.352	22.8	NA	NA	${ }_{24} 12$	${ }_{1}{ }^{17}$	NA	NA	NA	NA	NA	NA	$\frac{\mathrm{NA}}{\mathrm{NA}}$	NA	NA	NA	$\stackrel{N A}{N A}$	NA	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	${ }^{\text {Na }}$		NA	
Etrane	\cdots	$\mu \mathrm{g} / \mathrm{L}$									0.092								NA	0.037	NA	NA	0.25	NA	0.66	NA
Ethene		ugit	$\stackrel{N A}{N A}$	${ }_{\text {NA }}$	${ }_{5}^{4.4}$	NA	NA	NA	N	NA	2	NA	${ }^{18}$	${ }_{6}^{6.6}$	NA	NA	NA	NA	NA	0.5	NA	NA	0.9	NA	${ }^{2.7}$	NA
					580															33	NA	NA	51	NA	210	NA

Pilot Study Summary Repor
Myrtle Beach, South Carolina

Location ID Date Collected	$\underset{\substack{\text { USEPAISCDHEC } \\ \text { MCL }}}{\text { UC }}$	Units	$\begin{gathered} \text { P-3D } \\ \text { 10126609 } \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 11102090 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 111070909 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P} \cdot 3 \mathrm{D} \\ \text { 11116/109 } \end{gathered}$	$\begin{gathered} \mathrm{P} \cdot 3 \mathrm{D} \\ \text { 11123/09 } \end{gathered}$	$\begin{gathered} \text { P-3D } \\ 11 / 30 / 09 \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 12/14109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 121/24109 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-3D } \\ 12128109 \end{gathered}$	$\begin{gathered} \text { P-3D } \\ 0104110 \end{gathered}$	P-3D 0110510	$\begin{gathered} \text { P-3D } \\ 01 / 1810 \end{gathered}$	$\begin{gathered} \text { P.3D } \\ 02051010 \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { O216110 } \end{gathered}$	P.3D $03 / 04110$	$\begin{gathered} \text { P-3D } \\ \text { 03/05110 } \end{gathered}$	$\begin{gathered} \text { P.3D } \\ \text { 03329110 } \end{gathered}$	$\begin{gathered} \text { P-3D } \\ \text { 04131310 } \end{gathered}$	P.3D 0411910
$\frac{\text { Volatile Organics }}{\text { 1.1.2-Terachloroethane }}$																					
li, $1,1,1$-T-Trichloroethane	200	Hgh	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.00	NA	NA	NA	NA	100 U	NA	NA	NA
1,1,2,2-Tetrach horoethane		Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.00	NA	NA	NA	NA	${ }^{1000}$	NA	NA	NA
1,1,2-T.ichloroethane	5	Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.00	NA	NA	NA	NA	100 U	NA	NA	NA
	7	$\frac{\mathrm{Hg} / \mathrm{L}}{4 \mathrm{~L}}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$		$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{N A}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{20.0}{2000}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{100 \mathrm{U}}{100 \mathrm{u}}$	$\stackrel{N a}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$
			${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$		NA	${ }^{\text {NA }}$	${ }_{\text {NA }}$	NA	NA	${ }_{\text {NA }}$	${ }^{20.0}$	NA	NA	${ }_{\text {NA }}$	NA		NA	NA	$\cdots \mathrm{A}$
1, 1.2 .3 -Tichiolorobenenzene		$\frac{192}{4}$	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.0}{ }^{\text {U }}$	NA	NA	NA	NA	100 U	NA	NA	
1,2,3-TTichloropropane		Hgh	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.0}{ }^{\text {U }}$	NA	NA	NA	NA	100 U	NA	NA	
1,2,4-TTrichlorobenzene	70	нg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.00}$	NA	NA	NA	NA	100 U	NA	NA	
1,2,4,-7Timethybenzene		нg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 U	NA	NA	NA	NA	100 U	NA	NA	
1,2-2ibromo-3-chloropropane	0.2	нg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	100 U	NA	NA	NA	NA	500 U	NA	NA	
1,2-Dibromoethane	0.05	ug/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.00	NA	NA	NA	NA	100 U	NA	NA	
1,2--ichlorobenzene	600	Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 u	NA	NA	NA	NA	100 U	NA	NA	
1,2-Dichloroethane	5	нg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.00	NA	NA	NA	NA	1000	NA	NA	
1,2--iichioropropane	5	Hgg	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.00	NA	NA	NA	NA	100 U	${ }^{\text {NA }}$	NA	NA
1,3,5-TTimethybenzene		Mgh	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.00}$	NA	NA	NA	NA	${ }^{1000}$	NA	NA	NA
1,3-Dichlorobenzene	-	Hg/	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.00	NA	NA	NA	NA	100 U	NA	NA	NA
1,3--icichloropropane		Hg/	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.00}$	NA	NA	NA	NA	${ }_{1000}^{1000}$	NA	NA	NA
	75	$\frac{\mu g h}{\mu g h}$	$\frac{\mathrm{NA}}{\mathrm{NA}}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$		$\stackrel{N A}{\text { NA }}$	$\frac{\mathrm{NA}}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\stackrel{20.0}{2000}$	$\frac{\mathrm{NA}}{\text { NA }}$	${ }^{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	${ }^{\text {NA }}$	${ }^{1000}$	NA	NA	NA			
${ }^{\frac{2}{2}, 2 \text {--butathororeropane }}$		${ }_{\text {ghg }}$	NA	NA	NA		NA	NA	NA	NA	NA	NA	500 U	NA	NA	NA	NA	${ }^{2,500 \mathrm{U}}$	${ }^{57.65}$	NA	NA
2-Chlorototuene	-	Hg/	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 U	NA	NA	NA	NA	100 U	NA	NA	NA
2-Hexanone	\cdots	Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	100 U	NA	NA	NA	NA	500 U	NA	NA	NA
4 -Chlorotoluene	\cdots	Hg/	NA	NA	NA		NA	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	$\stackrel{20.00}{ }$	${ }^{\text {NA }}$	NA	${ }^{\text {NA }}$	NA	- 1000	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}$
4-Methy-2-pentanone		Hg/	NA	NA	NA		NA	NA	NA	NA	NA	${ }^{\text {NA }}$	100 O	NA	${ }^{\mathrm{NA}}$	NA	NA	- 500 U	NA	NA	
Aceione	5	${ }_{\text {Lgit }}$	${ }^{\text {NA }}$	$\stackrel{N}{\text { NA }}$	$\stackrel{\text { NA }}{\text { NA }}$		NA	$\stackrel{N A}{N A}$	NA	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{ }$	$\stackrel{\text { NA }}{ }$	${ }_{200 \mathrm{U}}$	$\stackrel{N A}{N A}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	$\stackrel{\text { 2,500 }}{1000}$	NA	$\stackrel{N A}{ }$	NA
Bromobenzene		Hg/	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 U	NA	NA	NA	NA	100 U	NA	NA	NA
Bromochloromethane		Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 u	NA	NA	NA	NA	100 U	NA	NA	
Bromodichloromeithane	${ }_{81}$	- Mg/	NA	NA	NA		NA	${ }^{\text {NA }}$	NA	${ }^{20.00}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	NA	NA	1000	NA	NA				
Bromotorm	81	Hgh	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.0}$	NA	NA	NA	NA	100	NA	NA	
Bromomehane		-ggt	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.00}$	NA	NA	NA	NA	1000	NA	NA	
Carbon Tetrachloride	5	$\frac{\square}{\text { mgh }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }^{\text {NA }}$		${ }_{\text {NA }}$	${ }^{20.00}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	NA	100 U	NA	${ }_{\text {NA }}$	NA					
Chlorobenzeene	100	Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.00	NA	NA	NA	NA	100 U	NA	NA	
Chioroethane	86	Hg/	NA	NA	${ }^{\mathrm{NA}}$		NA	NA	${ }^{\mathrm{NA}}$	NA	NA	${ }^{\text {NA }}$	${ }^{20.00}$	NA	NA	NA	NA	1000	NA	${ }^{\text {NA }}$	NA
	8	-	N	N	N		N	N	N	N	N	N	20.0 u	N	,	,	,	-100	N		
cis-1.-Dichioroethene	70	$\underline{4012}$	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }_{81.8}^{81.8}$	NA	${ }_{1.440}$	NA	NA	${ }^{624}$	${ }^{43.6}$	NA	${ }^{\text {NA }}$
cis-1,3-Dichioropropene		Hgh	NA	NA	NA		NA	NA	NA	NA	NA	NA	$20.0 \cup$	NA	NA	NA	NA	100 U	NA	NA	
Dibromochloromethane	86	ugh	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 U	NA	NA	NA	NA	100 U	NA	NA	NA
Dibromomethane		Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.00}$	NA	NA	NA	NA	100 U	NA	NA	NA
Dichlorodifluromemane		Hg/	NA	NA	NA		NA	NA	NA	NA	NA	NA	100 U	NA	NA	NA	NA	500 U	NA	NA	
Disoproy le lher (DIPE)	100	- g / L	NA	NA	NA		NA	NA	NA	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	${ }^{\text {NA }}$	${ }^{20.00}$	NA	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	NA	100	NA	NA	
Hexachlorobutuadiene			NA	${ }^{\text {NA }}$	${ }^{N A}$		NA	${ }^{\text {NA }}$	NA	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	${ }^{20.00}$	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}$	NA	100 u	NA	NA	${ }^{\text {NA }}$
lodomethane	\cdots	Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 U	NA	NA	NA	NA	100 U	NA	NA	NA
sopropybenzene		mgh	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.0}{ }^{\text {U }}$	NA	NA	NA	NA	100 u	NA	NA	NA
m;p-p-xylene	\cdots	Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	40.00	NA	NA	NA	NA	200 U	NA	NA	NA
Methy erer-buty ethel	5	$\frac{\text { Hgh }}{\text { Hgh }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$		$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{\text { NA }}$	$\stackrel{N A}{N A}$	$\stackrel{20.0}{100 \mathrm{U}}$	${ }_{\text {NA }}$	$\stackrel{\text { NA }}{\text { NA }}$	$\frac{N A}{N A}$	$\stackrel{N A}{N A}$	${ }^{1000}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{N A}$	$\stackrel{N A}{\text { NA }}$
Naphhtalene		Hg/	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.00}$	NA	NA	NA	NA	100 U	NA	NA	NA
n-butybenzene		Mg/	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.0}$	NA	NA	NA	NA	100 U	NA	NA	NA

Pilot Study Summary Reporn
AVX Corporation
Myrtle Beach, south Carolina

Location ID: Date Collected:	USEPAISCDHEC MCL	Unit	P.3D 10126109	P.3D 1102109	P.3D 1110709	P.3D 11116109	$\begin{gathered} \text { P.3D } \\ \text { 111231099 } \end{gathered}$	P.3D $11 / 30109$	$\begin{gathered} \text { P.3D } \\ \text { 122140909 } \end{gathered}$	$\underset{\text { 1221240909 }}{\substack{\text { P. } \\ \hline}}$	P.3D 12128109	P-3D 0104110	P.3D 010510	$\begin{gathered} \text { P-3D } \\ 01 / 18110 \end{gathered}$	P.3D 0205510	P-3D 0216110	P.3D 0310410	P-3D 0310510	P-3D $03 / 29110$	P-3D 0413310	P-3D 0419910
		got	NA	NA	NA			NA			NA							100 U			NA
sec.Butybenzene		got	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 u	NA	NA	NA	NA	100 U	NA	NA	NA
Styrene	100	Mg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.0}$	NA	NA	NA	NA	${ }^{100 \mathrm{U}}$	NA	NA	NA
t-Butybenzene		mgh	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.0}$	NA	NA	NA	NA	${ }^{100} \mathrm{U}$	NA	NA	NA
Tetrachloroethene	5	нg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	${ }^{20.0}$	NA	NA	NA	NA	100 U	NA	NA	NA
Toluene	1,000	Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 U	NA	NA	NA	NA	100 U	NA	NA	NA
trans-1,2-2ichloroethene	100	Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 U	NA	NA	NA	NA	100 U	NA	NA	NA
trans-1,3.-Dichioroporopene		Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0 U	NA	NA	NA	NA	100 U	NA	NA	NA
trans-1,4-Dicichoro-2-butene		Hg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA	100 U	NA	NA	NA	NA	${ }^{500 \mathrm{U}}$	${ }^{\text {NA }}$	NA	NA
Trichloroethene	5	mg/	NA	NA	NA		NA	NA	NA	NA	NA	NA	$20.0{ }^{2}$	NA	NA	NA	NA	${ }^{30.0}$	NA	NA	NA
Trichlorofluoromethane		mgh	NA	NA	NA		NA	NA	NA	NA	NA	NA	20.0	NA	NA	NA	NA	100 U	NA	NA	NA
Inorganics - Total																					
	-	mgh	NA																		
Wet Chemistry																					
Akaminily as cacos	-	Hgh	NA	NA	${ }^{\text {NA }}$	NA	${ }_{\text {NA }}$	NA	${ }^{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	${ }^{\mathrm{NA}}$								
Alkainity Bicarbonale as cac		mgh	NA	A																	
Sromide		Hgh	NA	${ }^{\text {NA }}$	NA	NA	NA	NA	NA	${ }^{\text {NA }}$	NA	NA									
Ellonde			NA		NA	NA	NA	NA													
Nitrate as N	4,000	Hght	$\stackrel{N A}{N A}$	NA	$\frac{N A}{N A}$																
Nitrite (as N)	1,000	${ }_{\text {Mgl }}$	NA																		
Phosph		нg/L	NA																		
Sulfale	.	нg/L	NA																		
Total O Organic Carbon		нg/L	NA	NA	NA	NA		NA	16	9.6	NA	13	150	14	2,700						
Total Organic Carbon		dgat	6,000	${ }_{\text {11,000 }}$	${ }^{23,000}$	7,400	${ }^{30,000}$	25,000	27,000	120,000 M	18,000	19,000	NA	14,000			NA		NA		
Iotal Phosphate as PO4.P		Mgh	NA																		
Field Parameters																					
dephto water		feet bos	${ }_{0} 9.35$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	NA	NA	NA	NA	${ }_{\text {V }}$ NA	${ }_{\text {N }} \mathrm{NA}$	${ }_{\text {end }}^{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}$	${ }_{\text {NA }}^{\text {NA }}$	${ }_{\text {5. }}^{\text {NA }}$	NA	${ }_{\text {NA }}$	$\stackrel{6.52}{\text { NA }}$	NA	${ }_{\text {NA }}$
Dissolved Oxygen		mgl	NA	1.57	1.36	1.15	NA	2.26	NA	NA											
Dissolved Oxygen		${ }_{\text {Hg/ }}$	2,020	NA	NA	NA	NA	NA	${ }^{22,240}$	NA	NA	NA	NA	1,690	NA		NA	NA	NA	${ }^{\text {NA }}$	NA
oxidation reduction potentia		mV	${ }^{-178.3}$	NA	NA	NA	NA	NA	${ }^{-218.5}$	NA	NA	NA	NA	-163	125	168.7	${ }^{-165.6}$	NA	${ }^{183.5}$	NA	NA
		su	6.37	NA	NA	${ }^{7} .3$	7.02	7.27	7.12	6.91	7.29	7.7	NA	7.15	7.08	6.95	6.91	NA	6.62	NA	${ }^{\mathrm{NA}}$
salinity		PSU	NA	NA	NA	0.1	0.2	0.2	NA	NA	0.3	0.4	NA								
speecific conductivity		us/cm	0.078	NA	NA	${ }^{0.269}$	0.352	${ }_{0}^{0.3}$	0.92	1.007	${ }_{0}^{0.518}$	${ }^{0.742}$	NA	0.554	0.643	0.28	0.976	NA	1.102	NA	NA
temperatue				NA	$\stackrel{N A}{\text { NA }}$	$\frac{20.2}{\text { NA }}$		$\frac{20.2}{\text { NA }}$													$\stackrel{N A}{N A}$
(issolver Gases																					
Ethane		Mg/	${ }^{0.62}$	NA	${ }^{\text {NA }}$	0.67	NA	NA	0.11	NA	NA	NA	NA	NA	0.39	NA	NA	0.12	${ }^{0.13}$	NA	NA
	-	$\frac{\text { ugl }}{\text { U91 }}$	2.3	NA	NA	${ }_{3}^{560}$	NA	NA	${ }_{3}^{1.8}$	NA	$\stackrel{\text { NA }}{\text { NA }}$	NA	NA	NA	$\stackrel{69}{3700}$	NA	$\stackrel{\text { NA }}{\text { NA }}$	${ }_{\text {L }}^{1.400}$	3,500	NA	NA

Table 3
Summary of Performance Monitoring Results

Pilot Study Summary Report
 AVX Corporation

Myrtle Beach, South Carolina

Qualifier Type	Lab Qualifiers	Definition
Inorganic	J	Indicates an estimated value.
Inorganic	L	Sample analysis subcontracted to Pace Analytical Services.
Inorganic	M	
Inorganic	U	The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
Inorganic	UM	
Organic	J	Indicates an estimated value.
Organic	U	The compound was analyzed for but not detected. The associated value is the compound quantitation limit.

ARCADIS

Figures

REFERENCE: BASE MAP USGS 7.5 MIN. QUAD., MYRTLE BEACH, SOUTH CAROLINA, PHOTOREVISED 1984.
Approximate Scale: $\mathbf{1 " ~}^{\prime \prime}=2000^{\prime}$
AVX CORPORATION
MYRTLE BEACH FACILITY
MYRTLE BEACH, SOUTH CAROLINA

$e^{P-3 D}$

LEGEND:

MONTORING LOCATION OF IN THE LOWER TERRACE
DEPOSITS

INJECTION WELL SCREENED IN THE LOWER TERRACE DEPOSITS

LocAtion of piezometers SCREENED IN THE LOWER TERRACE DEPOSITS

SG-101 (1)
LOCATION OF SOIL GAS SAMPLING POINTS IN SHALLOW VADOSE ZONE

NOTE:
ALL LOCATIONS ARE APPROXIMATE.
$\ominus^{\text {IW6D }}$

AVX CORPORATION
MRTLE BEACH FACILITY
MYRTLE BEACH. SOUTH CAROLINA
ERD TEST LAYOUT
g ARCADIS

Figure 7: P-2D Performance Monitoring Results

Figure 8: OW-8D Performance Monitoring Results

Figure 9: OW-9D Performance Monitoring Results

Figure 10: OW-10D Performance Monitoring Results

Figure 11: OW-7D Performance Monitoring Results

Figure 12: OW-7D Total Organic Carbon and Specific Conductivity Data

ARCADIS

Appendix A

Well Completion Logs

Date Start/Finish: Drilling Company: Driller's Name: Drilling Method: Auger/Tube Size: Rig Type: Sampling Method:			June 4, 2009 Parratt-Wolff, Inc. Louis LeFever Hollow-Stem Augers Ingersol Rand Hollow Stem Auger Cuttings			Northing: 677619.91 Easting: 2636576.76 Casing Elevation: 19.45 Borehole Depth: 39.5 feet bgs Surface Elevation: 19.65 Descriptions By: Thomas Darby	Well/Boring ID: IW2D Client: AVX Corporation Location: Myrtle Beach, South Carolina
		0 0 0 0 0 0			$\begin{aligned} & \text { ㄷ } \\ & \overline{0} \\ & 0 \\ & .0 \\ & 0 \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings. The drilling location was near power lines which prevented safe use of the derrick necessary to collected macrocore samples from the screened interval depth.
bgs - below ground surface
NA - not available or not applicable

Date Start/Finish: Drilling Company: Driller's Name: Drilling Method: Auger/Tube Size: Rig Type: Sampling Method:			June 4, 2009 Parratt-Wolff, Inc. Louis LeFever Hollow-Stem Augers Ingersol Rand Cuttings and DP Macrocores			Northing: 677574.61 Easting: 2636598.47 Casing Elevation: 19.65 Borehole Depth: 42 feet bgs Surface Elevation: 19.90 Descriptions By: Thomas Darby	Well/Boring ID: IW3D Client: AVX Corporation Location: Myrtle Beach, South Carolina
		$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from 0-20 feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable

Date Start/Finish: Drilling Company: Driller's Name: Drilling Method: Auger/Tube Size: Rig Type: Sampling Method:			June 4 to 5, 2009 Parratt-Wolff, Inc. Louis LeFever Hollow-Stem Augers Ingersol Rand Cuttings and DP Macrocores			Northing: 677536.35 Easting: 2636631.82 Casing Elevation: 19.90 Borehole Depth: 42 feet bgs Surface Elevation: 20.20 Descriptions By: Thomas Darby	Well/Boring ID: IW4D Client: AVX Corporation Location: Myrtle Beach, South Carolina
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			ㄷ 0	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from 0-20 feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable

Date Start/Finish: Drilling Company: Driller's Name: Drilling Method: Auger/Tube Size: Rig Type: Sampling Method:			June 3, 2009 Parratt-Wolff, Inc. Louis LeFever Hollow-Stem Augers Ingersol Rand Cuttings and DP Macrocores			Northing: 677498.47 Easting: 2636664.53 Casing Elevation: 20.19 Borehole Depth: 42 feet bgs Surface Elevation: 20.54 Descriptions By: Thomas Darby	Well/Boring ID: IW5D Client: AVX Corporation Location: Myrtle Beach, South Carolina
		0 0 0 0 0 0				Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from 0-20 feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable

Date Start/Finish: Drilling Company: Driller's Name: Drilling Method: Auger/Tube Size: Rig Type: Sampling Method:			June 3, 2009 Parratt-Wolff, Inc. Louis LeFever Hollow-Stem Augers Ingersol Rand Cuttings and DP Macrocores			Northing: 677461.13 Easting: 2636697.42 Casing Elevation: 19.60 Borehole Depth: 42 feet bgs Surface Elevation: 20.25 Descriptions By: Thomas Darby	Well/Boring ID: IW6D Client: AVX Corporation Location: Myrtle Beach, South Carolina
		O 0 0 0 0 0			$\begin{aligned} & \check{c} \\ & \underline{I} \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline 0 \\ & \hline 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from 0-20 feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable

Date Start/Finish:	June 8, 2009	Northing:	677555.35	Well/Boring ID: OW7D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636615.08	Client: AVX Corporation
Driller's Name:	Louis LeFever	Casing Elevation:	19.71 ft amsl	
Drilling Method:	Hollow-Stem Augers	Borehole Depth:	42 feet bgs	Location: Myrtle Beach, South Carolina
Auger/Tube Size:	Ingersol Rand	Surface Elevation: 20.05 ft amsl		
Rig Type:	Descriptions By:	Thomas Darby		
Sampling Method:	Cuttings and DP Macrocores			

		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { ᄃ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from 0-20 feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable amsl - above mean sea level

Date Start/Finish:	June 8, 2009	Northing:	677555.35	Well/Boring ID: OW7D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636615.08	
Driller's Name:	Louis LeFever	Casing Elevation:	19.71 ft amsl	Client: AVX Corporation
Drilling Method:	Hollow-Stem Augers			
Rig Type: Sampling Method:	Ingersol Rand Cuttings and DP Macrocores	Surface Elevation:	20.05 ft amsl	Location: Myrtle Beach, South Carolina
		Descriptions By:	Thomas Darby	

		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		(mdd) әэedspeән वld	$\begin{aligned} & \overline{ } \\ & \overline{3} \\ & 0 \\ & \hline 0 \\ & \frac{0}{0} \\ & \hline 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from 0-20 feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable amsl - above mean sea level

Date Start/Finish:	June 9, 2009	Northing:	677527.23	Well/Boring ID: OW8D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636581.63	Client: AVX Corporation
Driller's Name:	Louis LeFever	Casing Elevation:	19.66 ft amsl	
Drilling Method:	Hollow-Stem Augers	Borehole Depth:	39.5 feet bgs	Location: Myrtle Beach, South Carolina
Auger/Tube Size:	Ingersol Rand	Surface Elevation:	19.95 ft amsl	
Rig Type:	Descriptions By:	Thomas Darby		
Sampling Method:	Cuttings and DP Macrocores			

		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { ᄃ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from $0-20$ feet bgs and on logging of 4-foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable amsl - above mean sea level

Date Start/Finish:	June 9, 2009	Northing:	677527.23	Well/Boring ID: OW8D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636581.63	Client: AVX Corporation
Driller's Name:	Louis LeFever	Casing Elevation: 19.66 ft amsl		
Drilling Method:	Hollow-Stem Augers	Borehole Depth:	39.5 feet bgs	Location: Myrtle Beach, South Carolina
Auger/Tube Size:	Ingersol Rand	Surface Elevation:	19.95 ft amsl	
Rig yype:	Descriptions By:	Thomas Darby		
Sampling Method:	Cuttings and DP Macrocores			

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from 0-20 feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable
amsl - above mean sea level

Date Start/Finish:	June 9, 2009	Northing:	677486.65	Well/Boring ID: OW9D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636608.19	
Driller's Name:	Louis LeFever	Casing Elevation:	20.03 ft amsl	Client: AVX Corporation
Drilling Method:	Hollow-Stem Augers			
Auger/Tube Size: Rig Type:	Ingersol Rand	Borehole Depth: Surface Elevation:	41.7 feet bgs 20.26 ft amsl	Location: Myrtle Beach, South Carolina
Sampling Method:	Cuttings and DP Macrocores	Descriptions By:	Thomas Darby	

		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { ᄃ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from 0-20 feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable amsl - above mean sea level

		$\begin{aligned} & 0 \\ & 08 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { ᄃ } \\ & \underline{3} \\ & 0 \\ & .0 \\ & .0 \\ & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from $0-20$ feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable amsl - above mean sea level

Date Start/Finish: Drilling Company: Driller's Name: Drilling Method: Auger/Tube Size: Rig Type: Sampling Method:			June 10, 2009 Parratt-Wolff, Inc. Louis LeFever Hollow-Stem Augers Ingersol Rand Cuttings and DP Macrocores			Northing: 677486.24 Easting: 2636564.91 Casing Elevation: 19.69 ft amsl Borehole Depth: 40.5 feet bgs Surface Elevation: 20.00 ft amsl Descriptions By: Thomas Darby	Well/Boring ID: OW10D Client: AVX Corporation Location: Myrtle Beach, South Carolina
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			등 0	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings from 0-20 feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable amsl - above mean sea level

Date Start/Finish:	June 10, 2009	Northing:	677486.24	Well/Boring ID: OW10D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636564.91	
Driller's Name:	Louis LeFever	Casing Elevation:	19.69 ft amsl	Client: AVX Corporation
Drilling Method: Auger/Tube Size:	Hollow-Stem Augers			
Rig Type:	Ingersol Rand	Surface Elevation:	$\begin{aligned} & 40.5 \text { feet bgs } \\ & 20.00 \mathrm{ft} \text { amsl } \end{aligned}$	Location: Myrtle Beach, South Carolina
		Descriptions By:	Thomas Darby	

		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				Stratigraphic Description	Well/Boring Construction

-25	-25			

Remarks:
9 ARCADIS
Infastructure envionment, failities
Lithologic descriptions based on inspection of hollow stem auger cuttings from $0-20$ feet bgs and on logging of 4 -foot long, 2 -inch diameter macrocore samples from 20 feet bgs to the bottom of the boring.
bgs - below ground surface
NA - not available or not applicable
amsl - above mean sea level

Date Start/Finish:	September 22, 2008	Northing:	677408.539	Well/Boring ID: P-1D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636710.594	Client: AVX Corporation
Driller's Name:	Louis LeFever	Casing Elevation:	19.65 feet amsl	
Drilling Method:	Hollow-Stem Augers	Borehole Depth:	51 feet bgs	
Auger/Tube Size:	4.25-inches	Location: Myrtle Beach, South Carolina		
Rig Type:	Ingersol Rand	Surface Elevation:	20.02 feet amsl	
Sampling Method:	Direct-Push Techology	Descriptions By:	David M. Mack	

					$\begin{aligned} & \stackrel{C}{E} \\ & \overline{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

Date Start/Finish:	September 22, 2008	Northing:	677408.539	Well/Boring ID: P-1D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636710.594	Client: AVX Corporation
Driller's Name:	Louis LeFever	Casing Elevation:	19.65 feet amsl	
Drilling Method:	Hollow-Stem Augers	Borehole Depth:	51 feet bgs	
Auger/Tube Size:	4.25-inches	Location: Myrtle Beach, South Carolina		
Rig Type:	Ingersol Rand	Surface Elevation:	20.02 feet amsl	
Sampling Method:	Direct-Push Techology	Descriptions By:	David M. Mack	

				(mdd) әכedspeəH ald		Stratigraphic Description	Well/Boring Construction

Remarks:

All samples collected via direct-push technologies using a 2 -inch diameter, 4 -foot long macrocore sampler.
bgs - below ground surface
amsl - above mean sea level
NA - not available or not applicable

		$\begin{aligned} & 0 \\ & 08 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \bar{c} \\ & \overline{3} \\ & 0 \\ & 0 \\ & 0.0 \\ & \frac{0}{0} \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

All samples collected via direct-push technologies using a 2-inch diameter, 4-foot long macrocore sampler.
bgs - below ground surface
amsl - above mean sea level
NA - not available or not applicable

Date Start/Finish: Drilling Company: Driller's Name: Drilling Method: Auger/Tube Size: Rig Type: Sampling Method:				and Inc. Auge		Northing: 677521.3547 Easting: 2636611.758 Casing Elevation: 19.84 feet amsl Borehole Depth: 46 feet bgs Surface Elevation: 20.13 feet ams Descriptions By: David M. Mack	Well/Boring ID: P-2D Client: AVX Corporation Location: Myrtle Beach, South Carolina
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				Stratigraphic Description	Well/Boring Construction

Remarks:

All samples collected via direct-push technologies using a 2 -inch diameter, 4 -foot long macrocore sampler.
bgs - below ground surface
amsl - above mean sea level
NA - not available or not applicable

Date Start/Finish:	September 29, 2008	Northing:	677623.6569	Well/Boring ID: P-3D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636521.048	Client: AVX Corporation
Driller's Name:	Louis LeFever	Casing Elevation:	18.95 feet amsl	
Drilling Method:	Hollow-Stem Augers			
Auger/Tube Size:	2.25-inches	Borehole Depth:	45 feet bgs	Location: Myrtle Beach, South Carolina
Rig Type:	Ingersol Rand	Surface Elevation:	19.29 feet amsl	
Sampling Method:	Direct-Push Techology	Descriptions By:	David M. Mack	

					$\begin{aligned} & \stackrel{C}{E} \\ & \overline{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

All samples collected via direct-push technologies using a 2 -inch diameter, 4 -foot long macrocore sampler.
bgs - below ground surface
amsl-above mean sea level
NA - not available or not applicable

Date Start/Finish:	September 29, 2008	Northing:	677623.6569	Well/Boring ID: P-3D
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636521.048	
Driller's Name:	Louis LeFever	Casing Elevation:	18.95 feet amsl	Client: AVX Corporation
Drilling Method:	Hollow-Stem Augers			
Auger/Tube Size:	2.25 -inches	Borehole Depth:	45 feet bgs	Location: Myrtle Beach, South Carolina
Rig Type:	Ingersol Rand	Surface Elevation:	19.29 feet amsl	Location: Myrle Beach, South Carolna
		Descriptions By:	David M. Mack	

					$\begin{aligned} & \stackrel{C}{E} \\ & \overline{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

All samples collected via direct-push technologies using a 2 -inch diameter, 4 -foot long macrocore sampler.
bgs - below ground surface
amsl - above mean sea level
NA - not available or not applicable

Date Start/Finish:	June 5, 2009	Northing:	677542.72	Well/Boring ID: SG-101
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636625.98	Client: AVX Corporation
Driller's Name:	Louis LeFever	Casing Elevation:	19.9 feet bgs	
Drilling Method:	Hollow-Stem Augers	Borehole Depth:	5.15 feet bgs	Location: Myrtle Beach, South Carolina
Auger/Tube Size:	Ingersol Rand	Surface Elevation:	20.13 feet bgs	
Rig Type:	Descriptions By:	Thomas Darby		
Sampling Method:	Hollow Stem Auger Cuttings			

		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { ᄃ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings. The drilling location was near power lines which prevented safe use of the derrick necessary to collected macrocore samples from the screened interval depth.
bgs - below ground surface
NA - not available or not applicable

Date Start/Finish:	June 5, 2009	Northing:	677540.99	Well/Boring ID: SG-102
Drilling Company:	Parratt-Wolff, Inc.	Easting:	2636641.04	Client: AVX Corporation
Driller's Name:	Louis LeFever	Casing Elevation:	19.93 feet bgs	
Drilling Method:	Hollow-Stem Augers	Borehole Depth:	5.2 feet bgs	Location: Myrtle Beach, South Carolina
Auger/Tube Size:	Ingersol Rand	Surface Elevation:	20.23 feet bgs	
Rig Type:	Descriptions By:	Thomas Darby		
Sampling Method:	Hollow Stem Auger Cuttings			

		$\begin{aligned} & 0 \\ & 08 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { ᄃ } \\ & \underline{3} \\ & 0 \\ & .0 \\ & .0 \\ & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	Stratigraphic Description	Well/Boring Construction

[10

Remarks:

Lithologic descriptions based on inspection of hollow stem auger cuttings. The drilling location was near power lines which prevented safe use of the derrick necessary to collected macrocore samples from the screened interval depth.
bgs - below ground surface
NA - not available or not applicable

ARCADIS

Appendix B

Photos

Appendix B

Photolog
Pilot Study Summary Report
AVX Corporation
Myrtle Beach, South Carolina

Photo \#1: Mixing system for concentrated molasses solution.

Appendix B

Photolog
Pilot Study Summary Report
AVX Corporation
Myrtle Beach, South Carolina

Photo \#2: Typical well head apparatus with pressure relief valve.

ARCADIS

Appendix C

Laboratory Analytical Data

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 13
Lab Pro \#: P0907222
Report Date: 08/03/09
Client Pro Name: B0007393.0000.00001
Client Proj \#: AVXMB

Laboratory Results

Lab Sample \#	
Client Sample ID	
P0907222-01	OW-10D(072009)
P0907222-02	OW-9D(072009)
P09072222-03	PZ-1D(072009)
P0907222-05	IW-6D(072009)
P0907222-06	IW-8D(072009)
P0907222-07	PZ-2D(072009)
P0907222-08	IW-4D(072009)
P0907222-09	IW-7D(072009)
P0907222-10	IW-3D(072009)
P0907222-11	IW-2D(072009)
P0907222-12	PZ-3D(072009)

Approved By:
 Date: \qquad
Project Manager: \qquad
The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.
Case Narrative: The phosphate and metals analyses were performed by Pace Analytical Services

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description OW-10D(072009)	Matrix Water	$\frac{\text { Lab Sam }}{\text { Pnanto }}$		20 Jul. 09 8:50	Received		
Analyte(s)	Result	PQL	Units	Method\#	Analysi	Date	By
WetChem							
N Alkalinity as CaCO 3	290	4	mg / L	SM2320B	7/25/09		tld
N Alkalinity Bicarbonate as CaCO 3	290	4	mg / L	SM2320B	7/25/09		tld
N Bromide	<1.00	1.00	mg / L	9056	7/21/09	16:40	md
N Chloride	46.00	1.00	mg / L	9056	7/21/09	16:40	md
N Fluoride	<0.50	0.50	mg / L	9056	7/21/09	16:40	md
N Nitrate	2.50	0.50	mg / L	9056	7/21/09	16:40	md
N Nitrite	<0.50	0.50	mg / L	9056	7/21/09	16:40	md
N Phosphate	<1.00	1.00	mg / L	9056	7/21/09	16:40	md
N Sulfate	26.00	1.00	mg / L	9056	7/21/09	16:40	md
N Total Organic Carbon	<5.0	5.0	mg / L	9060	7/29/09		md
total Phosphate as PO4-P	0.92	0.09	mg / L	365.3	7/23/09		pas
Metals							
Iron	2.100	0.050	mg / L	6010B	7/22/09		pas
Iron-dissolved	1.600	0.050	mg / L	6010B	7/23/09		pas
Manganese	0.070	0.005	mg / L	6010B	7/22/09		pas
Manganese-dissolved	0.064	0.005	mg / L	6010B	7/23/09		pas
RiskAnalysis							
N Ethane	0.700	0.025	ug/L	AM20GAX	7/29/09		sl
N Ethene	6.400	0.025	ug/L	AM20GAX	7/29/09		sl
N Methane	240.000	0.100	ug/L	AM20GAX	7/29/09		sl

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 긍

Page: Page 3 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fieids, PA 16046 - -

Page: Page 5 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \#		Sampled Date/Time	Received		
IW-6D(072009)	Water	P0907222-04		20 Jul. 09 13:14	21 Jul. 09 11:42		
Analyte(s)	Result	PQL	Units	Method \#	Analysis	Date	By
WetChem							
N Alkalinity as CaCO 3	270	4	mg / L	SM2320B	7/25/09		tld
N Alkalinity Bicarbonate as CaCO 3	270	4	mg / L	SM2320B	7/25/09		tld
N Bromide	<1.00	1.00	mg / L	9056	7/21/09	18:30	md
N Chloride	35.00	1.00	mg / L	9056	7/21/09	18:30	md
N Fluoride	<0.50	0.50	mg / L	9056	7/21/09	18:30	md
N Nitrate	6.00	0.50	mg / L	9056	7/21/09	18:30	md
N Nitrite	<0.50	0.50	mg / L	9056	7/21/09	18:30	md
N Phosphate	<1.00	1.00	mg / L	9056	7/21/09	18:30	md
N Sulfate	17.00	1.00	mg / L	9056	7/21/09	18:30	md
N Total Organic Carbon	<5.0	5.0	mg / L	9060	7/29/09		md
total Phosphate as PO4-P	1.10	0.09	mg / L	365.3	7/23/09		pas
Metals							
Iron	4.200	0.050	mg / L	6010B	7/22/09		pas
Iron-dissolved	1.600	0.050	mg / L	6010B	7/23/09		pas
Manganese	0.068	0.005	mg / L	6010B	7/22/09		pas
Manganese-dissolved	0.052	0.005	mg / L	6010B	7/23/09		pas
RiskAnalysis							
N Ethane	0.110	0.025	ug/L	AM20GAX	7/29/09		sl
N Ethene	0.450	0.025	ug/L	AM20GAX	7/29/09		st
N Methane	54.000	0.100	ug/L	AM20GAX	7/29/09		st

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description IW-5D(072009)	Matrix Water	$\frac{\text { Lab Sam }}{\text { P090722 }}$		$\frac{\text { Sampled Date/Time }}{20 \text { Jul. } 0914: 15}$	Received		
Analyte(s)	Result	PQL	Units	Method \#	Analysis Date		By
WetChem							
N Alkalinity as CaCO 3	240	4	mg / L	SM2320B	7/25/09		tld
N Alkalinity Bicarbonate as CaCO 3	240	4	mg / L	SM2320B	7/25/09		tld
N Bromide	<1.00	1.00	mg / L	9056	7/21/09	18:52	md
N Chloride	38.00	1.00	mg / L	9056	7/21/09	18:52	md
N Fluoride	<0.50	0.50	mg / L	9056	7/21/09	18:52	md
N Nitrate	2.40	0.50	mg / L	9056	7/21/09	18:52	md
N Nitrite	<0.50	0.50	mg / L	9056	7/21/09	18:52	md
N Phosphate	<1.00	1.00	mg / L	9056	7/21/09	18:52	md
N Sulfate	15.00	1.00	mg / L	9056	7/21/09	18:52	md
N Total Organic Carbon	<5.0	5.0	mg / L	9060	7/29/09		md
total Phosphate as PO4-P	0.86	0.09	mg / L	365.3	7/23/09		pas
Metals							
Iron	1.800	0.050	mg / L	6010B	7/22/09		pas
Iron-dissolved	1.400	0.050	mg / L	6010B	7/23/09		pas
Manganese	0.057	0.005	mg / L	6010B	7/22/09		pas
Manganese-dissolved	0.051	0.005	mg / L	6010B	7/23/09		pas
RiskAnalysis							
N Ethane	0.140	0.025	ug/L	AM20GAX	7/30/09		rw
N Ethene	1.300	0.025	ug/L	AM20GAX	7/30/09		rw
N Methane	48.000	0.100	ug/L	AM20GAX	7/30/09		rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 -- - .-- --

Page: Page 7 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description IW-8D(072009)	Matrix Water	Lab Sample \# P0907222-06		Sampled Date/Time 20 Jul 09 15:40		eived 0911	
Analyte(s)	Result	PQL	Units	Method \#	Analys	Date	By
WetChem							
N Alkalinity as CaCO 3	230	4	mg / L	SM2320B	7/25/09		tid
N Alkalinity Bicarbonate as CaCO 3	230	4	mg / L	SM2320B	7/25/09		tld
N Bromide	<1.00	1.00	mg / L	9056	7/21/09	20:20	md
N Chloride	37.00	1.00	mg / L	9056	7/21/09	20:20	md
N Fluoride	<0.50	0.50	mg / L	9056	7/21/09	20:20	md
N Nitrate	<0.50	0.50	mg / L	9056	7/21/09	20:20	md
N Nitrite	<0.50	0.50	mg / L	9056	7/21/09	20:20	md
N Phosphate	<1.00	1.00	mg / L	9056	7/21/09	20:20	md
N Sulfate	13.00	1.00	mg / L	9056	7/21/09	20:20	md
N Total Organic Carbon	<5.0	5.0	mg / L	9060	7/29/09		md
total Phosphate as PO4-P	0.74	0.09	mg / L	365.3	7/23/09		pas
Metals							
iron	1.600	0.050	mg / L	6010B	7/22/09		pas
Iron-dissolved	1.300	0.050	mg / L	6010B	7/23/09		pas
Manganese	0.055	0.005	mg / L	6010B	7/22/09		pas
Manganese-dissolved	0.052	0.005	mg / L	6010B	7/23/09		pas
RiskAnalysis							
N Ethane	0.300	0.025	ug/L	AM20GAX	7/30/09		nw
N Ethene	2.400	0.025	ug/L	AM20GAX	7/30/09		rw
N Methane	150.000	0.100	ug/L	AM20GAX	7/30/09		rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 --

Page: Page 8 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj\#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Bivd.
Suite 210
Seven Fields, PA 160466^{-}-

Page: Page 10 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description IW-7D(072009)	Matrix Water	$\frac{\text { Lab Sam }}{\text { P09072 }}$		Sampled Date/Time 20 Jul 0913.04	$21 \frac{\text { Received }}{\text { Jul. } 09 \text { 11:42 }}$		
Analyte(s)	Result	PQL	Units	Method \#	Analysi	Date	By
WetChem							
N Alkalinity as CaCO 3	240	4	mg / L	SM2320B	7/25/09		tid
N Alkalinity Bicarbonate as CaCO 3	240	4	mg / L	SM2320B	7/25/09		tld
N Bromide	<1.00	1.00	mg / L	9056	7/21/09	21:26	md
N Chloride	35.00	1.00	mg / L	9056	7/21/09	21:26	md
N Fluoride	<0.50	0.50	mg / L	9056	7/21/09	21:26	md
N Nitrate	1.00	0.50	mg / L	9056	7/21/09	21:26	md
N Nitrite	<0.50	0.50	mg/L	9056	7/21/09	21:26	md
N Phosphate	<1.00	1.00	mg / L	9056	7/21/09	21:26	md
N Sulfate	14.00	1.00	mg / L	9056	7/21/09	21:26	md
N Total Organic Carbon	<5.0	5.0	mg / L	9060	7/29/09		md
total Phosphate as PO4-P	0.67	0.09	mg / L	365.3	7/23/09		pas
Metals							
Iron	1.900	0.050	mg / L	6010B	7/22/09		pas
Iron-dissolved	1.500	0.050	mg / L	6010B	7/23/09		pas
Manganese	0.059	0.005	mg / L	6010B	7/22/09		pas
Manganese-dissolved	0.055	0.005	mg / L	6010B	7/23/09		pas
RiskAnalysis							
N Ethane	0.430	0.025	ug/L	AM20GAX	7/30/09		rw
N Ethene	1.600	0.025	ug/L	AM20GAX	7/30/09		rw
N Methane	140.000	0.100	ug/L	AM20GAX	7/30/09		rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046-———......

Page: Page 11 of 13
Lab Proj\#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description IW-3D(072009)	Matrix Water	$\frac{\text { Lab Sample \# }}{\text { P0907222-10 }}$		Sampled Date/Time 20 Jul. 09 13:59	Received 21 Jul. 09 11:42		
Analyte(s)	Result	PQL	Units	Method \#	Analysi	Date	By
WetChem							
N Alkalinity as CaCO 3	220	4	mg/L	SM2320B	7/25/09		tld
N Alkalinity Bicarbonate as CaCO 3	220	4	mg / L	SM2320B	7/25/09		tld
N Bromide	<1.00	1.00	mg / L	9056	7/21/09	21:48	md
N Chloride	35.00	1.00	mg / L	9056	7/21/09	21:48	md
N Fluoride	<0.50	0.50	mg / L	9056	7/21/09	21:48	md
N Nitrate	<0.50	0.50	mg / L	9056	7/21/09	21:48	md
N Nitrite	<0.50	0.50	mg / L	9056	7/21/09	21:48	md
N Phosphate	<1.00	1.00	mg / L	9056	7/21/09	21:48	md
N Sulfate	10.00	1.00	mg / L	9056	7/21/09	21:48	md
N Total Organic Carbon	<5.0	5.0	mg / L	9060	7/29/09		md
total Phosphate as PO4-P	0.46	0.09	mg / L	365.3	7/23/09		pas
Metals							
Iron	2.000	0.050	mg / L	6010B	7/22/09		pas
Iron-dissolved	1.400	0.050	mg / L	6010B	7/23/09		pas
Manganese	0.064	0.005	mg / L	6010B	7/22/09		pas
Manganese-dissolved	0.053	0.005	mg / L	6010B	7/23/09		pas
RiskAnalysis							
N Ethane	0.260	0.025	ug/L	AM20GAX	7/30/09		rw
N Ethene	2.100	0.025	ug/L	AM20GAX	7/30/09		rw
N Methane	150.000	0.100	ug/L	AM20GAX	7/30/09		rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 12 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001 Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \#		Sampled Date/Time	Received		
IW-2D(072009)	Water	P0907222-11		20 Jul. 09 14:54	21 Jul.	09 11:	
Analyte(s)	Result	PQL	Units	Method \#	Analysi	Date	By
WetChem							
N Alkalinity as CaCO 3	230	4	mg / L	SM2320B	7/25/09		tid
N Alkalinity Bicarbonate as CaCO 3	230	4	mg / L	SM2320B	7/25/09		tid
N Bromide	<1.00	1.00	mg / L	9056	7/21/09	22:54	md
N Chloride	35.00	1.00	mg / L	9056	7/21/09	22:54	md
N Fluoride	<0.50	0.50	mg / L	9056	7/21/09	22:54	md
N Nitrate	2.80	0.50	mg / L	9056	7/21/09	22:54	md
N Nitrite	<0.50	0.50	mg / L	9056	7/21/09	22:54	md
N Phosphate	<1.00	1.00	mg / L	9056	7/21/09	22:54	md
N Sulfate	9.20	1.00	mg / L	9056	7/21/09	22:54	md
N Total Organic Carbon	<5.0	5.0	mg / L	9060	7/29/09		md
total Phosphate as PO4-P	0.52	0.09	mg / L	365.3	7/23/09		pas
Metals							
Iron	1.400	0.050	mg / L	6010B	7/22/09		pas
Iron-dissolved	1.200	0.050	mg / L	6010B	7/23/09		pas
Manganese	0.064	0.005	mg / L	6010B	7/22/09		pas
Manganese-dissolved	0.060	0.005	mg / L	6010B	7/23/09		pas
RiskAnalysis							
N Ethane	0.240	0.025	ug/L	AM20GAX	7/30/09		rw
N Ethene	1.000	0.025	ug/L	AM20GAX	7/30/09		rw
N Methane	160.000	0.100	ug/L	AM20GAX	7/30/09		rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA $16046{ }^{-\cdots-}$

Page: Page 13 of 13
Lab Proj \#: P0907222
Report Date: 08/03/09
Client Proj Name: B0007393.0000.00001 Client Proj \#: AVXMB

Sample Description PZ-3D(072009)	Matrix Water	$\frac{\text { Lab Sam }}{\text { P090722 }}$		$\frac{\text { Sampled Date/Time }}{20 \text { Jul. } 0915: 50}$	$21 \frac{\text { Received }}{\text { Jul. } 09 \quad 11: 42}$		
Analyte(s)	Result	PQL	Units	Method \#	Analysis	Date	By
WetChem							
N Alkalinity as CaCO 3	260	4	mg/L	SM2320B	7/25/09		tld
N Alkalinity Bicarbonate as CaCO 3	260	4	mg / L	SM2320B	7/25/09		tld
N Bromide	<1.00	1.00	mg / L	9056	7/21/09	23:16	md
N Chioride	110.00	1.00	mg / L	9056	7/21/09	23:16	md
N Fluoride	<0.50	0.50	mg / L	9056	7/21/09	23:16	md
N Nitrate	<0.50	0.50	mg / L	9056	7/21/09	23:16	md
N Nitrite	<0.50	0.50	mg / L	9056	7/21/09	23:16	md
N Phosphate	<1.00	1.00	mg / L	9056	7/21/09	23:16	md
N Sulfate	14.00	1.00	mg / L	9056	7/21/09	23:16	md
N Total Organic Carbon	<5.0	5.0	mg / L	9060	7/29/09		md
total Phosphate as PO4-P	0.52	0.09	mg / L	365.3	7/23/09		pas
Metals							
Iron	0.300	0.050	mg / L	6010B	7/22/09		pas
Iron-dissolved	0.240	0.050	mg / L	6010B	7/23/09		pas
Manganese	0.057	0.005	mg / L	6010B	7/22/09		pas
Manganese-dissolved	0.052	0.005	mg / L	6010B	7/23/09		pas
RiskAnalysis							
N Ethane	0.037	0.025	ug/L	AM20GAX	7/31/09		rw
N Ethene	0.500	0.025	$u g / L$	AM20GAX	7/31/09		rw
N Methane	33.000	0.100	ug/L	AM20GAX	7/31/09		rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Banish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 9
Lab Pro \#: P0907317
Report Date: 08/06/09
Client Pro Name: B0007393.0000.00001
Client Pro \#: AVXMB

Laboratory Results

Total pages in data package: 10

Lab Sample \#	Client Sample ID
P0907317-01	BATCH SAMPLE
P0907317-02	BATCH SAMPLE
P0907317-03	BATCH
	CONFIRMATION
P0907317-04	OW-7D
P0907317-05	OW-8D
P0907317-06	OW-9D
P0907317-07	OW-10D
P0907317-08	PZ-2D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

Date:

Project Manager:

Heather Hawser

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis U.S., Inc. Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 9
Lab Proj \#: P0907317
Report Date: 08/06/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description	$\frac{\text { Matrix }}{\text { Water }}$	$\frac{\text { Lab Sample \# }}{\text { P0907317-01 }}$		$\frac{\text { Sampled Date/Time }}{23 \text { Jul. } 09 \text { 11:45 }}$	Received		
BATCH SAMPLE				29 Jul. 09 12:			
Analyte(s)	Result	PQL	Units		Method \#	Analysis Date	By
WetChem							
N Total Organic Carbon	7800.0	500.0	mg / L	9060	8/5/09	md	

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 ---

Page: Page 3 of 9
Lab Proj \#: P0907317
Report Date: 08/06/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description BATCH SAMPLE	Matrix Water	$\frac{\text { Lab Sample \# }}{\text { P0907317-02 }}$		$\frac{\text { Sampled Date/Time }}{24 \text { Jul. } 09 \text { 18:05 }}$	$29 \frac{\text { Received }}{\text { Jul. } 09 \quad 12: 46}$	
Analyte(s)	Result	PQL	Units	Method \#	Analysis Date	By
WetChem						
N Total Organic Carbon	7700.0	500.0	mg/L	9060	8/5/09	d

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 -

Page: Page 4 of 9
Lab Proj \#: P0907317
Report Date: 08/06/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \#		Sampled Date/Time	$29 \frac{\text { Received }}{\text { Jul. } 09 \quad 12: 46}$	
BATCH CONFIRMATION	Water	P0907317-03		25 Jul. 09 12:15		
Analyte(s)	Result	PQL	Units	Method \#	Analysis Date	By
WetChem						
N Total Organic Carbon	7000.0	500.0	mg/L	9060	8/5/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 9
Lab Proj \#: P0907317
Report Date: 08/06/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description OW-7D	Matrix Water	$\frac{\text { Lab Sample \# }}{\text { P0907317-04 }}$		$\frac{\text { Sampled Date/Time }}{25 \text { Jul. } 09 \text { 21:00 }}$	$29 \frac{\text { Received }}{\text { Jul. } 09 \text { 12:46 }}$	
Analyte(s)	Result	PQL	Units	Method \#	Analysis Date	By
WetChem						
N Total Organic Carbon	15.0	5.0	mg/L	9060	8/5/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 --..........-

Page: Page 6 of 9
Lab Proj \#: P0907317
Report Date: 08/06/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description	Matrix Water	$\frac{\text { Lab Sample \# }}{\text { P0907317-05 }}$		$\frac{\text { Sampled Date/Time }}{25 \text { Jul. } 0920: 50}$	Received		
OW-8D				29 Jul. 09 12:			
Analyte(s)	Result	PQL	Units		Method \#	Analysis Date	By
WetChem							
N Total Organic Carbon	<5.0	5.0	mg/L	9060	8/5/09	md	

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 9
Lab Proj \#: P0907317
Report Date: 08/06/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \#		Sampled Date/Time	$29 \frac{\text { Received }}{\text { Jul. } 09} 12: 46$	
OW-9D	Water	P0907317-06		25 Jul. 09 20:10		
Analyte(s)	Result	PQL.	Units	Method \#	Analysis Date	By
WetChem						
N Total Organic Carbon	20.0	5.0	mg / L	9060	8/5/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 ---------

Page: Page 8 of 9
Lab Proj \#: P0907317
Report Date: 08/06/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

Sample Description OW-10D	Matrix Water	$\frac{\text { Lab Sample \# }}{\text { P0907317-07 }}$		$\frac{\text { Sampled Date/Time }}{25 \text { Jul. } 0920: 40}$	$29 \text { Received }$	
Analyte(s)	Result	PQL	Units	Method \#	Analysis Date	By
WetChem						
N Total Organic Carbon	16.0	5.0	mg/L	9060	8/5/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fieids, PA 16046

Page: Page 9 of 9
Lab Proj \#: P0907317
Report Date: 08/06/09
Client Proj Name: B0007393.0000.00001
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{P Z-2 D}$	Matrix Water	$\frac{\text { Lab Sample \# }}{\text { P0907317-08 }}$		$\frac{\text { Sampled Date/Time }}{25 \text { Jul. } 0920: 25}$	$29 \frac{\text { Received }}{\text { Jul. } 09} 12: 46$	
Analyte(s)	Result	PQL	Units	Method \#	Analysis Date	By
WetChem						
N Total Organic Carbon	1300.0	50.0	mg / L	9060	8/5/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 11
Lab Pro \#: P0909336
Report Date: 10/07/09
Client Pro Name: B0007393.0000.00006
Client Proj \#: AVXMB

Laboratory Results

Total pages in data package: \qquad

Lab Sample \#		Client Sample ID
P0909336-01		PZ-1D
P0909336-02	PZ-2D	
P0909336-03	PZ-3D	
P0909336-04	OW-10D	
P0909336-05	OW-7D	
P0909336-06	IW-3D	
P0909336-07	OW-9D	
P0909336-08	OW-8D	

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.
Approved By:

Date:

Project Manager:

Debbie Hall
The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Bivd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { PZ-1D }}$	Matrix Water	Lab Sample \# P0909336-01			Sampled Date/Time 28 Sep. 09 10:00	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	U	<5.0	5.0	mg/L	9060	9/30/09	md
RiskAnalysis N Ethane		0.130	0.025	ug/L	AM20GAX	10/6/09	rw
N Ethene		0.330	0.025	ug/L	AM20GAX	10/6/09	rw
N Methane		43.000	0.100	ug/L	AM20GAX	10/6/09	rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 3 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Bivd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 ---

Page: Page 5 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 …

Page: Page 6 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210 Seven Fields, PA 16046--...............-

Page: Page 7 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { IW-3D }}$	Matrix Water	Lab Sample \# P0909336-06			$\frac{\text { Sampled Date/Time }}{28 \text { Sep. } 09 \text { 10:50 }}$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		6.1	5.0	mg/L	9060	9/30/09	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046-.................

Page: Page 9 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB ${ }^{--}$

Sample Description $\overline{O W-8 D}$	Matrix Water	Lab Sample \# P0909336-08			Sampled Date 28 Sep. 0911	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		10.0	5.0	mg/L	9060	9/30/09	md
RiskAnalysis N Ethane		0.590	0.025	ug/L	AM20GAX	10/6/09	rw
N Ethene		4.700	0.025	ug/L	AM20GAX	10/6/09	rw
N Methane		190.000	0.100	ug/L	AM20GAX	10/6/09	rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M091002047-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctt Limits
Total Organic Carbon	<5.0	mg / L	5.0		- NA	
M091002047-LCS						

	Result		TrueSpikeConc.	\%Recovery		Ctl Limits
Total Organic Carbon	37.0	mg / L	36.00	103.00	$70-130$	
P0909319-01A-DUP						

	Result		TrueSpikeConc.	\%Recovery	Ctt Limits	RPD	RPD CtI Limits
Total Organic Carbon	2.5	mg / L			- NA	0.00	0-20
P0909336-04A-DUP							
	Result		TrueSpikeConc.	\%Recovery	Cti Limits	RPD	RPD CtI Limits
Total Organic Carbon	20.0	mg / L			- NA	4.88	0-20
P0909319-02A-MS							
	Result		TrueSpikeConc.	\%Recovery	CtI Limits		
Total Organic Carbon	61.0	mg / L	50.00	102.00	70-130		
P0909336-05A-MS							
	Result		TrueSpikeConc.	\%Recovery	CtI Limits		
Total Organic Carbon	70.0	mg / L	50.00	100.00	70-130		

```
Client Name: Arcadis U.S., Inc.
    Contact: Mark Hanish
    Address: }310\mathrm{ Seven Fields- Blvd.
                        Suite 210
    Seven Fields, PA 16046
                                    Page: Page 11 of 11
                                    Lab Proj #: P0909336
```

Suite 210
Seven Fields, PA 16046

Page: Page 11 of 11
Lab Proj \#: P0909336
Report Date: 10/07/09
Client Proj Name: B0007393.0000.00006 Client Proj\#: AVXMB

Prep Method: In House Dissolved Gas Sample Preparation Analysis Method: Light Hydrocarbons (C1-C4) in Water

M091006001-MB

	Result								TrueSpikeConc.	$\underline{R D L}$	\%Recovery	Ctl Limits
Ethane	<0.025	ug / L	0.025		- NA							
Ethene	<0.025	ug / L	0.025		- NA							
Methane	<0.100	ug / L	0.100		- NA							
M091006001-LCS												

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits
Ethane	48.000	ug / L	45.00	107.00	75-125
Ethene	43.000	ugh	40.80	105.00	75-125
Methane	900.000		825.00	109.00	75-125

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Ethane	48.000	ug/L	45.00	107.00	75-125	0.00	0-20
Ethene	43.000	ug / L	40.80	105.00	75-125	0.00	0-20
Methane	890.000	ug/L	825.00	108.00	75-125	1.12	0-20

Mark Hanish
Arcadis
600 Waterfront Dr.
Pittsburgh, PA 15222

Report Number: G582-493

Client Project: AVX
Dear Mark Hanish,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Hager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,
SGS North America, Inc

Case Narrative

Arcadia
SGS Project: G582-493
Project Name: AVX

SGS North America; Inc.

October 12 ${ }^{\text {th }}, 2009$

- Seven water samples were accepted into the laboratory on September 29 ${ }^{\text {th }}, 2009$ at 1030 for analyses as indicated on the chain of custody. The samples were received in good condition, with a temperature of $4.2^{\circ} \mathrm{C}$.
- All extractions and analyses were completed within holding time limits, with the following quality control exceptions.

8260 Analysis

- The client submitted Trip Blank has reported concentrations Bromoform, Dibromochloromethane and Methylene Chloride of $0.42 \mathrm{vg} / \mathrm{L}, 0.34 \mathrm{vg} / \mathrm{L}$ and $0.29 \mathrm{vg} / \mathrm{L}$; respectively. These analytes have been ' J ' flagged.

Data Validation/QC

SGS North America, Inc.
List of Reporting Abbreviations
And Data Qualifiers
$B=$ Compound also detected in batch blank
$\mathrm{BQL}=$ Below Quantification Limit (RL or MDL)
DF $=$ Dilution Factor
Dup $=$ Duplicate
$\mathrm{D}=$ Detected, but RPD is $>40 \%$ between results in dual column method.
$\mathrm{E}=$ Estimated concentration, exceeds calibration range.
$\mathrm{J}=$ Estimated concentration, below calibration range and above MDL
LCS(D) $=$ Laboratory Control Spike (Duplicate)
MDL $=$ Method Detection Limit
MS(D) = Matrix Spike (Duplicate)
$\mathrm{PQL}=$ Practical Quantitation Limit
RL/CL $=$ Reporting Limit / Control Limit
$R P D=$ Relative Percent Difference
$\mathrm{UJ}=$ Target analytes with recoveries that are $10 \%<\% \mathrm{R}<\mathrm{LCL}$; \# of MEs are allowable and compounds are not detected in the sample.
$\mathrm{mg} / \mathrm{kg}=$ milligram per kilogram, ppm, parts per million
$\mathrm{ug} / \mathrm{kg}=$ micrograms per kilogram, ppb , parts per billion
$\mathrm{mg} / \mathrm{L}=$ milligram per liter, ppm , parts per million
$\mathrm{ug} / \mathrm{L}=$ micrograms per liter, ppb , parts per billion
\% Rec = Percent Recovery
$\%$ soilds $=$ Percent Solids
Special Notes:

1) Metals and mercury samples are digested with a hot block; see the standard operating procedure document for details.
2) Uncertainty for all reported data is less than or equal to 30 percent.

Results for Volatiles
 by GCMS 8260B

Client Sample ID: PZ-1D
Client Project ID: AVX
Lab Sample ID: G582-493-1A
Lab Project ID: G582-493

Analyzed By: CLP
Date Collected: 9/28/2009 10:00
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL

	Result UG/L	Quantitation	MDL	Dilution	Date
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed
	BQL	250	21.8	10	10/6/2009
Benzene	BQL	10.0	0.650	10	10/6/2009
Bromobenzene	BQL	10.0	0.560	10	10/6/2009
Bromochloromethane	BQL	10.0	1.01	10	10/6/2009
Bromodichloromethane	BQL	10.0	0.760	10	10/6/2009
Bromoform	BQL	10.0	1.20	10	10/6/2009
Bromomethane	BQL	10.0	1.33	10	10/6/2009
2-Butanone	BQL	250	5.44	10	10/6/2009
n-Butylbenzene	BQL	10.0	1.09	10	10/6/2009
sec-Butylbenzene	BQL	10.0	0.840	10	10/6/2009
tert-Butylbenzene	BQL	10.0	0.500	10	10/6/2009
Carbon disulfide	BQL	10.0	0.690	10	10/6/2009
Carbon tetrachloride	BQL	10.0	0.870	10	10/6/2009
Chlorobenzene	BQL	10.0	0.820	10	10/6/2009
Chloroethane	BQL	10.0	1.06	10	10/6/2009
Chloroform	BQL	10.0	0.790	10	10/6/2009
Chloromethane	BQL	10.0	1.46	10	10/6/2009
2-Chlorotoluene	BQL	10.0	0.990	10	10/6/2009
4-Chlorotoluene	BQL	10.0	0.800	10	10/6/2009
Dibromochloromethane	BQL	10.0	0.900	10	10/6/2009
1,2-Dibromo-3-chloropropane	BQL	50.0	12.1	10	10/6/2009
Dibromomethane	BQL	10.0	1.13	10	10/6/2009
1,2-Dibromoethane (EDB)	BQL	10.0	1.24	10	10/6/2009
1,2-Dichlorobenzene	BQL	10.0	1.27	10	10/6/2009
1,3-Dichlorobenzene	BQL	10.0	0.810	10	10/6/2009
1,4-Dichlorobenzene	BQL	10.0	0.790	10	10/6/2009
trans-1,4-Dichloro-2-butene	BQL	50.0	6.30	10	10/6/2009
1,1-Dichloroethane	BQL	10.0	0.740	10	10/6/2009
1,1-Dichloroethene	BQL	10.0	0.890	10	10/6/2009
1,2-Dichloroethane	BQL	10.0	0.790	10	10/6/2009
cis-1,2-Dichloroethene	172	10.0	0.650	10	10/6/2009
trans-1,2-dichloroethene	BQL	10.0	0.890	10	10/6/2009
1,2-Dichloropropane	BQL	10.0	0.940	10	10/6/2009
1,3-Dichloropropane	BQL	10.0	1.27	10	10/6/2009
2,2-Dichloropropane	BQL	10.0	0.590	10	10/6/2009
1,1-Dichloropropene	BQL	10.0	0.720	10	10/6/2009
cis-1,3-Dichloropropene	BQL	10.0	0.760	10	10/6/2009
trans-1,3-Dichloropropene	BQL	10.0	0.760	10	10/6/2009
Dichlorodifluoromethane	BQL	50.0	0.940	10	10/6/2009
Diisopropyl ether (DIPE)	BQL	10.0	0.730	10	10/6/2009
Ethylbenzene	BQL	10.0	0.770	10	10/6/2009
Hexachlorobutadiene	BQL	10.0	2.28	10	10/6/2009
2-Hexanone	BQL	50.0	7.20	10	10/6/2009
lodomethane	BQL	10.0	0.420	10	10/6/2009
Isopropylbenzene	BQL	10.0	0.710	10	10/6/2009

Results for Volatiles by GCMS 8260B

Client Sample ID: PZ-1D
Client Project ID: AVX Lab Sample ID: G582-493-1A Lab Project ID: G582-493

Analyzed By: CLP
Date Collected: 9/28/2009 10:00
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4

Toluene-d8
4-Bromofluorobenzene

Result	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	10.0	0.480	10	$10 / 6 / 2009$
BQL	50.0	0.980	10	$10 / 6 / 2009$
BQL	50.0	5.50	10	$10 / 6 / 2009$
BQL	10.0	0.670	10	$10 / 6 / 2009$
BQL	10.0	1.33	10	$10 / 6 / 2009$
BQL	10.0	0.800	10	$10 / 6 / 2009$
BQL	10.0	0.850	10	$10 / 6 / 2009$
BQL	10.0	0.900	10	$10 / 6 / 2009$
BQL	10.0	1.15	10	$10 / 6 / 2009$
BQL	10.0	0.690	10	$10 / 6 / 2009$
BQL	10.0	0.760	10	$10 / 6 / 2009$
BQL	10.0	1.90	10	$10 / 6 / 2009$
BQL	10.0	1.19	10	$10 / 6 / 2009$
34.4	10.0	0.540	10	$10 / 6 / 2009$
BQL	10.0	0.540	10	$10 / 6 / 2009$
BQL	10.0	1.82	10	$10 / 6 / 2009$
BQL	10.0	1.11	10	$10 / 6 / 2009$
BQL	10.0	1.20	10	$10 / 6 / 2009$
BQL	10.0	0.650	10	$10 / 6 / 2009$
BQL	10.0	0.740	10	$10 / 6 / 2009$
BQL	10.0	1.49	10	$10 / 6 / 2009$
BQL	20.0	0.980	10	$10 / 6 / 2009$
BQL	10.0	0.650	10	$10 / 6 / 2009$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	8.86	89	
	10	10.8	108	99

Comments:

Flags:

Reviewed By: \qquad

Results for Volatiles by GCMS 8260B

Client Sample ID: PZ-2D
Client Project ID: AVX
Lab Sample ID: G582-493-2A
Lab Project ID: G582-493

Analyzed By: CLP
Date Collected: 9/28/2009 10:15
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation
Compound	UG/L	Limit UG/L
Acetone	BQL	6250
Benzene	BQL	250
Bromobenzene	BQL	250
Bromochloromethane	BQL	250
Bromodichloromethane	BQL	250
Bromoform	BQL	250
Bromomethane	BQL	250
2-Butanone	6250	
n-Butylbenzene	BQL	250
sec-Butylbenzene	BQL	250
tert-Butylbenzene	BQL	250
Carbon disulfide	BQL	250
Carbon tetrachloride	BQL	250
Chlorobenzene	BQL	250
Chloroethane	BQL	250
Chloroform	BQL	250
Chloromethane	BQL	250
2-Chlorotoluene	BQL	250
4-Chlorotoluene	BQL	250
Dibromochloromethane	BQL	1250
1,2-Dibromo-3-chloropropane	BQL	250
Dibromomethane	BQL	250
1,2-Dibromoethane (EDB)	BQL	250
1,2-Dichlorobenzene	BQL	250
1,3-Dichlorobenzene	BQL	250
1,4-Dichlorobenzene	BQL	1250
trans-1,4-Dichloro-2-butene	BQL	250
1,1-Dichloroethane	BQL	250
1,1-Dichloroethene	BQL	250
1,2-Dichloroethane	570	250
cis-1,2-Dichloroethene	B2	250
trans-1,2-dichloroethene	BQL	250
1,2-Dichloropropane	BQL	250
1,3-Dichloropropane	BQL	250
2,2-Dichloropropane	BQL	250
1,1-Dichloropropene	Bis-1,3-Dichloropropene	BQL
trans-1,3-Dichloropropene	250	
Dichlorodifluoromethane	250	
Disopropyl ether (DIPE)	BQL	1250
Ethylbenzene	250	
Hexachlorobutadiene	250	
2-Hexanone	250	
lodomethane	BQL	250
Isopropylbenzene	1250	
	250	
BQL		

Page 1 of 2
N.C. Certification \#481

Dilution Factor	Date Analyzed	Flag
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
250	$10 / 6 / 2009$	
	Pcms.xls	
P280		

Results for Volatiles by GCMS 8260B

Client Sample ID: PZ-2D
Client Project ID: AVX
Lab Sample ID: G582-493-2A
Lab Project ID: G582-493

Analyzed By: CLP
Date Collected: 9/28/2009 10:15
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL

Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
 Toluene-d8
 4-Bromofluorobenzene

Comments:

Flags:

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
BQL	250	12.0	250	10/6/2009	
37.5	1250	24.5	250	10/6/2009	J
BQL	1250	138	250	10/6/2009	
BQL	250	16.7	250	10/6/2009	
BQL	250	33.2	250	10/6/2009	
BQL	250	20.0	250	10/6/2009	
BQL	250	21.3	250	10/6/2009	
BQL	250	22.5	250	10/6/2009	
BQL	250	28.8	250	10/6/2009	
BQL	250	17.3	250	10/6/2009	
BQL	250	19.0	250	10/6/2009	
BQL	250	47.5	250	10/6/2009	
BQL	250	29.8	250	10/6/2009	
610	250	13.5	250	10/6/2009	
BQL	250	13.5	250	10/6/2009	
BQL	250	45.5	250	10/6/2009	
BQL	250	27.8	250	10/6/2009	
BQL	250	30.0	250	10/6/2009	
BQL	250	16.3	250	10/6/2009	
BQL	250	18.5	250	10/6/2009	
765	250	37.2	250	10/6/2009	
BQL	500	24.5	250	10/6/2009	
BQL	250	16.3	250	10/6/2009	
	Spike	Spike	Percent		
	Added	Result	Recovered		
	10	10.7	107		
	10	10.4	104		
	10	9.15	92		

Flag

Date

 Analyzed 10/6/2009 10/6/2009 J 10/6/2009Reviewed By:

Results for Volatiles by GCMS 8260B

Client Sample ID: PZ-3D
Client Project ID: AVX Lab Sample ID: G582-493-3A
Lab Project ID: G582-493

Analyzed By: CLP
Date Collected: 9/28/2009 10:32
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL

Compound

Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result	Quantitation	MDL
UG/L	Limit UG/L	UG/L
BQL	4000	349
BQL	160	10.4
BQL	160	8.96
BQL	160	16.2
BQL	160	12.2
BQL	160	19.2
BQL	160	21.3
BQL	4000	87.0
BQL	160	17.4
BQL	160	13.4
BQL	160	8.00
BQL	160	11.0
BQL	160	13.9
BQL	160	13.1
BQL	160	17.0
BQL	160	12.6
BQL	160	23.4
BQL	160	15.8
BQL	160	12.8
BQL	160	14.4
BQL	800	194
BQL	160	18.1
BQL	160	19.8
BQL	160	20.3
BQL	160	13.0
BQL	160	12.6
BQL	800	101
BQL	160	11.8
BQL	160	14.2
BQL	160	12.6
1580	160	10.4
38.4	160	14.2
BQL	160	15.0
BQL	160	20.3
BQL	160	9.44
BQL	160	11.5
BQL	160	12.2
BQL	160	12.2
BQL	800	15.0
BQL	160	11.7
BQL	160	12.3
BQL	160	36.5
BQL	800	115
BQL	160	6.72
BQL	160	11.4

Dilution Factor	Date Analyzed
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$1017 / 12009$
160	$1017 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$
160	$10 / 7 / 2009$

Flag

Results for Volatiles by GCMS 8260B

Client Sample ID: PZ-3D
Client Project ID: AVX
Lab Sample ID: G582-493-3A
Lab Project ID: G582-493

Result	Quantitation UG/L	MDL Limit UG/L	Dilution Factor
BQL	160	7.68	160
BQL	800	15.7	160
BQL	800	88.0	160
BQL	160	10.7	160
BQL	160	21.3	160
BQL	160	12.8	160
BQL	160	13.6	160
BQL	160	14.4	160
BQL	160	18.4	160
BQL	160	11.0	160
BQL	160	12.2	160
BQL	160	30.4	160
BQL	160	19.0	160
BQL	160	8.64	160
BQL	160	8.64	160
BQL	160	29.1	160
BQL	160	17.8	160
BQL	160	19.2	160
BQL	160	10.4	160
BQL	160	11.8	160
BQL	160	23.8	160
BQL	320	15.7	160
BQL	160	10.4	160
	Spike	Spike	Percent
	Added	Result	Recovered
	10	10.5	105
	10	10.4	104
	10	9.23	92

Analyzed By: CLP
Date Collected: 9/28/2009 10:32
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4

Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit
Analyst \qquad

Results for Volatiles by GCMS 8260B

Client Sample ID: OW-10D
Client Project ID: AVX
Lab Sample ID: G582-493-4A
Lab Project ID: G582-493

| Compound | Result | Quantitation | MDL | Dilution | Date |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Acetone | UG/L | Limit UG/L | UG/L | Factor | Analyzed | Flag

Client Sample ID: OW-10D
Client Project ID: AVX
Lab Sample ID: G582-493-4A
Lab Project ID: G582-493

Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m--p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Result UG/L	Quantitation Limit UG/L 1000	MDL UG/L	Dilution Factor	Date Analyzed B8.0	Flag
BQL	1000	1000	$10 / 6 / 2009$		
120	5000	98.0	1000	$10 / 6 / 2009$	J
BQL	5000	550	1000	$10 / 6 / 2009$	
BQL	1000	67.0	1000	$10 / 6 / 2009$	
BQL	1000	133	1000	$10 / 6 / 2009$	
BQL	1000	80.0	1000	$10 / 6 / 2009$	
BQL	1000	85.0	1000	$10 / 6 / 2009$	
BQL	1000	90.0	1000	$10 / 6 / 2009$	
BQL	1000	115	1000	$10 / 6 / 2009$	
BQL	1000	69.0	1000	$10 / 6 / 2009$	
BQL	1000	76.0	1000	$10 / 6 / 2009$	
BQL	1000	190	1000	$10 / 6 / 2009$	
BQL	1000	119	1000	$10 / 6 / 2009$	
25500	1000	54.0	1000	$10 / 6 / 2009$	
BQL	1000	54.0	1000	$10 / 6 / 2009$	
BQL	1000	182	1000	$10 / 6 / 2009$	
BQL	1000	111	1000	$10 / 6 / 2009$	
BQL	1000	120	1000	$10 / 6 / 2009$	
BQL	1000	65.0	1000	$10 / 6 / 2009$	
BQL	1000	74.0	1000	$10 / 6 / 2009$	
BQL	1000	149	1000	$10 / 6 / 2009$	
BQL	2000	98.0	1000	$10 / 6 / 2009$	
BQL	1000	65.0	1000	$10 / 6 / 2009$	
	Spike	Spike	Percent		
	Added	Result	Recovered		
	10	9.82	98		

Comments:

Flags:

$B Q L=$ Below Quantitation Limits.
Analyst: \qquad

Analyzed By: CLP
Date Collected: 9/28/2009 11:05
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL

Results for Volatiles by GCMS 8260B

Client Sample ID: OW-9D
Client Project ID: AVX
Lab Sample ID: G582-493-5A
Lab Project ID: G582-493

Compound	Result UG/L	Quantitation Limit UG/L	MDL	Dilution Factor	Date	
Acetone	BQL	20000	1740	Factor 800	Analyzed 10/6/2009	Flag
Benzene	BQL	800	52.0	800	10/6/2009	
Bromobenzene	BQL	800	44.8	800	10/6/2009	
Bromochloromethane	BQL	800	80.8	800	10/6/2009	
Bromodichloromethane	BQL	800	60.8	800	10/6/2009	
Bromoform	BQL	800	96.0	800	10/6/2009	
Bromomethane	BQL	800	106	800	10/6/2009	
2-Butanone	BQL	20000	435	800	10/6/2009	
n-Butylbenzene	BQL	800	87.2	800	10/6/2009	
sec-Butylbenzene	BQL	800	67.2	800	10/6/2009	
tert-Butylbenzene	BQL	800	40.0	800	10/6/2009	
Carbon disulfide	BQL	800	55.2	800	10/6/2009	
Carbon tetrachloride	BQL	800	69.6	800	10/6/2009	
Chlorobenzene	BQL	800	65.6	800	10/6/2009	
Chloroethane	BQL	800	84.8	800	10/6/2009	
Chloroform	BQL	800	63.2	800	10/6/2009	
Chloromethane	BQL	800	117	800	10/6/2009	
2-Chlorotoluene	BQL	800	79.2	800	10/6/2009	
4-Chlorotoluene	BQL	800	64.0	800	10/6/2009	
Dibromochloromethane	BQL	800	72.0	800	10/6/2009	
1,2-Dibromo-3-chloropropane	BQL	4000	968	800	10/6/2009	
Dibromomethane	BQL	800	90.4	800	10/6/2009	
1,2-Dibromoethane (EDB)	BQL	800	99.2	800	10/6/2009	
1,2-Dichlorobenzene	BQL	800	102	800	10/6/2009	
1,3-Dichlorobenzene	BQL	800	64.8	800	10/6/2009	
1,4-Dichlorobenzene	BQL	800	63.2	800	10/6/2009	
trans-1,4-Dichloro-2-butene	BQL	4000	504	800	10/6/2009	
1,1-Dichloroethane	BQL	800	59.2	800	10/6/2009	
1,1-Dichloroethene	BQL	800	71.2	800	10/6/2009	
1,2-Dichloroethane	BQL	800	63.2	800	10/6/2009	
cis-1,2-Dichloroethene	16500	800	52.0	800	10/6/2009	
trans-1,2-dichloroethene	352	800	71.2	800	10/6/2009	J
1,2-Dichloropropane	BQL	800	75.2	800	10/6/2009	
1,3-Dichloropropane	BQL	800	102	800	10/6/2009	
2,2-Dichloropropane	BQL	800	47.2	800	10/6/2009	
1,1-Dichloropropene	BQL	800	57.6	800	10/6/2009	
cis-1,3-Dichloropropene	BQL	800	60.8	800	10/6/2009	
trans-1,3-Dichloropropene	BQL	800	60.8	800	10/6/2009	
Dichlorodifluoromethane	BQL	4000	75.2	800	10/6/2009	
Diisopropyl ether (DIPE)	BQL	800	58.4	800	10/6/2009	
Ethylbenzene	BQL	800	61.6	800	10/6/2009	
Hexachlorobutadiene	BQL	800	182	800	10/6/2009	
2-Hexanone	BQL	4000	576	800	10/6/2009	
lodomethane	BQL	800	33.6	800	10/6/2009	
Isopropylbenzene	BQL	800	56.8	800	10/6/2009	
	Page 1 of 2				${ }_{\substack{\text { ccms.xis } \\ 8260}}$	
	N.C. Certification \#481				Page 12 of 32	

Client Sample ID: OW-9D
Client Project ID: AVX
Lab Sample ID: G582-493-5A
Lab Project ID: G582-493

Analyzed By: CLP
Date Collected: 9/28/2009 11:30
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4

Toluene-d8
4-Bromofluorobenzene
Comments:

Flags:
$\mathrm{BQL}=$ Below Ouantitation Limits.

Analyst:

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
BQL	800	38.4	800	10/6/2009	
96.0	4000	78.4	800	10/6/2009	J
BQL	4000	440	800	10/6/2009	
BQL	800	53.6	800	10/6/2009	
BQL	800	106	800	10/6/2009	
BQL	800	64.0	800	10/6/2009	
BQL	800	68.0	800	10/6/2009	
BQL	800	72.0	800	10/6/2009	
BQL	800	92.0	800	10/6/2009	
BQL	800	55.2	800	10/6/2009	
BQL	800	60.8	800	10/6/2009	
BQL	800	152	800	10/6/2009	
BQL	800	95.2	800	10/6/2009	
1250	800	43.2	800	10/6/2009	
BQL	800	43.2	800	10/6/2009	
BQL	800	146	800	10/6/2009	
BQL	800	88.8	800	10/6/2009	
BQL	800	96.0	800	10/6/2009	
BQL	800	52.0	800	10/6/2009	
BQL	800	59.2	800	10/6/2009	
BQL	800	119	800	10/6/2009	
BQL	1600	78.4	800	10/6/2009	
BQL	800	52.0	800	10/6/2009	
	Spike Added	Spike Result	Percent Recovered		
	10	9.99	100		
	10	10.4	104		
	10	9.08	91		

Flag

Reviewed By:

Results for Volatiles by GCMS 8260B

Client Sample ID: OW-8D
Client Project ID: AVX
Lab Sample ID: G582-493-6A
Lab Project ID: G582-493

Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result	Quantitation	MDL
UG/L	Limit UG/L	UG/L
BQL	25000	2180
BQL	1000	65.0
BQL	1000	56.0
BQL	1000	101
BQL	1000	76.0
BQL	1000	120
BQL	1000	133
BQL	25000	544
BQL	1000	109
BQL	1000	84.0
BQL	1000	50.0
BQL	1000	69.0
BQL	1000	87.0
BQL	1000	82.0
BQL	1000	106
BQL	1000	79.0
BQL	1000	146
BQL	1000	99.0
BQL	1000	80.0
BQL	1000	90.0
BQL	5000	1210
BQL	1000	113
BQL	1000	124
BQL	1000	127
BQL	1000	81.0
BQL	1000	79.0
BQL	5000	630
BQL	1000	74.0
BQL	1000	89.0
BQL	1000	79.0
9640	1000	65.0
230	1000	89.0
BQL	1000	94.0
BQL	1000	127
BQL	1000	59.0
BQL	1000	72.0
BQL	1000	76.0
BQL	1000	76.0
BQL	5000	94.0
BQL	1000	73.0
BQL	1000	77.0
BQL	1000	228
BQL	5000	720
BQL	1000	42.0
BQL	1000	71.0

Dilution	Date
Factor	Analyzed
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009
1000	10/7/2009

Flag

Results for Volatiles by GCMS 8260B

Client Sample ID: OW-8D
Client Project ID: AVX
Lab Sample ID: G582-493-6A
Lab Project ID: G582-493

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
BQL	1000	48.0	1000	10/7/2009	
130	5000	98.0	1000	10/7/2009	J
BQL	5000	550	1000	10/7/2009	
BQL	1000	67.0	1000	10/7/2009	
BQL	1000	133	1000	10/7/2009	
BQL	1000	80.0	1000	10/7/2009	
BQL	1000	85.0	1000	10/7/2009	
BQL	1000	90.0	1000	10/7/2009	
BQL	1000	115	1000	10/7/2009	
BQL	1000	69.0	1000	10/7/2009	
BQL	1000	76.0	1000	10/7/2009	
BQL	1000	190	1000	10/7/2009	
BQL	1000	119	1000	10/7/2009	
BQL	1000	54.0	1000	10/7/2009	
BQL	1000	54.0	1000	10/7/2009	
BQL	1000	182	1000	10/7/2009	
BQL	1000	111	1000	10/7/2009	
BQL	1000	120	1000	10/7/2009	
BQL	1000	65.0	1000	10/7/2009	
BQL	1000	74.0	1000	10/7/2009	
390	1000	149	1000	10/7/2009	J
BQL	2000	98.0	1000	10/7/2009	
BQL	1000	65.0	1000	10/7/2009	
	Spike	Spike	Percent		
	Added	Result	Recovered		
	10	10.2	102		
	10	10.3	103		
	10	9.34	93		

Comments:

Flags:
$B Q L=$ Below Quantitation Limits.
$J=$ Detected bejow the quantitation limit.

Analyst:

Analyzed By: CLP
Date Collected: 9/28/2009 11:45
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

Reviewed By

Results for Volatiles
 by GCMS 8260B

Client Sample ID: Trip Blank
Client Project ID: AVX
Lab Sample ID: G582-493-7A
Lab Project ID: G582-493

Analyzed By: CLP
Date Collected: 9/28/2009 0:00
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL

Client Sample ID: Trip Blank
Client Project ID: AVX
Lab Sample ID: G582-493-7A
Lab Project ID: G582-493

Analyzed By: CLP
Date Collected: 9/28/2009 0:00
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$10 / 7 / 2009$
0.290	5.00	0.0980	1	$10 / 7 / 2009$
BQL	5.00	0.550	1	$10 / 7 / 2009$
BQL	1.00	0.0670	1	$10 / 7 / 2009$
BQL	1.00	0.133	1	$10 / 7 / 2009$
BQL	1.00	0.0800	1	$10 / 7 / 2009$
BQL	1.00	0.0850	1	$10 / 7 / 2009$
BQL	1.00	0.0900	1	$10 / 7 / 2009$
BQL	1.00	0.115	1	$10 / 7 / 2009$
BQL	1.00	0.0690	1	$10 / 7 / 2009$
BQL	1.00	0.0760	1	$10 / 7 / 2009$
BQL	1.00	0.190	1	$10 / 7 / 2009$
BQL	1.00	0.119	1	$10 / 7 / 2009$
BQL	1.00	0.0540	1	$10 / 7 / 2009$
BQL	1.00	0.0540	1	$10 / 7 / 2009$
BQL	1.00	0.182	1	$10 / 7 / 2009$
BQL	1.00	0.111	1	$10 / 7 / 2009$
BQL	1.00	0.120	1	$10 / 7 / 2009$
BQL	1.00	0.0650	1	$10 / 7 / 2009$
BQL	1.00	0.0740	1	$10 / 7 / 2009$
BQL	1.00	0.149	1	$10 / 7 / 2009$
BQL	2.00	0.0980	1	$10 / 7 / 2009$
BQL	1.00	0.0650	1	$10 / 7 / 2009$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.4	104	

Flag Analyzed 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009 10/7/2009
10/7/2009 10/7/2009 10/7/2009 10/7/2009
10/7/2009 Recov

104
106
94

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected bellow the quantitation limit.

Reviewed By:

Results for Volatiles by GCMS 8260B

Client Sample ID: Method Blank
Client Project ID: Lab Sample ID: VBLK1100609B Lab Project ID:

Analyzed By: CLP
 Date Collected:
 Date Received:
 Matrix: Water
 Sample Amount: 5 mL

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	25.0	2.18	1	10/6/2009
BQL	1.00	0.0650	1	10/6/2009
BQL	1.00	0.0560	1	10/6/2009
BQL	1.00	0.101	1	10/6/2009
BQL	1.00	0.0760	1	10/6/2009
BQL	1.00	0.120	1	10/6/2009
BQL	1.00	0.133	1	10/6/2009
BQL	25.0	0.544	1	10/6/2009
BQL	1.00	0.109	1	10/6/2009
BQL	1.00	0.0840	1	10/6/2009
BQL	1.00	0.0500	1	10/6/2009
BQL	1.00	0.0690	1	10/6/2009
BQL	1.00	0.0870	1	10/6/2009
BQL	1.00	0.0820	1	10/6/2009
BQL	1.00	0.106	1	10/6/2009
BQL	1.00	0.0790	1	10/6/2009
BQL	1.00	0.146		10/6/2009
BQL	1.00	0.0990	1	10/6/2009
BQL	1.00	0.0800	1	10/6/2009
BQL	1.00	0.0900	1	10/6/2009
BQL	5.00	1.21	1	10/6/2009
BQL	1.00	0.113	1	10/6/2009
BQL	1.00	0.124	1	10/6/2009
BQL	1.00	0.127	1	10/6/2009
BQL	1.00	0.0810	1	10/6/2009
BQL	1.00	0.0790	1	10/6/2009
BQL	5.00	0.630	1	10/6/2009
BQL	1.00	0.0740	1	10/6/2009
BQL	1.00	0.0890	1	10/6/2009
BQL	1.00	0.0790	1	10/6/2009
BQL	1.00	0.0650	1	10/6/2009
BQL	1.00	0.0890	1	10/6/2009
BQL	1.00	0.0940		10/6/2009
BQL	1.00	0.127	1	10/6/2009
BQL	1.00	0.0590	1	10/6/2009
BQL	1.00	0.0720	1	10/6/2009
BQL	1.00	0.0760	1	10/6/2009
BQL	1.00	0.0760	1	10/6/2009
BQL	5.00	0.0940	1	10/6/2009
BQL	1.00	0.0730	1	10/6/2009
BQL	1.00	0.0770	1	10/6/2009
BQL	1.00	0.228	1	10/6/2009
BQL	5.00	0.720		10/6/2009
BQL	1.00	0.0420	1	10/6/2009
BQL	1.00	0.0710	1	10/6/2009

Flag
Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK1100609B
Lab Project ID:

Results for Volatiles
 by GCMS 8260B

Client Sample ID: Method Blank lient Project ID:

Lab Project ID:
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
$B Q L=$ Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$10 / 6 / 2009$
BQL	5.00	0.0980	1	$10 / 6 / 2009$
BQL	5.00	0.550	1	$10 / 6 / 2009$
BQL	1.00	0.0670	1	$10 / 6 / 2009$
BQL	1.00	0.133	1	$10 / 6 / 2009$
BQL	1.00	0.0800	1	$10 / 6 / 2009$
BQL	1.00	0.0850	1	$10 / 6 / 2009$
BQL.	1.00	0.0900	1	$10 / 6 / 2009$
BQL	1.00	0.115	1	$10 / 6 / 2009$
BQL	1.00	0.0690	1	$10 / 6 / 2009$
BQL	1.00	0.0760	1	$10 / 6 / 2009$
BQL	1.00	0.190	1	$10 / 6 / 2009$
BQL	1.00	0.119	1	$10 / 6 / 2009$
BQL	1.00	0.0540	1	$10 / 6 / 2009$
BQL	1.00	0.0540	1	$10 / 6 / 2009$
BQL	1.00	0.182	1	$10 / 6 / 2009$
BQL	1.00	0.111	1	$10 / 6 / 2009$
BQL	1.00	0.120	1	$10 / 6 / 2009$
BQL	1.00	0.0650	1	$10 / 6 / 2009$
BQL	1.00	0.0740	1	$10 / 6 / 2009$
BQL	1.00	0.149	1	$10 / 6 / 2009$
BQL	2.00	0.0980	1	$10 / 6 / 2009$
BQL	1.00	0.0650	1	$10 / 6 / 2009$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.9	109	
	10	10.4	104	
	10	9.39	94	

Analyzed By: CL.P
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Percent 109 94

Reviewed By: DVO

SGS North America, Inc.

SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
Dłlution: 1
LCS: LCS1100609A
LCSD; LCSI100609B
ilename: 1006103. v
Date Analyzed: 10/06/09 11:31
Ilename: $1006104 . \mathrm{D}$
Date Analyzed: 10/06/09 12:03

COMPOUND	LCS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{aligned} & \text { LCS } \\ & \text { CONC } \end{aligned}$	$\begin{gathered} \text { LCS } \\ \% \\ \text { REC } \end{gathered}$	$\begin{aligned} & \text { LCSD } \\ & \text { SPIKE } \end{aligned}$	LCSD CONC	$\begin{gathered} \hline \text { LCSD } \\ \% \end{gathered}$	$\%$	OC LIMITS	
acetone		(Hg / L)	Rect	($\mu \mathrm{g} / \mathrm{L}$)	($\mathrm{\mu g} / \mathrm{L}$)	REC \#	RPD	RPD	RFC
acrolein	25.0	18.8	75.2	25.0	17.7	70.8	6.08	30	23.5-141
acrylonitrile	125	153	122.	125	152.	122	0.688	30	31.4-182
berzester	50	121	96.8	125	118	94.8	2.06	30	64.2-140
bromobenzene	$\frac{3.00}{5.00}$	4.85:	$\frac{98.0}{93.6}$	5,00	4.88	91, .2.	0.210	80\%	3.3.6-120
bromochloromethane	5.00	4.68	33.6	5.00	4.77	95.4	1.90	30	75.0.122
bromodichloromethane	5.00	4.45	89.0	5.00	4.88	97.6	9.22	30	74.8-127
bromoform	5.00	4.74	94.8	5.00	4.77	95.4	0.631	30	76.4-117
bromomethane	5.00	4.50	90.0	5.00	4.77	95.4	5.82	30	62.4-127
2-butanone	$\frac{5.00}{25.0}$	6.04	121	5.00	5.40	108	11.2	30	34.2-166
n-butylbenzene	5.00	21.8	87.1	25.0	21.5	85.9	1.43	30	44.9-126
sec-butylbenzene	5.00	4.54	90.8	5.00	4.57	91.4	0.659	30	72.0-122
tert-but ylbenzene	5.00	4.86	97.2	5.00	4.32	98.4	1.23	30	78.3-116
Carbon disulfide	5.00	4.95	80.4	5.00	4.11	82.2	2,21	30	53.1-148
carbon tetrachloride	5.00	4.74	99.0	5.00	5.0%	100	1.40	30	69.0-118
c4t 4 robnzene.,	5, 0.0	4.63	94.8	5.00	4.88	97.6	2.91	30	71.7-12.4
chloroethane	5.00	$\frac{4.83}{5.56}$	92.6	5.00	4.8.83	9.6.	3, Q4,	3%	\$5, 5,116
2-chloroethyl vinyl ether	125	$\frac{115}{}$	111	5.00	5.45	109	2.00	30	78.2-138
chloroform	5.00	1.64	91.9	125	114	91.0	0.345	30	5.57-2.35
chloromethane	5.00	4.64	92.8	5.00	4.69	93.8	1.07	30	80.6-117
2-chlorotoluene	5.00	4.64	91.8	5.00	4.54	90.8	1.10	30	72.6-127
4-chlorotolidene	5.00	$\frac{1.64}{4.53}$	92.8	5.00	4.68	93.6	0.858	30	81.4-1.17
dibromochloromethane	5.00	4.851	90.6	5.00	4.63	92.6	2.18	30	82.1-116
1,2-dibromo-3-chloropropane	25.0	21.7	96.2	5.00	4.87	97.4	1.24	30	73.1-117
1,2-dibromoethane	5.00	21.7	86.9	25.0	22.2	89.0	2.36	30	58.0-1.33
dibromomethane	5.00	4.51	92.6	5.00	4.89	97.8	5.46	30	75.5-118
1,2-dichlorobenzene	5.00	4.59	90.2	5.00	4.60	92.0	1.98	30	77.3-124
1,3-dichlorobenzene	5.00	4.61	91.8	5.00	4.61	92.2	0.435	30	76.3-115
1,4-dichlorobenzene	5.00	4.50	92.2	5.00	4.72	94.4	2.36	30	79.1-114
rans-1,4-Dichloro-2-butene	25.0	23.5	90.0	5.00	4.60	92.0	2.20	30	76.8-115
dichlorodifluoromethane	5.00	5.03	94.1	25.0	23.4	93.6	0.554	30	52.3-130
,1-dichloroethane	5.00	4.54	101	5.00	4.92	98.4	2.21	30	69.8-134
,2-dichloroethane	5.00	$\frac{4.54}{4.78}$	90.8	5.00	4.67	93.4	2.82	30	78.0-120
	6, 00	4.78	95,6	5.00	4.86	37.2	1.66	30	72.8-126
is-1, ?-dichlocoethene	5.00		924.2	5, ¢0	4.92	88.4	W, +2\%	36%	
rans-1,2-dichloroethene	5.00	$\frac{4.74}{4.74}$	94.8	5.00	4.75	95.0	0.211	30	78, 0-121
,2-dichloropropane	5.00	4.74	94.8	5.00	4.84	96.8	2.09	30	60.7-144
,3-dichloropropane	5.00	4.65	94.4	5.00	4.95	99.0	4.76	30	75.8-119
2,2-dichloropropane	5.00	4.80	93.0	5.00	4.83	96.6	3.80	30	78.5-113
1,1-dichloropropene	5.00	4.80	96.0	5.00	4.85	97.0	1.04	30	75.6-130
ds-1,3-dichloropropene	5.00	4.82	$\frac{97.2}{96.4}$	5.00	4.86	97.2	0.00	30	79.7-117
			96.4	5.00	4.94	98.8	2.46	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC Limits

COMMENTS:

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
page 1 of 2

SGS North America, Inc.

SGS Environmental Sevices

SGS North America, Inc.

SGS Fnvironmental Services

3A
WATER VOLATILE MATRIX SPIKe/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Client Sample ID: Method Blank
Client Project ID: Client Project ID: Lab Sample ID: VBLK1100709B Lab Project ID:

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	25.0	2.18	1	$10 / 7 / 2009$
BQL	1.00	0.0650	1	$10 / 7 / 2009$
BQL	1.00	0.0560	1	$10 / 7 / 2009$
BQL	1.00	0.101	1	$10 / 7 / 2009$
BQL	1.00	0.0760	1	$10 / 7 / 2009$
BQL	1.00	0.120	1	$10 / 7 / 2009$
BQL	1.00	0.133	1	$10 / 7 / 2009$
BQL	25.0	0.544	1	$10 / 7 / 2009$
BQL	1.00	0.109	1	$10 / 7 / 2009$
BQL	1.00	0.0840	1	$10 / 7 / 2009$
BQL	1.00	0.0500	1	$10 / 7 / 2009$
BQL	1.00	0.0690	1	$10 / 7 / 2009$
BQL	1.00	0.0870	1	$10 / 7 / 2009$
BQL	1.00	0.0820	1	$10 / 7 / 2009$
BQL	1.00	0.106	1	$10 / 7 / 2009$
BQL	1.00	0.0790	1	$10 / 7 / 2009$
BQL	1.00	0.146	1	$10 / 7 / 2009$
BQL	1.00	0.0990	1	$10 / 7 / 2009$
BQL	1.00	0.0800	1	$10 / 7 / 2009$
BQL	1.00	0.0900	1	$10 / 7 / 2009$
BQL	5.00	1.21	1	$10 / 7 / 2009$
BQL	1.00	0.113	1	$10 / 7 / 2009$
BQL	1.00	0.124	1	$10 / 7 / 2009$
BQL	1.00	0.127	1	$10 / 7 / 2009$
BQL	1.00	0.0810	1	$10 / 7 / 2009$
BQL	1.00	0.0790	1	$10 / 7 / 2009$
BQL	5.00	0.630	1	$10 / 7 / 2009$
BQL	1.00	0.0740	1	$10 / 7 / 2009$
BQL	1.00	0.0890	1	$10 / 7 / 2009$
BQL	1.00	0.0790	1	$10 / 7 / 2009$
BQL	1.00	0.0650	1	$10 / 7 / 2009$
BQL	1.00	0.0890	1	$10 / 7 / 2009$
BQL	1.00	0.0940	1	$10 / 7 / 2009$
BQL	1.00	0.127	1	$10 / 7 / 2009$
BQL	1.00	0.0590	1	$10 / 7 / 2009$
BQL	1.00	0.0720	1	$10 / 7 / 2009$
BQL	1.00	0.0760	1	$10 / 7 / 2009$
BQL	1.00	0.0760	1	$10 / 7 / 2009$
BQL	5.00	0.0940	1	$10 / 7 / 2009$
BQL	1.00	0.0730	1	$10 / 7 / 2009$
BQL	1.00	0.0770	1	$10 / 7 / 2009$
BQL	1.00	0.228	1	$10 / 7 / 2009$
BQL	5.00	0.720	1	$10 / 7 / 2009$
BQL	1.00	0.0420	1	$10 / 7 / 2009$
BQL	1.00	0.0710	1	$10 / 7 / 2009$

Flag

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK1100709B Lab Project ID:

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethyllbenzene
1,3-5-Trimethylbenzene
Vinyl chloride
m-, p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
BQL = Below Quantitation Limits
$J=$ Detected below the quantitation limit
Analyst

Flag

Reviewed By: \qquad

SGS North America, Inc.
SGS Environmental Sevices

IABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
Lab Name: SGS Envirommertal
Lab Code: NC00919
Dilution: 1

LCS: LCS1100709A
ilename: $1007103 . \mathrm{D}$
Date Analyzed: 10/07/09 11:07
LCSD: LCS1100709B
ilename: $1007104 . \mathrm{D}$
Date Aralyzed: 10/07/09 11:39

COMPOUND	$\begin{aligned} & \text { LCS } \\ & \text { SPIKE } \end{aligned}$ $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { LCS } \\ \text { CONC } \end{gathered}$	$\begin{gathered} \text { LCS } \\ \frac{1}{6} \end{gathered}$ REC \#	$\begin{gathered} \text { LCSD } \\ \text { SPIKE } \end{gathered}$	$\begin{aligned} & \text { LCSD } \\ & \text { CONC } \end{aligned}$	$\begin{gathered} \text { LCSD } \\ \% \end{gathered}$		QC LIMITS	
acetone				(Hg / L)	($\mu \mathrm{g} / \mathrm{L}$)	REC \#	RPD	RPD	REC
acrolein	25	18.3	73.1	25.0	16.6	66.4	9.58	30	23.5-141
acrylonitrile	125	151	121	125	167	134	10.1	30	31.4-182
benzenf	125	113	90.1	125	115	92.2	2.32	30	64.2-140
bromobenzene	5.00	4, 59	91, 8	5,00,	4, 28	95,6	4.06	30	0.6.6.120
bromochloromethane	5.00	4.92	98.4	5.00	5.28	106	7.06	30	75.0-122
bromodichloromethane	5.00	4.87	97.4	5.00	4.64	92.8	4.84	30	74.8-127
bromo form	5.00	4.52	90.4	5.00	4.52	90.4	0.00	30	76.4-1.17
bromomethane	5.00	4.79	95.8	5.00	5.29	105	9.92	30	62.4-127
2-butanone	25.00	5.29	106	5.00	5.44	109	2.80	30	34.2-166
n-butylbenzene	$\frac{25.0}{5.00}$	19.8	79.2	25.0	18.5	73.9	7.00	30	44.9-126
sec-butylbenzene	$\frac{5.00}{5.00}$	4.45	89.0	5.00	4.49	89.8	0.895	30	72.0-122
tert-butylbenzene	5.00	4.72	94.4	5.00	4.94	98.8	4.55	30	78.3-115
Carbon disulfide	5.00	5.89	77.8	5.00	4.18	83.6	7.19	30	53.1-148
carbon tetrachloride	5.00	$\frac{5.06}{4.59}$	101	5.00	4.81	96.2	5.06	30	69.0-118
chuorobenzere	5,00	4.59	21.8	5.00	4.53	90.6	1.32	30	71.7-124
chloroethane	5.00	4.90	96.,	5.00	9, 18	104	5, 41	310	75,5,116
2-chloroethyl vinyl ether	125	5.15	103	5.00	5.49	110	6.39	30	78.2-138
chloroform	5.00	108	86.9	125	114	91.4	5.04	30	5.57-235
chloromethane	5.00	4.41	88.2	5.00	4.37	87.4	0.911	30	80.6-117
2-chlorotoluene	5.00	4.76	95.2	5.00	4.97	99.4	4.32	30	72.6-127
4-chlorotoluene	5.00	4.61	92.2	5.00	4.80	96.0	4.04	30	81.4-117
dibromochloromethane	5.00	4.65	93.0	5.00	5.00	100	7.25	30	82.1-116
1,2-dibromo-3-chloropropane	25.0	4.78	95.6	5.00	4.79	95.8	0.203	30	73.1-117
1,2-dibromoethane	5.00	21.4	85.8	2.5 .0	23.3	93.3	8.40	30	58.0-133
dibromomethane	5.00	4.75	95.0	5.00	5.06	101	6.32	30	75.5-118
1,2-dichlorobenzene	5.00	4.39	87.8	5.00	4.46	89.2	1.58	30	77.3-124
1,3-dichlorobenzene	5.00	4.6	93.0	5.00	4.92	98.4	5.64	30	76.3-115
1,4-dichlorobenzene	5.00	4.59	91.8	5.00	4.79	95.8	4.26	30	79.1-114
trans-1,4-Dichloro-2-butene	25.0	4.47	89.4	5.00	4.78	95.6	6.70	30	75.8-115
dichlorodifluoromethane	5.00	$\frac{23.0}{4.76}$	92.2	25.0	24.2	96.7	4.74	30	52.3-130
1,1-dichloroethane	5.00	4.76	95.2	5.00	5.15	103	7.87	30	69.8-134
1,2-dichloroethane	5.00	4.43	88.6	5.00	4.51	90.2	1.79	30	78.0-120
, l-dyenuonethere	5.60	$\frac{4.38}{49}$	87.6	5.00	4.44	88.8	1.36	30	72.8-126
is-1,2-dichlosoethene	$\frac{5.40}{5.00}$	$\frac{4.91}{4.58}$	$\frac{38.2}{31.6}$	5.00	4.43	88.6	10.3	30	$24.64-124$
rans-1,2-dichloroethene	5.00	4.58	91.6	5.00	4.21	84.2	8.42	30	78.0-121
,2-dichloropropane	5.00	4.53	30.6	5.00	4.49	89.8	0.887	30	60.7-144
,3-dichloropropane	5.00	4.64	92.8	5.00	4.60	92.0	0.866	30	75.8-119
,2-dichloropropane	5.00	4	90.6	5.00	4.74	94.8	4.53	30	78.5-113
,1-dichloropiopene	5.00	4.57	31.0	5.00	3.99	79.8	13.1	30	75.6-130
is-1,3-dichloropropene	5.00	$\frac{4.57}{4.62}$	91.4	5.00	4.61	92.2	0.871	30	79.7-117
	5.00	4.62	32.4	5.00	4.76	95.2	2.98	30	79.8-113

\# Column to be used to flag recovery and RED values with an asterisk

* Values outside of QC limits

COMMENTG:

Lab Name: SGS Environmental
Lat Code: NC00919

LCSD: LCS1100709B

\# Column to be used to flag recovery arid RED values with an asterisk

* Values outside of QC limits

LCS Spike Recovery: 0 failure(s) out of 72 . LCSD Spike Recovery: 0 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS:

Analyst: 10 Reviewed by:

SGS North America, Inc.
SGS Environmental Services

3A

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: EGS Environmental
Lab Code: NC00919
Inst: MSD1
EPA Sample No.: Amt.
Filenames:
Analysis Dates:
2009-10-07 20:19:00
2009-10-07 20:50:00
Batck: 1100709
Sample
9582-493-6a $\quad 5 \mathrm{~mL}$
1007120.D

Dilution: 1000
MS g582-493-6a 5 mL
1007121.D

2009-10-07 21:21:00

MSD \quad g582-493-6a COMPOUND	5 mL			2009-10-07 21:21:00						
	SAMPLE CONC ($\mu \mathrm{g} / \mathrm{L}$)	MS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	MS CONC	MS 3	$\begin{gathered} \text { MSD } \\ \text { SPIKE } \end{gathered}$	$\begin{gathered} \mathrm{MSD} \\ \mathrm{CONC} \end{gathered}$	MSD $\%$	\%		C LIMITS
acetone			(μ	REC \#	($\mu \mathrm{g} / \mathrm{L}$)	($\mu \mathrm{g} / \mathrm{L}$)	FEC \#	RPD	RPD	REC
acrolein	BQL	25000	12000	48.2	25000	13300	53.1	9.72	30	17.7-85.2
	BQL	125000	161000	129	125000	183000	146	12.7	30	0.00-424
acrylonitrile	BQL	125000	121000	97.1	125000	129000	103	6.09	30	85.0-175
bentene.....	BL 4	5000	4730	24,6	5000	4880	97.6	3.12	30	$61.6-135$
bromobenzene	BQL	5000	4880	97.6	5000	5020	100	2.83	30	65.1-125
bromochloromethane	BQL	5000	5090	102	5000	5250	105	3.09	30	75.5-126
bromodichloromethane	BQL	5000	4800	96.0	5000	5080	102	5.67	30	74.3-123
bromoform	BQL	5000	4980	99.6	5000	5020	100	0.800	30	52.3-122
bromomethane	BQL	5000	4560	91.2	5000	5550	111	19.6	30	10.0-284
2-butanone	BQL	25000	18700	74.8	25000	19800	79.0	5.46	30	36.1-107
n-butylbenzene	BQL	5000	4220	84.4	5000	4390	87.8	3.95	30	70.2-124
Sec-butylbenzene	BQL	5000	4680	93.6	5000	4760	95.2	1.69	30	62.0-133
tert-butylbenzene	BQL	5000	3920	78.4	5000	3990	79.8	1.77	30	73.5-121
Carbon disulfide	BQL	5000	5190	104	5000	5420	108	4.34	30	68.8-129
carbon tetrachloride	BQL	5000	4960	99.2	5000	5160	103	3.95	30	71.8-122
chloroberizene	BOL	5000	4860	ใ? \% 2	5000	4940	98, 8	+.63	30	72. 2.418
chloroethane	BQL	5000	5310	106	5000	5380	108	1.31	30	10.0-233
2-chloroethyl vinyl ether	BQL	12500	99200	794*	12500	101000	806*	1.55	30	16.7-283
chloroform	BQL	5000	4790	95.8	5000	5040	101	5.09	30	74.0-128
chloromethane	BQL	5000	4740	94.8	5000	4810	96.2	1.46	30	72.0-138
2-chlorotoluene	BQL	5000	4740	94.8	5000	4650	93.0	1.92	30	79.3-11
4-chlorotoluene	BQL	5000	4730	94.6	5000	4790	95.8	1.26	30	76.8-1
dibromochloromethane	BQL	5000	5010	100	5000	5150	103	2.76	30	69.0-117
1,2-dibromo-3-chloropropane	BQL	25000	21100	84.2	25000	21200	84.8	0.662	30	$\frac{69.0-117}{20.2-171}$
1,2-dibromoethane	BQL	5000	4840	96.8	5000	4980	99.6	2.85	30	78.5-123
dibromomethane	BQL	5000	4120	82.4	5000	4910	98.2	17.5	30	71.3-137
1,2-dichlorobenzene	BQL	5000	4710	94.2	5000	4850	97.0	2.93	30	$\frac{75.1-120}{}$
1,3-dichlorobenzene	BQL	5000	4650	93.0	5000	4720	94.4	1.49	30	75.1-120
1,4-dichlorobenzene	BQL	5000	4660	93.2	5000	4700	34.0	0.855	30	73.1-121
trans-1,4-Dichloro-2-butene	BQL	25000	20600	82.4	25000	21200	84.9	0.85	0	74.8-118
dichlorodifluoromethane	BQL	5000	4840	96.8	5000	21200		2.96	30	25.7-149
1,1-dichloroethane	BQL	5000	4610		5000	4710	34.2	2.72	30	41.7-166
1,2-dichloroethane	BQL	5000				0	97.0	5.07	30	75.6-128
	BQ1.				5000	4960	99.2	4.54	30	71.1-127
cis-1,2-dichloroethene	9640	5000	4980,	99,5.	5000	5300	106.	6.22	30	64, 4-1.30
trans-1,2-dichloroethene	B6L	5000	15000	107	5000	15600	120	11.5	30	72.7-134
1,2-dichloropropane	BQL	5000	5170	98.8	5000	5570	107	7.78	30	74.6-124
1,3-dichloropropane	BQL	5000	4580	91.6	5000	4860	97.2	5.93	30	76.5-129
2,2-dichloropropane	BQL	5000	4570	91.4	5000	4650	93.0	1.74	30	79.1-121
1,1-dichloropropene	L	5000	4370	87.4	5000	4520	90.4	3.37	30	31.5-157
cis-1,3-dichloropropene	BQL	5000	4570	91.4	5000	4750	95.0	3.85	30	72.5-120
	BQL	5000	4530	90.6	5000	4590	91.8	1.32	30	66.6-1.32

\# Column to be used to flag recovery and RPD values with an asterisk

* Valies outside of QC limits

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental Lab Code: NC00919

Inst: MSD1
Batch: 1100709
EPA Sample No.: g582-493-6a, g582-493-6a, g582-493-6a Filenames: 1007120. D, 1007121. D, 1007122.D

Dilution: 1000 Matrix: Water

COMPOUND	SAMPLE CONC			MS \% REC		MSD CONC	$\begin{gathered} M S D \\ \% \end{gathered}$	8	QC LIMITS	
cans-1,3-dichloropropene		(Hg / L)	($\mu \mathrm{g} / \mathrm{L}$)	REC \#	($\mu \mathrm{g} / \mathrm{L}$)	(Hg / L)	REC \#	RPD	RPD	REC
Diisopropyl ether	BQL	5000	4480	89.6	5000	4510	90.2	0.667	30	44.7-144
Dilisopropyl ether	BQL	5000	4690	93.8	5000	4810	96.2	2.53	30	79.4-122
ethylbenzene	BQL	5000	4590	91.8	5000	4710	94.2	2.58	30	73.8-126
hexachlorobutadiene	BQL	5000	4200	84.0	5000	4780	95.6	12.9	30	51.8-134
2-hexanone	BQL	25000	18100	72.3	25000	17900	71.6	0.889	30	41.6-111
Iodomethane	BQL	5000	4830	96.6	5000	5370	107	10.6	30	40.6-126
isopropylbenzene	BQL	5000	4650	93.0	5000	4770	95.4	2.55	30	
4-isopropyltoluene	BQL	5000	4470	89.4	5000	4640	92.8	3.73	30	$\frac{74.3-123}{74-122}$
Methyl-tert-butyl ether	BQL	5000	4660	93.2	5000	4990	39.8	6. 84	30	74.6-122
methylene chloride	BQL	5000	4740	92.2	5000	4940	96.2	6.84	30	66.5-136
4-methyl-2-pentanone	BQL	25000	22300	89.4	25000	940	96.2	4.25	30	48.6-155
naphthalene	BQL	5000	3710	74.2				2.26	30	6.88-166
n-propyl benzene	BQL	5000	4710		000	130	82.6	10.7	30	55.1-140
styrene	BQL	5000	4390	87			94.4	0.212	30	71.6-128
1,1,1,2-tetrachloroethane	BQL	5000					87.6	0.228	30	73.2-123
1,1,2,2-tetrachloroethane	BQL	5000	4910	99.	5000	4980	99.6	0.402	30	69.4-120
tetrachloroethene	BQL	5000	491	98.2	5000	4800	96.0	2.26	30	75.7-136
toluene	BOt	5000		78.4	5000	3990	79.8	1.77	30	45.8-1.53
1,2,3-trichlorobenzene		5000	4792	95,8.	5000	4820	32.4	1,66	30	66.4.4-128
1,2,4-trichlorobenzene	BQL	000	4340	86.8	5000	4720	94.4	8.39	30	61.0-126
1,1,1-trichloroethane	L	5000	4300	86.0	5000	4680	93.6	8.46	30	60.6-125
1,1,2-trichloroethane	BQL	50	4960	99.2	5000	5320	106	7.00	30	78.4-121
tr, eluoroethens	Bob	5000	4980	99.6	5000	5010	100	0.601	30	64.8-128
trichlorofluoromethane	BOL	5000	4.690	23,8.	5000	4840	96\% 6		30	84, 9.136
1,2,3-trichloropropane	BQL	5000	5330	107	5000	5550	111	4.04	30	76.8-132
1,2,4-trimethylbenzene	BOL	5000	4530	90.6	5000	4490	89.8	0.887	30	10.0-218
1,3,5-trimethylbenzene	BQL	5000	4380	87.6	5000	4470	89.4	2.03	30	31.0-172
Vinyl acetate	BQL	12500	4340	86.8	5000	4480	89.6	3.17	30	67.7-132
vinyl chloride	BQL	$\frac{12500}{5000}$	11800	94.6	12500	12600	101	6.30	30	0.00-355
m/p-xylene	BQL	10000		92.0	5000	5270	97.6	5.91	30	68.1-137
o-xylene	BQL	5000	4590	92.3	10000	9340	93.4	1.18	30	79.8-118
			4590	91.8	5000	4560	91.2	0.656	30	80.0-121

System Monitoring Compound Results

System Monitoring Compound Results		MS SPIKE $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { MS } \\ \text { CONC } \\ (\mu g / L) \\ \hline \end{gathered}$	$\begin{gathered} \text { MS } \\ 8 \\ \text { REC \# } \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$			$\begin{gathered} \text { QC } \quad \begin{array}{c} \text { LIMITS } \\ \text { REC } \end{array} \end{gathered}$
460-00-4	4-Bromofluorobenzene	10	10.37	104	10	10.2	102	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	10.17	102	10	10.66	107	
2037-26-5	Toluene-d8	10	10.44	104	10	10.33	103	$\frac{63.5-140}{81.8-117}$

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 1 failure(s) out of 72 . MSD spike Recovery: 1 failure(s) out of 72 .
ReL: 0 out of 72 outside of limits
COMMENTS:

Anglyst: 0
Reviewed by:

Results for Volatiles by GCMS 8260B

Client Sample ID: Trip Blank Client Project ID: AVX
Lab Sample ID: G582-493-7A Lab Project ID: G582-493

Compound
 Acetone

Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result	Quantitation UG/L Limit UG/L	MDL
UG/L		
BQL	25.0	2.18
BQL	1.00	0.0650
BQL	1.00	0.0560
BQL	1.00	0.101
BQL	1.00	0.0760
0.420	1.00	0.120
BQL	1.00	0.133
BQL	25.0	0.544
BQL	1.00	0.109
BQL	1.00	0.0840
BQL	1.00	0.0500
BQL	1.00	0.0690
BQL	1.00	0.0870
BQL	1.00	0.0820
BQL	1.00	0.106
BQL	1.00	0.0790
BQL	1.00	0.146
BQL	1.00	0.0990
BQL	1.00	0.0800
0.340	1.00	0.0900
BQL	5.00	1.21
BQL	1.00	0.113
BQL	1.00	0.124
BQL	1.00	0.127
BQL	1.00	0.0810
BQL	1.00	0.0790
BQL	5.00	0.630
BQL	1.00	0.0740
BQL	1.00	0.0890
BQL	1.00	0.0790
BQL	1.00	0.0650
BQL	1.00	0.0890
BQL	1.00	0.0940
BQL	1.00	0.127
BQL	1.00	0.0590
BQL	1.00	0.0720
BQL	1.00	0.0760
BQL	1.00	0.0760
BQL	5.00	0.0940
BQL	1.00	0.0730
BQL	1.00	0.0770
BQL	1.00	0.228
BQL	5.00	0.720
BQL	1.00	0.0420
BQL	1.00	0.0710

Dilution Factor	Date Analyzed
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$
1	$10 / 7 / 2009$

Flag
Analyzed By: CLP
Date Collected:
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL

Client Sample ID: Trip Blank
Client Project ID: AVX
Lab Sample ID: G582-493-7A
Lab Project ID: G582-493

Results for Volatiles
 by GCMS 8260B

Analyzed By: CLP
Date Collected:
Date Received: 9/29/2009
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
$1,3,5-$ Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$10 / 7 / 2009$
0.290	5.00	0.0980	1	$10 / 7 / 2009$
BQL	5.00	0.550	1	$10 / 7 / 2009$
BQL	1.00	0.0670	1	$10 / 7 / 2009$
BQL	1.00	0.133	1	$10 / 7 / 2009$
BQL	1.00	0.0800	1	$10 / 7 / 2009$
BQL	1.00	0.0850	1	$10 / 7 / 2009$
BQL	1.00	0.0900	1	$10 / 7 / 2009$
BQL	1.00	0.115	1	$10 / 7 / 2009$
BQL	1.00	0.0690	1	$10 / 7 / 2009$
BQL	1.00	0.0760	1	$10 / 7 / 2009$
BQL	1.00	0.190	1	$10 / 7 / 2009$
BQL	1.00	0.119	1	$10 / 7 / 2009$
BQL	1.00	0.0540	1	$10 / 7 / 2009$
BQL	1.00	0.0540	1	$10 / 7 / 2009$
BQL	1.00	0.182	1	$10 / 7 / 2009$
BQL	1.00	0.111	1	$10 / 7 / 2009$
BQL	1.00	0.120	1	$10 / 7 / 2009$
BQL	1.00	0.0650	1	$10 / 7 / 2009$
BQL	1.00	0.0740	1	$10 / 7 / 2009$
BQL	1.00	0.149	1	$10 / 7 / 2009$
BQL	2.00	0.0980	1	$10 / 7 / 2009$
BQL	1.00	0.0650	1	$10 / 7 / 2009$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.4	104	

Flag

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected belpw the quantitation limit.
Analyst:

Locations Nationwide
Alaska \quad Hawaii

Alaska
Ohio
New Je
West Virginia
079475
вйоет чиол.

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046
Page: Page 1 of 11
Lab Pro \#: P0910180
Report Date: 10/21/09
Client Proj Name: B0007393.0000.00006
Client Pro \#: AVXMB

Laboratory Results
Total pages in data package: \qquad

Lab Sample \#	Client Sample ID
P0910180-01	PZ-2D
P0910180-02	PZ-1D
P0910180-03	PZ-3D
P0910180-04	IW-3D
P0910180-05	OW-8D
P0910180-06	OW-10D
P0910180-07	OW-9D
P0910180-08	OW-7D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

Date:

Project Manager:

 Debbie HallThe analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 11
Lab Proj \#: P0910180
Report Date: 10/21/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

```
Client Name: Arcadis U.S., Inc.
        Contact: Mark Hanish
        Address: 310 Seven Fields Blvd.
        Suite 210
                            Seven Fields, PA 16046-\cdots..............
```

 Page: Page 3 of 11
 Lab Proj \#: P0910180
 Report Date: 10/21/09
 Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

$\frac{\text { Sample Description }}{\text { PZ-1D }}$	Matrix Water	Lab Sample \# P0910180-02			$\frac{\text { Sampled Date/Time }}{12 \text { Oct. } 09 \quad 13: 09}$	Received 13 Oct. 09 10:48	
Analyte(s)	Flag	Result	PQL	Ünits	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	J	2.3	5.0	mg/L	9060	10/16/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046-

Page: Page 4 of 11
Lab Proj \#: P0910180
Report Date: 10/21/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\mathrm{PZ}-3 \mathrm{D}}$	Matrix Water	Lab Sample \# P0910180-03			$\frac{\text { Sampled Date/Time }}{12 \text { Oct } 0913: 17}$	Received$1 3 \longdiv { \text { Oct. } 0 9 1 0 : 4 8 }$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	J	3.9	5.0	mg/L	9060	10/16/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 11

Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046--1.-.........-

Lab Proj \#: P0910180
Report Date: 10/21/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0910180-04			Sampled Date/Time	Received	
IW-3D	Water				12 Oct. 09 13:26	13 Oct.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		6800.0	250.0	mg/L	9060	10/19/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 - -

Page: Page 6 of 11
Lab Proj \#: P0910180
Report Date: 10/21/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix Water	Lab Sample \# P0910180-05			Sampled Date/Time	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		6.1	5.0	mg/L	9060	10/16/09	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

```
Client Name: Arcadis U.S., Inc.
    Contact: Mark Hanish
    Address: 310 Seven Fields Blvd.
            Suite 210
    Seven Fields, PA-16046 -...
```

 Page: Page 7 of 11
 Lab Proj \#: P0910180
 Report Date: 10/21/09
 Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0910180-06			Sampled Date/Time	Received	
OW-10D	Water				12 Oct. $0913: 51$	13 Oct. 09 10:48	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		18.0	5.0	mg / L	9060	10/16/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish Address: 310 Seven Fieids Blvd.

Suite 210
Seven Fields, PA 16046

Page: Page 8 of 11
Lab Proj \#: P0910180
Report Date: 10/21/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-9D	Matrix Water	Lab Sample \# P0910180-07			$\frac{\text { Sampled Date/Time }}{12 \text { Oct. } 0914: 02}$		Received	
Analyte(s)	Flag	Result	PQL	Units	Method\#	Analysi	sis Date	By
WetChem N Total Organic Carbon		19.0	5.0	mg/L	9060	10/16/09		md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 11
Lab Proj \#: P0910180
Report Date: 10/21/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

```
Client Name: Arcadis U.S., Inc.
        Contact: Mark Hanish
        Address: }310\mathrm{ Seven Fields Blvd.
            Suite 210
            Seven Fields, PA-16046
```

 Page: Page 10 of 11
 Lab Proj \#: P0910180
 Report Date: 10/21/09
 Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M091019022-MB								
	Result		TrueSpikeConc.	$\underline{R D L}$	\%Recovery	Ctt Limits		
Total Organic Carbon	< 5.0	mg / L		5.0		- NA		
M091019022-LCS								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits		
Total Organic Carbon	38.0	mg / L	36.00		106.00	70-130		
P0910180-02A-DUP								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	2.0	mg / L				- NA	0.00	0-20
P0910208-01A-DUP								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits	RPD	RPD CtI Limits
Total Organic Carbon	< 5.0	mg / L				- NA	0.00	0-20
P0910180-03A-MS								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits		
Total Organic Carbon	57.0	mg / L	50.00		106.00	70-130		
P0910208-02A-MS								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits		
Total Organic Carbon	54.0	mg / L	50.00		108.00	70-130		

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 11
Lab Proj \#: P0910180
Report Date: 10/21/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M091021006-MB

| | $\frac{\text { Result }}{}$ | TrueSpikeConc. | RDL | \%Recovery | Ctl Limits |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Organic Carbon | <5.0 | mg / L | 5.0 | | - NA |

	Result		TrueSpikeConc.	\%Recovery	CtI Limits		
Total Organic Carbon	38.0	mg / L	36.00	106.00	70-130		
P0910210-01A-DUP							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Total Organic Carbon	< 5.0	mg / L			- NA	0.00	0-20
P0910210-02A-MS							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Total Organic Carbon	52.0	mg / L	50.00	104.00	70-130		

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 11
Lab Proj \#: P0910436
Report Date: 11/06/09
Client Prof Name: B0007393.0000.00006
Client Prof\#: AVXMB

Laboratory Results

Total pages in data package:

Lab Sample \#		Client Sample ID
P0910436-01		OW-10D
P0910436-02	OW-9D	
P0910436-03	OW-8D	
P0910436-04	OW-7D	
P0910436-05	PZ-1D	
P0910436-06	PZ-2D	
P0910436-07	PZ-3D	
P0910436-08	IW-3D	

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

Project Manager:

Debbie Hello
The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 11
Lab Proj \#: P0910436
Report Date: 11/06/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-10D	Matrix Water	Lab Sample \# P0910436-01			Sampled Date 26 Oct. 09 13	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		13.0	5	mg / L	9060	11/5/09	md
RiskAnalysis N Ethane		0.460	0.025	ug/L	AM20GAX	11/5/09	rw
N Ethene		4.500	0.025	ug/L	AM20GAX	11/5/09	IW
N Methane		140.000	0.100	ug/L	AM20GAX	11/5/09	rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046--..--

Page: Page 3 of 11
Lab Proj \#: P0910436
Report Date: 11/06/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046-.......

Page: Page 4 of 11
Lab Proj \#: P0910436
Report Date: 11/06/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\begin{aligned} & \text { Sample Description } \\ & \text { OW-8D } \end{aligned}$	Matrix Water	Lab Sample \# P0910436-03			Sampled Date 26 Oct. 091	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		27.0	5	mg / L	9060	11/5/09	md
RiskAnalysis N Ethane		0.670	0.025	ug/L	AM20GAX	11/5/09	TW
N Ethene		5.500	0.025	ug/L	AM20GAX	11/5/09	[W
N Methane		310.000	0.100	$u g / L$	AM20GAX	11/5/09	rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.----- --
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 11
Lab Proj \#: P0910436
Report Date: 11/06/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-7D	Matrix Water	Lab Sample \# P0910436-04			Sampled Date/Time 26 Oct. 09 14:30	Received		
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysi	sis Date	By
WetChem N Total Organic Carbon		17.0	5	mg / L	9060	11/5/09		md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 11
Lab Proj \#: P0910436
Report Date: 11/06/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { PZ-1D }}$	Matrix Water	Lab Sample \# P0910436-05			Sampled Date/Time 26 Oct. 09 14:40	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		7.6	5	mg/L	9060	11/5/09	md
RiskAnalysis N Ethane		0.091	0.025	ug/L	AM20GAX	11/5/09	rw
N Ethene		0.290	0.025	$u g / L$	AM20GAX	11/5/09	rw
N Methane		26.000	0.100	ug/L	AM20GAX	11/5/09	rw

```
Client Name: Arcadis U.S., Inc.
        Contact: Mark Hanish
        Address: }310\mathrm{ Seven Fields Blvd.
            Suite 210
            Seven Fields, PA 16046-_-_
```

 Page: Page 7 of 11
 Lab Proj \#: P0910436
 Report Date: 11/06/09
 Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.--.. ...-- --
Suite 210
Seven Fields, PA-16046-- ----

Page: Page 8 of 11
Lab Proj \#: P0910436
Report Date: 11/06/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB -

$\frac{\text { Sample Description }}{P Z-3 D}$	Matrix Water	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P0910436-07 } \end{aligned}$			$\frac{\text { Sampled Date/Time }}{26 \text { Oct. } 09 \quad 15: 25}$	$\frac{\text { Received }}{27 \text { Oct. } 09 \text { 11:53 }}$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		6.0	5	mg / L	9060	11/5/09	md
RiskAnalysis N Ethane		0.620	0.025	ug/L	AM20GAX	11/5/09	w
N Ethene		2.300	0.025	ug/L	AM20GAX	11/5/09	rw
N Methane		180.000	0.100	ug/L	AM20GAX	11/5/09	rw

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Page: Page 9 of 11
Lab Proj \#: P0910436
Report Date: 11/06/09 - -..--
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description W-3D	Matrix Water	Lab Sample \# P0910436-08			$\frac{\text { Sampled Date/Time }}{26 \text { Oct. } 0915 \cdot 45}$	Received 27 Oct. 09 11:53	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		5900.0	250	mg / L	9060	11/5/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046 -

Page: Page 10 of 11
Lab Proj \#: P0910436
Report Date: 11/06/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: in House Dissolved Gas Sample Preparation
Analysis Method: Light Hydrocarbons (C1-C4) in Water

M091105002-MB

	Result			TrueSpikeConc.	$\underline{R D L}$
	<0.025	$\mathrm{ug} /$	\%Recovery		Ctl Limits
Ethane	<0.025	ug / L	0.025		- NA
Ethene	<0.100	ug / L	0.025	- NA	
Methane	0.100	- NA			

M091105002-LCS

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits
Ethane	49.000	ug/L	45.00	109.00	75-125
Ethene	45.000	ug / L	40.80	110.00	75-125
Methane	910.000	ug/L	825.00	110.00	75-125

M091105002-LCSD

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Ethane	49.000	ug/L	45.00	109.00	75-. 125	0.00	0-20
Ethene	44.000	ug/L	40.80	108.00	75-125	2.25	0-20
Methane	900.000	ug/L	825.00	109.00	75-125	1.10	0-20

```
Client Name: Arcadis U.S., Inc.
    Contact: Mark Hanish
    Address: 310 Seven Fields Blvd:-.........
Suite 210
Seven Fields, PA 16046-......
Page: Page 11 of 11
        Lab Proj #: P0910436
    Report Date: 11/06/09
Client Proj Name: B0007393.0000.00006
    Client Proj #: AVXMB
```


Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M091106005-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits		
Total Organic Carbon	< 5.0	mg / L		5		- NA		
M091106005-LCS								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits		
Total Organic Carbon	39.0	mg / L	36.00		108.00	70-130		
P0910436-01A-DUP								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Total Organic Carbon	12.0	mg / L				- NA	8.00	0-20
P0910436-02A-MS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
Total Organic Carbon	47.0	mg / L	50.00		72.00	70-130		

dən!uqns: גdOO YYNld

Hillary Evanko
Arcadis
600 Waterfront Drive
Pittsburgh, PA 15222

Report Number: G582-536
Client Project: AVX Myrtle Beach
Dear Hillary Evanko,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Hagen at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,
SGS North America, Inc.

Case Narrative
Arcadis
SGS Project: G582-536
Project Name: AVX Myrtle Beach

SGS North America; Inc.

November $11^{\text {th }}, 2009$

- Seven water samples were accepted into the laboratory on October $27^{\text {th }}, 2009$ at 1045 for analyses as indicated on the chain of custody. The samples were received in good condition, with a temperature of $5.0^{\circ} \mathrm{C}$.
- All extractions and analyses were completed within holding time limits, with the following quality control exceptions.

8260B Analysis

- The submitted Trip Blank has reported concentrations for Methylene Chloride and Toluene, 0.88 and $0.21 \mathrm{vg} / \mathrm{L}$, respectively. These values have been ' J ' flagged to indicate that these concentrations are below the low calibration point, but above the MDL.

$\mathrm{B}=$ Compound also detected in batch blank
$\mathrm{BQL}=$ Below Quantification Limit (RL or MDL)
DF = Dilution Factor
Dup $=$ Duplicate
$\mathrm{D}=$ Detected, but RPD is $>40 \%$ between results in dual column method.
$\mathrm{E}=$ Estimated concentration, exceeds calibration range.
$\mathrm{J}=$ Estimated concentration, below calibration range and above MDL
LCS(D) = Laboratory Control Spike (Duplicate)
MDL $=$ Method Detection Limit
MS(D) = Matrix Spike (Duplicate)
PQL $=$ Practical Quantitation Limit
RL/CL $=$ Reporting Limit / Control Limit
RPD = Relative Percent Difference
$\mathrm{UJ}=$ Target analytes with recoveries that are $10 \%<\% \mathrm{R}<\mathrm{LCL}$; \# of MEs are allowable and compounds are not detected in the sample.
$\mathrm{mg} / \mathrm{kg}=$ milligram per kilogram, ppm , parts per million
$\mathrm{ug} / \mathrm{kg}=$ micrograms per kilogram, ppb, parts per billion
$\mathrm{mg} / \mathrm{L}=$ milligram per liter, ppm , parts per million
$\mathrm{ug} / \mathrm{L}=$ micrograms per liter, ppb , parts per billion
\% Rec $=$ Percent Recovery
\% soilds = Percent Solids
Special Notes:

1) Metals and mercury samples are digested with a hot block; see the standard operating procedure document for details.
2) Uncertainty for all reported data is less than or equal to 30 percent.

Results for Volatiles by GCMS 8260B

Client Sample ID: OW-10D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-1A
Lab Project ID: G582-536

Analyzed By: CLP
Date Collected: 10/26/2009 13:50
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

	Result UG/L	Quantitation	MDL UG/L		Date Analyzed	Flag
Acetone	BQL	Limit 25000	2180	Factor 1000	Analyzed 11/7/2009	Flag
Benzene	BQL	1000	65.0	1000	11/7/2009	
Bromobenzene	BQL	1000	56.0	1000	11/7/2009	
Bromochloromethane	BQL	1000	101	1000	11/7/2009	
Bromodichloromethane	BQL	1000	76.0	1000	11/7/2009	
Bromoform	BQL	1000	120	1000	11/7/2009	
Bromomethane	BQL	1000	133	1000	11/7/2009	
2-Butanone	BQL	25000	544	1000	11/7/2009	
n-Butylbenzene	BQL	1000	109	1000	11/7/2009	
sec-Butylbenzene	BQL	1000	84.0	1000	11/7/2009	
tert-Butylbenzene	BQL	1000	50.0	1000	11/7/2009	
Carbon disulfide	BQL	1000	69.0	1000	11/7/2009	
Carbon tetrachloride	BQL	1000	87.0	1000	11/7/2009	
Chlorobenzene	BQL	1000	82.0	1000	11/7/2009	
Chloroethane	BQL	1000	106	1000	11/7/2009	
Chloroform	BQL	1000	79.0	1000	11/7/2009	
Chloromethane	BQL	1000	146	1000	11/7/2009	
2-Chlorotoluene	BQL	1000	99.0	1000	11/7/2009	
4-Chlorotoluene	BQL	1000	80.0	1000	11/7/2009	
Dibromochloromethane	BQL	1000	90.0	1000	11/7/2009	
1,2-Dibromo-3-chloropropane	BQL	5000	1210	1000	11/7/2009	
Dibromomethane	BQL	1000	113	1000	11/7/2009	
1,2-Dibromoethane (EDB)	BQL	1000	124	1000	11/7/2009	
1,2-Dichlorobenzene	BQL	1000	127	1000	11/7/2009	
1,3-Dichlorobenzene	BQL	1000	81.0	1000	11/7/2009	
1,4-Dichlorobenzene	BQL	1000	79.0	1000	11/7/2009	
trans-1,4-Dichloro-2-butene	BQL	5000	630	1000	11/7/2009	
1,1-Dichloroethane	BQL	1000	74.0	1000	11/7/2009	
1,1-Dichloroethene	BQL	1000	89.0	1000	11/7/2009	
1,2-Dichloroethane	BQL	1000	79.0	1000	11/7/2009	
cis-1,2-Dichloroethene	5220	1000	65.0	1000	11/7/2009	
trans-1,2-dichloroethene	400	1000	89.0	1000	11/7/2009	J
1,2-Dichloropropane	BQL	1000	94.0	1000	11/7/2009	
1,3-Dichloropropane	BQL	1000	127	1000	11/7/2009	
2,2-Dichloropropane	BQL	1000	59.0	1000	11/7/2009	
1,1-Dichloropropene	BQL	1000	72.0	1000	11/7/2009	
cis-1,3-Dichloropropene	BQL	1000	76.0	1000	11/7/2009	
trans-1,3-Dichloropropene	BQL	1000	76.0	1000	11/7/2009	
Dichlorodifluoromethane	BQL	5000	94.0	1000	11/7/2009	
Diisopropyl ether (DIPE)	BQL	1000	73.0	1000	11/7/2009	
Ethylbenzene	BQL	1000	77.0	1000	11/7/2009	
Hexachlorobutadiene	BQL	1000	228	1000	11/7/2009	
2-Hexanone	BQL	5000	720	1000	11/7/2009	
Iodomethane	BQL	1000	42.0	1000	11/7/2009	
Isopropylbenzene	BQL	${ }_{\text {Page }}{ }^{10000}$	71.0	1000	11/7/2009	

Results for Volatiles
by GCMS 8260B

Client Sample ID: OW-10D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-1A
Lab Project ID: G582-536

Analyzed By: CLP
Date Collected: 10/26/2009 13:50
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

	Result CG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
Flag					
4-Isopropyltoluene	BGLL	1000	48.0	1000	$11 / 7 / 2009$
Methylene chloride	BQL	1000	98.0	1000	$11 / 7 / 2009$
4-Methyl-2--pentanone	BQL	5000	1000	$11 / 7 / 2009$	
Methyl-tert-butyl ether (MTBE)	BQL	5000	550	1000	$11 / 7 / 2009$
Naphthalene	BQL	1000	67.0	1000	$11 / 7 / 2009$
n-Propyl benzene	BQL	1000	133	1000	$11 / 7 / 2009$
Styrene	BQL	1000	80.0	1000	$11 / 7 / 2009$
1,1,1,2-Tetrachloroethane	BQL	1000	85.0	1000	$11 / 7 / 2009$
1,1,2,2-Tetrachloroethane	BQL	1000	90.0	1000	$11 / 7 / 2009$
Tetrachloroethene	BQL	1000	115	1000	$1117 / 2009$
Toluene	BQL	1000	69.0	1000	$11 / 7 / 2009$
1,2,3-Trichlorobenzene	BQL	1000	76.0	1000	$11 / 7 / 2009$
1,2,4-Trichlorobenzene	BQL	1000	190	1000	$11 / 7 / 2009$
Trichloroethene	BQL	1000	119	1000	$11 / 7 / 2009$
1,1,1-Trichloroethane	20400	1000	54.0	1000	$11 / 7 / 2009$
1,1,2-Trichloroethane	BQL	1000	54.0	1000	$11 / 7 / 2009$
Trichlorofluoromethane	BQL	1000	182	1000	$11 / 7 / 2009$
1,2,3-Trichloropropane	BQL	1000	111	1000	$11 / 7 / 2009$
1,2,4-Trimethylbenzene	BQL	1000	120	1000	$11 / 7 / 2009$
1,3,5-Trimethylbenzene	BQL	1000	65.0	1000	$11 / 7 / 2009$
Vinyl chloride	BQL	1000	74.0	1000	$11 / 7 / 2009$
m-,p-Xylene	BQL	1000	149	1000	$11 / 7 / 2009$
o-Xylene	BQL	2000	98.0	1000	$11 / 7 / 2009$
	BQL	1000	65.0	1000	
			Spike	Spike	Percent

Comments:

Flags:
BQL = Below Quantitation Limits.
Analyst:

Results for Volatiles
by GCMS 8260B

Client Sample ID: OW-9D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-2A
Lab Project ID: G582-536

Analyzed By: DVO
Date Collected: 10/26/2009 14:07
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

Client Sample ID: OW-9D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-2A
Lab Project ID: G582-536

Analyzed By: DVO
Date Collected: 10/26/2009 14:07
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	800	38.4	800	11/8/2009	
Methylene chloride	96.0	4000	78.4	800	11/8/2009	J
4-Methyl-2-pentanone	BQL	4000	440	800	11/8/2009	
Methyl-tert-butyl ether (MTBE)	BQL	800	53.6	800	11/8/2009	
Naphthalene	BQL	800	106	800	11/8/2009	
n-Propyl benzene	BQL	800	64.0	800	11/8/2009	
Styrene	BQL	800	68.0	800	11/8/2009	
1,1,1,2-Tetrachloroethane	BQL	800	72.0	800	11/8/2009	
1,1,2,2-Tetrachloroethane	BQL	800	92.0	800	11/8/2009	
Tetrachloroethene	BQL	800	55.2	800	11/8/2009	
Toluene	BQL	800	60.8	800	11/8/2009	
1,2,3-Trichlorobenzene	BQL	800	152	800	11/8/2009	
1,2,4-Trichlorobenzene	BQL	800	95.2	800	11/8/2009	
Trichloroethene	BQL	800	43.2	800	11/8/2009	
1,1,1-Trichloroethane	BQL	800	43.2	800	11/8/2009	
1,1,2-Trichloroethane	BQL	800	146	800	11/8/2009	
Trichlorofluoromethane	BQL	800	88.8	800	11/8/2009	
1,2,3-Trichloropropane	BQL	800	96.0	800	11/8/2009	
1,2,4-Trimethylbenzene	BQL	800	52.0	800	11/8/2009	
1,3,5-Trimethylbenzene	BQL	800	59.2	800	11/8/2009	
Vinyl chloride	216	800	119	800	11/8/2009	J
m -, p -Xylene	BQL	1600	78.4	800	11/8/2009	
o-Xylene	BQL	800	52.0	800	11/8/2009	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		10	11.6	116		
Toluene-d8		10	10.1	101		
4-Bromofluorobenzene		10	9.52	95		

Comments:

Flags:
BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad Reviewed By: \qquad

Results for Volatiles by GCMS 8260B

Client Sample ID: OW-8D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-3A
Lab Project ID: G582-536

Analyzed By: CLP
Date Collected: 10/26/2009 14:20
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	$\begin{aligned} & \text { MDL } \\ & \text { UG/L } \end{aligned}$	Dilution Factor	Date Analyzed	Flag
Acetone	BQL	25000	2180	1000	11/7/2009	
Benzene	BQL	1000	65.0	1000	11/7/2009	
Bromobenzene	BQL	1000	56.0	1000	11/7/2009	
Bromochloromethane	BQL	1000	101	1000	11/7/2009	
Bromodichloromethane	BQL	1000	76.0	1000	11/7/2009	
Bromoform	BQL	1000	120	1000	11/7/2009	
Bromomethane	BQL	1000	133	1000	11/7/2009	
2-Butanone	BQL	25000	544	1000	11/7/2009	
n-Butylbenzene	BQL	1000	109	1000	11/7/2009	
sec-Butylbenzene	BQL	1000	84.0	1000	11/7/2009	
tert-Butylbenzene	BQL	1000	50.0	1000	11/7/2009	
Carbon disulfide	BQL	1000	69.0	1000	11/7/2009	
Carbon tetrachloride	BQL	1000	87.0	1000	11/7/2009	
Chlorobenzene	BQL	1000	82.0	1000	11/7/2009	
Chloroethane	BQL	1000	106	1000	11/7/2009	
Chloroform	BQL	1000	79.0	1000	11/7/2009	
Chloromethane	BQL	1000	146	1000	11/7/2009	
2-Chlorotoluene	BQL	1000	99.0	1000	11/7/2009	
4-Chlorotoluene	BQL	1000	80.0	1000	11/7/2009	
Dibromochloromethane	BQL	1000	90.0	1000	11/7/2009	
1,2-Dibromo-3-chloropropane	BQL	5000	1210	1000	11/7/2009	
Dibromomethane	BQL	1000	113	1000	11/7/2009	
1,2-Dibromoethane (EDB)	BQL	1000	124	1000	11/7/2009	
1,2-Dichlorobenzene	BQL	1000	127	1000	11/7/2009	
1,3-Dichlorobenzene	BQL	1000	81.0	1000	11/7/2009	
1,4-Dichlorobenzene	BQL	1000	79.0	1000	11/7/2009	
trans-1,4-Dichloro-2-butene	BQL	5000	630	1000	11/7/2009	
1,1-Dichloroethane	BQL	1000	74.0	1000	11/7/2009	
1,1-Dichloroethene	BQL	1000	89.0	1000	11/7/2009	
1,2-Dichloroethane	BQL	1000	79.0	1000	11/7/2009	
cis-1,2-Dichloroethene	7300	1000	65.0	1000	11/7/2009	
trans-1,2-dichloroethene	250	1000	89.0	1000	11/7/2009	J
1,2-Dichloropropane	BQL	1000	94.0	1000	11/7/2009	
1,3-Dichloropropane	BQL	1000	127	1000	11/7/2009	
2,2-Dichloropropane	BQL	1000	59.0	1000	11/7/2009	
1,1-Dichloropropene	BQL	1000	72.0	1000	11/7/2009	
cis-1,3-Dichloropropene	BQL	1000	76.0	1000	11/7/2009	
trans-1,3-Dichloropropene	BQL	1000	76.0	1000	11/7/2009	
Dichlorodifluoromethane	BQL	5000	94.0	1000	11/7/2009	
Diisopropyl ether (DIPE)	BQL	1000	73.0	1000	11/7/2009	
Ethylbenzene	BQL	1000	77.0	1000	11/7/2009	
Hexachlorobutadiene	BQL	1000	228	1000	11/7/2009	
2-Hexanone	BQL	5000	720	1000	11/7/2009	
lodomethane	BQL	1000	42.0	1000	11/7/2009	
Isopropylbenzene	BQL	Pagelof 2	71.0	1000	11/7/2009	GCMS.xts ${ }_{\text {8260 }}$

Results for Volatiles
by GCMS 8260B
Client Sample ID: OW-8D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-3A
Lab Project ID: G582-536

Analyzed By: CLP
Date Collected: 10/26/2009 14:20
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	1000	48.0	1000	11/7/2009	
Methylene chloride	BQL	5000	98.0	1000	11/7/2009	
4-Methyl-2-pentanone	BQL	5000	550	1000	11/7/2009	
Methyl-tert-butyl ether (MTBE)	BQL	1000	67.0	1000	11/7/2009	
Naphthalene	BQL	1000	133	1000	11/7/2009	
n-Propyl benzene	BQL	1000	80.0	1000	11/7/2009	
Styrene	BQL	1000	85.0	1000	11/7/2009	
1,1,1,2-Tetrachloroethane	BQL	1000	90.0	1000	11/7/2009	
1,1,2,2-Tetrachloroethane	BQL	1000	115	1000	11/7/2009	
Tetrachloroethene	BQL	1000	69.0	1000	11/7/2009	
Toluene	BQL	1000	76.0	1000	11/7/2009	
1,2,3-Trichlorobenzene	BQL	1000	190	1000	11/7/2009	
1,2,4-Trichlorobenzene	BQL	1000	119	1000	11/7/2009	
Trichloroethene	160	1000	54.0	1000	11/7/2009	J
1,1,1-Trichloroethane	BQL	1000	54.0	1000	11/7/2009	
1,1,2-Trichloroethane	BQL	1000	182	1000	11/7/2009	
Trichlorofluoromethane	BQL	1000	111	1000	11/7/2009	
1,2,3-Trichloropropane	BQL	1000	120	1000	11/7/2009	
1,2,4-Trimethylbenzene	BQL	1000	65.0	1000	11/7/2009	
1,3,5-Trimethylbenzene	BQL	1000	74.0	1000	11/7/2009	
Vinyl chloride	1400	1000	149	1000	11/7/2009	
m -,p-Xylene	BQL	2000	98.0	1000	11/7/2009	
o-Xylene	BQL	1000	65.0	1000	11/7/2009	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		10	11.3	113		
Toluene-d8		10	9.96	100		
4-Bromofluorobenzene		10	9.46	95		

Comments:

Flags:
BQL = Below Quantitation Limits.
Analyst:

Results for Volatiles
by GCMS 8260B

Client Sample ID: PZ-1D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-4A
Lab Project ID: G582-536

Analyzed By: CLP
Date Collected: 10/26/2009 14:40
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	$\begin{aligned} & \text { MDL } \\ & \text { UG/L } \end{aligned}$	Dilution Factor	Date Analyzed	Flag
Acetone	BQL	250	21.8	10	11/7/2009	
Benzene	BQL	10.0	0.650	10	11/7/2009	
Bromobenzene	BQL	10.0	0.560	10	11/7/2009	
Bromochloromethane	BQL	10.0	1.01	10	11/7/2009	
Bromodichloromethane	BQL	10.0	0.760	10	11/7/2009	
Bromoform	BQL	10.0	1.20	10	11/7/2009	
Bromomethane	BQL	10.0	1.33	10	11/7/2009	
2-Butanone	BQL	250	5.44	10	11/7/2009	
n -Butylbenzene	BQL	10.0	1.09	10	11/7/2009	
sec-Butylbenzene	BQL	10.0	0.840	10	11/7/2009	
tert-Butylbenzene	BQL	10.0	0.500	10	11/7/2009	
Carbon disulfide	BQL	10.0	0.690	10	11/7/2009	
Carbon tetrachloride	BQL	10.0	0.870	10	11/7/2009	
Chlorobenzene	BQL	10.0	0.820	10	11/7/2009	
Chloroethane	BQL	10.0	1.06	10	11/7/2009	
Chloroform	BQL	10.0	0.790	10	11/7/2009	
Chloromethane	BQL	10.0	1.46	10	11/7/2009	
2-Chlorotoluene	BQL	10.0	0.990	10	11/7/2009	
4-Chlorotoluene	BQL	10.0	0.800	10	11/7/2009	
Dibromochloromethane	BQL	10.0	0.900	10	11/7/2009	
1,2-Dibromo-3-chloropropane	BQL	50.0	12.1	10	11/7/2009	
Dibromomethane	BQL	10.0	1.13	10	11/7/2009	
1,2-Dibromoethane (EDB)	BQL	10.0	1.24	10	11/7/2009	
1,2-Dichlorobenzene	BQL	10.0	1.27	10	11/7/2009	
1,3-Dichlorobenzene	BQL	10.0	0.810	10	11/7/2009	
1,4-Dichlorobenzene	BQL	10.0	0.790	10	11/7/2009	
trans-1,4-Dichloro-2-butene	BQL	50.0	6.30	10	11/7/2009	
1,1-Dichloroethane	BQL	10.0	0.740	10	11/7/2009	
1,1-Dichloroethene	BQL	10.0	0.890	10	11/7/2009	
1,2-Dichloroethane	BQL	10.0	0.790	10	11/7/2009	
cis-1,2-Dichloroethene	181	10.0	0.650	10	11/7/2009	
trans-1,2-dichloroethene	BQL	10.0	0.890	10	11/7/2009	
1,2-Dichloropropane	BQL	10.0	0.940	10	11/7/2009	
1,3-Dichloropropane	BQL	10.0	1.27	10	11/7/2009	
2,2-Dichloropropane	BQL	10.0	0.590	10	11/7/2009	
1,1-Dichloropropene	BQL	10.0	0.720	10	11/7/2009	
cis-1,3-Dichloropropene	BQL	10.0	0.760	10	11/7/2009	
trans-1,3-Dichloropropene	BQL	10.0	0.760	10	11/7/2009	
Dichlorodifluoromethane	BQL	50.0	0.940	10	11/7/2009	
Diisopropyl ether (DIPE)	BQL	10.0	0.730	10	11/7/2009	
Ethylbenzene	BQL	10.0	0.770	10	11/7/2009	
Hexachlorobutadiene	BQL	10.0	2.28	10	11/7/2009	
2-Hexanone	BQL	50.0	7.20	10	11/7/2009	
lodomethane	BQL	10.0	0.420	10	11/7/2009	
Isopropylbenzene	BQL	Page ${ }^{10} 0$	0.710	10	11/7/2009	

Results for Volatiles
by GCMS 8260B

Client Sample ID: PZ-1D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-4A
Lab Project ID: G582-536

Analyzed By: CLP
Date Collected: 10/26/2009 14:40
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
BQL = Below Quantitation Limits.
Analyst:
\qquad

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
BQL	10.0	0.480	10	$11 / 7 / 2009$	
1.60	50.0	0.980	10	$11 / 7 / 2009$	J
BQL	50.0	5.50	10	$11 / 7 / 2009$	
BQL	10.0	0.670	10	$11 / 7 / 2009$	
BQL	10.0	1.33	10	$11 / 7 / 2009$	
BQL	10.0	0.800	10	$11 / 7 / 2009$	
BQL	10.0	0.850	10	$11 / 7 / 2009$	
BQL	10.0	0.900	10	$11 / 7 / 2009$	
BQL	10.0	1.15	10	$11 / 7 / 2009$	
BQL	10.0	0.690	10	$11 / 7 / 2009$	
BQL	10.0	0.760	10	$11 / 7 / 2009$	
BQL	10.0	1.90	10	$11 / 7 / 2009$	
BQL	10.0	1.19	10	$11 / 7 / 2009$	
39.6	10.0	0.540	10	$11 / 7 / 2009$	
BQL	10.0	0.540	10	$11 / 7 / 2009$	
BQL	10.0	1.82	10	$11 / 7 / 2009$	
BQL	10.0	1.11	10	$11 / 7 / 2009$	
BQL	10.0	1.20	10	$11 / 7 / 2009$	
BQL	10.0	0.650	10	$11 / 7 / 2009$	
BQL	10.0	0.740	10	$11 / 7 / 2009$	
BQL	10.0	1.49	10	$11 / 7 / 2009$	
BQL	20.0	0.980	10	$11 / 7 / 2009$	
BQL	10.0	0.650	10	$11 / 7 / 2009$	
	Spike	Spike	Percent		
	Added	Result	Recovered		
	10	11.1	111		
	10	9.91	99		

Reviewed By:

Client Sample ID: PZ-2D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-5A
Lab Project ID: G582-536

Analyzed By: DVO
Date Collected: 10/26/2009 15:00
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL	Dilution	Date	
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
Acetone	BQL	6250	545	250	11/8/2009	
Benzene	BQL	250	16.3	250	11/8/2009	
Bromobenzene	BQL	250	14.0	250	11/8/2009	
Bromochloromethane	BQL	250	25.2	250	11/8/2009	
Bromodichloromethane	BQL	250	19.0	250	11/8/2009	
Bromoform	BQL	250	30.0	250	11/8/2009	
Bromomethane	BQL	250	33.2	250	11/8/2009	
2-Butanone	820	6250	136	250	11/8/2009	J
n-Butylbenzene	BQL	250	27.3	250	11/8/2009	
sec-Butylbenzene	BQL	250	21.0	250	11/8/2009	
tert-Butylbenzene	BQL	250	12.5	250	11/8/2009	
Carbon disulfide	BQL	250	17.3	250	11/8/2009	
Carbon tetrachloride	BQL	250	21.8	250	11/8/2009	
Chlorobenzene	BQL	250	20.5	250	11/8/2009	
Chloroethane	BQL	250	26.5	250	11/8/2009	
Chloroform	BQL	250	19.8	250	11/8/2009	
Chloromethane	BQL	250	36.5	250	11/8/2009	
2-Chlorotoluene	BQL	250	24.8	250	11/8/2009	
4-Chlorotoluene	BQL	250	20.0	250	11/8/2009	
Dibromochloromethane	BQL	250	22.5	250	11/8/2009	
1,2-Dibromo-3-chloropropane	BQL	1250	303	250	11/8/2009	
Dibromomethane	BQL	250	28.3	250	11/8/2009	
1,2-Dibromoethane (EDB)	BQL	250	31.0	250	11/8/2009	
1,2-Dichlorobenzene	BQL	250	31.8	250	11/8/2009	
1,3-Dichlorobenzene	BQL	250	20.3	250	11/8/2009	
1,4-Dichlorobenzene	BQL	250	19.8	250	11/8/2009	
trans-1,4-Dichloro-2-butene	BQL	1250	157	250	11/8/2009	
1,1-Dichloroethane	BQL	250	18.5	250	11/8/2009	
1,1-Dichloroethene	BQL	250	22.2	250	11/8/2009	
1,2-Dichloroethane	BQL	250	19.8	250	11/8/2009	
cis-1,2-Dichloroethene	445	250	16.3	250	11/8/2009	
trans-1,2-dichloroethene	120	250	22.2	250	11/8/2009	J
1,2-Dichloropropane	BQL	250	23.5	250	11/8/2009	
1,3-Dichloropropane	BQL	250	31.8	250	11/8/2009	
2,2-Dichloropropane	BQL	250	14.7	250	11/8/2009	
1,1-Dichloropropene	BQL	250	18.0	250	11/8/2009	
cis-1,3-Dichloropropene	BQL	250	19.0	250	11/8/2009	
trans-1,3-Dichloropropene	BQL	250	19.0	250	11/8/2009	
Dichlorodifluoromethane	BQL	1250	23.5	250	11/8/2009	
Diisopropyl ether (DIPE)	BQL	250	18.2	250	11/8/2009	
Ethylbenzene	BQL	250	19.3	250	11/8/2009	
Hexachlorobutadiene	BQL	250	57.0	250	11/8/2009	
2-Hexanone	$B Q L$	1250	180	250	11/8/2009	
lodomethane	BQL	250	10.5	250	11/8/2009	
Isopropylbenzene	BQL	Page ${ }^{250}$ of 2	17.8	250	11/8/2009	GCMS. xs 8260

Results for Volatiles
by GCMS 8260B

Client Sample ID: PZ-2D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-5A
Lab Project ID: G582-536

Analyzed By: DVO
Date Collected: 10/26/2009 15:00
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	250	12.0	250	11/8/2009	
Methylene chloride	35.0	1250	24.5	250	11/8/2009	J
4-Methyl-2-pentanone	BQL	1250	138	250	11/8/2009	
Methyl-tert-butyl ether (MTBE)	BQL	250	16.7	250	11/8/2009	
Naphthalene	BQL	250	33.2	250	11/8/2009	
n-Propyl benzene	BQL	250	20.0	250	11/8/2009	
Styrene	BQL	250	21.3	250	11/8/2009	
1,1,1,2-Tetrachloroethane	BQL	250	22.5	250	11/8/2009	
1,1,2,2-Tetrachloroethane	BQL	250	28.8	250	11/8/2009	
Tetrachloroethene	BQL	250	17.3	250	11/8/2009	
Toluene	BQL	250	19.0	250	11/8/2009	
1,2,3-Trichlorobenzene	BQL	250	47.5	250	11/8/2009	
1,2,4-Trichlorobenzene	BQL	250	29.8	250	11/8/2009	
Trichloroethene	390	250	13.5	250	11/8/2009	
1,1,1-Trichloroethane	BQL	250	13.5	250	11/8/2009	
1,1,2-Trichloroethane	BQL	250	45.5	250	11/8/2009	
Trichlorofluoromethane	BQL	250	27.8	250	11/8/2009	
1,2,3-Trichloropropane	BQL	250	30.0	250	11/8/2009	
1,2,4-Trimethylbenzene	BQL	250	16.3	250	11/8/2009	
1,3,5-Trimethylbenzene	BQL	250	18.5	250	11/8/2009	
Vinyl chloride	4790	250	37.2	250	11/8/2009	
m -, p -Xylene	BQL	500	24.5	250	11/8/2009	
o-Xylene	BQL	250	16.3	250	11/8/2009	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		10	10.9	109		
Toluene-d8		10	10.1	101		
4-Bromofluorobenzene		10	9.57	96		

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.

Client Sample ID: PZ-3D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-6A
Lab Project ID: G582-536

Analyzed By: DVO
Date Collected: 10/26/2009 15:25
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

Results for Volatiles
by GCMS 8260B

Client Sample ID: PZ-3D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-6A
Lab Project ID: G582-536

Analyzed By: DVO
Date Collected: 10/26/2009 15:25
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene
1,2-Dichloroethane-d4

Toluene-d8
4-Bromofluorobenzene

Result	Quantitation UG/L Limit UG/L BQL	MDL UG/L	Dilution Factor	Date Analyzed 200	Flag
28.0	1000	190	200	$11 / 8 / 2009$	
BQL	1000	110	200	$11 / 8 / 2009$	J
BQL	200	13.4	200	$11 / 8 / 2009$	
BQL	200	26.6	200	$11 / 8 / 2009$	$11 / 8 / 2009$
BQL	200	16.0	200	$11 / 8 / 2009$	
BQL	200	17.0	200	$11 / 8 / 2009$	
BQL	200	18.0	200	$11 / 8 / 2009$	
BQL	200	23.0	200	$11 / 8 / 2009$	
BQL	200	13.8	200	$11 / 8 / 2009$	
BQL	200	15.2	200	$11 / 8 / 2009$	
BQL	200	38.0	200	$11 / 8 / 2009$	
BQL	200	23.8	200	$11 / 8 / 2009$	
3370	200	10.8	200	$11 / 8 / 2009$	
BQL	200	10.8	200	$11 / 8 / 2009$	
BQL	200	36.4	200	$11 / 8 / 2009$	
BQL	200	22.2	200	$11 / 8 / 2009$	
BQL	200	24.0	200	$11 / 8 / 2009$	
BQL	200	13.0	200	$11 / 8 / 2009$	
BQL	200	14.8	200	$11 / 8 / 2009$	
BQL	200	29.8	200	$11 / 8 / 2009$	
BQL	400	19.6	200	$11 / 8 / 2009$	
BQL	200	13.0	200	$11 / 8 / 2009$	
	Spike	Spike	Percent		
	Added	Result	Recovered		
	10	11.7	117		
	10	9.99	100		
	10	9.55	96		

Comments:

Flags:
BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.

Reviewed By: \qquad

Client Sample ID: Trip Blank
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-7A
Lab Project ID: G582-536

Analyzed By: CLP
Date Collected: 10/26/2009 0:00
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
Acetone	BQL	25.0	2.18	1	11/7/2009	
Benzene	BQL	1.00	0.0650	1	11/7/2009	
Bromobenzene	BQL	1.00	0.0560	1	11/7/2009	
Bromochloromethane	BQL	1.00	0.101	1	11/7/2009	
Bromodichloromethane	BQL	1.00	0.0760	1	11/7/2009	
Bromoform	BQL	1.00	0.120	1	11/7/2009	
Bromomethane	BQL	1.00	0.133	,	11/7/2009	
2-Butanone	BQL	25.0	0.544	1	11/7/2009	
n -Butylbenzene	BQL	1.00	0.109	1	11/7/2009	
sec-Butylbenzene	BQL	1.00	0.0840	1	11/7/2009	
tert-Butylbenzene	BQL	1.00	0.0500	1	11/7/2009	
Carbon disulfide	BQL	1.00	0.0690	1	11/7/2009	
Carbon tetrachloride	BQL	1.00	0.0870	1	11/7/2009	
Chlorobenzene	BQL	1.00	0.0820	1	11/7/2009	
Chloroethane	BQL	1.00	0.106	1	11/7/2009	
Chloroform	BQL	1.00	0.0790	1	11/7/2009	
Chloromethane	BQL	1.00	0.146	1	11/7/2009	
2-Chlorotoluene	BQL	1.00	0.0990	1	11/7/2009	
4-Chlorotoluene	BQL	1.00	0.0800	1	11/7/2009	
Dibromochloromethane	BQL	1.00	0.0900	1	11/7/2009	
1,2-Dibromo-3-chloropropane	BQL	5.00	1.21	1	11/7/2009	
Dibromomethane	BQL	1.00	0.113	1	11/7/2009	
1,2-Dibromoethane (EDB)	BQL	1.00	0.124	1	11/7/2009	
1,2-Dichlorobenzene	BQL	1.00	0.127	1	11/7/2009	
1,3-Dichlorobenzene	BQL	1.00	0.0810	1	11/7/2009	
1,4-Dichlorobenzene	BQL	1.00	0.0790	1	11/7/2009	
trans-1,4-Dichloro-2-butene	BQL	5.00	0.630	1	11/7/2009	
1,1-Dichloroethane	BQL	1.00	0.0740	1	11/7/2009	
1,1-Dichloroethene	BQL	1.00	0.0890	1	11/7/2009	
1,2-Dichloroethane	BQL	1.00	0.0790	1	11/7/2009	
cis-1,2-Dichloroethene	BQL	1.00	0.0650	1	11/7/2009	
trans-1,2-dichloroethene	BQL	1.00	0.0890	1	11/7/2009	
1,2-Dichloropropane	BQL	1.00	0.0940	1	11/7/2009	
1,3-Dichloropropane	BQL	1.00	0.127	1	11/7/2009	
2,2-Dichloropropane	BQL	1.00	0.0590	1	11/7/2009	
1,1-Dichloropropene	BQL	1.00	0.0720	1	11/7/2009	
cis-1,3-Dichloropropene	BQL	1.00	0.0760	1	11/7/2009	
trans-1,3-Dichloropropene	BQL	1.00	0.0760	1	11/7/2009	
Dichlorodifluoromethane	BQL	5.00	0.0940	1	11/7/2009	
Diisopropyl ether (DIPE)	BQL	1.00	0.0730	1	11/7/2009	
Ethylbenzene	BQL	1.00	0.0770	1	11/7/2009	
Hexachlorobutadiene	BQL	1.00	0.228	1	11/7/2009	
2-Hexanone	BQL	5.00	0.720	1	11/7/2009	
lodomethane	BQL	1.00	0.0420	1	11/7/2009	
Isopropylbenzene	BQL	Page ${ }^{1} \mathrm{OO}_{\mathrm{of}}$	0.0710	1	11/7/2009	$\underset{8260}{\substack{\text { cms.xs }}}$

Client Sample ID: Trip Blank
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-536-7A
Lab Project ID: G582-536

Analyzed By: CLP
Date Collected: 10/26/2009 0:00
Date Received: 10/27/2009
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	1.00	0.0480	1	11/7/2009	
Methylene chloride	0.880	5.00	0.0980	1	11/7/2009	J
4-Methyl-2-pentanone	BQL	5.00	0.550	1	11/7/2009	
Methyl-tert-butyl ether (MTBE)	BQL	1.00	0.0670	1	11/7/2009	
Naphthalene	BQL	1.00	0.133	1	11/7/2009	
n -Propyl benzene	BQL	1.00	0.0800	1	11/7/2009	
Styrene	BQL	1.00	0.0850	1	11/7/2009	
1,1,1,2-Tetrachloroethane	BQL	1.00	0.0900	1	11/7/2009	
1,1,2,2-Tetrachloroethane	BQL	1.00	0.115	1	11/7/2009	
Tetrachloroethene	BQL	1.00	0.0690	1	11/7/2009	
Toluene	0.210	1.00	0.0760	1	11/7/2009	J
1,2,3-Trichlorobenzene	BQL	1.00	0.190	1	11/7/2009	
1,2,4-Trichlorobenzene	BQL	1.00	0.119	1	11/7/2009	
Trichloroethene	BQL	1.00	0.0540	1	11/7/2009	
1,1,1-Trichloroethane	BQL	1.00	0.0540	1	11/7/2009	
1,1,2-Trichloroethane	BQL	1.00	0.182	1	11/7/2009	
Trichlorofluoromethane	BQL	1.00	0.111	1	11/7/2009	
1,2,3-Trichloropropane	BQL	1.00	0.120	1	11/7/2009	
1,2,4-Trimethylbenzene	BQL	1.00	0.0650	1	11/7/2009	
1,3,5-Trimethylbenzene	BQL	1.00	0.0740	1	11/7/2009	
Vinyl chloride	BQL	1.00	0.149	1	11/7/2009	
m -,p-Xylene	BQL	2.00	0.0980	1	11/7/2009	
o-Xylene	BQL	1.00	0.0650	1	11/7/2009	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		10	11.2	112		
Toluene-d8		10	9.95	99		
4-Bromofluorobenzene		10	9.57	96		

Comments:

Flags:
BQL = Below Quantitation Limits.
Analyst: \qquad Reviewed By: \qquad

Results for Volatiles by GCMS 8260B

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK1110709B
Lab Project ID:

> ᄃ

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date nalyzed	g
Acetone	BQL	25.0	2.18	1	11/7/2009	
Benzene	BQL	1.00	0.0650	1	11/7/2009	
Bromobenzene	BQL	1.00	0.0560	1	11/7/2009	
Bromochloromethane	BQL	1.00	0.101	1	11/7/2009	
Bromodichloromethane	BQL	1.00	0.0760	1	11/7/2009	
Bromoform	BQL	1.00	0.120	1	11/7/2009	
Bromomethane	BQL	1.00	0.133	1	11/7/2009	
2-Butanone	BQL	25.0	0.544	1	11/7/2009	
n -Butylbenzene	BQL	1.00	0.109	1	11/7/2009	
sec-Butylbenzene	BQL	1.00	0.0840	1	11/7/2009	
tert-Butylbenzene	BQL	1.00	0.0500	1	11/7/2009	
Carbon disulfide	BQL	1.00	0.0690	1	11/7/2009	
Carbon tetrachloride	BQL	1.00	0.0870	1	11/7/2009	
Chlorobenzene	BQL	1.00	0.0820	1	11/7/2009	
Chloroethane	BQL	1.00	0.106	1	11/7/2009	
Chloroform	BQL	1.00	0.0790	1	11/7/2009	
Chloromethane	BQL	1.00	0.146	1	11/7/2009	
2-Chlorotoluene	BQL	1.00	0.0990	1	11/7/2009	
4-Chlorotoluene	BQL	1.00	0.0800	1	11/7/2009	
Dibromochloromethane	BQL	1.00	0.0900	1	11/7/2009	
1,2-Dibromo-3-chloropropane	BQL	5.00	1.21	1	11/7/2009	
Dibromomethane	BQL	1.00	0.113	1	11/7/2009	
1,2-Dibromoethane (EDB)	BQL	1.00	0.124	1	11/7/2009	
1,2-Dichlorobenzene	BQL	1.00	0.127	1	11/7/2009	
1,3-Dichlorobenzene	BQL	1.00	0.0810	1	11/7/2009	
1,4-Dichlorobenzene	BQL	1.00	0.0790	1	11/7/2009	
trans-1,4-Dichloro-2-butene	BQL	5.00	0.630	1	11/7/2009	
1,1-Dichloroethane	BQL	1.00	0.0740	1	11/7/2009	
1,1-Dichloroethene	BQL	1.00	0.0890	1	11/7/2009	
1,2-Dichloroethane	BQL	1.00	0.0790	1	11/7/2009	
cis-1,2-Dichloroethene	BQL	1.00	0.0650	1	11/7/2009	
trans-1,2-dichloroethene	BQL	1.00	0.0890	1	11/7/2009	
1,2-Dichloropropane	BQL	1.00	0.0940	1	11/7/2009	
1,3-Dichloropropane	BQL	1.00	0.127	1	11/7/2009	
2,2-Dichloropropane	BQL	1.00	0.0590	1	11/7/2009	
1,1-Dichloropropene	BQL	1.00	0.0720	1	11/7/2009	
cis-1,3-Dichloropropene	BQL	1.00	0.0760	1	11/7/2009	
trans-1,3-Dichloropropene	BQL	1.00	0.0760	1	11/7/2009	
Dichlorodifluoromethane	BQL	5.00	0.0940	1	11/7/2009	
Diisopropyl ether (DIPE)	BQL	1.00	0.0730	1	11/7/2009	
Ethylbenzene	BQL	1.00	0.0770	1	11/7/2009	
Hexachlorobutadiene	BQL	1.00	0.228	1	11/7/2009	
2-Hexanone	BQL	5.00	0.720	1	11/7/2009	
Iodomethane	BQL	1.00	0.0420	1	11/7/2009	
Isopropylbenzene	BQL	Page $98{ }_{\text {t }}$	0.0710	1	11/7/2009	S.x.

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK1110709B Lab Project ID:

Results for Volatiles

 by GCMS 8260B Labid-

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
$1,1,2$-Trichloroethane
Trichlorofluoromethane
$1,2,3$-Trichloropropane
$1,2,4-$ Trimethylbenzene
$1,3,5-$-rimethylbenzene
Vinyl chloride
$m-$, -p-Xylene
$0-X y l e n e$

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$11 / 7 / 2009$
BQL	5.00	0.0980	1	$111 / 7 / 2009$
BQL	5.00	0.550	1	$11 / 7 / 2009$
BQL	1.00	0.0670	1	$11 / 7 / 2009$
BQL	1.00	0.133	1	$11 / 7 / 2009$
BQL	1.00	0.0800	1	$11 / 7 / 2009$
BQL	1.00	0.0850	1	$11 / 7 / 2009$
BQL	1.00	0.0900	1	$11 / 7 / 2009$
BQL	1.00	0.115	1	$11 / 7 / 2009$
BQL	1.00	0.0690	1	$11 / 7 / 2009$
BQL	1.00	0.0760	1	$11 / 7 / 2009$
BQL	1.00	0.190	1	$111 / / 2009$
BQL	1.00	0.119	1	$11 / 7 / 2009$
BQL	1.00	0.0540	1	$11 / 7 / 2009$
BQL	1.00	0.0540	1	$11 / 7 / 2009$
BQL	1.00	0.182	1	$11 / 7 / 2009$
BQL	1.00	0.111	1	$11 / 7 / 2009$
BQL	1.00	0.120	1	$11 / 7 / 2009$
BQL	1.00	0.0650	1	$11 / 7 / 2009$
BQL	1.00	0.0740	1	$11 / 7 / 2009$
BQL	1.00	0.149	1	$11 / 7 / 2009$
BQL	2.00	0.0980	1	$11 / 7 / 2009$
BQL	1.00	0.0650	1	$11 / 7 / 2009$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.8	108	
	10	9.99	100	
	10	9.5	95	

SGS North America, Inc.

SGS Environmental Services

LABORATORY CONTROL SAMPLE VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: SGS Environmental
Lab Code: NC00319 Case No.: SAS No.: SDG

Matrix: (sojl/water) Water
Sample wt./vol: 5.00
Level: (low/med) NA
7 Moisture: not dec. NA
GC Column: DB-624
ID: 0.2 (mm)
Soil Extract Volume: NA

SAS No.:
Lab Sample ID: LCS1110709a
Lab Eile ID: 1107103.D

Date Analyzed: 2009-11-07 10:27
Dilution Factor: 1
Soil Aliquot Volume: NA

SGS North America, Inc.

SGS Environmental Services

Lab Name: SGS Environmental
Lab Code: NC00919 Case No.: SAS No.: SDG No:
Matrix: (soil/water) Water
Sample wt./vol: 5.00 (mL)
Level: (low/med) NA
\% Moisture: not dec. NA
(GC Column: DB-624 ID: 0.2 (min)
soil Extract Volume: NA

System Monitoring Compound Results		Spike Added ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { Spike } \\ \text { Result } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	Percent Rec. (\%)	Parcent Recovery (\%)
460-00-4	4-Bromofluorobenzene	10	10.0	103	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	11.0	112	63.5-140
2037-26-5	Toluene-d8	10	10.0	102	81.8-117

LCS Spike Recovery: 0 failure(s) out of 72.

Reviewed by:

SGS North America, Inc.

SGS Environmental Services

3A

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits
\qquad

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: g582-536-5a, g582-536-5a, g乌82-536-5a
Filenames: 1107115.D, 1107116.D, 1107117.D

Inst: MSD1
Batch: 1110709
Dilution: 250
Matrix: Water

COMPOUND	$\begin{gathered} \text { SAMPLE } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	MSSEIKE$(\mu \mathrm{g} / \mathrm{L})$	MSCONC$(\mu \mathrm{g} / \mathrm{L})$	MS\squareREC \#	MSDSPIKE$(\mu g / L)$	MSDCONC$(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { MSD } \\ \text { B } \\ \text { REC \# } \end{gathered}$	$\begin{gathered} \frac{\gamma}{8} \\ \text { RPD } \\ \hline \end{gathered}$	QC LIMITS	
									RPD	REC
trans-1,3-dichloropropene	BQL	1250	1200	95.8	1250	1240	99.6	3.89	30	44.7--44
Diisopropyl ether	BQL	1250	1290	103	1250	1290	103	0.00	30	79.4-:22
ethylbenzene	BQL	1250	1140	90.8	1250	1170	94.0	3.46	30	73.8-126
hexachlorobutadiene	BQL	1250	1140	91.4	1250	1170	93.6	2.38	30	51.8-134
2-hexanone	BQL	6250	5480	87.8	6250	5560	89.0	1.40	30	41.6-111
Iodomethane	BQL	1250	1300	104	1250	1370	109	5.06	30	40.6-126
isopropylbenzene	BQL	1250	1140	30.8	1250	1180	94.2	3.68	30	74.3-123
4-isopropyltoluene	BQL	1250	1160	92.6	1250	1210	97.0	4.64	30	74.6-122
Methyl-tert-butyl ether	BQL	1250	1320	105	1250	1340	107	1.32	30	66.5-136
methylene chloride	BQL	1250	1170	91.2	1250	1220	95.2	4.29	30	48.6-155
4-methyl-2-pentanone	BQL	6250	6460	103	6250	6510	104	0.771	30	6.88-166
naphthalene	BQL	1250	1140	91.0	1250	1230	98.2	7.61	30	55.1-140
n-propyl benzene	BQL	1250	1150	91.8	1250	1180	94.8	3.22	30	71.6-128
styrene	BQL	1250	1160	93.0	1250	1190	95.0	2.13	30	73.2-23
1,1,1,2-t,etrachloroethane	BQL	1250	1160	92.8	1250	1210	97.2	4.63	30	69.4-120
1,1,2,2-tetrachloroethane	BQL	1250	1290	103	1250	1300	104	0.966	30	75.7-136
tetrachloroethene	BQL	1250	952	76.2	1250	1000	80.2	5.12	30	45.8-153
tolubtie	B01.	1250	160	33.0	1250	1180	96.4.6.	3, 20	30	56, 4,128
1,2,3-trichlorobenzene	BQL	1250	1140	31.2	1250	1210	96.8	5.96	30	61.0-126
1,2,4-trichlorobenzene	BQL	1250	1150	91.8	1250	1200	96.4	4.89	30	60.6-125
1,1,1-trichloroethane	BQL	1250	1190	95.6	1250	1230	98.2	2.68	30	78.4-121
1,1,2-trichloroethane	BQL	1250	1260	101	1250	1270	101	0.593	30	64.8-128
tricheorochono, , , , , , , , , , \%	410	1250	1580	30.0.	250	1.650	93,	5, 6.1	30	$84,9+136$
trichlorofluoromethane	BQL	1250	1340	107	1250	1340	108	0.746	30	76.8-132
1,2,3-trichloropropane	BQL	1250	1220	97.6	1250	1240	99.4	1.83	30	10.0-218
1,2,4-trimethylbenzene	BQL	1250	1240	99.2	1250	1290	103	3.95	30	31.0-172
1,3,5-trimethylbenzene	BOL	1250	1180	94.6	1250	1240	99.2	4.75	30	67.7-132
Vinyl acetate	BQL	3120	3310	106	3120	3440	110	3.63	30	0.00-355
vinyl chloride	4890	1250	6200	105	1250	6250	109	3.74	30	68.1-137
m/p-xylene	BQL	2500	2320	92.8	2500	2430	97.1	4.53	30	79.8-118
o-xylene	BQL	1250	1130	90.2	1250	1160	92,4	2.41	30	80.0-121

System Monitoring Compound Results		MS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	MS CONC ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { MSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { \% } \\ \text { REC } \end{gathered}$	QC LIMITS
460-00-4	4-Bromofluorobenzene	10	9.75	97.5	10	9.91	99.1	$84.7-15$
17060-07-0	1,2-Dichloroethane-d4	10	11.43	114	10	11.44	114	$63.5-240$
2037-26-5	Toluene-d8	10	10	100	10	10.14	101	81.8-117

\# Column to be used to flaq recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 1 failure (s) out of 72. MSD Spike Recovery: 1 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS:

Analyst: \qquad Reviewed by:

Results for Volatlies
 by GCMS 8260B

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK1110809B
Lab Project ID:

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chlorethane
Chloroorm
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Disopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
1odomethane
Isopropylbenzene

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
BQL	25.0	2.18	1	11/8/2009	
BQL	1.00	0.0650	1	11/8/2009	
BQL	1.00	0.0560	1	11/8/2009	
BQL	1.00	0.101	1	11/8/2009	
BQL	1.00	0.0760	1	11/8/2009	
BQL	1.00	0.120	1	11/8/2009	
BQL	1.00	0.133	1	11/8/2009	
BQL	25.0	0.544	1	11/8/2009	
BQL	1.00	0.109	1	11/8/2009	
BQL	1.00	0.0840	1	11/8/2009	
BQL	1.00	0.0500	1	11/8/2009	
BQL	1.00	0.0690	1	11/8/2009	
BQL	1.00	0.0870	1	11/8/2009	
BQL	1.00	0.0820	1	11/8/2009	
BQL	1.00	0.106	1	11/8/2009	
BQL	1.00	0.0790	1	11/8/2009	
BQL	1.00	0.146	1	11/8/2009	
BQL	1.00	0.0990	1	11/8/2009	
BQL	1.00	0.0800	1	11/8/2009	
BQL	1.00	0.0900	1	11/8/2009	
BQL	5.00	1.21	1	11/8/2009	
BQL	1.00	0.113	1	11/8/2009	
BQL	1.00	0.124	1	11/8/2009	
BQL	1.00	0.127	1	11/8/2009	
BQL	1.00	0.0810	1	11/8/2009	
BQL	1.00	0.0790	1	11/8/2009	
BQL	5.00	0.630	1	11/8/2009	
BQL	1.00	0.0740	1	11/8/2009	
BQL	1.00	0.0890		11/8/2009	
BQL	1.00	0.0790	1	11/8/2009	
BQL	1.00	0.0650	1	11/8/2009	
BQL	1.00	0.0890	1	11/8/2009	
BQL	1.00	0.0940	1	11/8/2009	
BQL	1.00	0.127	1	11/8/2009	
BQL	1.00	0.0590	1	11/8/2009	
BQL	1.00	0.0720		11/8/2009	
BQL	1.00	0.0760	1	11/8/2009	
BQL	1.00	0.0760	1	11/8/2009	
BQL	5.00	0.0940	1	11/8/2009	
BQL	1.00	0.0730	1	11/8/2009	
BQL	1.00	0.0770	1	11/8/2009	
BQL	1.00	0.228	1	11/8/2009	
BQL	5.00	0.720	1	11/8/2009	
BQL	1.00	0.0420	1	11/8/2009	
BQL	${ }^{\text {Pagie }}$ (OOf_{2}	0.0710	1	11/8/2009	${ }^{\text {x }}$

Results for Volatiles
by GCMS 8260B
Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK1110809B Lab Project ID:
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:

$B Q L=$ Below Quantitation Limits.
$J=$ Detected b\&low the quantitation limit.
Analyst:

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
BQL	1.00	0.0480	1	$11 / 8 / 2009$	
0.120	5.00	0.0980	1	$11 / 8 / 2009$	J
BQL	5.00	0.550	1	$11 / 8 / 2009$	
BQL	1.00	0.0670	1	$11 / 8 / 2009$	
BQL	1.00	0.133	1	$11 / 8 / 2009$	
BQL	1.00	0.0800	1	$11 / 8 / 2009$	
BQL	1.00	0.0850	1	$11 / 8 / 2009$	
BQL	1.00	0.0900	1	$11 / 8 / 2009$	
BQL	1.00	0.115	1	$1118 / 2009$	
BQL	1.00	0.0690	1	$11 / 8 / 2009$	
BQL	1.00	0.0760	1	$11 / 8 / 2009$	
BQL	1.00	0.190	1	$11 / 8 / 2009$	
BQL	1.00	0.119	1	$11 / 8 / 2009$	
BQL	1.00	0.0540	1	$11 / 8 / 2009$	
BQL	1.00	0.0540	1	$11 / 8 / 2009$	
BQL	1.00	0.182	1	$11 / 8 / 2009$	
BQL	1.00	0.111	1	$11 / 8 / 2009$	
BQL	1.00	0.120	1	$11 / 8 / 2009$	
BQL	1.00	0.0650	1	$1118 / 2009$	
BQL	1.00	0.0740	1	$11 / 82009$	
BQL	1.00	0.149	1	$11 / 8 / 2009$	
BQL	2.00	0.0980	1	$11 / 8 / 2009$	
BQL	1.00	0.0650	1	$11 / 8 / 2009$	
	Spike	Spike	Percent		
	Added	Result	Recovered		
	10	11.4	114		
	10	10.1	101		
	10	9.78	98		

Flag
Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

SGS North America, Inc.

SGS Environmental Services

IABORATORY CONTROL SAMPLE VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: SGS Environmental
Lab Code: NC00919 Case No.: SAS No.: SDG No:
Matrix: (soil/water) Water
Sample wt/vol: 5.00 (mL)
Level: (low/med) NA
g Moisture: not dec. NA
GC Column: DB-624 ID: 0.2 (mm)
Soil Extract Volume: NA

CAS NO.	COMPOUND	$\begin{gathered} \text { SPIKE AMT } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	SAMP CONC ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{array}{cc} \hline 8 \\ \text { REC } & \# \\ \hline \end{array}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \end{gathered}$
67-64-1	acetone	25.0	25.8	103	23.5-141
107-02-8	acrolein	125	204	164	31.4-182
107-13-1	acrylonitrile	125	139	111	64.2-140
$71-43-2$	benzene* \&	, , 5 , 0 , 0 ,	4. 9.4	\$8.4\%	16.620
108-86-1	bromobenzene	5.00	4.44	88.8	75.0-122
74-97-5	bromochloromethane	5.00	4.76	95.2	74.8-127
75-27-4	bromodichloromethane	5.00	5.19	104	76.4-117
75-25-2	bromoform	5.00	4.83	96.6	62.4-127
74-83-9	bromomethane	5.00	5.55	111	34.2-166
78-93-3	2-butanone	25.0	24.7	99.0	44.9-126
104-51-8	n-butylbenzene	5.00	4.89	97.8	72.0-122
135-98-8	sec-butylbenzene	5.00	4.92	98.4	78.3-116
98-06-6	tert-butylbenzene	5.00	4.84	96.8	53.1-148
75-15-0	Carbon disulfide	5.00	4.63	92.6	69.0-118
56-23-5	carbon tetrachloride	5.00	4.91	98.2	71.7-124
108-90-7.	chlosebenzene, \% \% , , \% \% , , \% \% \%	5 \%00	4.4	\$5,4	\%5, 5-416\%
75-00-3	chloroethane	5.00	5.43	108	78.2-138
110-75-8	2-chloroethyl vinyl ether	125	118	94.4	5.57-235
67-66-3	chloroform	5.00	5.20	104	80.6-117
74-87-3	chloromethane	5.00	5.17	103	72.6-127
95-49-8	2-chlorotoluene	5.00	4.63	92.6	81.4-117
106-43-4	4-chlorotoluene	5.00	4.63	92.6	82.1-116
124-48-1	dibromochloromethane	5.00	5.01	100	73.1-117
96-12-8	1,2-dibromo-3-chloropropane	25.0	26.7	107	58.0-133
105-93-4	1,2-dibromoethane	5.00	4.61	92.2	75.5-118
74-95-3	dibromomethane	5.00	5.26	105	77.3-124
95-50-1	1,2-dichlorobenzene	5.00	4.87	97.4	76.3-115
541-73-1	1,3-dichlorobenzene	5.00	4.88	97.6	79.1-114
106-46-7	1,4-dichlorobenzene	5.00	4.87	97.4	76.8-115
110-57-6	trans-1,4-Dichloro-2-butene	25.0	27.3	109	52.3-130
75-71-8	dichlorodifluoromethane	5.00	5.70	114	69.8-134
75-34-3	1,1-dichloroethane	5.00	5.11	102	78.0-120
107-06-2	1,2-dichloroethane	5.00	5.18	104	72.8-126
15-35\%	1, 1-dichloroetheno, , , , \%, , , , , \%, ,	5.00	1, 63	96.2	4.4.6.123
156-59-2	cis-1,2-dichloroethene	5.00	4.76	95.2	78.0-121
156-60-5	trans-1,2-dichloroethene	5.00	5.12	102	60.7-144
78-87-5	1,2-dichloropropane	5.00	5.04	101	75.8-119
142-28-9	1,3-dichloropropane	5.00	4.65	93.0	78.5-113
594-20-7	2,2-dichloropropane	5.00	4.89	97.8	75.6-130
563-58-6	1,1-dichloropropene	5.00	4.62	92.4	79.7-117
10061-01-5	cis-1,3-dichloropropene	5.00	5.02	100	79.8-113

LABORATORY CONTROL SAMPLE VOLATILE ORGANICS ANALYSIS DATA SHEET

SGS North America, Inc.

SGS Environmental Services
Lab Name: SGS Environmental
Lab Code: NC00919 Case No.: SAS No.: SDG No:
Matrix: (soil/water) Water
Sample wt/vol: 5.00 (mL)
Level: (low/med) NA
\% Moisture: not dec. NA
GC Column: DB-624 ID: 0.2 (mm)
Soil Extract Volume: NA

CAS NO.	COMPOUND	$\begin{gathered} \text { SPIKE AMT } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { SAMP CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	REC \#	$Q C$ LTMITS
10061-02-6	trans-1,3-dichloropropene	5.00	4.95	99.0	79.0-113
108-20-3	Diisopropyl ether	5.00	5.07	101	71.8-115
100-41-4	ethylbenzene	5.00	4.56	91.2	80.5-115
87-68-3	hexachlorobutadiene	5.00	5.03	101	63.3-139
591-78-6	2-hexanone	25.0	24.8	99.4	46.8-123
74-88-4	Iodomethane	5.00	4.68	93.6	29.3-156
98-82-8	isopropylbenzene	5.00	4.67	93.4	81.6-114
99-87-6	4-isopropyl toluene	5.00	4.83	96.6	78.4-119
1634-04-4	Methyl-tert-butyl ether	5.00	5.19	104	76.0-114
75-09-2	methylene chloride	5.00	4.53	90.6	72.9-120
108-10-1	4-methyl-2-pentanone	25.0	25.8	103	56.2-124
91-20-3	naphthalene	5.00	5.00	100	24.8-182
103-65-1	n-propyl benzene	5.00	4.66	93.2	79.0-116
100-42-5	styrene	5.00	4.64	92.8	64.8-132
630-20-6	1,1,1,2-tetrachloroethane	5.00	4.63	92.6	78.8-118
79-34-5	1,1,2,2-tetrachloroethane	5.00	4.96	99.2	69.7-119
127-18-4	tetrachloroethene	5.00	4.46	89.2	55.3-144
$108-88$	tolune , \% , \% \% \% \%	\$5,00\%	4, 5 \%	91.4	\%8,6-1.20
87-61-6	1,2,3-trichlorobenzene	5.00	5.05	101	20.8-193
120-82-1	1,2,4-trichlorobenzene	5.00	4.85	97.0	47.9-150
71-55-6	1,1,1-trichloroethane	5.00	4.84	96.8	78.8-120
79-00-5	1,1,2-trichloroethane	5.00	4.87	97.4	73.6-117
$79-01-6.8$		5.00	4,855,	97.0	80., $1-116 \%$
75-69-4	trichlorofluoromethane	5.00	5.40	108	80.5-130
96-18-4	1,2,3-trichloropropane	5.00	5.07	101	35.6-152
95-63-3	1,2,4-trimethylbenzene	5.00	5.05	101	77.0-116
108-67-8	1,3,5-trimethylbenzene	5.00	4.85	97.0	79.4-114
108-05-4	Vinyl acetate	12.5	13.4	107	60.7-127
75-01-4	vinyl chloride	5.00	5.12	102	77.5-126
108-38-3	m/p-xylene	10.0	9.44	94.4	82.9-112
95-47-6	o-xylene	5.00	4.61	92.2	$81.3-113$

System Monitoring Compound Results		Spike Added $(\mu \mathrm{g} / \mathrm{L})$	Spike Rosult ($\mu \mathrm{g} / \mathrm{L}$)	Percent Rec. (8)	Percent Recovery (\%)
460-00-4	4-Bromofluorobenzene	10	10.0	100	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	11.0	112	63.5-140
2037-26-5	Toluene-d8	10	10.0	101	81.8-117

LCS Spike Recovery: 0 failure (s) out of 72.
Analyst: \qquad
Reviewed by

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: g582-536-2a, g582-536-2a, g582-536-2a
Filenames: 1108116.D, 1108117.D, 1108118.D

Inst: MSD1
Batch: 1110809
Dilution: 800
Matrix: Water

COMPOUND	$\begin{gathered} \hline \text { SAMPLE } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \hline \text { MS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	MS \% REC \#	$\begin{array}{c\|} \hline \text { MSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{array}$	MSDCONC$(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { MSD } \\ 8 \\ \text { REC } \end{gathered}$	$\begin{gathered} 8 \\ \text { RPD } \end{gathered}$	QC LIMITS	
									RPD	REC
trans-1,3-dichloropropene	BQL	4000	4100	102	4000	4060	102	0.784	30	44.7-144
Diisopropyl ether	BQL	4000	4190	105	4000	4140	104	1.15	30	79.4-122
ethylbenzene	BQL	4000	3740	93.4	4000	3720	93.0	0.429	30	73.8-126
hexachlorobutadiene	BQL	4000	3840	96.0	4000	3870	96.8	0.830	30	51.8-134
2-hexanone	BQL	20000	18000	89.9	20000	18500	92.7	3.07	30	41.6-111
Iodomethane	BQL	4000	3900	97.6	4000	3860	96.4	1.24	30	40.6-126
isopropylbenzene	BQL	4000	3740	93.6	4000	3750	93.8	0.213	30	74.3-123
4-isopropyltoluene	BQL	4000	3810	95.2	4000	3860	96.6	1.46	30	74.6-122
Methyl-tert-butyl ether	BQL	4000	4300	108	4000	4110	103	4.56	30	66.5-136
methylene chloride	BQL	4000	3790	92.4	4000	3690	89.8	2.85	30	48.6-155
4-methyl-2-pentanone	BQL	20000	21700	109	20000	21900	110	0.916	30	6.88-166
naphthalene	BQL	4000	3620	90.6	4000	3820	95.4	5.16	30	55.1-140
n-propyl benzene	BQL	4000	3860	96.6	4000	3790	94.8	1.88	30	71.6-128
styrene	BQL	4000	3810	95.2	4000	3780	94.4	0.844	30	73.2-123
1,1,1,2-tetrachloroethane	BQL	4000	3730	93.2	4000	3740	93.6	0.428	30	69.4-120
1,1,2,2-tetrachloroethane	BQL	4000	4110	103	4000	4240	106	3.06	30	75.7-136
tetrachloroethene	BQL	4000	3060	76.4	4000	3100	77.4	1.30	30	45.8-153
towaene $\%$, \% \% ,	B0I.	4000	$37 \% 0$	94, 2	4000	3 S 5	93.8	$0 \% 426$	30	56.4-128
1,2,3-trichlorobenzene	BQL	4000	3730	93.2	4000	3950	98.8	5.83	30	61.0-126
1,2,4-trichlorobenzene	BQL	4000	3820	95.4	4000	3890	97.2	1.87	30	60.6-125
1,1,1-trichloroethane	BQL	4000	4020	101	4000	3900	97.6	3.03	30	78.4-121
1,1,2-trichloroethane	BQL	4000	4030	101	4000	4060	101	0.593	30	64.8-128
ctuchiotoethono\%, \%, \%	BO4	4000	3280	9\% 6	4000	3800	99,	0.00	30	8×4.9436
trichlorofluoromethane	BQL	4000	4370	109	4000	4440	111	1.63	30	76.8-132
1,2,3-trichloropropane	BQL	4000	4070	102	4000	4100	103	0.783	30	10.0-218
1,2,4-trimethylbenzene	BQL	4000	4180	104	4000	4140	103	0.962	30	31.0-172
1,3,5-trimethylbenzene	BQL	4000	3940	98.6	4000	3900	97.6	1.02	30	67.7-132
Vinyl acetate	BQL	10000	11000	110	10000	10800	108	1.83	30	0.00-355
vinyl chloride	BQL	4000	4170	98.8	4000	4380	104	5.32	30	68.1-137
m/p-xylene	BQL	8000	7750	96.9	8000	7660	95.7	1.25	30	79.8-118
o-xylene	BQL	4000	3770	94.2	4000	3750	93.8	0.426	30	80.0-121

System Monitoring Compound Results		$\begin{gathered} \text { MS } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	MS 8 REC \#	$\begin{gathered} \text { MSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { \% } \\ \text { REC } \# \end{gathered}$	QC LIMITS
460-00-4	4-Bromofluorobenzene	10	9.86	98.6	10	9.89	98.9	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	11.71	117	10	11.26	113	63.5-140
2037-26-5	Toluene-d8	10	10.17	102	10	10.17	102	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 2 failure (s) out of 72. MSD Spike Recovery: 1 failure (s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS:

Analyst:

Reviewed by:

0LMO4. 2
SGS North America, Inc.
CHAIN OF CUSTODY RECORD
SGS North America Inc.

SGS

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 22
Lab Pro \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Pro \#: AVXMB

Laboratory Results
Total pages in data package:

Lab Sample \#	
Client Sample ID	
P0911154-01	IW-3D
P09111154-02	P-1D
P0911154-03	P-3D
P0911154-04	P-2D
P0911154-05	OW-7D
P0911154-06	OW-8D
P0911154-07	OW-9D
P0911154-08	OW-10D
P0911154-09	TANKER CONFIRM
P0911154-10	INJECTATE CONFIRM
P0911154-11	OW-7D
P0911154-12	OW-8D
P0911154-13	OW-9D
P0911154-14	OW-10D
P0911154-15	P-2D
P0911154-16	P-1D
P0911154-17	INJECTATE(110709)
P0911154-18	P-3D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

Date:

Project Manager: Debbie Hello

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210

Seven Fields, PA 16046

Page: Page 2 of 22

Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 22
Lab Proj\#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix Water	Lab Sample \# P0911154-02			Sampled Date/Time 02 Nov 09 17:45	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		12.0	5.0	mg / L	9060	11/18/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	$\frac{\text { Matrix }}{\text { Water }}$	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P0911154-03 } \end{aligned}$			Sampled Date/Time 02 Nov. 09 18:00	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		11.0	5.0	mg/L	9060	11/18/09	md

Client Name: Arcadis U.S., Inc. Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{P-2 D}$	Matrix Water	Lab Sample \# P0911154-04			Sampled Date/Time 02 Nov 09 18:15	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		90.0	25.0	mg/L	9060	11/18/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-7D	Matrix Water	Lab Sample \# P0911154-05			Sampled Date/Time 02 Nov 09 18:30	Received 10 Nov. 09 11:29	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		13.0	5.0	mg/L	9060	11/19/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-8D	Matrix Water	Lab Sample \# P0911154-06			Sampled Date/Time 02 Nov. 09 18:30	Received 10 Nov. 09 11:29	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		34.0	5.0	mg/L	9060	11/18/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-9D	Matrix Water	Lab Sample \# P0911154-07			Sampled Date/Time 02 Nov. 09 18:45	Recejved	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		11.0	5.0	mg/L	9060	11/19/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007.393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P0911154-10 } \end{aligned}$			Sampled Date/Time 04 Nov. 09 15:35	$\frac{\text { Received }}{10 \text { Nov. } 09 \text { 11:29 }}$	
INJECTATE CONFIRM	Water						
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		7000.0	1000.0	mg / L	9060	11/18/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 12 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix		Lab Sample \#			Sampled Date/Time	

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 13 of 22
Lab Proj\#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 14 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-9D }}$	Matrix Water	Lab Sample \# P0911154-13			$\frac{\text { Sampled Date/Time }}{07 \text { Nov } 099: 44}$	Received		
					10 Nov.			
Analyte(s)	Flag	Result	PQL	Units		Method \#	Analysis Date	By
WetChem N Total Organic Carbon		9.9	5.0	mg/L	9060	11/19/09	md	

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 15 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-10D }}$	Matrix Water	Lab Sample \# P0911154-14			Sampled Date/Time 07 Nov. 09 9:56	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		13.0	5.0	mg/L	9060	11/19/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 16 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-2D }}$	Matrix Water	Lab Sample \# P0911154-15			Sampled Date/Time 07 Nov $0910 \cdot 07$	Received 10 Nov. 09 11:29	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		830.0	50.0	mg/L	9060	11/19/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 17 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-1D }}$	Matrix Water	Lab Sample \# P0911154-16			$\frac{\text { Sampled Date/Time }}{07 \text { Nov } 0910: 20}$	Received 10 Nov. 09 11:29	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		16.0	5.0	mg/L	9060	11/19/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 18 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description INJECTATE(110709)	Matrix Water	Lab Sample \# P0911154-17			Sampled Date/Time 07 Nov, 09 11:00	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		7500.0	500	mg / L	9060	11/20/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 19 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-3D }}$	Matrix Water	Lab Sample \# P0911154-18			Sampled Date/Time 07 Nov. 09 11:10	Received 10 Nov. 09 11:29	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		23.0	5.0	mg / L	9060	11/19/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 20 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M091119005-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	CtI Limits
Total Organic Carbon	<5.0	mg / L	5.0		- NA	
M091119005-LCS						

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits
Total Organic Carbon	36.0	mg / L	36.00	100.00	70-130

	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Total Organic Carbon	12.0	mg / L		$-N A$	0.00	$0-20$		
P0911154-03A-MS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
Total Organic Carbon	61.0	mg / L	50.00		100.00	$70-130$		

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 21 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M091120019-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Cti Limits
Total Organic Carbon	<5.0	mg / L		5.0		- NA
M091120019-LCS						
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Total Organic Carbon	35.0	mg / L	36.00		97.00	70-130

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Total Organic Carbon	11.0	mg / L			- NA	16.67	0-20
P0911154-12A-DUP							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	37.0	mg / L			- NA	2.67	0-20
P0911154-07A-MS							
	Result		TrueSpikeConc.	\%Recovery	CtI Limits		
Total Organic Carbon	59.0	mg / L	50.00	96.00	70-130		
P0911154-13A-MS							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Total Organic Carbon	60.0	mg / L	50.00	100.00	70-130		

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 22 of 22
Lab Proj \#: P0911154
Report Date: 11/23/09
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M091123004-MB

| | Result | | TrueSpikeConc. | RDL | \%Recovery | Ctl Limits |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Organic Carbon | <5.0 | mg / L | 5 | | - NA | |
| M091123004-LCS | | | | | | |
| | $\underline{\text { Result }}$ | | TrueSpikeConc. | | \%Recovery | Ctl Limits |
| Total Organic Carbon | 35.0 | mg / L | 36.00 | | 97.00 | $70-130$ |

091167-01A-DUP

	Result	TrueSpikeConc.	\%Recovery	CtI Limits	RPD	RPD CtI Limits	
Total Organic Carbon	<5.0	mg / L		- NA	0.00	$0-20$	
P0911186-02A-DUP							

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	< 5.0	mg / L			- NA	0.00	0-20
P0911167-02A-MS							
	Result		TrueSpikeConc.	\%Recovery	CtI Limits		
Total Organic Carbon	50.0	mg / L	50.00	100.00	70-130		
P0911186-03A-MS							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Total Organic Carbon	50.0	mg / L	50.00	100.00	70-130		

Client Name: Arcadis U.S., Inc.
Contact: Mark Banish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046
Page: Page 1 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Pro Name: B0007393.0000.00006
Client Proj \#: AVXMB

Laboratory Results

Total pages in data package: \qquad

Lab Sample \#	
Client Sample ID	
P0911256-01	OW-7D
P0911256-02	OW-8D
P0911256-03	OW-9D
P0911256-04	OW-10D
P0911256-05	PZ-1D
P0911256-06	PZ-2D
P0911256-07	PZ-3D
P0911256-08	IW-4D
P0911256-09	IW-2D

Microseeps test results meet all the requ/rements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

Date:

Project Manager:
The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-7D }}$	Matrix Water	Lab Sample \# P0911256-01			Sampled Date/Time 16 Nov. 09 13:30	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		490.0	50	mg/L	9060	11/25/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\mathrm{OW}-10 \mathrm{D}}$	Matrix Water	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P0911256-04 } \end{aligned}$			Sampled Date/Time 16 Nov. 09 14:40	Received 17 Nov. 09 10:49	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		38.0	5.0	mg/L	9060	11/24/09	md
RiskAnalysis N Ethane		0.480	0.025	ug/L	AM20GAX	11/27/09	rw
N Ethene		5.200	0.025	ug/L	AM20GAX	11/27/09	nw
N Methane		220.000	0.100	ug/L	AM20GAX	11/27/09	rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

$\frac{\text { Sample Description }}{\text { PZ-1D }}$	Matrix Water	Lab Sample \# P0911256-05			Sampled Date/Time 16 Nov. 09 17:00	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	J	2.5	5.0	mg/L	9060	11/24/09	md
RiskAnalysis N Ethane		0.140	0.025	ug/L	AM20GAX	11/27/09	rw
N Ethene		0.640	0.025	ug/L	AM20GAX	11/27/09	rw
N Methane		44.000	0.100	ug/L	AM20GAX	11/27/09	rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { PZ-2D }}$	Matrix Water	Lab Sample \# P0911256-06			Sampled Date/ 16 Nov. 0915	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4600.0	250.0	mg / L	9060	11/24/09	md
RiskAnalysis N Ethane		0.045	0.025	ug/L	AM20GAX	11/27/09	rw
N Ethene		4.300	0.025	ug/L	AM20GAX	11/27/09	TW
N Methane		280.000	0.100	ug/L	AM20GAX	11/27/09	rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description IW-4D	Matrix Water	Lab Sample \# P0911256-08			Sampled Date/Time 16 Nov 09 17:30	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4900.0	250.0	mg/L	9060	11/24/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
Analysis Method: Total Organic Carbon

M091125008-MB								
	Result		TrueSpikeConc.	RDL	\%Recovery	Ct\| Limits		
Total Organic Carbon	<5.0	mg / L		5.0		- NA		
M091125008-LCS								
	Result		TrueSpikeConc.		\%Recovery	Cti Limits		
Total Organic Carbon	35.0	mg / L	36.00		97.00	70-130		
P0911254-01A-DUP								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits	RPD	RPD Ctl Limits
Total Organic Carbon	<5.0	mg / L				- NA	0.00	0-20
P0911256-03A-DUP								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	23.0	mg / L				- NA	4.44	0-20
P0911254-01A-MS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
Total Organic Carbon	48.0	mg / L	50.00		96.00	70-130		
P0911256-05A-MS								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits		
Total Organic Carbon	53.0	mg / L	50.00		101.00	70-130		

\square

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Bivd.
Suite 210
Seven Fields, PA 16046

Page: Page 12 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

Prep Method: In House Dissolved Gas Sample Preparation

Analysis Method: Light Hydrocarbons (C1-C4) in Water

M091127001-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits		
Ethane	<0.025	ug / L		0.025		- NA		
Ethene	<0.025	ug/L		0.025		- NA		
Methane	<0.100	ug / L		0.100		- NA		
M091127001-LCS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
Ethane	49.000	ug / L	45.00		109.00	75-125		
Ethene	45.000	ug / L	40.80		110.00	75-125		
Methane	930.000	ug / L	825.00		113.00	75-125		
M091127001-LCSD								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Ethane	50.000	ug/L	45.00		111.00	75-125	2.02	0-20
Ethene	45.000	ug / L	40.80		110.00	75-125	0.00	0-20
Methane	880.000	ug / L	825.00		107.00	75-125	5.52	0-20

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 13 of 13
Lab Proj \#: P0911256
Report Date: 11/30/09
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M091130017-MB

	Result		TrueSpikeConc.	$\underline{\mathrm{RDL}}$	\%Recovery	Ctl Limits		
Total Organic Carbon	<5.0	mg / L		5		- NA		
M091130017-LCS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
Total Organic Carbon	34.0	mg / L	36.00		94.00	70-130		
P0911384-01A-DUP								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Total Organic Carbon	15.0	mg / L				- NA	0.00	0-20
P0911384-01A-MS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
Total Organic Carbon	63.0	mg / L	50.00		96.00	70-130		

Microseeps
COC cont. \#

Prone 412$) 826-245$

ARCAD/S

Results to:

Results to:
Mark Hanish
Invoice to:

 Company: PINK COPY : Submitter
YELLOW COPY : Laboratory File

Mark Hanish
Arcadis
600 Waterfront Dr.
Pittsburgh, PA 15222

Report Number: G582-562
Client Project: AVX Myrtle Beach
Dear Mark Hanish,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Hager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,
SGS North America, Inc.
$\underset{\substack{\text { Project Manager } \\ \text { Barbara Hager }}}{\substack{\text { Nagut Nou. } 30.2009 \\ \text { Date }}}$

SGS North America, Inc.
List of Reporting Abbreviations
And Data Qualifiers
$B=$ Compound also detected in batch blank
BQL = Below Quantification Limit (RL or MDL)
$\mathrm{DF}=$ Dilution Factor

Dup $=$ Duplicate
$\mathrm{D}=$ Detected, but RPD is $>40 \%$ between results in dual column method.
$\mathrm{E}=$ Estimated concentration, exceeds calibration range.
$\mathrm{J}=$ Estimated concentration, below calibration range and above MDL
LCS(D) $=$ Laboratory Control Spike (Duplicate)
MDL $=$ Method Detection Limit
MS(D) = Matrix Spike (Duplicate)
$\mathrm{PQL}=$ Practical Quantitation Limit
RL/CL $=$ Reporting Limit / Control Limit
$R P D=$ Relative Percent Difference
$\mathrm{UJ}=$ Target analytes with recoveries that are $10 \%<\% \mathrm{R}<\mathrm{LCL}$; \# of MEs are allowable and compounds are not detected in the sample.
$\mathrm{mg} / \mathrm{kg}=$ milligram per kilogram, ppm , parts per million
$\mathrm{ug} / \mathrm{kg}=$ micrograms per kilogram, ppb, parts per billion
$\mathrm{mg} / \mathrm{L}=$ milligram per liter, ppm , parts per million
$\mathrm{ug} / \mathrm{L}=$ micrograms per liter, ppb , parts per billion
\% Rec = Percent Recovery
$\%$ soilds $=$ Percent Solids
Special Notes:

1) Metals and mercury samples are digested with a hot block; see the standard operating procedure document for details.
2) Uncertainty for all reported data is less than or equal to 30 percent.

Results for Volatiles

by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: OW-8D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-1A
Lab Project ID: G582-562

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
Acetone	BQL	25000	2180	1000	11/24/2009	
Benzene	BQL	1000	65.0	1000	11/24/2009	
Bromobenzene	BQL	1000	56.0	1000	11/24/2009	
Bromochloromethane	BQL	1000	101	1000	11/24/2009	
Bromodichloromethane	BQL	1000	76.0	1000	11/24/2009	
Bromoform	BQL	1000	120	1000	11/24/2009	
Bromomethane	BQL	1000	133	1000	11/24/2009	
2-Butanone	BQL	25000	544	1000	11/24/2009	
n-Butylbenzene	BQL	1000	109	1000	11/24/2009	
sec-Butylbenzene	BQL	1000	84.0	1000	11/24/2009	
tert-Butylbenzene	BQL	1000	50.0	1000	11/24/2009	
Carbon disulfide	BQL	1000	69.0	1000	11/24/2009	
Carbon tetrachloride	BQL	1000	87.0	1000	11/24/2009	
Chlorobenzene	BQL	1000	82.0	1000	11/24/2009	
Chloroethane	BQL	1000	106	1000	11/24/2009	
Chloroform	BQL	1000	79.0	1000	11/24/2009	
Chloromethane	BQL	1000	146	1000	11/24/2009	
2-Chlorotoluene	BQL	1000	99.0	1000	11/24/2009	
4-Chlorotoluene	BQL	1000	80.0	1000	11/24/2009	
Dibromochloromethane	BQL	1000	90.0	1000	11/24/2009	
1,2-Dibromo-3-chloropropane	BQL	5000	1210	1000	11/24/2009	
Dibromomethane	BQL	1000	113	1000	11/24/2009	
1,2-Dibromoethane (EDB)	BQL	1000	124	1000	11/24/2009	
1,2-Dichlorobenzene	BQL	1000	127	1000	11/24/2009	
1,3-Dichlorobenzene	BQL	1000	81.0	1000	11/24/2009	
1,4-Dichlorobenzene	BQL	1000	79.0	1000	11/24/2009	
trans-1,4-Dichloro-2-butene	BQL	5000	630	1000	11/24/2009	
1,1-Dichloroethane	BQL	1000	74.0	1000	11/24/2009	
1,1-Dichloroethene	BQL	1000	89.0	1000	11/24/2009	
1,2-Dichloroethane	BQL	1000	79.0	1000	11/24/2009	
cis-1,2-Dichloroethene	7800	1000	65.0	1000	11/24/2009	
trans-1,2-dichloroethene	160	1000	89.0	1000	11/24/2009	J
1,2-Dichloropropane	BQL	1000	94.0	1000	11/24/2009	
1,3-Dichloropropane	BQL	1000	127	1000	11/24/2009	
2,2-Dichloropropane	BQL	1000	59.0	1000	11/24/2009	
1,1-Dichloropropene	BQL	1000	72.0	1000	11/24/2009	
cis-1,3-Dichloropropene	BQL	1000	76.0	1000	11/24/2009	
trans-1,3-Dichloropropene	BQL	1000	76.0	1000	11/24/2009	
Dichlorodifluoromethane	BQL	5000	94.0	1000	11/24/2009	
Diisopropyl ether (DIPE)	BQL	1000	73.0	1000	11/24/2009	
Ethylbenzene	BQL	1000	77.0	1000	11/24/2009	
Hexachlorobutadiene	BQL	1000	228	1000	11/24/2009	
2-Hexanone	BQL	5000	720	1000	11/24/2009	
lodomethane	BQL	1000	42.0	1000	11/24/2009	
Isopropylbenzene	BQL	1000	71.0	1000	11/24/2009	
		Page 1 of 2				${ }_{\text {gCMS }}^{\text {g260 }}$

Analyzed By: CLP
Date Collected: 11/16/2009 15:10
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

Results for Volatiles

by GCMS 8260

Client Sample ID: OW-8D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-1A
Lab Project ID: G582-562
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4

Toluene-d8
4-Bromofluorobenzene

Result UG/L	Quantitation Limit UG/L BQL	MDL UG/L	Dilution Factor	Date Analyzed	Flag
BQL	1000	48.0	1000	$11 / 24 / 2009$	
BQL	5000	98.0	1000	$11 / 24 / 2009$	
BQL	1000	550	1000	$11 / 24 / 2009$	
BQL	1000	67.0	1000	$11 / 24 / 2009$	
BQL	1000	80.0	1000	$11 / 24 / 2009$	
BQL	1000	85.0	1000	$11 / 24 / 2009$	$11 / 24 / 2009$
BQL	1000	90.0	1000	$11 / 24 / 2009$	
BQL	1000	115	1000	$11 / 24 / 2009$	
BQL	1000	69.0	1000	$11 / 24 / 2009$	
BQL	1000	76.0	1000	$11 / 24 / 2009$	$11 / 24 / 2009$
BQL	1000	190	1000	100	$11 / 24 / 2009$
BQL	1000	119	1000	$11 / 24 / 2009$	
1010	1000	54.0	1000	$11 / 24 / 2009$	
BQL	1000	54.0	1000	$11 / 24 / 2009$	
BQL	1000	182	1000	$11 / 24 / 2009$	
BQL	1000	111	1000	$11 / 24 / 2009$	
BQL	1000	120	1000	$11 / 24 / 2009$	
BQL	1000	65.0	1000	$11 / 24 / 2009$	
BQL	1000	74.0	1000	$11 / 24 / 2009$	
1350	1000	149	1000	$11 / 24 / 2009$	
BQL	2000	98.0	1000	$1 / 24 / 2009$	
BQL	1000	65.0	1000		
	Spike	Spike	Percent		
	Added	Result	Recovered		
	10	10.6	106		
	10	9.84	98	91	

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad Reviewed By: \qquad

Results for Volatiles
 by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: OW-9D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-2A
Lab Project ID: G582-562

	Result	Quantitation	MDL	Dilution Factor		
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
Acetone	BQL	20000	1740	800	11/24/2009	
Benzene	BQL	800	52.0	800	11/24/2009	
Bromobenzene	BQL	800	44.8	800	11/24/2009	
Bromochloromethane	BQL	800	80.8	800	11/24/2009	
Bromodichloromethane	BQL	800	60.8	800	11/24/2009	
Bromoform	BQL	800	96.0	800	11/24/2009	
Bromomethane	BQL	800	106	800	11/24/2009	
2-Butanone	BQL	20000	435	800	11/24/2009	
n-Butylbenzene	BQL	800	87.2	800	11/24/2009	
sec-Butylbenzene	BQL	800	67.2	800	11/24/2009	
tert-Butylbenzene	BQL	800	40.0	800	11/24/2009	
Carbon disulfide	BQL	800	55.2	800	11/24/2009	
Carbon tetrachloride	BQL	800	69.6	800	11/24/2009	
Chlorobenzene	BQL	800	65.6	800	11/24/2009	
Chloroethane	BQL	800	84.8	800	11/24/2009	
Chloroform	BQL	800	63.2	800	11/24/2009	
Chloromethane	BQL	800	117	800	11/24/2009	
2-Chlorotoluene	BQL	800	79.2	800	11/24/2009	
4-Chlorotoluene	BQL	800	64.0	800	11/24/2009	
Dibromochloromethane	BQL	800	72.0	800	11/24/2009	
1,2-Dibromo-3-chloropropane	BQL	4000	968	800	11/24/2009	
Dibromomethane	BQL	800	90.4	800	11/24/2009	
1,2-Dibromoethane (EDB)	BQL	800	99.2	800	11/24/2009	
1,2-Dichlorobenzene	BQL	800	102	800	11/24/2009	
1,3-Dichlorobenzene	BQL	800	64.8	800	11/24/2009	
1,4-Dichlorobenzene	BQL	800	63.2	800	11/24/2009	
trans-1,4-Dichloro-2-butene	BQL	4000	504	800	11/24/2009	
1,1-Dichloroethane	BQL	800	59.2	800	11/24/2009	
1,1-Dichloroethene	BQL	800	71.2	800	11/24/2009	
1,2-Dichloroethane	BQL	800	63.2	800	11/24/2009	
cis-1,2-Dichloroethene	32700	800	52.0	800	11/24/2009	
trans-1,2-dichloroethene	488	800	71.2	800	11/24/2009	J
1,2-Dichloropropane	BQL	800	75.2	800	11/24/2009	
1,3-Dichloropropane	BQL	800	102	800	11/24/2009	
2,2-Dichloropropane	BQL	800	47.2	800	11/24/2009	
1,1-Dichloropropene	BQL	800	57.6	800	11/24/2009	
cis-1,3-Dichloropropene	BQL	800	60.8	800	11/24/2009	
trans-1,3-Dichloropropene	BQL	800	60.8	800	11/24/2009	
Dichlorodifluoromethane	BQL	4000	75.2	800	11/24/2009	
Diisopropyl ether (DIPE)	BQL	800	58.4	800	11/24/2009	
Ethylbenzene	BQL	800	61.6	800	11/24/2009	
Hexachlorobutadiene	BQL	800	182	800	11/24/2009	
2-Hexanone	BQL	4000	576	800	11/24/2009	
lodomethane	BQL	800	33.6	800	11/24/2009	
Isopropylbenzene	BQL	800	56.8	800	11/24/2009	

Analyzed By: CLP
Date Collected: 11/16/2009 14:00
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

Results for Volatiles

 by GCMS 8260| Compound | Result UG/L | Quantitation Limit UG/L | MDL UG/L | Dilution Factor | Date Analyzed | Flag |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4-Isopropyltoluene | BQL | 800 | 38.4 | 800 | 11/24/2009 | |
| Methylene chloride | BQL | 4000 | 78.4 | 800 | 11/24/2009 | |
| 4-Methyl-2-pentanone | BQL | 4000 | 440 | 800 | 11/24/2009 | |
| Methyl-tert-butyl ether (MTBE) | BQL | 800 | 53.6 | 800 | 11/24/2009 | |
| Naphthalene | BQL | 800 | 106 | 800 | 11/24/2009 | |
| n-Propyl benzene | BQL | 800 | 64.0 | 800 | 11/24/2009 | |
| Styrene | BQL | 800 | 68.0 | 800 | 11/24/2009 | |
| 1,1,1,2-Tetrachloroethane | BQL | 800 | 72.0 | 800 | 11/24/2009 | |
| 1,1,2,2-Tetrachloroethane | BQL | 800 | 92.0 | 800 | 11/24/2009 | |
| Tetrachloroethene | BQL | 800 | 55.2 | 800 | 11/24/2009 | |
| Toluene | BQL | 800 | 60.8 | 800 | 11/24/2009 | |
| 1,2,3-Trichlorobenzene | BQL | 800 | 152 | 800 | 11/24/2009 | |
| 1,2,4-Trichlorobenzene | BQL | 800 | 95.2 | 800 | 11/24/2009 | |
| Trichloroethene | 384 | 800 | 43.2 | 800 | 11/24/2009 | J |
| 1,1,1-Trichloroethane | BQL | 800 | 43.2 | 800 | 11/24/2009 | |
| 1,1,2-Trichloroethane | BQL | 800 | 146 | 800 | 11/24/2009 | |
| Trichlorofluoromethane | BQL | 800 | 88.8 | 800 | 11/24/2009 | |
| 1,2,3-Trichloropropane | BQL | 800 | 96.0 | 800 | 11/24/2009 | |
| 1,2,4-Trimethylbenzene | BQL | 800 | 52.0 | 800 | 11/24/2009 | |
| 1,3,5-Trimethylbenzene | BQL | 800 | 59.2 | 800 | 11/24/2009 | |
| Vinyl chloride | 696 | 800 | 119 | 800 | 11/24/2009 | J |
| m -, p-Xylene | BQL | 1600 | 78.4 | 800 | 11/24/2009 | |
| o-Xylene | BQL | 800 | 52.0 | 800 | 11/24/2009 | |
| | | Spike Added | Spike Result | Percent Recovered | | |
| 1,2-Dichloroethane-d4 | | 10 | 9.84 | 98 | | |
| Toluene-d8 | | 10 | 10 | 100 | | |
| 4-Bromofluorobenzene | | 10 | 9.32 | 93 | | |

Client Sample ID: OW-9D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-2A
Lab Project ID: G582-562

1,2-Dichloroethane-d4

Toluene-d8
4-Bromofluorobenzene

	Result CG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	800	38.4	800	$11 / 24 / 2009$	
Methylene chloride	BQL	4000	78.4	800	$11 / 24 / 2009$	
4-Methyl-2-pentanone	BQL	4000	440	800	$11 / 24 / 2009$	
Methyl-tert-butyl ether (MTBE)	BQL	800	53.6	800	$11 / 24 / 2009$	
Naphthalene	BQL	800	106	800	$11 / 24 / 2009$	
n-Propyl benzene	BQL	800	64.0	800	$11 / 24 / 2009$	
Styrene	BQL	800	68.0	800	$11 / 24 / 2009$	
1,1,1,2-Tetrachloroethane	BQL	800	72.0	800	$11 / 24 / 2009$	
1,1,2,2-Tetrachloroethane	BQL	800	92.0	800	$11 / 24 / 2009$	
Tetrachloroethene	BQL	800	55.2	800	$11 / 24 / 2009$	
Toluene	BQL	800	60.8	800	$11 / 24 / 2009$	
1,2,3-Trichlorobenzene	BQL	800	152	800	$11 / 24 / 2009$	
1,2,4-Trichlorobenzene	BQL	800	95.2	800	$11 / 24 / 2009$	
Trichloroethene	384	800	43.2	800	$11 / 24 / 2009$	J
1,1,1-Trichloroethane	BQL	800	43.2	800	$11 / 24 / 2009$	
1,1,2-Trichloroethane	BQL	800	146	800	$11 / 24 / 2009$	
Trichlorofluoromethane	BQL	800	88.8	800	$11 / 24 / 2009$	
1,2,3-Trichloropropane	BQL	800	96.0	800	$11 / 24 / 2009$	
1,2,4-Trimethylbenzene	BQL	800	52.0	800	$11 / 24 / 2009$	
1,3,5-Trimethylbenzene	BQL	800	59.2	800	$11 / 24 / 2009$	
Vinyl chloride	696	800	119	800	$11 / 24 / 2009$	J
m-,p-Xylene	BQL	1600	78.4	800	$11 / 24 / 2009$	
o-Xylene	BQL	800	52.0	800	$11 / 24 / 2009$	
			Spike	Spike	Percent	
		Added	Result	Recovered		
10	9.84	98				
1,2-Dichloroethane-d4		10	10	100		

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad

Analyzed By: CLP
Date Collected: 11/16/2009 14:00
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

Reviewed By: \qquad

Results for Volatiles

by GCMS 8260

Client Sample ID: OW-10D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-3A
Lab Project ID: G582-562

Results for Volatiles

by GCMS 8260
Client Sample ID: OW-10D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-3A
Lab Project ID: G582-562
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:

$\mathrm{BQL}=$ Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad

Result	Quantitation	MDL	Dilution	Date	
UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
BQL	1000	48.0	1000	11/24/2009	
BQL	5000	98.0	1000	11/24/2009	
BQL	5000	550	1000	11/24/2009	
BQL	1000	67.0	1000	11/24/2009	
BQL	1000	133	1000	11/24/2009	
BQL	1000	80.0	1000	11/24/2009	
BQL	1000	85.0	1000	11/24/2009	
BQL	1000	90.0	1000	11/24/2009	
BQL	1000	115	1000	11/24/2009	
BQL	1000	69.0	1000	11/24/2009	
BQL	1000	76.0	1000	11/24/2009	
BQL	1000	190	1000	11/24/2009	
BQL	1000	119	1000	11/24/2009	
1020	1000	54.0	1000	11/24/2009	
BQL	1000	54.0	1000	11/24/2009	
BQL	1000	182	1000	11/24/2009	
BQL	1000	111	1000	11/24/2009	
BQL	1000	120	1000	11/24/2009	
BQL	1000	65.0	1000	11/24/2009	
BQL	1000	74.0	1000	11/24/2009	
460	1000	149	1000	11/24/2009	J
BQL	2000	98.0	1000	11/24/2009	
BQL	1000	65.0	1000	11/24/2009	
	Spike	Spike	Percent		
	Added	Result	Recovered		
	10	9.81	98		
	10	10.1	101		
	10	9.23	92		

Analyzed By: CLP
Date Collected: 11/16/2009 14:40
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

Results for Volatiles by GCMS 8260

Client Sample ID: PZ-1D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-4A
Lab Project ID: G582-562

Analyzed By: CLP
Date Collected: 11/16/2009 13:30
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
Acetone	BQL	250	21.8	10	11/23/2009
Benzene	BQL	10.0	0.650	10	11/23/2009
Bromobenzene	BQL	10.0	0.560	10	11/23/2009
Bromochloromethane	BQL	10.0	1.01	10	11/23/2009
Bromodichloromethane	BQL	10.0	0.760	10	11/23/2009
Bromoform	BQL	10.0	1.20	10	11/23/2009
Bromomethane	BQL	10.0	1.33	10	11/23/2009
2-Butanone	BQL	250	5.44	10	11/23/2009
n-Butylbenzene	BQL	10.0	1.09	10	11/23/2009
sec-Butylbenzene	BQL	10.0	0.840	10	11/23/2009
tert-Butylbenzene	BQL	10.0	0.500	10	11/23/2009
Carbon disulfide	BQL	10.0	0.690	10	11/23/2009
Carbon tetrachloride	BQL	10.0	0.870	10	11/23/2009
Chlorobenzene	BQL	10.0	0.820	10	11/23/2009
Chloroethane	BQL	10.0	1.06	10	11/23/2009
Chloroform	BQL	10.0	0.790	10	11/23/2009
Chloromethane	BQL	10.0	1.46	10	11/23/2009
2-Chlorotoluene	BQL	10.0	0.990	10	11/23/2009
4-Chlorotoluene	BQL	10.0	0.800	10	11/23/2009
Dibromochloromethane	BQL	10.0	0.900	10	11/23/2009
1,2-Dibromo-3-chloropropane	BQL	50.0	12.1	10	11/23/2009
Dibromomethane	BQL	10.0	1.13	10	11/23/2009
1,2-Dibromoethane (EDB)	BQL	10.0	1.24	10	11/23/2009
1,2-Dichlorobenzene	BQL	10.0	1.27	10	11/23/2009
1,3-Dichlorobenzene	BQL	10.0	0.810	10	11/23/2009
1,4-Dichlorobenzene	BQL	10.0	0.790	10	11/23/2009
trans-1,4-Dichloro-2-butene	BQL	50.0	6.30	10	11/23/2009
1,1-Dichloroethane	BQL	10.0	0.740	10	11/23/2009
1,1-Dichloroethene	1.20	10.0	0.890	10	11/23/2009
1,2-Dichloroethane	BQL	10.0	0.790	10	11/23/2009
cis-1,2-Dichloroethene	355	10.0	0.650	10	11/23/2009
trans-1,2-dichloroethene	BQL	10.0	0.890	10	11/23/2009
1,2-Dichloropropane	BQL	10.0	0.940	10	11/23/2009
1,3-Dichloropropane	BQL	10.0	1.27	10	11/23/2009
2,2-Dichloropropane	BQL	10.0	0.590	10	11/23/2009
1,1-Dichloropropene	BQL	10.0	0.720	10	11/23/2009
cis-1,3-Dichloropropene	BQL	10.0	0.760	10	11/23/2009
trans-1,3-Dichloropropene	BQL	10.0	0.760	10	11/23/2009
Dichlorodifluoromethane	BQL	50.0	0.940	10	11/23/2009
Diisopropyl ether (DIPE)	BQL	10.0	0.730	10	11/23/2009
Ethylbenzene	BQL	10.0	0.770	10	11/23/2009
Hexachlorobutadiene	BQL	10.0	2.28	10	11/23/2009
2-Hexanone	BQL	50.0	7.20	10	11/23/2009
lodomethane	BQL	10.0	0.420	10	11/23/2009
Isopropylbenzene	BQL	10.0	0.710	10	11/23/2009

Flag

Results for Volatiles

by GCMS 8260

Client Sample ID: PZ-1D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-4A
Lab Project ID: G582-562

Analyzed By: CLP
Date Collected: 11/16/2009 13:30
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
BQL	10.0	0.480	10	$11 / 23 / 2009$	
BQL	50.0	0.980	10	$11 / 23 / 2009$	
BQL	50.0	5.50	10	$11 / 23 / 2009$	
BQL	10.0	0.670	10	$11 / 23 / 2009$	
BQL	10.0	1.33	10	$11 / 23 / 2009$	
BQL	10.0	0.800	10	$11 / 23 / 2009$	
BQL	10.0	0.850	10	$11 / 23 / 2009$	
BQL	10.0	0.900	10	$11 / 23 / 2009$	
BQL	10.0	1.15	10	$11 / 23 / 2009$	
BQL	10.0	0.690	10	$11 / 23 / 2009$	
BQL	10.0	0.760	10	$11 / 23 / 2009$	
BQL	10.0	1.90	10	$11 / 23 / 2009$	
BQL	10.0	1.19	10	$11 / 23 / 2009$	
6.00	10.0	0.540	10	$11 / 23 / 2009$	J
BQL	10.0	0.540	10	$11 / 23 / 2009$	
BQL	10.0	1.82	10	$11 / 23 / 2009$	
BQL	10.0	1.11	10	$11 / 23 / 2009$	
BQL	10.0	1.20	10	$11 / 23 / 2009$	
BQL	10.0	0.650	10	$11 / 23 / 2009$	
BQL	10.0	0.740	10	$11 / 23 / 2009$	
BQL	10.0	1.49	10	$11 / 23 / 2009$	
BQL	20.0	0.980	10	$11 / 23 / 2009$	
BQL	10.0	0.650	10	$11 / 23 / 2009$	
	Spike	Spike	Percent		
	Added	Result	Recovered		
	10	10.5	105		
	10	9.93	99		
	10	9.3	93		

Comments:

Flags:
$\quad B Q L=$ Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst:

Reviewed By:

Results for Volatiles by GCMS 8260

Analyzed By: CLP
Date Collected: 11/16/2009 15:40
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

Client Sample ID: PZ-2D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-5A
Lab Project ID: G582-562

Analyzed By: CLP
Date Collected: 11/16/2009 15:40
Date Received: 11/17/2009 \quad Matrix: Water
Sample Amount: 5 mL

	Result UGIL	Quantitation	MDL UG/L	Dilution Factor	Date Analyzed	Flag
Compound						Flag
Acetone	BQL	5000	436	200	11/23/2009	
Benzene	BQL	200	13.0	200	11/23/2009	
Bromobenzene	BQL	200	11.2	200	11/23/2009	
Bromochloromethane	BQL	200	20.2	200	11/23/2009	
Bromodichloromethane	BQL	200	15.2	200	11/23/2009	
Bromoform	BQL	200	24.0	200	11/23/2009	
Bromomethane	BQL	200	26.6	200	11/23/2009	
2-Butanone	BQL	5000	109	200	11/23/2009	
n-Butylbenzene	BQL	200	21.8	200	11/23/2009	
sec-Butylbenzene	BQL	200	16.8	200	11/23/2009	
tert-Butylbenzene	BQL	200	10.0	200	11/23/2009	
Carbon disulfide	BQL	200	13.8	200	11/23/2009	
Carbon tetrachloride	BQL	200	17.4	200	11/23/2009	
Chlorobenzene	BQL	200	16.4	200	11/23/2009	
Chloroethane	BQL	200	21.2	200	11/23/2009	
Chloroform	BQL	200	15.8	200	11/23/2009	
Chloromethane	BQL	200	29.2	200	11/23/2009	
2-Chlorotoluene	BQL	200	19.8	200	11/23/2009	
4-Chlorotoluene	BQL	200	16.0	200	11/23/2009	
Dibromochloromethane	BQL	200	18.0	200	11/23/2009	
1,2-Dibromo-3-chloropropane	BQL	1000	242	200	11/23/2009	
Dibromomethane	BQL	200	22.6	200	11/23/2009	
1,2-Dibromoethane (EDB)	BQL	200	24.8	200	11/23/2009	
1,2-Dichlorobenzene	BQL	200	25.4	200	11/23/2009	
1,3-Dichlorobenzene	BQL	200	16.2	200	11/23/2009	
1,4-Dichlorobenzene	BQL	200	15.8	200	11/23/2009	
trans-1,4-Dichloro-2-butene	BQL	1000	126	200	11/23/2009	
1,1-Dichloroethane	BQL	200	14.8	200	11/23/2009	
1,1-Dichloroethene	BQL	200	17.8	200	11/23/2009	
1,2-Dichloroethane	BQL	200	15.8	200	11/23/2009	
cis-1,2-Dichloroethene	208	200	13.0	200	11/23/2009	
trans-1,2-dichloroethene	BQL	200	17.8	200	11/23/2009	
1,2-Dichloropropane	BQL	200	18.8	200	11/23/2009	
1,3-Dichloropropane	BQL	200	25.4	200	11/23/2009	
2,2-Dichloropropane	BQL	200	11.8	200	11/23/2009	
1,1-Dichloropropene	BQL	200	14.4	200	11/23/2009	
cis-1,3-Dichloropropene	BQL	200	15.2	200	11/23/2009	
trans-1,3-Dichloropropene	BQL	200	15.2	200	11/23/2009	
Dichlorodifluoromethane	BQL	1000	18.8	200	11/23/2009	
Diisopropyl ether (DIPE)	BQL	200	14.6	200	11/23/2009	
Ethylbenzene	BQL	200	15.4	200	11/23/2009	
Hexachlorobutadiene	BQL	200	45.6	200	11/23/2009	
2-Hexanone	BQL	1000	144	200	11/23/2009	
lodomethane	BQL	200	8.40	200	11/23/2009	
Isopropylbenzene	BQL	200	14.2	200	11/23/2009	
		Page 1 of 2				$\underset{8260}{ }$

Results for Volatiles

 by GCMS 8260Client Sample ID: PZ-2D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-5A
Lab Project ID: G582-562

Analyzed By: CLP
Date Collected: 11/16/2009 15:40
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	200	9.60	200	11/23/2009	
Methylene chloride	BQL	1000	19.6	200	11/23/2009	
4-Methyl-2-pentanone	BQL	1000	110	200	11/23/2009	
Methyl-tert-butyl ether (MTBE)	BQL	200	13.4	200	11/23/2009	
Naphthalene	BQL	200	26.6	200	11/23/2009	
n -Propyl benzene	BQL	200	16.0	200	11/23/2009	
Styrene	BQL	200	17.0	200	11/23/2009	
1,1,1,2-Tetrachloroethane	BQL	200	18.0	200	11/23/2009	
1,1,2,2-Tetrachloroethane	BQL	200	23.0	200	11/23/2009	
Tetrachloroethene	BQL	200	13.8	200	11/23/2009	
Toluene	BQL	200	15.2	200	11/23/2009	
1,2,3-Trichlorobenzene	BQL	200	38.0	200	11/23/2009	
1,2,4-Trichlorobenzene	BQL	200	23.8	200	11/23/2009	
Trichloroethene	526	200	10.8	200	11/23/2009	
1,1,1-Trichloroethane	BQL	200	10.8	200	11/23/2009	
1,1,2-Trichloroethane	BQL	200	36.4	200	11/23/2009	
Trichlorofluoromethane	BQL	200	22.2	200	11/23/2009	
1,2,3-Trichloropropane	BQL	200	24.0	200	11/23/2009	
1,2,4-Trimethylbenzene	BQL	200	13.0	200	11/23/2009	
1,3,5-Trimethylbenzene	BQL	200	14.8	200	11/23/2009	
Vinyl chloride	166	200	29.8	200	11/23/2009	J
m-, p-Xylene	BQL	400	19.6	200	11/23/2009	
o-Xylene	BQL	200	13.0	200	11/23/2009	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		10	10.3	103		
Toluene-d8		10	10.1	101		
4-Bromofluorobenzene		10	9.31	93		

Comments:

Flags:
BQL = Below Quantitation Limits.
$J=$ Detected bejow the quantitation limit.
Analyst: \qquad

Reviewed By: \qquad

Results for Volatiles

 by GCMS $\mathbf{8 2 6 0}$Analyzed By: CLP
Date Collected: 11/16/2009 16:10
Date Received: 11/17/2009
Matrix: Water
Amount: 5 mL
Sample Amount: 5 mL

Client Sample ID: PZ-3D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-6A
Lab Project ID: G582-562

-

Flag
Analyzed
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009
11/24/2009

Results for Volatiles
by GCMS 8260
Client Sample ID: PZ-3D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-6A
Lab Project ID: G582-562

	Result	Quantitation	MDL	Dilution	Date Analyzed
Compound	UG/L	Limit UG/L	UG/L	Factor	And
4-Isopropyltoluene	BQL	250	12.0	250	$11 / 24 / 2009$
Methylene chloride	BQL	1250	24.5	250	$11 / 24 / 2009$
4-Methyl-2-pentanone	BQL	1250	138	250	$11 / 24 / 2009$
Methyl-tert-butyl ether (MTBE)	BQL	250	16.7	250	$11 / 24 / 2009$
Naphthalene	BQL	250	33.2	250	$11 / 24 / 2009$
n-Propyl benzene	BQL	250	20.0	250	$11 / 24 / 2009$
Styrene	BQL	250	21.3	250	$11 / 24 / 2009$
1,1,1,2-Tetrachloroethane	BQL	250	22.5	250	$11 / 24 / 2009$
1,1,2,2-Tetrachloroethane	BQL	250	28.8	250	$11 / 24 / 2009$
Tetrachloroethene	BQL	250	17.3	250	$11 / 24 / 2009$
Toluene	BQL	250	19.0	250	$11 / 24 / 2009$
1,2,3-Trichlorobenzene	BQL	250	47.5	250	$11 / 24 / 2009$
1,2,4-Trichlorobenzene	BQL	250	29.8	250	$11 / 24 / 2009$
Trichloroethene	BQL	250	13.5	250	$11 / 24 / 2009$
1,1,1-Trichloroethane	BQL	250	13.5	250	$11 / 24 / 2009$
1,1,2-Trichloroethane	BQL	250	45.5	250	$11 / 24 / 2009$
Trichlorofluoromethane	BQL	250	27.8	250	$11 / 24 / 2009$
1,2,3-Trichloropropane	BQL	250	30.0	250	$11 / 24 / 2009$
1,2,4-Trimethylbenzene	BQL	250	16.3	250	$11 / 24 / 2009$
1,3,5-Trimethylbenzene	BQL	250	18.5	250	$11 / 24 / 2009$
Vinyl chloride	303	250	37.2	250	$11 / 24 / 2009$
m-,p-Xylene	BQL	500	24.5	250	$11 / 24 / 2009$
o-Xylene	BQL	250	16.3	250	$11 / 24 / 2009$
		Spike	Spike	Percent	
1,2-Dichloroethane-d4			10	Result	Recovered

Comments:

Flags:
$B Q L=$ Below Quantitation Limits.
$\mathrm{J}=$ Detected below the quantitation limit.
Analyst: \qquad

Analyzed By: CLP
Date Collected: 11/16/2009 16:10
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Reviewed By: \qquad

Analyst:

Results for Volatiles by GCMS $\mathbf{8 2 6 0}$

Analyzed By: CLP
Date Collected: 11/16/2009 0:00
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL UG/L	Dilution Factor	Date Analyzed
Compound	UG/L.	Limit UG/L	UG/L	Factor	Analyzed
Acetone	BQL	25.0	2.18	1	11/23/2009
Benzene	BQL	1.00	0.0650	1	11/23/2009
Bromobenzene	BQL	1.00	0.0560	1	11/23/2009
Bromochloromethane	BQL	1.00	0.101	1	11/23/2009
Bromodichloromethane	BQL	1.00	0.0760	1	11/23/2009
Bromoform	BQL	1.00	0.120	1	11/23/2009
Bromomethane	BQL	1.00	0.133	1	11/23/2009
2-Butanone	BQL	25.0	0.544	1	11/23/2009
n-Butylbenzene	BQL	1.00	0.109	1	11/23/2009
sec-Butylbenzene	BQL	1.00	0.0840	1	11/23/2009
tert-Butylbenzene	BQL	1.00	0.0500	1	11/23/2009
Carbon disulfide	BQL	1.00	0.0690	1	11/23/2009
Carbon tetrachloride	BQL	1.00	0.0870	1	11/23/2009
Chlorobenzene	BQL	1.00	0.0820	1	11/23/2009
Chloroethane	BQL	1.00	0.106	1	11/23/2009
Chloroform	BQL	1.00	0.0790	1	11/23/2009
Chloromethane	BQL	1.00	0.146	1	11/23/2009
2-Chlorotoluene	BQL	1.00	0.0990	1	11/23/2009
4-Chlorotoluene	BQL	1.00	0.0800	1	11/23/2009
Dibromochloromethane	BQL	1.00	0.0900	1	11/23/2009
1,2-Dibromo-3-chloropropane	BQL	5.00	1.21	1	11/23/2009
Dibromomethane	BQL	1.00	0.113	1	11/23/2009
1,2-Dibromoethane (EDB)	BQL	1.00	0.124	1	11/23/2009
1,2-Dichlorobenzene	BQL	1.00	0.127	1	11/23/2009
1,3-Dichlorobenzene	BQL	1.00	0.0810	1	11/23/2009
1,4-Dichlorobenzene	BQL	1.00	0.0790	1	11/23/2009
trans-1,4-Dichloro-2-butene	BQL	5.00	0.630	1	11/23/2009
1,1-Dichloroethane	BQL	1.00	0.0740	1	11/23/2009
1,1-Dichloroethene	BQL	1.00	0.0890	1	11/23/2009
1,2-Dichloroethane	BQL	1.00	0.0790	1	11/23/2009
cis-1,2-Dichloroethene	BQL	1.00	0.0650	1	11/23/2009
trans-1,2-dichloroethene	BQL	1.00	0.0890	1	11/23/2009
1,2-Dichloropropane	BQL	1.00	0.0940	1	11/23/2009
1,3-Dichloropropane	BQL	1.00	0.127	1	11/23/2009
2,2-Dichloropropane	BQL	1.00	0.0590	1	11/23/2009
1,1-Dichloropropene	BQL	1.00	0.0720	1	11/23/2009
cis-1,3-Dichloropropene	BQL	1.00	0.0760	1	11/23/2009
trans-1,3-Dichloropropene	BQL	1.00	0.0760	1	11/23/2009
Dichlorodifluoromethane	BQL	5.00	0.0940	1	11/23/2009
Diisopropyl ether (DIPE)	BQL	1.00	0.0730	1	11/23/2009
Ethylbenzene	BQL	1.00	0.0770	1	11/23/2009
Hexachlorobutadiene	BQL	1.00	0.228	1	11/23/2009
2-Hexanone	BQL	5.00	0.720	1	11/23/2009
lodomethane	BQL	1.00	0.0420	1	11/23/2009
Isopropylbenzene	BQL	1.00	0.0710	1	11/23/2009

Flag

Results for Volatiles
 by GCMS 8260

Client Sample ID: Trip Blank
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-562-7A
Lab Project ID: G582-562

Analyzed By: CLP
Date Collected: 11/16/2009 0:00
Date Received: 11/17/2009
Matrix: Water
Sample Amount: 5 mL
$\left.\begin{array}{cccccc}\begin{array}{c}\text { Result } \\ \text { UG/L }\end{array} & \begin{array}{c}\text { Quantitation } \\ \text { Limit UG/L }\end{array} & \begin{array}{c}\text { MDL } \\ \text { UG/L }\end{array} & \begin{array}{c}\text { Dilution } \\ \text { Factor }\end{array} & \begin{array}{c}\text { Date } \\ \text { Analyzed } \\ \text { BQL }\end{array} & 1.00\end{array} \begin{array}{c}0.0480\end{array}\right)$

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected belpw the quantitation limit.
Analyst:

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK1112309B Lab Project ID:

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Cabbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-CClorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	25.0	2.18	1	$11 / 23 / 2009$
BQL	1.00	0.0650	1	$11 / 23 / 2009$
BQL	1.00	0.0560	1	$11 / 23 / 2009$
BQL	1.00	0.101	1	$11 / 23 / 2009$
BQL	1.00	0.0760	1	$11 / 23 / 2009$
BQL	1.00	0.120	1	$11 / 23 / 2009$
BQL	1.00	0.133	1	$11 / 23 / 2009$
BQL	25.0	0.544	1	$11 / 23 / 2009$
BQL	1.00	0.109	1	$11 / 23 / 2009$
BQL	1.00	0.0840	1	$11 / 23 / 2009$
BQL	1.00	0.0500	1	$11 / 23 / 2009$
BQL	1.00	0.0690	1	$11 / 23 / 2009$
BQL	1.00	0.0870	1	$11 / 23 / 2009$
BQL	1.00	0.0820	1	$11 / 23 / 2009$
BQL	1.00	0.106	1	$11 / 23 / 2009$
BQL	1.00	0.0790	1	$11 / 23 / 2009$
BQL	1.00	0.146	1	$11 / 23 / 2009$
BQL	1.00	0.0990	1	$11 / 23 / 2009$
BQL	1.00	0.0800	1	$11 / 23 / 2009$
BQL	1.00	0.0900	1	$11 / 23 / 2009$
BQL	5.00	1.21	1	$11 / 23 / 2009$
BQL	1.00	0.113	1	$11 / 23 / 2009$
BQL	1.00	0.124	1	$11 / 23 / 2009$
BQL	1.00	0.127	1	$11 / 23 / 2009$
BQL	1.00	0.0810	1	$11 / 23 / 2009$
BQL	1.00	0.0790	1	$11 / 23 / 2009$
BQL	5.00	0.630	1	$11 / 23 / 2009$
BQL	1.00	0.0740	1	$11 / 23 / 2009$
BQL	1.00	0.0890	1	$11 / 23 / 2009$
BQL	1.00	0.0790	1	$11 / 23 / 2009$
BQL	1.00	0.0650	1	$11 / 23 / 2009$
BQL	1.00	0.0890	1	$11 / 23 / 2009$
BQL	1.00	0.0940	1	$11 / 23 / 2009$
BQL	1.00	0.127	1	$11 / 23 / 2009$
BQL	1.00	0.0590	1	$11 / 23 / 2009$
BQL	1.00	0.0720	1	$11 / 23 / 2009$
BQL	1.00	0.0760	1	$11 / 23 / 2009$
BQL	1.00	0.0760	1	$11 / 23 / 2009$
BQL	5.00	0.0940	1	$11 / 23 / 2009$
BQL	1.00	0.0730	1	$11 / 23 / 2009$
BQL	1.00	0.0770	1	$11 / 23 / 2009$
BQL	1.00	0.228	1	$11 / 23 / 2009$
BQL	5.00	0.720	1	$11 / 23 / 2009$
BQL	1.00	0.0420	1	$11 / 23 / 2009$
BQL	1.00	0.0710	1	$11 / 23 / 2009$

Flag
Analyzed
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
1123/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009
11/23/2009

Fag

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK1112309B Lab Project ID:

Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-TrimethyIbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
$\mathrm{BQL}=$ Below Quantitation Limits.
Analyst: \qquad

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Result	Quantitation UG/L.	MDL Limit UG/L	Dllution Factor	Date Analyzed
BQL	1.00	0.0480	1	$11 / 23 / 2009$
BQL	5.00	0.0980	1	$11 / 23 / 2009$
BQL	5.00	0.550	1	$11 / 23 / 2009$
BQL	1.00	0.0670	1	$11 / 23 / 2009$
BQL	1.00	0.133	1	$11 / 23 / 2009$
BQL	1.00	0.0800	1	$11 / 23 / 2009$
BQL	1.00	0.0850	1	$11 / 23 / 2009$
BQL	1.00	0.0900	1	$11 / 23 / 2009$
BQL	1.00	0.115	1	$11 / 23 / 2009$
BQL	1.00	0.0690	1	$11 / 23 / 2009$
BQL	1.00	0.0760	1	$11 / 23 / 2009$
BQL	1.00	0.190	1	$11 / 23 / 2009$
BQL	1.00	0.119	1	$11 / 23 / 2009$
BQL	1.00	0.0540	1	$11 / 23 / 2009$
BQL	1.00	0.0540	1	$11 / 23 / 2009$
BQL	1.00	0.182	1	$11 / 23 / 2009$
BQL	1.00	0.111	1	$11 / 23 / 2009$
BQL	1.00	0.120	1	$11 / 23 / 2009$
BQL	1.00	0.0650	1	$11 / 23 / 2009$
BQL	1.00	0.0740	1	$11 / 23 / 2009$
BQL	1.00	0.149	1	$11 / 23 / 2009$
BQL	2.00	0.0980	1	$11 / 23 / 2009$
BQL	1.00	0.0650	1	$11 / 23 / 2009$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	9.87	99	
	10	10	100	
	10	9.62	96	

Flag

SGS North America, Inc.

SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
L.ab Name: SGS Environmental

Lab Code: NC00919

| LCS: LCS1112309B | ilename: 1123104.D | Date Analyzed: 11/23/09 10:18 |
| ---: | :--- | ---: | :--- |
| LCSD: LCS1112309A | ilename: 1123103.D | Date Analyzed: 11/23/09 09:46 |

COMPOUND			$\begin{gathered} \text { LCS } \\ \text { \% } \\ \text { REC } \# \\ \hline \end{gathered}$	LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { ICSD } \\ \% \\ \operatorname{REC} \# \end{gathered}$	$\begin{gathered} \% \\ R P D \end{gathered}$	QC LIMITS	
								RPD	REC
acetone	25.0	20.8	83.1	25.0	20.7	82.7	0.531	30	23.5-141
acrolein	125	120	96.2	125	113	90.7	5.89	30	31.4-182
acrylonitrile	125	134	107	125	124	39.3	7.94	30	64.2-140
benzene:	5.00	4.65	93.0	5.00	4.63.	90.6	2.61	30	76.6-120
bromobenzene	5.00	4.76	95.2	5.00	4.72	94.4	0.841	30	75.0-122
bromochloromethane	5.00	4.75	35.0	5.00	4.58	31.6	3.64	30	74.8-127
hromodichloromethane	5.00	5.06	101	5.00	4.89	97.8	3.42	30	76.4-117
bromaform	5.00	5.13	103	5.00	4.95	99.0	3.57	30	62.4-127
bromomethare	5.00	4.33	86.6	5.00	4.34	86.8	0.231	30	34.2-166
2-bietanone	25.0	23.8	95.1	25.0	23.0	91.9	3.46	30	44.9-126
n-bititylbenzene	5.00	4.10	82.0	5.00	4.01	80.2	2.22	30	72.0-122
sec-butylberzene	5.00	4.13	82.6	5.00	4.06	81.2	1.71	30	78.3-116
teert-but.ylbenzene	5.00	3.45	69.0	5.00	3.49	69.8	1.15	30	53.1-148
Carbon disulfide	5.00	4.73	94.6	5.00	4.63	92.6	2.14	30	69.0-118
carbon tetrachloride	5.00	4.90	98.0	5.00	4.63	92.6	5.67	30	71.7-124
chiarobenzene	5.00	4.79	95.8.	5.00.	4.66	93.2	2.75	34.	75.5-116
chlorocthane	5.00	5.06	101	5.00	5.04	101	0.396	30	78.2-138
2-chloroethyl vinyl ether	125	122	37.9	125	114	91.2	7.05	30	5.57-235
chiorotorm	5.00	5.01	100	5.00	4.80	96.0	4.28	30	80.6-111
chloromethane	5.00	5.08	$10:$	5.00	5.04	101	0.790	30	72.6-127
2-chlcot.0hinere	5.00	4.64	32.8	5.00	4. 5.5	93.2	0.430	30	81.4-117
4-chlorotoluene	5.00	4.54	90.8	5.00	4.25	85.0	6.60	30	82.1-116
dibromechloromethane	5.00	5.13	103	5.00	5.08	102	0.379	30	73.1-117
1,2-dibromo-3-chloropropane	25.0	21.4	85.5	2.5 .0	20.8	83.3	2.61	30	58.0-133
1, 2-dibcomoethane	5.00	4.88	97.6	5.00	4.53	90.6	7.44	30	75.5-118
dibromomethane	5.00	5.06	101	5.00	4.95	39.0	2.20	30	77.3-124
1,2-dichlorobenzene	5.00	5.04	101	5.00	4.88	97.6	3.22	30	76.3-115
1, 3-dichlorobenzene	5.00	1.92	98.1	5.00	4.92	98.4	0.00	30	79.1-114
1,4-dichlorobenzene	5.00	4.95	99.0	5.00	4.88	97.6	1.42	30	76.8-115
trans-1,4-Dichloro-2-butene	25.0	23.1	92.4	25.0	22.4	89.5	3.17	30	52.3-130
dichlorodiflnoromethane	5.00	4.69	93. ${ }^{\text {A }}$	5.00	4.68	93.6	0.213	30	69.8-134
1,l-dichloroerhane	3.00	4.87	97.4	5.00	4.74	94.8	2.70	30	78.0-120
1,2-dichloroethane	5.00	4.91	98.2	5.00	4.75	95.0	3.31	30	72.8-126
1,1-dichloroethent	5,00	4.75	95.4	5.00	4.64	92.6	2.76	30.	74.6-12
cis-1,2-dichloroethene	5.00	4.95	99.2	5.00	4.79	95.8	3.49	30	78.0-121
trans-1,2-ciohloroethene	5.00	5.17	103	5.00	4.88	97.6	5.77	30	60.7-144
1,2-dichloropropane	5.00	4.98	99.6	5.00	4.80	96.0	3.68	30	75.8-119
-,3-dichloropropane	5.00	4.74	34.8	5.00	4.62	92.4	2.56	30	78.5-113
2,2-richloropropane	5.00	4.80	96.1	5.00	4.73	94.6	1.47	30	75.6-130
1,1-dichioropropene	5.00	4.65	33.0	5.00	4.52	90.4	2.84	30	79.7-117
cis-1,3-dichloropropene	5.00	4.95	99.0	5.00	4.83	96.6	2.45	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad
\qquad

Lad Name: SGS Environmental
1.ah Code: NCuO919

filename: 1123104.D
Date Analyzed: 11/23/09 10:18
ilename: 1123103.D

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

LCS Spike Recovery: 0 failure (s) out of 72. LCSD Spike Recovery: 0 failure (s) out of 72 .
ReD: 0 out of 72 outside of limits
COMMENTS: \qquad
\qquad
analyse: OVO
Reviewed by:

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: Amt. Filenames: Analysis Dates:

Sample g145-1301-5b		Filenames:$1123119 . \mathrm{D}$		Analysis Dates:2009-11-23 18:19:00			```Batch: 1112309 Dilution: 800```			
MS 9145-1301-5b	5 mL	$1123120 . \mathrm{D}$		2009-11-23 18:51:00			Matrix: Water			
MSD g145-1301-5b	5 mL	1123121.D		2009-11-23 19:22:00MS						
	SAMPLE CONC	$\begin{gathered} \text { MS } \\ \text { SPIKE } \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { CONC } \end{gathered}$	$\begin{gathered} \mathrm{MS} \\ \% \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { SPIKE } \end{gathered}$	MSD CONC	$\begin{gathered} \text { MSD } \\ \% \end{gathered}$	\%		LIMITS
COMPOUND	($\mu \mathrm{g} / \mathrm{L}$)	($\mu \mathrm{g} / \mathrm{L}$)	$(\mu \mathrm{g} / \mathrm{L})$	REC \#	$(\mu \mathrm{g} / \mathrm{L})$	($\mu \mathrm{g} / \mathrm{L}$)	REC \#	RPD	RPD	REC
acetone	BQL	20000	14800	74.1	20000	16500	82.7	11.0	30	17.7-85.2
acrolein	BQL	100000	83300	83.3	100000	92300	92.3	10.3	30	0.00-424
acrylonitrile	BQL	100000	99500	99.6	100000	109000	109	9.05	30	85.0-175
benzene	1450	4000	5370	98.0	4000	5590	104	5.56	30	61.6-135
bromobenzene	BQL	4000	4010	100	4000	4460	111	10.6	30	65.1-125
bromochloromethane	BQL	4000	3910	97.8	4000	4070	102	4.01	30	75.5-126
bromodichloromethane	BQL	4000	4140	103	4000	4340	108	4.90	30	74.3-123
bromoform	BQL	4000	4180	105	4000	4830	121	14.4	30	52.3-122
bromomethane	BQL	4000	2820	70.4	4000	3270	81.8	15.0	30	10.0-284
2-butanone	BQL	20000	17300	86.4	20000	18900	94.7	9.14	30	36.1-107
n-butylbenzene	BQL	4000	3480	87.0	4000	3680	92.0	5.59	30	70.2-124
sec-butylbenzene	BQL	4000	3370	84.2	4000	3630	90.8	7.54	30	62.0-133
tert-butylbenzene	BQL	4000	2920	73.0*	4000	3020	75.4	3.23	30	73.5-121
Carbon disulfide	BQL	4000	3910	97.8	4000	4020	100	2.62	30	68.8-129
carbon tetrachloride	BQL	4000	3960	99.0	4000	4130	103	4.15	30	71.8-122
chlorobenzene	BQL	4000	3920	98.0	4000	4370	109	10.8	30	77.2-118
chloroethane	BQL	4000	3850	96.2	4000	4100	103	6.44	30	10.0-233
2-chloroethyl vinyl ether	BQL	10000	85400	854*	10000	90700	907*	6.07	30	16.7-283
chloroform	BQL	4000	3880	97.0	4000	4230	106	8.68	30	74.0-128
chloromethane	BQL	4000	3950	98.8	4000	4100	103	3.77	30	72.0-138
2-chlorotoluene	BQL	4000	4150	104	4000	4320	108	3.97	30	79.3-118
4-chlorotoluene	BQL	4000	3780	94.6	4000	3900	97.4	2.92	30	76.8-120
dibromochloromethane	BQL	4000	4200	105	4000	4740	119*	12.2	30	69.0-117
1,2-dibromo-3-chloropropane	BQL	20000	18400	92.1	20000	20500	102	10.5	30	20.2-171
1,2-dibromoethane	BQL	4000	3870	96.8	4000	4420	110	13.1	30	78.5-123
dibromomethane	BQL	4000	3780	94.4	4000	4330	108	13.6	30	71.3-137
1,2-dichlorobenzene	BQL	4000	4280	107	4000	4440	111	3.57	30	75.1-120
1,3-dichlorobenzene	BQL	4000	4160	104	4000	4350	109	4.51	30	73.1-121
1,4-dichlorobenzene	BQL	4000	4270	107	4000	4380	109	2.40	30	74.8-118
trans-1,4-Dichloro-2-butene	BQL	20000	19200	95.9	20000	19800	99.1	3.28	30	25.7-149
dichlorodifluoromethane	BQL	4000	3300	82.6	4000	3700	92.4	11.2	30	41.7-166
1,1-dichloroethane	BQL	4000	3770	94,2	4000	4140	103	9.31	30	75.6-128
1,2-dichloroethane	BQL	4000	3990	99.8	4000	4220	105	5.46	30	71.1-127
1,1-dichloroethene	BQL	4000	3740	93.4	4000	3980	99.6	6.42	30	64.4-130
cis-1,2-dichloroethene	BQL	4000	3700	92.4	4000	4060	102	9.48	30	72.7-134
trans-1,2-dichloroethene	BQL	4000	3980	99.4	4000	4310	108	8.11	30	74.6-124
1,2-dichloropropane	BQL	4000	4000	100	4000	4140	104	3.54	30	76.5-129
1,3-dichloropropane	BQL	4000	3820	95.4	4000	4320	108	12.4	30	79.1-121
2,2-dichloropropane	BQL	4000	3780	94.4	4000	3960	99.0	4.76	30	31.5-157
1,1-dichloropropene	BQL	4000	3460	85.6	4000	3760	94.0	8.19	30	72.5-120
cig-1,3-dichloropropene	BQL	4000	3800	95.0	4000	4100	102	7.50	30	66.6-132

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad
\square

SGS North America, Inc.

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: g145-1301-5b, g145-1301-5b, g145-1301-5b Filenames: l123119.D, 1123120.D, l123121.D

Inst: MSD1
Batch: 1112309
Dilution: 800
Matrix: Water

COMPOUND	$\begin{gathered} \hline \text { SAMPLE } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$		MS CONC ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { MS } \\ \text { \% } \\ \text { REC } \# \end{gathered}$	MSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { MSD } \\ \text { \% } \\ \text { REC \# } \end{gathered}$	$\stackrel{\text { \% }}{\text { RPD }}$	QC LIMITS	
									RPD	REC
trans-1,3-dichloropropene	BQL	4000	3900	97.4	4000	4240	106	8.46	30	44,7-144
Diisopropyl ether	BQL	4000	3910	97.8	4000	4200	105	7.10	30	79.4-122
ethylbenzene	1670	4000	6010	108	4000	6180	113	3.80	30	73.8-126
hexachlorobutadiene	BQL	4000	3570	89.2	4000	3920	98.0	9.40	30	51.8-134
2-hexanone	BQL	20000	15900	79.4	20000	18100	90.6	13.1	30	41.6-111
Iodomethane	BQL	4000	3540	88.6	4000	3900	97.4	9.46	30	40.6-126
isopropylbenzene	BQL	4000	3490	87.2	4000	3670	91.8	5.14	30	74.3-123
4-isopropyltoluene	BQL	4000	3510	87.8	4000	3610	90.2	2.70	30	74.6-122
Methyl-tert-butyl ether	BQL	4000	3760	94.0	4000	4220	106	11.6	30	66.5-136
methylene chloride	BQL	4000	4000	100	4000	4120	103	2.96	30	48.6-155
4-methyl-2-pentanone	BQL	20000	17400	86.8	20000	18500	92.4	6.30	30	6.88-166
naphthalene	BQL	4000	3240	81.0	4000	3850	96.2	17.2	30	55.1-140
n-propyl benzene	BQL	4000	3730	82.4	4000	3860	85.6	3.81	30	71.6-128
styrene	BQL	4000	3680	92.0	4000	3780	94.4	2.58	30	73.2-123
1,1,1,2-tetrachloroethane	BQL	4000	3950	98.8	4000	4410	110	10.9	30	69.4-120
1,1,2,2-tetrachloroethane	BQL	4000	4270	107	4000	4780	119	11.1	30	75.7-136
tetrachloroethene	BQL	4000	3160	79.0	4000	3590	89.8	12.8	30	45.8-153
toluene	12500	4000	17400	122	4000	17400	121	1.32	30	66.4-128
1,2,3-trichlorobenzene	EQL	4000	3290	82.2	4000	3690	92.2	11.5	30	61.0-126
1,2,4-trichlorobenzene	BQL	4000	3190	79.8	4000	3690	92.2	14.4	30	60.6-125
1,1,1-trichloroethane	BQL	4000	3900	97.6	4000	4100	103	5.00	30	78.4-121
1,1,2-trichloroethane	BQL	4000	4160	104	4000	4530	113	8.47	30	64.8-128
trichloroethene	BQL	4000	3790	94.8	4000	4030	101	6.13	30	84.9-136
trichlorofluoromethane	BQL	4000	3940	98.6	4000	4050	101	2.60	30	76.8-132
1,2,3-trichloropropane	BQL	4000	3820	95.6	4000	4220	106	9.94	30	10.0-218
1,2,4-trimethylbenzene	1470	4000	6000	113	4000	6140	117	3.13	30	31.0-172
1,3,5-trimethylbenzene	BQL	4000	4180	94.0	4000	4290	96.8	2.94	30	67.7-132
Vinyl acetate	BQL	10000	9500	95.0	10000	10800	10 B	13.0	30	0.00-355
vinyl chloride	BQL	4000	3620	90.4	4000	3990	99.8	9.88	30	68.1-137
m/p-xylene	7650	8000	16600	113	8000	16900	115	2.28	30	79.8-118
o-xylene	3010	4000	7200	105	4000	7400	110	4.66	30	80.0-121

System Monitoring Compound Results		$\begin{gathered} \text { MS } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{MS} \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	MS R REC \#	MSD SPIKE $(\mu \mathrm{g} / \mathrm{L})$	$\begin{array}{c\|} \hline \text { MSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{array}$		$\begin{aligned} & \text { QC LIMITS } \\ & \text { REC } \end{aligned}$
460-00-4	4-Bromofluorobenzene	10	10.68	107	10	11.51	115*	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	9.73	97.3	10	10.2	102	63.5-140
2037-26-5	Toluene-d8	10	10.35	104	10	10.22	102	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 2 failure(s) out of 72. MSD Spike Recovery: 2 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS:

SGS North America, Inc.

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 11
Lab Pro \#: P0911366
Report Date: 12/07/09
Client Pro Name: B0007393.0000.00006
Client Pro \#: AVXMB

Laboratory Results

Lab Sample \#		Client Sample ID
		OW-7D
P0911366-02	OW-8D	
P0911366-03	OW-9D	
P0911366-04	OW-10D	
P0911366-05	PZ-1D	
P0911366-06	PZ-2D	
P0911366-07	PZ-3D	
P0911366-08	IW-2D	
P0911366-09	IW-4D	

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

Project Manager:

Debbie Hall
The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 11
Lab Proj \#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0911366-01			Sampled Date/Time	Received	
OW-7D	Water				23 Nov. 09 7:25	24 Nov.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		710.0	50	mg/L	9060	12/4/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 11
Lab Proj \#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

Sample Description	Matrix	Lab Sample \# P0911366-02			Sampled Date/Time	Received	
OW-8D	Water				23 Nov. 09 7:15	24 Nov.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		54.0	5	mg / L	9060	12/4/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 11
Lab Proj \#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0911366-03			Sampled Date/Time	Received	
OW-9D	Water				23 Nov. 09 7:35	24 Nov.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		31.0	5	mg/L	9060	12/4/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 11
Lab Proj \#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0911366-04			Sampled Date/Time	Received	
OW-10D	Water				23 Nov. 09 7:05	24 Nov.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		11.0	5	mg/L	9060	12/4/09	md

Client Name: Arcadis U.S., Inc. Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 11
Lab Proj \#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

$\frac{\text { Sample Description }}{\mathrm{PZ}-1 \mathrm{D}}$	Matrix Water	Lab Sample \# P0911366-05			$\frac{\text { Sampled Date/Time }}{23 \text { Nov } 09 \quad 7: 40}$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	J	1	5	mg/L	9060	12/4/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 11
Lab Proj \#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0911366-06			Sampled Date/Time	Received	
PZ-2D	Water				23 Nov. 09	24 Nov.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		2500.0	250	mg/L	9060	12/4/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 11
Lab Proj\#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { PZ-3D }}$	Matrix Water	Lab Sample \# P0911366-07			Sampled Date/Time		Received	
					23 Nov. 09 8:23		24 Nov.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysi	sis Date	By
WetChem N Total Organic Carbon		30.0	5	mg/L	9060	12/4/09		md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 11
Lab Proj \#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0911366-08			$\frac{\text { Sampled Date/Time }}{23 \text { Nov. } 09 \quad 8: 42}$		Received			
IW-2D	Water				24 Nov.					
Analyte(s)	Flag	Result	PQL	Units			Method \#	Analysis	is Date	By
WetChem N Total Organic Carbon		6000.0	250	mg/L	9060	12/4/09		md		

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 11
Lab Proj \#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0911366-09			Sampled Date/Time	Received	
IW-4D	Water				23 Nov. 09 8:50	24 Nov.	10:50
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		11000.0	500	mg/L	9060	12/4/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 11 of 11
Lab Proj \#: P0911366
Report Date: 12/07/09
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
Analysis Method: Total Organic Carbon

M091205007-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Total Organic Carbon	< 5.0	mg / L		5		- NA
M091205007-LCS						
	Result		TrueSpikeConc.		\%Recovery	CtI Limits
Total Organic Carbon	36.0	mg / L	36.00		100.00	70-130

	Result	TrueSpikeConc.		\%Recovery		Ctl Limits	RPD	RPD Ctl Limits
Total Organic Carbon	23.0	mg / L		- NA	4.26	$0-20$		

	Result	TrueSpikeConc.	\%Recovery	Ct\| Limits	RPD	RPD Ct\| Limits	
Total Organic Carbon	54.0	mg / L		- NA	0.00	$0-20$	
P0911344-02A-MS							

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits
Total Organic Carbon	55.0	mg / L	50.00	102.00	70-130
P0911366-03A-MS					
	Result		TrueSpikeConc.	\%Recovery	CtI Limits
Total Organic Carbon	83.0	mg / L	50.00	104.00	70-130

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046
Page: Page 1 of 11
Lab Pro \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Pro \#: B007393.0000.00006

Laboratory Results

Total pages in data package: \qquad

Lab Sample \#	Client Sample ID
P0912005-01	OW-7D
P0912005-02	OW-8D
P0912005-03	OW-9D
P0912005-04	OW-10D
P0912005-05	P-1D
P0912005-06	P-2D
P0912005-07	P-3D
P0912005-08	IW-2D
P0912005-09	IW-4D.

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.
Approved Bx: Dubbue halo (Att) Date: 1.5 .10

Project Manager: \quad Debbie Hall

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.
Case Narrative: This report is being reissued $1 / 5 / 10$ to correct the project name and number per the client's request.

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

$\frac{\text { Sample Description }}{\text { OW-7D }}$	Matrix Water	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P0912005-01 } \end{aligned}$			$\frac{\text { Sampled Date/Time }}{30 \text { Nov. } 09 \quad 13: 20}$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		110.0	25.0	mg/L	9060	12/11/09	tld

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

Sample Description OW-9D	Matrix Water	Lab Sample \# P0912005-03			Sampled Date/Time 30 Nov. 09 13:50	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		10.0	5.0	mg / L	9060	12/11/09	tld

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

Sample Description OW-10D	Matrix Water	Lab Sample \# P0912005-04			Sampled Date/Tim 30 Nov. 09 14:00	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		5.6	5.0	mg / L	9060	12/11/09	tld

1

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

Sample Description	Matrix Water	Lab Sample \# P0912005-05			Sampled Date/Time 30 Nov. 09 14:12	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	U	< 5.0	5.0	mg/L	9060	12/11/09	tid

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

Sample Description	Matrix	Lab Sample \# P0912005-06			Sampled Date/Time	Received		
P-2D	Water				30 Nov. $0914: 45$		01 Dec.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analy	is Date	By
WetChem N Total Organic Carbon		4400.0	250.0	mg/L	9060	12/11/0		tld

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

$\frac{\text { Sample Description }}{\text { P-3D }}$	Matrix Water	Lab Sample \# P0912005-07			Sampled Date/Time 30 Nov. 09 15:05	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analy	By
WetChem N Total Organic Carbon		25.0	5.0	mg/L	9060	12/11/09	tld

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

Sample Description	Matrix	Lab Sample \#P0912005-08			Sampled Date/Time	Received		
IW-2D	Water				30 Nov. 09 15:22		01 Dec .	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysi	is Date	By
WetChem N Total Organic Carbon		7100.0	500.0	mg/L	9060	12/11/09		tld

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

Client Name: Arcadis U. S. Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 11
Lab Proj \#: P0912005
Report Date: 12/14/09
Client Proj Name: AVX MB
Client Proj \#: B007393.0000.00006

Prep Method: Total Organic Carbon
Analysis Method: Total Organic Carbon

M091212005-MB

| | $\frac{\text { Result }}{}$ | | TrueSpikeConc. | $\frac{R D L}{}$ | \%Recovery | Ctl Limits |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Organic Carbon | <5.0 | mg / L | | 5.0 | | - NA |
| M091212005-LCS | | | | | | |
| | Result | | TrueSpikeConc. | | \%Recovery | Ctl Limits |
| Total Organic Carbon | 36.0 | mg / L | 36.00 | | 100.00 | $70-130$ |
| P0912005-01A-DUP | | | | | | |

| | Result | | TrueSpikeConc. | | \%Recovery | Ctl Limits | RPD | RPD Ctl Limits |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Organic Carbon | 110.0 | mg / L | | | -NA | 0.00 | $0-20$ | |
| P0912005-02A-MS | | | | | | | | |
| | Result | | TrueSpikeConc. | | \%Recovery | Ctl Limits | | |
| Total Organic Carbon | 73.0 | mg / L | 50.00 | | 110.00 | $70-130$ | | |

Phonel42) B26 S245

ARCADIS

One Adams Place, 310 Seven Fields Blud, suite 210
seven fclos
$727.742 .9180 \times .524$ Fax\#: 724.742 .9189
Mark Hanish
Proj. Name/Number: Avx / B0007393.0000.00006
8

Date:		
$1130 / 09$	Time:	$\begin{array}{c}\text { Received by: } \\ 1625\end{array}$
Date:	Time: $: \begin{array}{l}\text { Regeived by: } \\ \text { Red } \\ \text { Date : }\end{array}$	Time:
Received by:		

YELLOW COPY : Laboratory File

Company :	ARCADIS	
Co. Address :	One Adams Place, 310 Seven Fields Blud, Suite 210 seven Ficlds, PA 16046	
Phone \#:	$727.742 .9180 \times .524$ Fax\#: 724.742 .9189	
Proj. Manager :	Mark Hanish	
Proj. Name/Num	: Avx/B0007393.0000.00006	
Sampler's signature :\qquad		Cob 2°

Sallol P/

$O W-7 D$
$0 w-8 D$
$O W-9 D$
$O W-10 D$
$P-1 D$
$P-2 D$
$P-3 D$
$3-1 W-2 D$
$1 W-4 D$

Relinquished by:
Relinquuished by:

Client Name: Arcadis U.S., Inc.
Contact: Mark Banish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 13
Lab Pro \#: P0912196
Report Date: 12/22/09
Client Pro Name: B0007393.0000
Client Pro \#: AVXMB

Laboratory Results
Total pages in data package: \qquad

Lab Sample \#	
P0912196-01	Client Sample ID
P0912196-02	OW-7D
P0912196-03	P-2D
P0912196-04	OW-8D
P0912196-05	OW-9D
P0912196-06	OW-10D
P0912196-07	P-1D
P0912196-08	P-3D
P0912196-09	IW-4D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

 Date:

Project Manager:

Debbie Hall

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj\#: AVXMB

Sample Description	Matrix	Lab Sample \# P0912196-01			Sampled Date/Time	Received	
IW-2D	Water				14 Dec. 09 9:50	15 Dec.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		6300.0	250.0	mg / L	9060	12/17/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 3 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0912196-02			Sampled Date/Time	Received		
OW-7D	Water				15 Dec.			
Analyte(s)	Flag	Result	PQL	Units		Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4100.0	250.0	mg/L	9060	12/17/09	md	

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-8D }}$	Matrix Water	Lab Sample \# P0912196-04			Sampled Date/ 14 Dec. 09 11:0	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		17.0	5.0	mg / L	9060	12/17/09	md
RiskAnalysis N Ethane		0.730	0.025	ug/L	AM20GAX	12/21/09	rw
N Ethene		18.000	0.025	ug/L	AM20GAX	12/21/09	rw
N Methane		8400.000	0.100	ug/L	AM20GAX	12/21/09	nw

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N-NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-10D }}$	Matrix Water	Lab Sample \# P0912196-06			Sampled Date/ 14 Dec. 0911	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		310.0	25.0	mg / L	9060	12/17/09	md
RiskAnalysis N Ethane		0.600	0.025	ug/L	AM20GAX	12/21/09	rw
N Ethene		8.400	0.025	ug/L	AM20GAX	12/21/09	rw
N Methane		230.000	0.100	ug/L	AM20GAX	12/21/09	IW

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix Water	Lab Sample \# P0912196-07			Sampled Date/ 14 Dec. 0911	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		1500.0	50.0	mg / L	9060	12/17/09	md
RiskAnalysis N Ethane		0.130	0.025	ug/L	AM20GAX	12/21/09	rw
N Ethene		0.430	0.025	ug/L	AM20GAX	12/21/09	rw
N Methane		59.000	0.100	ug/L	AM20GAX	12/21/09	rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-3D }}$	Matrix Water	Lab Sample \# P0912196-08			Sampled Date $14 \text { Dec. } 09$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		27.0	5.0	mg / L	9060	12/17/09	md
RiskAnalysis N Ethane		0.110	0.025	ug/L	AM20GAX	12/21/09	rw
N Ethene		1.800	0.025	ug/L	AM20GAX	12/21/09	rw
N Methane		300.000	0.100	ug/L	AM20GAX	12/21/09	rw

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description $\mathrm{W}-4 \mathrm{D}$	Matrix Water	Lab Sample \# P0912196-09			Sampled Date/Time 14 Dec. 09 10:15	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		12000.0	500.0	mg/L	9060	12/17/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd. Suite 210 Seven Fields, PA 16046

Page: Page 11 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M091218009-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Total Organic Carbon	< 5.0	mg / L		5.0		- NA
M091218009-LCS						
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Total Organic Carbon	36.0	mg / L	36.00		100.00	70-130
P0912196-04A-MS						
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Total Organic Carbon	72.0	mg / L	50.00		110.00	70-130

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 12 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj\#: AVXMB

Prep Method: In House Dissolved Gas Sample Preparation
Analysis Method: Light Hydrocarbons (C1-C4) in Water

M091221003-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits		
Ethane	<0.025	ug/L		0.025		- NA		
Ethene	<0.025	ug/		0.025		- NA		
Methane	<0.100	ug / L		0.100		- NA		
M091221003-LCS								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits		
Ethane	51.000	ug/L	45.00		113.00	75-125		
Ethene	46.000	ug/L	40.80		113.00	75-125		
Methane	930.000	ug/L	825.00		113.00	75-125		
M091221003-LCSD								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits	RPD	RPD CtI Limits
Ethane	51.000	ug / L	45.00		113.00	75-125	0.00	0-20
Ethene	46.000	ugL	40.80		113.00	75-125	0.00	0-20
Methane	920.000	ug / L	825.00		112.00	75-125	1.08	0-20

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 13 of 13
Lab Proj \#: P0912196
Report Date: 12/22/09
Client Proj Name: B0007393.0000
Client Proj\#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M091221005-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits		
Total Organic Carbon	<5.0	mg / L		5.0		- NA		
M091221005-LCS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
Total Organic Carbon	36.0	mg / L	36.00		100.00	70-130		
P0912196-03A-DUP								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	$\underline{\text { RPD }}$	RPD Ctl Limits
Total Organic Carbon	5300.0	mg / L				- NA	1.90	0-20

\qquad
REASON FOR NON-CONFORMANCE:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

emoul to Markftanush 4 Ach Matue

Godd. Iw 4D to coc for Toc oney
\qquad
\qquad
\qquad
\qquad
\qquad

Customer Service Initials:

Date: $12 / 16$

Client Name: Arcadis U.S., Inc.
Contact: Mark Banish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046
Page: Page 1 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Pro Name: B0007393.0000.00006
Client Proj \#: AVXMB

Laboratory Results

Total pages in data package:
13

Lab Sample \#	Client Sample ID
P0912351-01	P-2D
P0912351-02	P-1D
P0912351-03	P-3D
P0912351-04	IW-2D
P0912351-05	IW-4D
P0912351-06	OW-7D
P0912351-07	OW-8D
P0912351-08	OW-9D
P0912351-09	OW-10D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

 Date: \qquad
Project Manager: \qquad
Debbie Hall

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.
Case Narrative: The percent recovery for the MS analysis for TOC was outside of control limits.

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description P-2D	Matrix Water	Lab Sampie \# P0912351-01			Sampled Date/Time 24 Dec. 09 13:30	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	M	4000.0	250	mg/L	9060	12/31/09	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\mathrm{P}-1 \mathrm{D}}$	Matrix Water	Lab Sample \# P0912351-02			Sampled Date/Time 24 Dec. 09 13:45	Received	
Änalyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	UM	< 5.0	5	mg / L	9060	12/31/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-3D }}$	Matrix Water	Lab Sample \# P0912351-03			Sampled Date/Time 24 Dec. 09 13:55	Received$29 \text { Dec. } 09 \text { 11:51 }$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	M	120.0	5	mg/L	9060	12/31/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { IW-2D }}$	Matrix Water	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P0912351-04 } \end{aligned}$			$\frac{\text { Sampled Date/Time }}{24 \text { Dec. } 09 \text { 14:10 }}$	$29 \text { Received }$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		6100.0	500.0	mg / L	9060	1/2/10	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description W-4D	Matrix Water	Lab Sample \# P0912351-05			Sampled Date/Time	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		11000.0	500.0	mg/L	9060	1/2/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-7D }}$	Matrix Water	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P0912351-06 } \end{aligned}$			Sampled Date/Time 24 Dec. 09 14:25	$\frac{\text { Received }}{\text { Dec. } 09 \text { 11:51 }}$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	M	87.0	5	mg / L	9060	12/31/09	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

Sample Description OW-8D	Matrix Water	Lab Sample \# P0912351-07			Sampled Date/Time	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	M	13.0	5	mg / L	9060	1/1/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 12
Lab. Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-10D }}$	Matrix Water	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P0912351-09 } \end{aligned}$			Sampled Date/T 24 Dec. 0914	$\frac{\text { Received }}{\text { Dec. } 09 \text { 11:51 }}$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	M	5.7	5	mg/L	9060	1/1/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M100102004-MB

| | Result | | TrueSpikeConc. | RDL | \%Recovery | Ctl Limits |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Organic Carbon | <5.0 | mg / L | | | - NA | |
| M100102004-LCS | | | | | | |
| | Result | | TrueSpikeConc. | | \%Recovery | Ctl Limits |
| Total Organic Carbon | 35.0 | mg / L | 36.00 | | 97.00 | $70-130$ |

P0912351-02A-DUP

Client Name: Arcadis U.S., Inc. Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 12 of 12
Lab Proj \#: P0912351
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M100104003-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Total Organic Carbon	<5.0	mg / L	5.0		- NA	
M100104003-LCS						

	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Total Organic Carbon	36.0	mg / L	36.00		100.00	$70-130$
P0912359-01A-DUP						

	Result		TrueSpikeConc.	\%Recovery	CtI Limits	RPD	RPD CtI Limits
Total Organic Carbon	71.0	mg / L			- NA	1.42	0-20
P0912359-02A-MS							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Total Organic Carbon	67.0	mg / L	50.00	112.00	70-130		

Microseeps
Lab. Proj. \# PHORO (412)826-5245 Onc Adams Place, 310 Seven Fields Blud Suite 210 724-742-9180 fax\#: 724-742-9189

Client Name: Arcadis U.S., Inc.
Contact: Mark Banish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046
Page: Page 1 of 11
Lab Pro \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Pro \#: AVXMB

Laboratory Results

Total pages in data package: 12

Lab Sample \#	Client Sample ID
P0912359-01	OW-7D
P0912359-02	OW-8D
P0912359-03	OW-9D
P0912359-04	OW-10D
P0912359-05	P-1D
P0912359-06	P-2D
P0912359-07	P-3D
P0912359-08	IW-2D
P0912359-09	IW-4D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.
Approved By:
 Date:

Project Manager:

Debbie Hall

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.

As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-8D	Matrix Water	Lab Sample \# P0912359-02			Sampled Date/Ti 28 Dec. 0913	Received 30 Dec. 09 10:14	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analy	By
WetChem N Total Organic Carbon		11.0	5.0	mg/L	9060	1/2/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-10D	Matrix Water	Lab Sample \# P0912359-04			Sampled Date/Time 28 Dec. 09 14:45	Received	
Analyte(s)	Flag	Result	PQL	Units	Method\#	Analysis Date	By
WetChem N Total Organic Carbon	J	1.3	5.0	mg/L	9060	1/3/10	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0912359-05			Sampled Date/Time 28 Dec. 09 16:22	Received			
P-1D	Water					30 Dec .			
Analyte(s)	Flag	Result	PQL	Units		Method \#	Analy	sis Date	By
WetChem N Total Organic Carbon		6.1	5.0	mg/L	9060	1/3/10		md	

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0912359-06			$\frac{\text { Sampled Date/Time }}{28 \text { Dec. } 0914: 55}$		Received
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analys	By
WetChem N Total Organic Carbon		4200.0	500.0	mg / L	9060	1/3/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P0912359-08			Sampled Date/	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analy	By
WetChem N Total Organic Carbon		5500.0	500.0	mg/L	9060	1/3/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{1 W-4 D}$	Matrix Water	Lab Sample \# P0912359-09			$\frac{\text { Sampled Date/Time }}{28 \text { Dec. } 09 \text { 16:00 }}$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		11000.0	500.0	mg / L	9060	1/3/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 11
Lab Proj \#: P0912359
Report Date: 01/04/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
Analysis Method: Total Organic Carbon

M100104003-MB

| | Result | | TrueSpikeConc. | RDL | \%Recovery | Ctl Limits |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Organic Carbon | <5.0 | mg / L | | 5.0 | | - NA |
| M100104003-LCS | | | | | | |
| | Result | | TrueSpikeConc. | | \%Recovery | Ctl Limits |
| Total Organic Carbon | 36.0 | mgL | 36.00 | | 100.00 | $70-130$ |

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	71.0	mg / L			- NA	1.42	0-20
P0912359-02A-MS							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Total Organic Carbon	67.0	mg / L	50.00	112.00	70-130		

Mark Banish
Arcadis
600 Waterfront Dr.
Pittsburgh, PA 15222

Report Number: G582-613
Client Project: AVX-Myrtle Beach
Dear Mark Hanish,
Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Wager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,
SGS North America, Inc.

SGS North America, Inc.
List of Reporting Abbreviations
And Data Qualifiers
$\mathrm{B}=$ Compound also detected in batch blank
$\mathrm{BQL}=$ Below Quantification Limit (RL or MDL)
DF $=$ Dilution Factor
Dup $=$ Duplicate
$\mathrm{D}=$ Detected, but RPD is $>40 \%$ between results in dual column method.
$E=$ Estimated concentration, exceeds calibration range.
$\mathrm{J}=$ Estimated concentration, below calibration range and above MDL
$\operatorname{LCS}(\mathrm{D})=$ Laboratory Control Spike (Duplicate)
MDL $=$ Method Detection Limit
$\operatorname{MS}(D)=$ Matrix Spike (Duplicate)
$P Q L=$ Practical Quantitation Limit
RL/CL $=$ Reporting Limit / Control Limit
$R P D=$ Relative Percent Difference
$\mathrm{UJ}=$ Target analytes with recoveries that are $10 \%<\% \mathrm{R}<\mathrm{LCL}$; \# of MEs are allowable and compounds are not detected in the sample.
$\mathrm{mg} / \mathrm{kg}=$ milligram per kilogram, ppm, parts per million
$\mathrm{ug} / \mathrm{kg}=$ micrograms per kilogram, ppb, parts per billion
$\mathrm{mg} / \mathrm{L}=$ milligram per liter, ppm , parts per million
$\mathrm{ug} / \mathrm{L}=$ micrograms per liter, ppb , parts per billion
$\%$ Rec $=$ Percent Recovery
$\%$ soilds $=$ Percent Solids
Special Notes:

1) Metals and mercury samples are digested with a hot block; see the standard operating procedure document for details.
2) Uncertainty for all reported data is less than or equal to 30 percent.

Results for Volatiles by GCMS 8260

Client Sample ID: OW-10D
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-1A
Lab Project ID: G582-613

Analyzed By: DVO
Date Collected: 1/5/2010 15:15
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
Acetone	BQL	25000	2180	1000	1/8/2010	
Benzene	BQL	1000	65.0	1000	1/8/2010	
Bromobenzene	BQL	1000	56.0	1000	1/8/2010	
Bromochloromethane	BQL	1000	101	1000	1/8/2010	
Bromodichloromethane	BQL	1000	76.0	1000	1/8/2010	
Bromoform	BQL	1000	120	1000	1/8/2010	
Bromomethane	BQL	1000	133	1000	1/8/2010	
2-Butanone	BQL	25000	544	1000	1/8/2010	
n-Butylbenzene	BQL	1000	109	1000	1/8/2010	
sec-Butylbenzene	BQL	1000	84.0	1000	1/8/2010	
tert-Butylbenzene	BQL	1000	50.0	1000	1/8/2010	
Carbon disulfide	BQL	1000	69.0	1000	1/8/2010	
Carbon tetrachloride	BQL	1000	87.0	1000	1/8/2010	
Chlorobenzene	BQL	1000	82.0	1000	1/8/2010	
Chloroethane	BQL	1000	106	1000	1/8/2010	
Chloroform	BQL	1000	79.0	1000	1/8/2010	
Chloromethane	BQL	1000	146	1000	1/8/2010	
2-Chlorotoluene	BQL	1000	99.0	1000	1/8/2010	
4-Chlorotoluene	BQL	1000	80.0	1000	1/8/2010	
Dibromochloromethane	BQL	1000	90.0	1000	1/8/2010	
1,2-Dibromo-3-chloropropane	BQL	5000	1210	1000	1/8/2010	
Dibromomethane	BQL	1000	113	1000	1/8/2010	
1,2-Dibromoethane (EDB)	BQL	1000	124	1000	1/8/2010	
1,2-Dichlorobenzene	BQL	1000	127	1000	1/8/2010	
1,3-Dichlorobenzene	BQL	1000	81.0	1000	1/8/2010	
1,4-Dichlorobenzene	BQL	1000	79.0	1000	1/8/2010	
trans-1,4-Dichloro-2-butene	BQL	5000	630	1000	1/8/2010	
1,1-Dichloroethane	BQL	1000	74.0	1000	1/8/2010	
1,1-Dichloroethene	BQL	1000	89.0	1000	1/8/2010	
1,2-Dichloroethane	BQL	1000	79.0	1000	1/8/2010	
cis-1,2-Dichloroethene	17500	1000	65.0	1000	1/8/2010	
trans-1,2-dichloroethene	350	1000	89.0	1000	1/8/2010	J
1,2-Dichloropropane	BQL	1000	94.0	1000	1/8/2010	
1,3-Dichloropropane	BQL	1000	127	1000	1/8/2010	
2,2-Dichloropropane	BQL	1000	59.0	1000	1/8/2010	
1,1-Dichloropropene	BQL	1000	72.0	1000	1/8/2010	
cis-1,3-Dichloropropene	BQL	1000	76.0	1000	1/8/2010	
trans-1,3-Dichloropropene	BQL	1000	76.0	1000	1/8/2010	
Dichlorodifluoromethane	BQL	5000	94.0	1000	1/8/2010	
Diisopropyl ether (DIPE)	BQL	1000	73.0	1000	1/8/2010	
Ethylbenzene	BQL	1000	77.0	1000	1/8/2010	
Hexachlorobutadiene	BQL	1000	228	1000	1/8/2010	
2-Hexanone	BQL	5000	720	1000	1/8/2010	
lodomethane	BQL	1000	42.0	1000	1/8/2010	
Isopropylbenzene	BQL	1000	71.0	1000	1/8/2010	
		Page 1 of 2				

Results for Volatiles by GCMS 8260

Client Sample ID: OW-10D
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-1A
Lab Project ID: G582-613

Analyzed By: DVO
Date Collected: 1/5/2010 15:15
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL

	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	
Compound		Limit UG/L	UG/L	Factor	Analyzed	Flag
4-Isopropyltoluene	BQL	1000	48.0	1000	1/8/2010	
Methylene chloride	BQL	5000	98.0	1000	1/8/2010	
4-Methyl-2-pentanone	BQL	5000	550	1000	1/8/2010	
Methyl-tert-butyl ether (MTBE)	BQL	1000	67.0	1000	1/8/2010	
Naphthalene	BQL	1000	133	1000	1/8/2010	
n -Propyl benzene	BQL	1000	80.0	1000	1/8/2010	
Styrene	BQL.	1000	85.0	1000	1/8/2010	
1,1,1,2-Tetrachloroethane	BQL	1000	90.0	1000	1/8/2010	
1,1,2,2-Tetrachloroethane	BQL	1000	115	1000	1/8/2010	
Tetrachloroethene	BQL	1000	69.0	1000	1/8/2010	
Toluene	BQL	1000	76.0	1000	1/8/2010	
1,2,3-Trichlorobenzene	BQL	1000	190	1000	1/8/2010	
1,2,4-Trichlorobenzene	BQL	1000	119	1000	1/8/2010	
Trichloroethene	640	1000	54.0	1000	1/8/2010	J
1,1,1-Trichloroethane	BQL	1000	54.0	1000	1/8/2010	
1,1,2-Trichloroethane	BQL	1000	182	1000	1/8/2010	
Trichlorofluoromethane	BQL	1000	111	1000	1/8/2010	
1,2,3-Trichloropropane	BQL	1000	120	1000	1/8/2010	
1,2,4-Trimethylbenzene	BQL	1000	65.0	1000	1/8/2010	
1,3,5-Trimethylbenzene	BQL	1000	74.0	1000	1/8/2010	
Vinyl chloride	630	1000	149	1000	1/8/2010	J
m -, p-Xylene	BQL	2000	98.0	1000	1/8/2010	
o-Xylene	BQL	1000	65.0	1000	1/8/2010	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		10	11.1	111		
Toluene-d8		10	10	100		
4-Bromofluorobenzene		10	9.93	99		

Comments:

Flags:
$B Q L=$ Below Quantitation Limits.
$\mathrm{J}=$ Detected below the quantitation limit.
Analyst: DVO

Reviewed By:

Results for Volatiles
 by GCMS 8260

Client Sample ID: OW-9D
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-2A
Lab Project ID: G582-613

Analyzed By: DVO
Date Collected: 1/5/2010 15:00
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
Acetone	BQL	20000	1740	800	1/8/2010
Benzene	BQL	800	52.0	800	1/8/2010
Bromobenzene	BQL	800	44.8	800	1/8/2010
Bromochloromethane	BQL	800	80.8	800	1/8/2010
Bromodichloromethane	BQL	800	60.8	800	1/8/2010
Bromoform	BQL	800	96.0	800	1/8/2010
Bromomethane	BQL	800	106	800	1/8/2010
2-Butanone	BQL	20000	435	800	1/8/2010
n -Butylbenzene	BQL	800	87.2	800	1/8/2010
sec-Butylbenzene	BQL	800	67.2	800	1/8/2010
tert-Butylbenzene	BQL	800	40.0	800	1/8/2010
Carbon disulfide	BQL	800	55.2	800	1/8/2010
Carbon tetrachloride	BQL	800	69.6	800	1/8/2010
Chlorobenzene	BQL	800	65.6	800	1/8/2010
Chloroethane	BQL	800	84.8	800	1/8/2010
Chloroform	BQL	800	63.2	800	1/8/2010
Chloromethane	BQL	800	117	800	1/8/2010
2-Chlorotoluene	BQL	800	79.2	800	1/8/2010
4-Chlorotoluene	BQL	800	64.0	800	1/8/2010
Dibromochloromethane	BQL	800	72.0	800	1/8/2010
1,2-Dibromo-3-chloropropane	BQL	4000	968	800	1/8/2010
Dibromomethane	BQL	800	90.4	800	1/8/2010
1,2-Dibromoethane (EDB)	BQL	800	99.2	800	1/8/2010
1,2-Dichlorobenzene	BQL	800	102	800	1/8/2010
1,3-Dichlorobenzene	BQL	800	64.8	800	1/8/2010
1,4-Dichlorobenzene	BQL	800	63.2	800	1/8/2010
trans-1,4-Dichloro-2-butene	BQL	4000	504	800	1/8/2010
1,1-Dichloroethane	BQL	800	59.2	800	1/8/2010
1,1-Dichloroethene	BQL	800	71.2	800	1/8/2010
1,2-Dichloroethane	BQL	800	63.2	800	1/8/2010
cis-1,2-Dichloroethene	14100	800	52.0	800	1/8/2010
trans-1,2-dichloroethene	344	800	71.2	800	1/8/2010
1,2-Dichloropropane	BQL	800	75.2	800	1/8/2010
1,3-Dichloropropane	BQL	800	102	800	1/8/2010
2,2-Dichloropropane	BQL	800	47.2	800	1/8/2010
1,1-Dichloropropene	BQL	800	57.6	800	1/8/2010
cis-1,3-Dichloropropene	BQL	800	60.8	800	1/8/2010
trans-1,3-Dichloropropene	BQL	800	60.8	800	1/8/2010
Dichlorodifluoromethane	BQL	4000	75.2	800	1/8/2010
Diisopropyl ether (DIPE)	BQL	800	58.4	800	1/8/2010
Ethylbenzene	BQL	800	61.6	800	1/8/2010
Hexachlorobutadiene	BQL	800	182	800	1/8/2010
2-Hexanone	BQL	4000	576	800	1/8/2010
lodomethane	BQL	800	33.6	800	1/8/2010
Isopropylbenzene	BQL	800	56.8	800	1/8/2010

Flag Analyzed 1/8/2010

1/8/2010

Results for Volatiles by GCMS 8260

Client Sample ID: OW-9D
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-2A
Lab Project ID: G582-613

Analyzed By: DVO
Date Collected: 1/5/2010 15:00
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	800	38.4	800	$1 / 8 / 2010$
BQL	4000	78.4	800	$1 / 8 / 2010$
BQL	4000	440	800	$1 / 8 / 2010$
BQL	800	53.6	800	$1 / 8 / 2010$
BQL	800	106	800	$1 / 8 / 2010$
BQL	800	64.0	800	$1 / 8 / 2010$
BQL	800	68.0	800	$1 / 8 / 2010$
BQL	800	72.0	800	$1 / 8 / 210$
BQL	800	92.0	800	$1 / 8 / 2010$
BQL	800	55.2	800	$1 / 8 / 2010$
BQL	800	60.8	800	$1 / 8 / 2010$
BQL	800	152	800	$1 / 8 / 2010$
BQL	800	95.2	800	$1 / 8 / 2010$
2700	800	43.2	800	$1 / 8 / 2010$
BQL	800	43.2	800	$1 / 8 / 2010$
BQL	800	146	800	$1 / 8 / 2010$
BQL	800	88.8	800	$1 / 8 / 2010$
BQL	800	96.0	800	$1 / 8 / 2010$
BQL	800	52.0	800	$1 / 8 / 2010$
BQL	800	59.2	800	$1 / 8 / 2010$
1830	800	119	800	$1 / 8 / 2010$
BQL	1600	78.4	800	$1 / 8 / 2010$
BQL	800	52.0	800	$1 / 8 / 2010$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.7	107	
	10	10.1	101	
	10	9.85	98	

Comments:

Flags:
BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad Reviewed By: \qquad

Results for Volatiles
 by GCMS 8260

Client Sample ID: P-2D
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-3B
Lab Project ID: G582-613

Analyzed By: DVO
Date Collected: 1/5/2010 14:40
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL

Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-2ichloropropene
Dichlorodifluoromethane
Diiiopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result UG/L	Quantitation Limit UG/L	MDL UG/L
BQL	1000	87.2
BQL	40.0	2.60
BQL	40.0	2.24
BQL	40.0	4.04
BQL	40.0	3.04
BQL	40.0	4.80
BQL	40.0	5.32
190	1000	21.8
BQL	40.0	4.36
BQL	40.0	3.36
BQL	40.0	2.00
BQL	40.0	2.76
BQL	40.0	3.48
BQL	40.0	3.28
BQL	40.0	4.24
BQL	40.0	3.16
BQL	40.0	5.84
BQL	40.0	3.96
BQL	40.0	3.20
BQL	40.0	3.60
BQL	200	48.4
BQL	40.0	4.52
BQL	40.0	4.96
BQL	40.0	5.08
BQL	40.0	3.24
BQL	40.0	3.16
BQL	200	25.2
BQL	40.0	2.96
BQL	40.0	3.56
BQL	40.0	3.16
84.0	40.0	2.60
14.0	40.0	3.56
BQL	40.0	3.76
BQL	40.0	5.08
BQL	40.0	2.36
BQL	40.0	2.88
BQL	40.0	3.04
BQL	40.0	3.04
BQL	200	3.76
BQL	40.0	2.92
BQL	40.0	3.08
BQL	40.0	9.12
BQL	200	28.8
BQL	40.0	1.68
BQL	40.0	2.84
	Page 1 of 2	

Results for Volatiles

by GCMS $\mathbf{8 2 6 0}$
Client Sample ID: P-2D
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-3B
Lab Project ID: G582-613

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
BQL $=$ Below Quantitation Limits.
Analyst: \qquad

	Result CG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
4-Isopropyltoluene	BQL	40.0	1.92	40	$1 / 11 / 2010$
Methylene chloride	BQL	200	3.92	40	$1 / 11 / 2010$
4-Methyl-2-pentanone	BQL	200	22.0	40	$1 / 11 / 2010$
Methyl-tert-butyl ether (MTBE)	BQL	40.0	2.68	40	$1 / 11 / 2010$
Naphthalene	BQL	40.0	5.32	40	$1 / 11 / 2010$
n-Propyl benzene	BQL	40.0	3.20	40	$1 / 11 / 2010$
Styrene	BQL	40.0	3.40	40	$1 / 11 / 2010$
1,1,1,2-Tetrachloroethane	BQL	40.0	3.60	40	$1 / 11 / 2010$
1,1,2,2-Tetrachloroethane	BQL	40.0	4.60	40	$1 / 11 / 2010$
Tetrachloroethene	BQL	40.0	2.76	40	$1 / 11 / 2010$
Toluene	BQL	40.0	3.04	40	$1 / 11 / 2010$
1,2,3-Trichlorobenzene	BQL	40.0	7.60	40	$1 / 11 / 2010$
1,2,4-Trichlorobenzene	BQL	40.0	4.76	40	$1 / 11 / 2010$
Trichloroethene	211	40.0	2.16	40	$1 / 11 / 2010$
1,1,1-Trichloroethane	BQL	40.0	2.16	40	$1 / 11 / 2010$
1,1,2-Trichloroethane	BQL	40.0	7.28	40	$1 / 11 / 2010$
Trichlorofluoromethane	BQL	40.0	4.44	40	$1 / 11 / 2010$
1,2,3-Trichloropropane	BQL	40.0	4.80	40	$1 / 11 / 2010$
1,2,4-Trimethylbenzene	BQL	40.0	2.60	40	$1 / 11 / 2010$
1,3,5-Trimethylbenzene	BQL	40.0	2.96	40	$1 / 11 / 2010$
Vinyl chloride	263	40.0	5.96	40	$1 / 11 / 2010$
m-,p-Xylene	BQL	80.0	3.92	40	$1 / 11 / 2010$
o-Xylene	BQL	40.0	2.60	40	$1 / 11 / 2010$
			Spike	Spike	Percent
		Added	Result	Recovered	
	10	10.8	108		
1,2-Dichloroethane-d4		10	10.3	103	
Toluene-d8		10	9.99	100	
4-Bromofluorobenzene					

Flag
Date Collected: 1/5/2010 14:40
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL

Results for Volatiles
 by GCMS 8260

Client Sample ID: P-3D
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-4B
Lab Project ID: G582-613

Analyzed By: DVO
Date Collected: 1/5/2010 15:30
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL

Results for Volatiles
 by GCMS 8260

Client Sample ID: P-3D
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-4B
Lab Project ID: G582-613

Analyzed By: DVO
Date Collected: 1/5/2010 15:30
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date nalyzed
BQL	20.0	0.960	20	1/11/2010
BQL	100	1.96	20	1/11/2010
BQL	100	11.0	20	1/11/2010
BQL	20.0	1.34	20	1/11/2010
BQL	20.0	2.66	20	1/11/2010
BQL	20.0	1.60	20	1/11/2010
BQL	20.0	1.70	20	1/11/2010
BQL	20.0	1.80	20	1/11/2010
BQL	20.0	2.30	20	1/11/2010
BQL	20.0	1.38	20	1/11/2010
BQL	20.0	1.52	20	1/11/2010
BQL	20.0	3.80	20	1/11/2010
BQL	20.0	2.38	20	1/11/2010
BQL	20.0	1.08	20	1/11/2010
BQL	20.0	1.08	20	1/11/2010
BQL	20.0	3.64	20	1/11/2010
BQL	20.0	2.22	20	1/11/2010
BQL	20.0	2.40	20	1/11/2010
BQL	20.0	1.30	20	1/11/2010
BQL	20.0	1.48	20	1/11/2010
151	20.0	2.98	20	1/11/2010
BQL	40.0	1.96	20	1/11/2010
BQL	20.0	1.30	20	1/11/2010
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.5	105	
	10	10.2	102	
	10	9.99	100	

Comments:

Flags:
BQL = Below Quantitation Limits.
Analyst: \qquad Reviewed By: \qquad

Results for Volatiles
 by GCMS 8260

Client Sample ID: Trip Blank
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-5B
Lab Project ID: G582-613

Analyzed By: DVO
Date Collected: 1/5/2010 0:00
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L
Acetone	BQL
Benzene	BQL
Bromobenzene	BQL
Bromochloromethane	BQL
Bromodichloromethane	BQL
Bromoform	BQL
Bromomethane	BQL
2-Butanone	BQL
n -Butylbenzene	BQL
sec-Butylbenzene	BQL
tert-Butylbenzene	BQL
Carbon disulfide	BQL
Carbon tetrachloride	BQL
Chlorobenzene	BQL
Chloroethane	BQL
Chloroform	BQL
Chloromethane	BQL
2-Chlorotoluene	BQL
4-Chlorotoluene	BQL
Dibromochloromethane	BQL
1,2-Dibromo-3-chloropropane	BQL
Dibromomethane	BQL
1,2-Dibromoethane (EDB)	BQL
1,2-Dichlorobenzene	BQL
1,3-Dichlorobenzene	BQL
1,4-Dichlorobenzene	BQL
trans-1,4-Dichloro-2-butene	BQL
1,1-Dichloroethane	BQL
1,1-Dichloroethene	BQL
1,2-Dichloroethane	BQL
cis-1,2-Dichloroethene	BQL
trans-1,2-dichloroethene	BQL
1,2-Dichloropropane	BQL
1,3-Dichloropropane	BQL
2,2-Dichloropropane	BQL
1,1-Dichloropropene	BQL
cis-1,3-Dichloropropene	BQL
trans-1,3-Dichloropropene	BQL
Dichlorodifluoromethane	BQL
Diisopropyl ether (DIPE)	BQL
Ethylbenzene	BQL
Hexachlorobutadiene	BQL
2-Hexanone	BQL
lodomethane	BQL
Isopropylbenzene	BQL

Result	Quantitation Limit UGG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	25.0	2.18	1	$1 / 8 / 2010$
BQL	1.00	0.0650	1	$1 / 8 / 2010$
BQL	1.00	0.0560	1	$1 / 8 / 2010$
BQL	1.00	0.101	1	$1 / 8 / 2010$
BQL	1.00	0.0760	1	$1 / 8 / 2010$
BQL	1.00	0.120	1	$1 / 8 / 2010$
BQL	1.00	0.133	1	$1 / 8 / 2010$
BQL	25.0	0.544	1	$1 / 8 / 2010$
BQL	1.00	0.109	1	$1 / 8 / 2010$
BQL	1.00	0.0840	1	$1 / 8 / 2010$
BQL	1.00	0.0500	1	$1 / 8 / 2010$
BQL	1.00	0.0690	1	$1 / 8 / 2010$
BQL	1.00	0.0870	1	$1 / 8 / 2010$
BQL	1.00	0.0820	1	$1 / 8 / 2010$
BQL	1.00	0.106	1	$1 / 8 / 2010$
BQL	1.00	0.0790	1	$1 / 8 / 2010$
BQL	1.00	0.146	1	$1 / 8 / 2010$
BQL	1.00	0.0990	1	$1 / 8 / 2010$
BQL	1.00	0.0800	1	$1 / 8 / 2010$
BQL	1.00	0.0900	1	$1 / 8 / 2010$
BQL	5.00	1.21	1	$1 / 8 / 2010$
BQL	1.00	0.113	1	$1 / 8 / 2010$
BQL	1.00	0.124	1	$1 / 8 / 2010$
BQL	1.00	0.127	1	$1 / 8 / 2010$
BQL	1.00	0.0810	1	$1 / 8 / 2010$
BQL	1.00	0.0790	1	$1 / 8 / 2010$
BQL	5.00	0.630	1	$1 / 8 / 2010$
BQL	1.00	0.0740	1	$1 / 8 / 2010$
BQL	1.00	0.0890	1	$1 / 8 / 2010$
BQL	1.00	0.0790	1	$1 / 8 / 2010$
BQL	1.00	0.0650	1	$1 / 8 / 2010$
BQL	1.00	0.0890	1	$1 / 8 / 2010$
BQL	1.00	0.0940	1	$1 / 8 / 2010$
BQL	1.00	0.127	1	$1 / 8 / 2010$
BQL	1.00	0.0590	1	$1 / 8 / 2010$
BQL	1.00	0.0720	1	$1 / 8 / 2010$
BQL	1.00	0.0760	1	$1 / 8 / 2010$
BQL	1.00	0.0760	1	$1 / 8 / 2010$
BQL	5.00	0.0940	1	$1 / 8 / 2010$
BQL	1.00	0.0730	1	$1 / 8 / 2010$
BQL	1.00	0.0770	1	$1 / 8 / 2010$
BQL	1.00	0.228	1	$1 / 8 / 2010$
BQL	5.00	0.720	1	$1 / 8 / 2010$
BQL	1.00	0.0420	1	$1 / 8 / 2010$
BQL	1.00	0.0710	1	$1 / 8 / 2010$

Flag

Client Sample ID: Trip Blank
Client Project ID: AVX-Myrtle Beach
Lab Sample ID: G582-613-5B
Lab Project ID: G582-613

Analyzed By: DVO
Date Collected: 1/5/2010 0:00
Date Received: 1/7/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	1.00	0.0480	1	1/8/2010	
Methylene chloride	1.64	5.00	0.0980	1	1/8/2010	J
4-Methyl-2-pentanone	BQL	5.00	0.550	1	1/8/2010	
Methyl-tert-butyl ether (MTBE)	BQL	1.00	0.0670	1	1/8/2010	
Naphthalene	BQL	1.00	0.133	1	1/8/2010	
n-Propyl benzene	BQL	1.00	0.0800	1	1/8/2010	
Styrene	BQL	1.00	0.0850	1	1/8/2010	
1,1,1,2-Tetrachloroethane	BQL	1.00	0.0900	1	1/8/2010	
1,1,2,2-Tetrachloroethane	BQL	1.00	0.115	1	1/8/2010	
Tetrachloroethene	BQL	1.00	0.0690	1	1/8/2010	
Toluene	BQL	1.00	0.0760	1	1/8/2010	
1,2,3-Trichlorobenzene	BQL	1.00	0.190	1	1/8/2010	
1,2,4-Trichlorobenzene	BQL	1.00	0.119	1	1/8/2010	
Trichloroethene	BQL	1.00	0.0540	1	1/8/2010	
1,1,1-Trichloroethane	BQL	1.00	0.0540	1	1/8/2010	
1,1,2-Trichloroethane	BQL	1.00	0.182	1	1/8/2010	
Trichlorofluoromethane	BQL	1.00	0.111	1	1/8/2010	
1,2,3-Trichloropropane	BQL	1.00	0.120	1	1/8/2010	
1,2,4-Trimethylbenzene	BQL	1.00	0.0650	1	1/8/2010	
1,3,5-Trimethylbenzene	BQL	1.00	0.0740	1	1/8/2010	
Vinyl chloride	BQL	1.00	0.149	1	1/8/2010	
m-,p-Xylene	BQL	2.00	0.0980	1	1/8/2010	
o-Xylene	BQL	1.00	0.0650	1	1/8/2010	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		10	11	110		
Toluene-d8		10	9.84	98		
4-Bromofluorobenzene		10	9.94	99		

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK3010810B Lab Project ID:

Compound

Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
ter-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chiorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Unalyzed
BQL	25.0	2.18	1	$1 / 8 / 2010$
BQL	1.00	0.0650	1	$1 / 8 / 2010$
BQL	1.00	0.0560	1	$1 / 8 / 2010$
BQL	1.00	0.101	1	$1 / 8 / 2010$
BQL	1.00	0.0760	1	$1 / 8 / 2010$
BQL	1.00	0.120	1	$1 / 8 / 2010$
BQL	1.00	0.133	1	$1 / 8 / 2010$
BQL	25.0	0.544	1	$1 / 8 / 2010$
BQL	1.00	0.109	1	$1 / 8 / 2010$
BQL	1.00	0.0840	1	$1 / 8 / 2010$
BQL	1.00	0.0500	1	$1 / 8 / 2010$
BQL	1.00	0.0690	1	$1 / 8 / 2010$
BQL	1.00	0.0870	1	$1 / 8 / 2010$
BQL	1.00	0.0820	1	$1 / 8 / 2010$
BQL	1.00	0.106	1	$1 / 8 / 2010$
BQL	1.00	0.0790	1	$1 / 8 / 2010$
BQL	1.00	0.146	1	$1 / 8 / 2010$
BQL	1.00	0.0990	1	$1 / 8 / 2010$
BQL	1.00	0.0800	1	$1 / 8 / 2010$
BQL	1.00	0.0900	1	$118 / 2010$
BQL	5.00	1.21	1	$1 / 8 / 2010$
BQL	1.00	0.113	1	$1 / 8 / 2010$
BQL	1.00	0.124	1	$1 / 8 / 2010$
BQL	1.00	0.127	1	$1 / 8 / 2010$
BQL	1.00	0.0810	1	$1 / 8 / 2010$
BQL	1.00	0.0790	1	$1 / 8 / 2010$
BQL	5.00	0.630	1	$1 / 8 / 2010$
BQL	1.00	0.0740	1	$1 / 8 / 2010$
BQL	1.00	0.0890	1	$1 / 8 / 2010$
BQL	1.00	0.0790	1	$1 / 8 / 2010$
BQL	1.00	0.0650	1	$1 / 8 / 2010$
BQL	1.00	0.0890	1	$1 / 8 / 2010$
BQL	1.00	0.0940	1	$1 / 8 / 2010$
BQL	1.00	0.127	1	$1 / 8 / 2010$
BQL	1.00	0.0590	1	$1 / 8 / 2010$
BQL	1.00	0.0720	1	$118 / 2010$
BQL	1.00	0.0760	1	$1 / 8 / 2010$
BQL	1.00	0.0760	1	$1 / 8 / 2010$
BQL	5.00	0.0940	1	$1 / 8 / 2010$
BQL	1.00	0.0730	1	$1 / 8 / 2010$
BQL	1.00	0.0770	1	$1 / 8 / 2010$
BQL	1.00	0.228	1	$1 / 8 / 2010$
BQL	5.00	0.720	1	$1 / 8 / 2010$
BQL	1.00	0.0420	1	$1 / 8 / 2010$
BQL	1.00	0.0710	1	$1 / 8 / 2010$

Flag

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK3010810B Lab Project ID:

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
$1,3,5-$ Trimethylbenzene
Vinyl chloride
m-,p-Xylene
$0-X y l e n e$

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
$B Q L=$ Below Quantitation Limits.
Analyst: \qquad

Result	Quantitation Limit UG/L	MDL UG/L	Dllution Factor	Date Analyzed
BQL	1.00	0.0480	1	$1 / 8 / 2010$
BQL	5.00	0.0980	1	$1 / 8 / 2010$
BQL	5.00	0.550	1	$1 / 8 / 2010$
BQL	1.00	0.0670	1	$1 / 8 / 2010$
BQL	1.00	0.133	1	$1 / 8 / 2010$
BQL	1.00	0.0800	1	$1 / 8 / 2010$
BQL	1.00	0.0850	1	$1 / 8 / 2010$
BQL	1.00	0.0900	1	$1 / 8 / 2010$
BQL	1.00	0.115	1	$1 / 8 / 2010$
BQL	1.00	0.0690	1	$1 / 8 / 2010$
BQL	1.00	0.0760	1	$1 / 8 / 2010$
BQL	1.00	0.190	1	$1 / 8 / 2010$
BQL	1.00	0.119	1	$1 / 8 / 2010$
BQL	1.00	0.0540	1	$1 / 8 / 2010$
BQL	1.00	0.0540	1	$1 / 8 / 2010$
BQL	1.00	0.182	1	$1 / 8 / 2010$
BQL	1.00	0.111	1	$1 / 8 / 2010$
BQL	1.00	0.120	1	$1 / 8 / 2010$
BQL	1.00	0.0650	1	$1 / 8 / 2010$
BQL	1.00	0.0740	1	$1 / 8 / 2010$
BQL	1.00	0.149	1	$1 / 8 / 2010$
BQL	2.00	0.0980	1	$1 / 8 / 2010$
BQL	1.00	0.0650	1	$1 / 8 / 2010$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.9	109	
	10	10	100	97

Flag

SGS North America, Inc.
SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Envirommental
Lab Code: NC00919

Dilution: 1
Matrix: Water
Date Analyzed: 01/08/10 10:16
Date Analyzed: 01/08/10 10:47

COMPOUND	($\mu \mathrm{g} / \mathrm{L}$)		LCS \% REC	LCSD SPIKE	$\begin{aligned} & \text { LCSD } \\ & \operatorname{coNC} \end{aligned}$	$\begin{gathered} \text { LCSD } \\ \text { \% } \end{gathered}$	\%	QC LIMITS	
acetone				($\mu \mathrm{g} / \mathrm{L}$)	$(\mu \mathrm{g} / \mathrm{L})$	REC \#	RPD	RPD	REC
acrolein	25.0	34.1	136	25.0	30.4	121	11.6	30	23.5-141
acrylonitrile	125	68.1	54.5	125	61.0	48.8	11.0	30	31.4-182
benzene	125	138	111	125	122	97.5	12.8	30	64.2-140
bromobenzene	5.00	5.09	102	5.00	4.75	95.0	7.11	30	76.6-120
bromochloromethane	5.00	4.86	97.2	5.00	4.36	87.2	10.8	30	75.0-122
bromodichloromethane	5.00	4.90	98.0	5.00	4.43	88.6	10.1	30	74.8-127
bromoform	5.00	5.23	105	5.00	4.73	94.6	10.0	30	76.4-117
bromomethane	5.00	4.29	85.8	5.00	4.05	81.0	5.76	30	62.4-127
2-butanone	25.0	4.89	97.8	5.00	4.85	97.0	0.821	30	34.2-166
n-butylbenzene	5.00	51.5	126.	25.0	27.7	111	12.9	30	44.9-126
sec-butylbenzene	5.00	5.16	101	5.00	4.65	93.0	10.4	30	72.0-122
tert-butylbenzene	5.00	4.90	98.0	5.00	4.49	89.8	11.5	30	78.3-116
Carbon disulfide	5.00	5.48	110	5.00	4.56	91.2	7.19	30	53.1-148
carbon tetrachloride	5.00	5.26	105	5.00	5.02	100	8.76	30	69.0-118
chlorobenzene	5.00	4.92	98.4	5.00	4.85	97.0	8.11	30	71.7-124
chloroethane	5.00	5.32	98.4 106	5.00	4.63	92.6	6.07	30	75.5-116
2-chloroethyl vinyl ether	125	130	104	5.00	4.88	97.6	8.63	30	78.2-138
chloroform	5.00	5.46	109	125	116	92.4	11.6	30	5.57-235
chloromethane	5.00	5.56	111	5.00	5.02	100	8.40	30	80.6-117
2-chlorotoluene	5.00	5.00	100	5.00	5.13	103	8.04	30	72.6-127
4-chlorotoluene	5.00	4.89	97, 8	5.00	4.42	88.4	12.3	30	81.4-117
dibromochloromethane	5.00	4.89	97.8	5.00	4.44	8 B .8	9.65	30	82.1-116
1,2-dibromo-3-chloropropane	25.0	19.9	$\frac{94.2}{79.5}$	5.00	4.34	86.8	8.18	30	73.1-117
1,2-dibromoethane	5.00	4.83	96.6	25.0	21.8	87.3	9.30	30	58.0-133
dibromomethane	5.00	5.44	109	5.00	4.45	89.0	8.19	30	75.5-118
1.2-dichlorobenzene	5.00	5.22	104	5.00	4.84	96.8	11.7	30	77.3-124
1,3-dichlorobenzene	5.00	5.02	100	5.00	4.58	91.6	13.1	30	76.3-115
1,4-dichlorobenzene	5.00	4.98	99.6	5.00	4.52	90.4	10.5	30	79.1-114
trans-1,4-Dichloro-2-butene	25.0	26.2	105	25.0	42.5	90.6	9.46	30	76.8-115
dichlorodifluoromethane	5.00	5.29	106	5.00	22.8	91.3	14.0	30	52.3-130
1,1-dichloroethane	5.00	5.53	111	5.00	5.02	100	5.24	30	69.8-134
1,2-dichloroethane	5.00	5.68	114	5.00	5.06	101	8.88	30	78.0-120
1,1-dichloroethene	5.00	5.16	103	5.00	5.23	105	8. 25	30	72.8-126
cis-1,2-dichloroethene	5.00	5.16	101	$\frac{5.00}{5.00}$	4.78	95.6	7.45	30	74.6-121
trans-1,2-dichloroethene	5.00	5.28	106	5.00	4.72	94.4	6.36	30	78.0-121
1,2-dichloropropane	5.00	5.46	109	5.00	4.91	98.2	7.26	30	60.7-144
1,3-dichloropropane	5.00	5.03	101	5.00	4.96	99.2	9.60	30	75.8-119
2,2-dichloropropane	5.00	5.26	105	5.00	4.70	94.0	6.78	30	78.5-113
1,1-dichloropropene	5.00	5.30	106	5.00	$\frac{4.90}{4.79}$	98.0	7.09	30	75.6-130
cis-1,3-dichloropropene	5.00	5.34	107	5.00	4.79	95.8	10.1	30	79.7-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.
SGS Environmental Sevices
LABORATORY CONTROL SANPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919

$$
\begin{aligned}
& \text { LCS: LCS3010810A } \\
& \text { LCSD: LCS3010810B }
\end{aligned}
$$

Filename: 0108304.D
Date Analyzed: 01/08/10 10:16
Date Analyzed: 01/08/10 10:47

COMPOUND	$\begin{gathered} \text { LCS } \\ \text { SPIKE } \end{gathered}$ $(\mu \mathrm{g} / \mathrm{L})$	$\begin{aligned} & \text { LCS } \\ & \text { CONC } \end{aligned}$	$\begin{gathered} \text { LCS } \\ \text { \& } \end{gathered}$	$\begin{aligned} & \text { LCSD } \\ & \text { SPIKE } \end{aligned}$	LCSD CONC	$\begin{gathered} \text { LCSD } \\ \frac{\%}{8} \end{gathered}$	\%		C LIMITS
trans-1,3-dichloropropene				($\mu \mathrm{g} / \mathrm{L}$)	$(\mu \mathrm{g} / \mathrm{L})$	REC \#	RPD	RPD	REC
Diisopropyl ether	5.00	5.40	108	5.00	4.83	96.6	11.1	30	79.0-113
ethylbenzene	5.00	5.50	110	5.00	5.08	102	7.94	30	71.8-115
hexachlorobutadiene	5.00	4.92	98.4	5.00	4.62	92.4	6.29	30	80.5-115
2-hexanone	5.00	5.33	107	5.00	4.82	96.4	10.0	30	63.3-139
Iodomethane	25.0	29.7	119	25.0	25.8	103	13.8	30	46.8-123
isopropylbenzene	5.00	5.90	118	5.00	5.59	112	5.40	30	29.3-156
4-isopropyltoluene	5.00	4.80	96.0	5.00	4.52	90.4	6.01	30	81.6-114
Methyl-tert-butyl ether	5.00	5.50	110	5.00	4.44	88.8	9.44	30	78.4.119
methylene chloride	5.00	5.11	102	5.00	4.87	97.4	12.2	30	76.0-114
4-methyl-2-pentanone	25.0	26.7	107	25.0	4.79	95.8	6.46	30	72.9-120
naphthalene	5.00	5.18	104	5.00	23.3	93.2	13.7	30	56.2-124
n-propyl benzene	5.00	4.92	98.4	5.00	4.3	86.2	18.3	30	24.8-182
styrene	5.00	3.60	72.0		4.67	93.4	5.21	30	79.0-116
1,1,1,2-tetrachloroethane	5.00	4.69	93		3.27	65.4	9.61	30	64.8-132
1,1,2,2-tetrachloroethane	5.00	16	103	5.00	4.45	89.0	5.25	30	78.8-118
tetrachloroethene	5.00	4.92	98.4	5.00	4.60	92.0	11.5	30	69.7-119
toluene	5.00	5.17	103	5.00	4.62	92.4	6.29	30	55.3-144
1,2,3-trichlorobenzene	5.00	5.21	104	5.00	4.78	95.6	7.45	30	78.6-117
1,2,4-trichlorobenzene	5.00	5.02	100	5.00	4.51	90.2	14.4	30	20.8-193
1,1,1-trichloroethane	5.00	5.40	108	5.00	5.03	88.4	12.7	30	47.9-150
1,1,2-trichloroethane	5.00	5.03	101	5.00	4.57	101	7.09	30	78.8-120
trichloroethene	5.00	5.22	104	5.00	4.88	91.4	9.58	30	73.6-117
trichlorofluoromethane	5.00	5.48	110	5.00	5.05	97.6	6.35	30	80.1-116
1,2,3-trichloropropane	5.00	4.97	99.4	5.0	4.50	101	8.17	30	80.5-130
1,2,4-trimethylbenzene	5.00	5.07	101	5.00	4.68	90.0	9.93	30	35.6-152
1,3,5-trimethylbenzene	5.00	4.83	96.6	5.00	4.68	93.6	8.00	30	77.0-116
Vinyl acetate	12.5	13.8	110	12.5	12.3	90.0	7.07	30	79.4-114
vinyl chloride	5.00	5.28	106	5.00	12.3	98.7	11.2	30	60.7-127
m/p-xylene	10.0	9.98	99.8	10.0	4.95	99.0	6.45	30	77.5-126
o-xylene	5.00	4.95	99.0	5.00	9.07	90.7	9.55	30	82.9-112
					4.62	92.4	6.90	30	81.3-113
System Monitoring Compound Resulta	LCS	LCS	LCS	LCSD	LCSD		$\text { QC } \underset{\text { REC }}{\text { LIMITS }}$		
	SPIKE $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\stackrel{\%}{\mathrm{q}}$	SPIKE $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\stackrel{\text { \% }}{\text { REC } \#}$			
460-00-4 ${ }^{\text {4-Bromofluorobenzene }}$	10	9.64	96.4	10	9.96				
17060-07-0 1 1,2-Dichloroethane-d4	10	11.08	111	10	$\underline{10.77}$	99.6			84.7-115
2037-26-5 Toluene-d8	10	10.02	100	10	10.09	101			63.5-140

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

LCS Spike Recovery: 1 failure (s) out of 72 . LCSD Spike Recovery: 0 failure(s) out of 72 .
RPD: 0 out of 72 outside of limits
COMMENTS:

Analyst: \qquad Reviewed by:

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
Ingt: MSD3
EPA Sample No.: Amt. Filenames:
Analysis Dates:

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: g121-434-9e, g121-434-9e, g121-434-9e
Filenames: 0108312.D. 0108313.D, 0108314.D

Inst: MSD3
Batch: 3010810
Dilution: 1000
Matrix: Water

COMPOUND	SAMPLE CONC	MS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	MS CONC $(\mu \mathrm{g} / \mathrm{L})$		$\begin{gathered} \hline \text { MSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	MSD\%REC \#	$\begin{gathered} \frac{q}{8} \\ \text { RPD } \end{gathered}$	QC LIMITS	
	($\mu \mathrm{g} / \mathrm{L}$)								RPD	REC
trans-1,3-dichloropropene	BQL	5000	5040	96.6	5000	4740	90.6	6.41	30	44.7-144
Diisopropyl ether	BQL	5000	5190	104	5000	5030	101	3.13	30	79.4-122
ethylbenzene	BQL	5000	4600	92.0	5000	4590	92.8	0.218	30	73.8-126
hexachlorobutadiene	BQL	5000	4490	89.8	5000	4980	99.6	10.3	30	51.8-134
2-hexanone	BQL	25000	23200	92.8	25000	23500	94.1	1.37	30	41.6-111
Iodomethane	BQL	5000	5450	109	5000	5230	105	4.30	30	40.6-126
isopropylbenzene	BQL	5000	4480	89.6	5000	4520	90.4	0.889	30	74.3-123
4-isopropyltoluene	BQL	5000	4490	89.8	5000	4580	91.6	1.98	30	74.6-122
Methyl-tert-butyl ether	BQL	5000	5100	102	5000	4960	99.2	2.78	30	66.5-136
methylene chloride	BQL	5000	4990	99.8	5000	4630	92.6	7.48	30	48.6-155
4-methyl-2-pentanone	BQL	25000	24600	98.6	25000	22900	91.8	7.19	30	6.88-166
naphthalene	BQL	5000	4200	84.0	5000	4110	82.2	2.17	30	55.1-140
n-propyl benzene	BQL	5000	4560	91.2	5000	4570	91.4	0.219	30	71.6-128
styrene	BQL	5000	3280	65.6*	5000	3340	66.8*	1.81	30	73.2-123
1,1,1,2-tetrachloroethane	BQL	5000	4370	87.4	5000	4430	88.6	1.36	30	69.4-120
1,1,2,2-tetrachloroethane	BQL	5000	4650	93.0	5000	4520	90.4	2.84	30	75.7-136
tetrachloroethene	11000	5000	15200	84.0	5000	15700	93.6	10.8	30	45.8-153
toluene	BQL	5000	4840	96.8	5000	4700	94.0	2.94	30	66.4-128
1,2,3-trichlorobenzene	BQL	5000	4250	85.0	5000	4540	90.8	6.60	30	61.0-126
1,2,4-trichlorobenzene	BQL	5000	4140	82.8	5000	4540	90.8	9.22	30	60.6-125
1,1,1-trichloroethane	BQL	5000	5060	101	5000	4920	98.4	2.80	30	78.4-121
1,1,2-trichloroethane	BQL	5000	4810	86.0	5000	4700	83.8	2.59	30	64.8-128
trichloroethene	3110	5000	8070	99.2	5000	7980	97.4	1.83	30	84.9-136
trichlorofluoromethane	BQL	5000	4750	95.0	5000	4980	99.6	4.73	30	76.8-132
1,2,3-trichloropropane	BQL	5000	4430	88.6	5000	4390	87.8	0.907	30	10.0-218
1,2,4-trimethylbenzene	BQL	5000	4670	93.4	5000	4610	92.2	1.29	30	31.0-172
1,3,5-trimethylbenzene	BQL	5000	4420	88.4	5000	4540	90.8	2.68	30	67.7-132
Vinyl acetate	BQL	12500	12800	102	12500	12200	97.4	4.73	30	0.00-355
vinyl chloride	BQL	5000	4790	95.8	5000	4930	98.6	2.88	30	68.1-137
m/p-xylene	BQL	10000	9120	91.2	10000	9280	92.8	1.74	30	$79.8-118$
o-xylene	BQL	5000	4670	93.4	5000	4660	93.2	0.214	30	80.0-121

Syatem Monitoring Compound Results		MS SPIKE $(\mu \mathrm{g} / \mathrm{kg})$	MS CONC $(\mu \mathrm{g} / \mathrm{kg})$		$\begin{gathered} \text { MSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{kg}) \\ \hline \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{kg}) \\ \hline \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { \% } \\ \text { REC } \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \\ \text { REC } \end{gathered}$
460-00-4	4-Bromofluorobenzene	10	9.62	96.2	10	9.88	98.8	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	11.13	111	10	11.02	110	63.5-140
2037-26-5	Toluene-d8	10	10.04	100	10	10.09	101	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 3 failure(s) out of 72. MSD Spike Recovery: 3 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS:

Analyst:

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK3011110B Lab Project ID:

Results for Volatiles by GCMS 8260

Results for Volatiles

by GCMS 8260

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK3011110B Lab Project ID:

帾

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloreethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
$B Q L=$ Below Quantitation Limits.
Analyst: \qquad

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	1/11/2010
BQL	5.00	0.0980	1	1/11/2010
BQL	5.00	0.550	1	1/11/2010
BQL	1.00	0.0670	1	1/11/2010
BQL	1.00	0.133	1	1/11/2010
BQL	1.00	0.0800	1	1/11/2010
BQL	1.00	0.0850	1	1/11/2010
BQL	1.00	0.0900	1	1/11/2010
BQL	1.00	0.115	1	1/11/2010
BQL	1.00	0.0690	1	1/11/2010
BQL	1.00	0.0760	1	1/11/2010
BQL	1.00	0.190	1	1/11/2010
BQL	1.00	0.119	1	1/11/2010
BQL	1.00	0.0540	1	1/11/2010
BQL	1.00	0.0540	1	1/11/2010
BQL	1.00	0.182	1	1/11/2010
BQL	1.00	0.111	1	1/11/2010
BQL	1.00	0.120	1	1/11/2010
BQL	1.00	0.0650	1	1/11/2010
BQL.	1.00	0.0740	1	1/11/2010
BQL	1.00	0.149	1	1/11/2010
BQL	2.00	0.0980	1	1/11/2010
BQL	1.00	0.0650	1	1/11/2010
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.4	104	
	10	10.1	101	
	10	9.98	100	

Flag

1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010
1/11/2010

Percent Recovered 104

100

Reviewed By:

SGS North America, Inc.
SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
Dilution: 1
Matrix: Water

Filename: 0111304.D
Filename: 0111305.D
Date Analyzed: 01/11/10 12:41
Date Analyzed: 01/11/10 13:12

COMPOUND	$\begin{gathered} \text { LCS } \\ \text { SPIKE } \\ (\mu \mathrm{g} / L) \\ \hline \end{gathered}$	$\begin{gathered} \text { LCS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { LCS } \\ \text { \% } \\ \text { REC \# } \\ \hline \end{gathered}$	$\begin{gathered} \text { LCSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { LCSD } \\ \operatorname{CONC} \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LCSD } \\ \text { \% } \\ \text { REC \# } \\ \hline \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
acetone	25.0	28.9	116	25.0	28.9	116	0.0692	30	23.5-141
acrolein	125	68.0	54.4	125	80.3	64.2	16.6	30	31.4-182
acrylonitrile	125	121	96.8	125	143	114	16.7	30	64.2-140
benzene	5.00	5.27	105	5.00	5.05	101	3.88	30	76.6-120
bromobenzene	5.00	5.16	103	5.00	4.76	95.2	8.06	30	75.0-122
bromochloromethane	5.00	5.29	106	5.00	5.03	101	5.04	30	74.8-127
bromodichloromethane	5.00	5.52	110	5.00	5.35	107	3.13	30	76.4-117
bromoform	5.00	5.08	102	5.00	4.52	90.4	11.7	30	62.4-127
bromomethane	5.00	4.33	86.6	5.00	4.96	99.2	13.6	30	34.2-166
2-butanone	25.0	29.4	1.8	25.0	28.4	114	3.42	30	44.9-126
n-butylbenzene	5.00	5.18	104	5.00	5.01	100	3.34	30	72,0-122
sec-butylbenzene	5.00	5.03	101	5.00	4.97	99.4	1.20	30	78.3-116
tert-butylbenzene	5.00	5.12	102	5.00	4.96	99.2	3.17	30	53.1-148
Carbon disulfide	5.00	5.51	110	5.00	5.45	109	1.09	30	69.0-118
carbon tetrachloride	5.00	5.40	108	5.00	5.41	108	0.185	30	71.7-124
chlorobenzene	5.00	5.25	105	5.00	4.89	97.8	7.10	30	75.5-116
chloroethane	5.00	4.71	94.2	5.00	5.59	112	17.1	30	78.2-138
2-chloroethyl vinyl ether	125	122	97.9	125	140	112	13.8	30	5.57-235
chloroform	5.00	5.73	114	5.00	5.46	109	4.82	30	80.6-117
chloromethane	5.00	5.01	100	5.00	5.76	115	13.9	30	72.6-127
2-chlorotoluene	5.00	5.17	103	5.00	4.88	97.6	5.77	30	81.4-117
4-chlorotoluene	5.00	4.99	99.8	5.00	4.92	98.4	1.41	30	82.1-116
dibromochloromethane	5.00	5.09	102	5.00	4.89	97.8	4.01	30	73.1-117
1,2-dibromo-3-chloropropane	25.0	25.2	101	25.0	24.6	98.3	2.33	30	58.0-133
1,2-dibromoethane.	5.00	5.00	100	5.00	4.94	98.8	1.21	30	75.5-118
dibromomethane	5.00	5.71	114	5.00	5.39	108	5.76	30	77.3-124
1,2-dichlorobenzene	5.00	5.26	105	5.00	5.05	101	4.07	30	76.3-115
1,3-dichlorobenzene	5.00	5.27	105	5.00	5.01	100	5.06	30	79.1-114
1,4-dichlorobenzene	5.00	5.39	108	5.00	5.00	100	7.51	30	76.8-115
trans-1,4-Dichloro-2-butene	25.0	27.9	112	25.0	26.1	104	6.55	30	52.3-130
dichlorodifluoromethane	5.00	4.23	84.6	5.00	5.48	110	25.7	30	69.8-134
1,1-dichloroethane	5.00	5.59	112	5.00	5.32	106	4.95	30	78.0-120
1,2-dichloroethane	5.00	5.74	115	5.00	5.51	110	4.09	30	72.8-126
1,1-dichloroethene	5.00	5.32	106	5.00	5.22	104	1.90	30	74.6-121
cis-1,2-dichloroethene	5.00	5.34	107	5.00	5.13	103	4.01	30	78.0-121
trans-1,2-dichloroethene	5.00	5.49	110	5.00	5.32	106	3.14	30	60.7-144
1,2-dichloropropane	5.00	5.51	110	5.00	5.32	106	3.51	30	75.8-119
1,3-dichloropropane	5.00	5.18	104	5.00	4.88	97.6	5.96	30	78.5-113
2,2-dichloropropane	5.00	5.57	111	5.00	5.33	107	4.40	30	75.6-130
1,1-dichloropropene	5.00	5.27	105	5.00	5.08	102	3.67	30	79.7-117
cis-1,3-dichloropropene	5.00	5.71	114*	5.00	5.49	110	3.93	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad
\qquad

SGS North America, Inc.
SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
LCS: LCS3011110A
LCSD: LCS3011110B

COMPOUND				LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \hline \text { LCSD } \\ \text { \% } \\ \text { REC \# } \\ \hline \end{gathered}$	$\begin{gathered} \% \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
trans-1,3-dichloropropene	5.00	5.49	110	5.00	5.44	109	0.915	30	79.0-113
Diisopropyl ether	5.00	5.61	112	5.00	5.50	110	1.98	30	71.8-115
ethylbenzene	5.00	5.08	102	5.00	4.85	97.0	4.63	30	80.5-115
hexachlorobutadiene	5.00	5.79	116	5.00	5.61	112	3.16	30	63.3-139
2-hexanone	25.0	26.8	107	25.0	26.2	105	2.04	30	46.8-123
Iodomethane	5.00	7.26	145	5.00	6.41	128	12.4	30	29.3-156
isopropylbenzene	5.00	5.03	101	5.00	4.79	95.8	4.89	30	81.6-114
4-isopropyltoluene	5.00	5.09	102	5.00	4.92	98.4	3.40	30	78.4-119
Methyl-tert-butyl ether	5.00	5.72	114*	5.00	5.62	112	1.76	30	76.0-114
methylene chloride	5.00	5.48	110	5.00	5.26	105	4.10	30	72.9-120
4-methyl-2-pentanone	25.0	26.2	105	25.0	26.1	104	0.535	30	56.2-124
naphthalene	5.00	5.18	104	5.00	5.01	100	3.34	30	24.8-182
n-propyl benzene	5.00	4.98	99.6	5.00	4.94	98.8	0.806	30	79.0-116
styrene	5.00	3.82	76.4	5.00	3.49	69.8	9.03	30	64.8-132
1, 1, 1,2-tetrachloroethane	5.00	5.18	104	5.00	4.74	94.8	8.87	30	78.8-118
1,1,2,2-tetrachloroethane	5.00	5.16	103	5.00	4.87	97.4	5.78	30	69.7-119
tetrachloroethene	5.00	5.30	106	5.00	5.09	102	4.04	30	55.3-144
toluene	5.00	5.37	107	5.00	5.14	103	3.81	30	78.6-117
1,2,3-trichlorobenzene	5.00	5.18	104	5.00	5.16	103	0.387	30	20.8-193
1,2,4-trichlorobenzene	5.00	5.27	105	5.00	4.96	99.2	6.06	30	47.9-150
1,1,1-trichloroethane	5.00	5.54	111	5.00	5.48	110	1.09	30	78.8-120
1,1,2-trichloroethane	5.00	5.32	106	5.00	5.00	100	6.20	30	73.6-117
trichloroethene	5.00	5.51	110	5.00	5.31	106	3.70	30	80.1-116
trichlorofluoromethane	5.00	4.53	90.6	5.00	5.82	116	24.9	30	80.5-130
1,2,3-trichloropropane	5.00	5.26	105	5.00	5.06	101	3.88	30	35.6-152
1,2,4-trimethylbenzene	5.00	5.17	103	5.00	4.95	99.0	4.35	30	77.0-116
1,3,5-trimethylbenzene	5.00	4.93	98.6	5.00	4.81	96.2	2.46	30	79.4-114
Vinyl acetate	12.5	13.8	110	12.5	13.4	107	3.02	30	60.7-127
vinyl chloride	5.00	4.61	92.2	5.00	5.56	111	18.7	30	77.5-126
m/p-xylene	10.0	10.2	102	10.0	9.82	98.2	4.09	30	82.9-112
o-xylene	5.00	5.22	104	5.00	4.84	96.8	7.55	30	81.3-113

System Monitoring Compound Results				$\begin{gathered} \text { LCS } \\ \text { \% } \\ \text { REC } \# \end{gathered}$	LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { LCSD } \\ \% \\ \text { REC \# } \\ \hline \end{gathered}$	
460-00-4	4-Bromofluorobenzene	10	9.86	98.6	10	9.8	98.0	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	10.66	107	10	10.72	107	63.5-140
2037-26-5	Toluene-d8	10	10.09	101	10	10.13	101	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

LCS Spike Recovery: 2 failure(s) out of 72. LCSD Spike Recovery: 0 failure (s) out of 72 .
RPD: O out of 72 outside of limits
COMMENTS: \qquad
\qquad

Analyst: OVO

Dilution: 1
Matrix: Water
Filename: 0111304.D Date Analyzed: 01/11/10 12:41
Filename: 0111305.D Date Analyzed: 01/11/10 13:12

Reviewed by:

page 2 of 2
LCS/LCSD VOA-2

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
Inst: MSD3
EPA Sample No.: Amt. Filenames:

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad $-$

SGS North America, Inc.
SGS Environmental Services

3A

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: g121-434-11e, g121-434-11e, g121-434-11e
Filenames: 0111308.D, 0111314.D, 0111315.D

Inst: MSD3
Batch: 3011110
Dilution: 1000
Matrix: Water

COMPOUND	$\begin{gathered} \text { SAMPLE } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$						$\begin{gathered} \text { MSD } \\ \text { \% } \\ \text { REC \# } \end{gathered}$	$\begin{gathered} \text { q } \\ \text { RPD } \end{gathered}$	QC LIMITS	
									RPD	REC
trang-1,3-dichloropropene	BQL	5000	4980	99.6	5000	4870	97.4	2.23	30	44.7-144
Diisopropyl ether	BQL	5000	5120	102	5000	5150	103	0.584	30	79.4-122
ethylbenzene	BQL	5000	4450	89.0	5000	4480	89.6	0.672	30	73.8-126
hexachlorobutadiene	BQL	5000	4430	88.6	5000	4620	92.4	4.20	30	51.8-134
2-hexanone	BQL	25000	23200	92.6	25000	25100	100	7.96	30	41.6-111
Iodomethane	BQL	5000	5520	110	5000	5340	107	3.31	30	40.6-126
isopropylbenzene	BQL	5000	4430	88.6	5000	4340	86.8	2.05	30	74.3-123
4-isopropyltoluene	BQL	5000	4430	88.6	5000	4360	87.2	1.59	30	74.6-122
Methyl-tert-butyl ether	BQL	5000	5030	101	5000	4990	99.8	0.798	30	66.5-136
methylene chloride	BQL	5000	4950	99.0	5000	4750	95.0	4.12	30	48.6-155
4-methyl-2-pentanone	BQL	25000	24700	98.6	25000	24300	97.3	1.39	30	6.88-166
naphthalene	BQL	5000	4100	82.0	5000	4440	88.8	7.96	30	55.1-140
n -propyl benzene	BQL	5000	4490	89.8	5000	4480	89.6	0.223	30	71.6-128
styrene	BQL	5000	3280	65.6*	5000	3250	65.0*	0.919	30	73.2-123
1,1,1,2-tetrachloroethane	BQL	5000	4370	87.4	5000	4260	85.2	2.55	30	69.4-120
1,1,2,2-tetrachloroethane	BQL	5000	4710	94.2	5000	4460	89.2	5.45	30	75.7-136
tetrachloroethene	14900	5000	18600	74.8	5000	18600	73.2	2.16	30	45.8-153
toluene	BQL	5000	4760	95.2	5000	4740	94.8	0.421	30	66.4-128
1,2,3-trichlorobenzene	BQL	5000	4200	84.0	5000	4250	85.0	1.18	30	61.0-126
1,2,4-trichlorobenzene	BQL	5000	4220	84.4	5000	4520	90.4	6.86	30	60.6-125
1,1,1-trichloroethane	BQL	5000	4830	96.6	5000	4790	95.8	0.832	30	78.4-121
1,1,2-trichloroethane	BQL	5000	4710	94.2	5000	4690	93.8	0.426	30	64.8-128
trichloroethene	1350	5000	6220	97.4	5000	6160	96.2	1.24	30	84,9-136
trichlorofluoromethane	BQL	5000	4500	90.0	5000	4870	97.4	7.90	30	76.8-132
1,2,3-trichloropropane	BQL	5000	4510	90.2	5000	4480	89.6	0.667	30	10.0-218
1,2,4-trimethylbenzene	BQL	5000	4560	91.2	5000	4560	91.2	0.00	30	31.0-172
1,3,5-trimethylbenzene	BQL	5000	4360	87.2	5000	4310	86.2	1.15	30	67.7-132
Vinyl acetate	BQL	12500	12700	102	12500	12600	101	0.552	30	0.00-355
vinyl chloride	BQL	5000	4670	93.4	5000	5070	101	8.21	30	68.1-137
m/p-xylene	BQL	10000	8980	89.8	10000	9000	90.0	0.222	30	79.8-118
o-xylene	BQL	5000	4670	93.4	5000	4430	88.6	5.27	30	80.0-121

System Monitoring Compound Results		$\begin{gathered} \text { MS } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{kg}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{kg}) \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { MSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{kg}\rangle \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{kg}) \\ \hline \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { \& } \\ \text { REC } \# \end{gathered}$	$\text { QC } \begin{gathered} \text { LIMITS } \\ \text { REC } \end{gathered}$
460-00-4	4-Bromofluorobenzene	10	9.97	99.7	10	9.86	98.6	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	11.05	110	10	11.01	110	63.5-140
2037-26-5	Toluene-d8	10	10.15	102	10	10.13	101	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 3 failure(s) out of 72. MSD Spike Recovery: 4 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS:

SGS North America, Inc.

Client Name: Arcadis U.S., Inc. Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 18
Lab Pro \#: P1001198
Report Date: 02/02/10
Client Pro Name: B0007393.0000.00006
Client Proj \#: AVXMB

Laboratory Results
Total pages in data package: \qquad

Lab Sample \#	
P1001198-01	
Client Sample ID	
P1001198-02	OW-10D
P1001198-03	OW-9D
P1001198-04	OW-8D
P1001198-05	OW-7D
P1001198-06	P-1D
P1001198-07	P-3D
P1001198-08	WW-2D
P1001198-09	WW-4D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:
 Date: $2-2-10$

Project Manager:

Debbie Hall

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.

As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Case Narrative: The metals analyses were performed by Pace Analytical Services
The anion analyses were intially performed on $1 / 16 / 2010$ and $1 / 20 / 2010$. The sample required reanalyses because of failed QC criteria

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fieids, PA 16046

Page: Page 4 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 18
Lab Proj\#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-7D }}$	Matrix Water	Lab Sample \# P1001198-05			$\frac{\text { Sampled Date/Time }}{18 \text { Jan. } 10 \text { 16:18 }}$	$19 \frac{\text { Received }}{\text { Jan. } 10 \text { 11:09 }}$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		84.0	5	mg/L	9060	1/30/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1001198-07			$\frac{\text { Sampled Date/Time }}{18 \text { Jan. } 10 \text { 16:55 }}$	Received		
P-3D	Water				19 Jan.			
Analyte(s)	Flag	Result	PQL	Units		Method \#	Analysis Date	By
WetChem N Total Organic Carbon		14.0	5	mg / L	9060	1/30/10	md	

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { IW-2D }}$	$\frac{\text { Matrix }}{\text { Water }}$	Lab Sample \# P1001198-08			$\frac{\text { Sampled Date/Time }}{18 \text { Jan. } 10 \quad 17: 07}$	Received 19 Jan. 10 11:09	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4100.0	250	mg/L	9060	1/30/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1001198-09			Sampled Date/Tim	$19 \frac{\text { Received }}{\text { Jan. } 10 \quad 11: 09}$	
IW-4D	Water				18 Jan. 10 17:16		
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		10000.0	500.0	mg/L	9060	2/1/10	md

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fieids, PA 16046

Page: Page 12 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Alkalinity Titration
 Analysis Method: Alkalinity Titration

M100121062-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Alkalinity as CaCO 3	2.1	mg / L	4		- NA	
Alkalinity Bicarbonate as	2.1	mg / L	4		- NA	
CaCO3						

M100121062-LCS

Alkalinity as CaCO 3

Result		TrueSpikeConc.	\%Recovery	Ctl Limits
70	mg / L	70.10	100.00	87-113

P1001183-06A-DUP

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Alkalinity as CaCO 3	37	mg / L			- NA	5.26	0-14
Alkalinity Bicarbonate as CaCO3	37	mg / L			- NA	5.26	0-20
P1001183-06A-MS							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Alkalinity as CaCO 3	120	mg / L	100.00	81.00	6-121		

\square

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 13 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Anions by ion chromatography
Analysis Method: Anions by ion chromatography

M100125009-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Fluoride	<0.50	mg / L		0.50		- NA
Chloride	<1.00	mg / L		1.00		- NA
Nitrite	<0.50	mg / L		0.50		- NA
Bromide	< 1.00	mg / L		1.00		- NA
Nitrate	<0.50	mg / L		0.50		- NA
Sulfate	< 1.00	mg / L		1.00		- NA
Phosphate	< 1.00	mg / L		1.00		- NA
M100125009-LCS						
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Fluoride	8.80	mg / L	10.00		88.00	80-120
Chloride	9.80	mg / L	10.00		98.00	80-120
Nitrite	9.90	mg / L	10.00		99.00	80-120
Bromide	10.00	mg / L	10.00		100.00	80-120
Nitrate	10.00	mg / L	10.00		100.00	80-120
Sulfate	9.20	mg / L	10.00		92.00	80-120
Phosphate	9.80	mg / L	10.00		98.00	80-120

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	$\underline{R P D}$	RPD Ctl Limits
Fluoride	1.20	mg / L			- NA	0	0-20
Chloride	1.60	mg / L			- NA	0	0-20
Nitrite	< 0.50	mg / L			- NA	0	0-20
Bromide	< 1.00	mg / L			- NA	0	0-20
Nitrate	< 0.50	mg / L			- NA	0	0-20
Sulfate	26.00	mg / L			- NA	0	0-20
Phosphate	< 1.00	mg / L			- NA	0	0-20
P1001256-01A-DUP							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Fluoride	<0.50	mg / L			- NA	0	0-20
Chloride	87.00	mg / L			- NA	1.16	0-20
Nitrite	<0.50	mg / L			- NA	0	0-20
Bromide	< 1.00	mg / L			- NA	0	0-20
Nitrate	3.60	mg / L			- NA	0	0-20
Sulfate	87.00	mg / L			- NA	0	0-20

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

P1001256-01A-DUP

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	$\underline{R P D}$	RPD Ctl Limits
Phosphate	< 1.00	mg / L			- NA	0	0-20
P1001256-01A-MS							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Fluoride	9.00	mg / L	10.00	90.00	70-130		
Chloride	130.00	mg / L	50.00	88.00	70-130		
Nitrite	10.00	mg / L	10.00	100.00	70-130		
Bromide	11.00	mg / L	10.00	110.00	70-130		
Nitrate	14.00	mg / L	10.00	104.00	70-130		
Sulfate	130.00	mg / L	50.00	86.00	70-130		
Phosphate	9.00	mg / L	10.00	90.00	70-130		

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 15 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Acid Digestions of Aqueous samples and extracts for tc
Analysis Method: Inductively Coupled Plasma-Atomic Emission Spectron

M100129006-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	CtI Limits
Iron	< 0.050	mg / L		0.050		- NA
Manganese	<0.005	mg / L		0.005		- NA
M100129006-LCS						
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Iron	4.600	mg / L	5.00		92.00	80-120
Manganese	0.470	mg L	0.50		94.00	80-120

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 16 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

Prep Method: Acid Digestions of Aqueous samples and extracts for tc
Analysis Method: Dissolved TAL Metals by Inductively Coupled Plasma-f

M100129007-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Iron-dissolved	<0.050	mg / L		0.050		- NA
Manganese-dissolved	<0.005	mg / L		0.005		- NA
M100129007-LCS						
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Iron-dissolved	5.100	mg / L	5.00		102.00	80-120
Manganese-dissolved	0.490	mg / L	0.50		98.00	80-120

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 17 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M100201012-MB

	$\frac{\text { Result }}{}$		TrueSpikeConc.	$\frac{\text { RDL }}{}$	\%Recovery	CtI Limits
Total Organic Carbon	<5.0	$\mathrm{mg} \Omega$	5		- NA	
M100201012-LCS						

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Total Organic Carbon	38.0	mg / L	36.00	106.00	70-130		
P1001198-02A-DUP							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Total Organic Carbon	12.0	mg / L			- NA	0.00	0-20
P1001198-02A-MS							
	Result		TrueSpikeConc.	\%Recovery	CtI Limits		
Total Organic Carbon	63.0	mg / L	50.00	102.00	70-130		

Client Name: Arcadis U.S., Inc.
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 18 of 18
Lab Proj \#: P1001198
Report Date: 02/02/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M100202013-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Total Organic Carbon	<5.0	mg / L	5.0		- NA	

M100202013-LCS

	Result			TrueSpikeConc.		\%Recovery	
	Ctl Limits						
Total Organic Carbon	37.0	mg / L	36.00		103.00	$70-130$	

P1001198-03A-DUP

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	180.0	mg / L			- NA	0.00	0-20
P1001219-01A-DUP							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Total Organic Carbon	96.0	mg / L			- NA	3.08	0-20
P1001219-01A-MS							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Total Organic Carbon	150.0	mg / L	50.00	102.00	70-130		

[^0]Client Name: Arcadis

Contact: Mark Banish
Address: 310 Seven Fields Blvd. Suite 210 Seven Fields, PA 16046

Page: Page 1 of 14
Lab Pro \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Pro \#: AVXMB

Laboratory Results

Lab Sample \#	
Client Sample ID	
P1002085-01	P-3D(020510)
P1002085-02	OW-8D(020510)
P1002085-03	P-2D(020510)
P1002085-04	OW-10D(020510)
P1002085-05	P-1D(020510)
P1002085-06	OW-9D(020510)
P1002085-07	OW-7D
P1002085-08	IW-2D
P1002085-09	WW-4D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.
Approved By:

Date: $\quad 2 \cdot 15 \cdot 10$
Project Manager:
Debbie Hallo

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\mathrm{P}-3 \mathrm{D}(020510)}$	Matrix Water	Lab Sample \# P1002085-01			Sampled Date 05 Feb. 10	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		16.0	5.0	mg / L	9060	2/11/10	md
RiskAnalysis N Ethane		0.390	0.025	$u g / L$	AM20GAX	2/11/10	rw
N Ethene		69.000	0.025	ug/L	AM20GAX	2/11/10	rw
N Methane		3700.000	0.100	ug/L	AM20GAX	2/11/10	nw

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj\#: AVXMB

Sample Description OW-8D(020510)	Matrix Water	Lab Sample \# P1002085-02			Sampled Date/ 05 Feb. 1012	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		260.0	50.0	mg/L	9060	2/12/10	md
RiskAnalysis N Ethane		2.000	0.025	ug/L	AM20GAX	2/11/10	rw
N Ethene		110.000	0.025	ug/L	AM20GAX	2/11/10	rw
N Methane		7700.000	0.100	ug/L	AM20GAX	2/11/10	nw

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-2D(020510) }}$	Matrix Water	Lab Sample \# P1002085-03			Sampled Date 05 Feb. 101	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4200.0	500.0	mg / L	9060	2/12/10	md
RiskAnalysis N Ethane		0.092	0.025	ug/L	AM20GAX	2/11/10	rw
N Ethene		2.000	0.025	ug/L	AM20GAX	2/11/10	IW
N Methane		650.000	0.100	ug/L	AM20GAX	2/11/10	rw

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-10D(020510) }}$	Matrix Water	Lab Sample \# P1002085-04			mpled Date/ $\text { Feb. } 1013$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		56.0	10.0	mg/L	9060	2/12/10	md
RiskAnalysis N Ethane		0.430	0.025	ug/L	AM20GAX	2/11/10	rw
N Ethene		5.800	0.025	ug/L	AM20GAX	2/11/10	rW
N Methane		280.000	0.100	ug/L	AM20GAX	2/11/10	IW

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\mathrm{P}-1 \mathrm{D}(020510)}$	Matrix Water	Lab Sample \# P1002085-05			Sampled Date/Time 05 Feb. $1014: 30$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon	J	2.8	5.0	mg/L	9060	2/11/10	md
RiskAnalysis N Ethane		0.086	0.025	ug/L	AM20GAX	2/11/10	rw
N Ethene		0.350	0.025	ug/L	AM20GAX	2/11/10	rw
N Methane		1800.000	0.100	ug/L	AM20GAX	2/11/10	rw

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210

Seven Fields, PA 16046

Page: Page 8 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-7D	Matrix Water	Lab Sample \# P1002085-07			Sampled Date/Tim 05 Feb. $10 \quad 12 \cdot 15$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		6.4	5.0	mg/L	9060	2/11/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \#P1002085-08			Sampled Date/Time	Received	
IW-2D	Water				05 Feb. 10 9:55	08 Feb.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		3300.0	1000.0	mg / L	9060	2/11/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description IW-4D	Matrix Water	Lab Sample \# P1002085-09			Sampled Date/Time 05 Feb. 10 10:10	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		8400.0	1000.0	mg/L	9060	2/12/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: In House Dissolved Gas Sample Preparation
 Analysis Method: Light Hydrocarbons (C1-C4) in Water

M100211001-MB

| | Result | | TrueSpikeConc. | $\underline{R D L}$ | \%Recovery |
| :--- | :--- | :--- | :--- | :--- | :--- | | CtI Limits |
| :--- |
| Ethane |

M100211001-LCS

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Ethane	47.000	ug/L	45.00	104.00	75-125		
Ethene	42.000	ug/L	40.80	103.00	75-125		
Methane	860.000	ug / L	825.00	104.00	75-125		
M100211001-LCSD							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Ethane	47.000	ug/	45.00	104.00	75-125	0.00	0-20
Ethene	42.000	ug/L	40.80	103.00	75-125	0.00	0-20
Methane	860.000	ug / L	825.00	104.00	75-125	0.00	0-20

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 12 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

Prep Method: In House Dissolved Gas Sample Preparation
 Analysis Method: Light Hydrocarbons (C1-C4) in Water

M100211002-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Ethane	<0.025	ug / L		0.025		- NA
Ethene	<0.025	ug / L		0.025		- NA
Methane	<0.100	ug/		0.100		- NA
M100211002-LCS						
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Ethane	49.000	ug/	45.00		109.00	75-125
Ethene	44.000	ug / L	40.80		108.00	75-125
Methane	900.000	ug / L	825.00		109.00	75-125
M100211002-LCSD						

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Ethane	48.000	ug/L	45.00	107.00	75-125	2.06	0-20
Ethene	43.000	ug/L	40.80	105.00	75-125	2.30	0-20
Methane	880.000	ug/L	825.00	107.00	75-125	2.25	0-20

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 13 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M100212002-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits		
Total Organic Carbon	< 5.0	mg / L		5.0		- NA		
M100212002-LCS								
	$\underline{\text { Result }}$		TrueSpikeConc.		\%Recovery	Ctl Limits		
Total Organic Carbon	37.0	mg / L	36.00		103.00	70-130		
P1002085-01A-DUP								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	16.0	mg / L				- NA	0.00	0-20
P1002085-01A-MS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
Total Organic Carbon	65.0	mg / L	50.00		98.00	70-130		

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 14 of 14
Lab Proj \#: P1002085
Report Date: 02/15/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M100215005-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Total Organic Carbon	0.8	mg / L	5.0		- NA	
M100215005-LCS						

	\cdot	Result		TrueSpikeConc.	\%Recovery	
	Ctl Limits					
Total Organic Carbon	36.0	mg / L	36.00	100.00	$70-130$	
P1002132-01A-DUP						

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Ct\| Limits
Total Organic Carbon	28.0	mg / L			- NA	3.51	0-20
P1002132-01A-MS							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Total Organic Carbon	84.0	mg / L	50.00	110.00	-0-130		

REASON FOR NON-CONFORMANCE:
\qquad

ACTION TAKEN:
chart mane: Rich Mllator
\qquad
\qquad Time: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Customer Service Initials: \qquad $+18$ \qquad $\theta \mid \delta$

Heather Hauser

From:	Mator, Richard [Richard.Mator@arcadis-us.com]
Sent:	Monday, February 08, 2010 1:49 PM
To:	Heather Hauser
Cc:	Cooper, James
Subject:	AVX-MB COC edits
Attachments:	AVX-MB 2010.02.05 Microseeps COC.pdf

Hi Heather,
Attached are the necessary edits to the above COC. Let me know if this more accurately reflects what you received. Thanks,
Rich

Rich Mator | Staff Environmental Scientist | Richard.Mator@arcadis-us.com
ARCADIS U.S., Inc. | One Adams Place, 310 Seven Fields Blvd., Suite 210 | Seven Fields, PA 16046
T. 724.742.9180 5524 | F. 724.742 .9189
www.arcadis-us.com
ARCADIS, Imagine the result
A Please consider the environment before printing this email.

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this email or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates. Nothing herein is intended to constitute the offering or performance of services where otherwise restricted by law.

Mark Hanish
Arcadis
600 Waterfront Dr.
Pittsburgh, PA 15222

Report Number: G582-638

Client Project: AVX Myrtle Beach, SC
Dear Mark Banish,
Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Cager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,
SGS North America, Inc.

List of Reporting Abbreviations

And Data Qualifiers
$\mathrm{B}=$ Compound also detected in batch blank
$\mathrm{BQL}=$ Below Quantification Limit (RL or MDL)
DF $=$ Dilution Factor
Dup $=$ Duplicate
$\mathrm{D}=$ Detected, but RPD is $>40 \%$ between results in dual column method.
$\mathrm{E}=$ Estimated concentration, exceeds calibration range.
$\mathrm{J}=$ Estimated concentration, below calibration range and above MDL
LCS $(\mathrm{D})=$ Laboratory Control Spike (Duplicate)
MDL $=$ Method Detection Limit
MS(D) $=$ Matrix Spike (Duplicate)
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{RL} / \mathrm{CL}=$ Reporting Limit / Control Limit
$R P D=$ Relative Percent Difference
$U J=$ Target analytes with recoveries that are $10 \%<\% \mathrm{R}<\mathrm{LCL}$; \# of MEs are allowable and compounds are not detected in the sample.
$\mathrm{mg} / \mathrm{kg}=$ milligram per kilogram, ppm, parts per million
$\mathrm{ug} / \mathrm{kg}=$ micrograms per kilogram, ppb , parts per billion
$\mathrm{mg} / \mathrm{L}=$ milligram per liter, ppm , parts per million
$\mathrm{ug} / \mathrm{L}=$ micrograms per liter, ppb , parts per billion
$\%$ Rec $=$ Percent Recovery
$\%$ soilds $=$ Percent Solids
Special Notes:

1) Metals and mercury samples are digested with a hot block; see the standard operating procedure document for details.
2) Uncertainty for all reported data is less than or equal to 30 percent.

Results for Volatiles
 by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: P-3D (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-1A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 11:35
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL
Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloreothane
1,1-Dichoreethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result	Quantitation Limit UGG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	2500	218	100	$2 / 12 / 2010$
BQL	100	6.50	100	$2 / 12 / 2010$
BQL	100	5.60	100	$2 / 12 / 2010$
BQL	100	10.1	100	$2 / 12 / 2010$
BQL	100	7.60	100	$2 / 12 / 2010$
BQL	100	12.0	100	$2 / 12 / 2010$
BQL	100	13.3	100	$2 / 12 / 2010$
BQL	2500	54.4	100	$2 / 12 / 2010$
BQL	100	10.9	100	$2 / 12 / 2010$
BQL	100	8.40	100	$2 / 12 / 2010$
BQL	100	5.00	100	$2 / 12 / 2010$
BQL	100	6.90	100	$2 / 12 / 2010$
BQL	100	8.70	100	$2 / 12 / 2010$
BQL	100	8.20	100	$2 / 12 / 2010$
BQL	100	10.6	100	$2 / 12 / 2010$
BQL	100	7.90	100	$2 / 12 / 2010$
BQL	100	14.6	100	$2 / 12 / 2010$
BQL	100	9.90	100	$2 / 12 / 2010$
BQL	100	8.00	100	$2 / 12 / 2010$
BQL	100	9.00	100	$2 / 12 / 2010$
BQL	500	121	100	$2 / 12 / 2010$
BQL	100	11.3	100	$2 / 12 / 2010$
BQL	100	12.4	100	$2 / 12 / 2010$
BQL	100	12.7	100	$2 / 12 / 2010$
BQL	100	8.10	100	$2 / 12 / 2010$
BQL	100	7.90	100	$2 / 12 / 2010$
BQL	500	63.0	100	$2 / 12 / 2010$
BQL	100	7.40	100	$2 / 12 / 2010$
BQL	100	8.90	100	$2 / 12 / 2010$
BQL	100	7.90	100	$2 / 12 / 2010$
1440	100	6.50	100	$2 / 12 / 2010$
BQL	100	8.90	100	$2 / 12 / 2010$
BQL	100	9.40	100	$2 / 12 / 2010$
BQL	100	12.7	100	$2 / 12 / 2010$
BQL	100	5.90	100	$2 / 12 / 2010$
BQL	100	7.20	100	$2 / 12 / 2010$
BQL	100	7.60	100	$2 / 12 / 2010$
BQL	100	7.60	100	$2 / 12 / 2010$
BQL	500	9.40	100	$2 / 12 / 2010$
BQL	100	7.30	100	$2 / 12 / 2010$
BQL	100	7.70	100	$2 / 12 / 2010$
BQL	100	22.8	100	$2 / 12 / 2010$
BQL	500	72.0	100	$2 / 12 / 2010$
BQL	100	4.20	100	$2 / 12 / 2010$
BQL	100	7.10	100	$2 / 12 / 2010$

Flag

Results for Volatiles by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: P-3D (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-1A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 11:35
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
$1,3,5-$ Trimethylbenzene
Vinyl chloride
m-,p-Xylene
$0-X y l e n e$

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:

$B Q L=$ Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \quad VVO

Result	Quantitation UG/L Limit UG/L
BQL	100
BQL	500
BQL	500
BQL	100
1680	100
BQL	200
BQL	100
	Spike
	Added
	30
	30
	30

MDL	Dilution	Date UG/L Factor
4.80	100	$2 / 12 / 2010$
9.80	100	$2 / 12 / 2010$
55.0	100	$2 / 12 / 2010$
6.70	100	$2 / 12 / 2010$
13.3	100	$2 / 12 / 2010$
8.00	100	$2 / 12 / 2010$
8.50	100	$2 / 12 / 2010$
9.00	100	$2 / 12 / 2010$
11.5	100	$2 / 12 / 2010$
6.90	100	$2 / 12 / 2010$
7.60	100	$2 / 12 / 2010$
19.0	100	$2 / 12 / 2010$
11.9	100	$2 / 12 / 2010$
5.40	100	$2 / 12 / 2010$
5.40	100	$2 / 12 / 2010$
18.2	100	$2 / 12 / 2010$
11.1	100	$2 / 12 / 2010$
12.0	100	$2 / 12 / 2010$
6.50	100	$2 / 12 / 2010$
7.40	100	$2 / 12 / 2010$
14.9	100	$2 / 12 / 2010$
9.80	100	$2 / 12 / 2010$
6.50	100	$2 / 12 / 2010$
Spike	Percent	
Result	Recovered	
32.1	107	
29.5	98	
28.9	96	

Flag

Results for Volatiles
 by GCMS 8260

Client Sample ID: OW-8D (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-2A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 12:30
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL	Dilution	Date Analyzed	
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
Acetone	BQL	25000	2180	1000	2/12/2010	
Benzene	BQL	1000	65.0	1000	2/12/2010	
Bromobenzene	BQL	1000	56.0	1000	2/12/2010	
Bromochloromethane	BQL	1000	101	1000	2/12/2010	
Bromodichloromethane	BQL	1000	76.0	1000	2/12/2010	
Bromoform	BQL	1000	120	1000	2/12/2010	
Bromomethane	BQL	1000	133	1000	2/12/2010	
2-Butanone	BQL	25000	544	1000	2/12/2010	
n-Butylbenzene	BQL	1000	109	1000	2/12/2010	
sec-Butylbenzene	BQL	1000	84.0	1000	2/12/2010	
tert-Butylbenzene	BQL	1000	50.0	1000	2/12/2010	
Carbon disulfide	BQL	1000	69.0	1000	2/12/2010	
Carbon tetrachloride	BQL	1000	87.0	1000	2/12/2010	
Chlorobenzene	BQL	1000	82.0	1000	2/12/2010	
Chloroethane	BQL	1000	106	1000	2/12/2010	
Chloroform	BQL	1000	79.0	1000	2/12/2010	
Chloromethane	BQL	1000	146	1000	2/12/2010	
2-Chlorotoluene	BQL	1000	99.0	1000	2/12/2010	
4-Chlorotoluene	BQL	1000	80.0	1000	2/12/2010	
Dibromochloromethane	BQL	1000	90.0	1000	2/12/2010	
1,2-Dibromo-3-chloropropane	BQL	5000	1210	1000	2/12/2010	
Dibromomethane	BQL	1000	113	1000	2/12/2010	
1,2-Dibromoethane (EDB)	BQL	1000	124	1000	2/12/2010	
1,2-Dichlorobenzene	BQL	1000	127	1000	2/12/2010	
1,3-Dichlorobenzene	BQL	1000	81.0	1000	2/12/2010	
1,4-Dichlorobenzene	BQL	1000	79.0	1000	2/12/2010	
trans-1,4-Dichloro-2-butene	BQL	5000	630	1000	2/12/2010	
1,1-Dichloroethane	BQL	1000	74.0	1000	2/12/2010	
1,1-Dichloroethene	BQL	1000	89.0	1000	2/12/2010	
1,2-Dichloroethane	BQL	1000	79.0	1000	2/12/2010	
cis-1,2-Dichloroethene	7290	1000	65.0	1000	2/12/2010	
trans-1,2-dichloroethene	160	1000	89.0	1000	2/12/2010	J
1,2-Dichloropropane	BQL	1000	94.0	1000	2/12/2010	
1,3-Dichloropropane	BQL	1000	127	1000	2/12/2010	
2,2-Dichloropropane	BQL	1000	59.0	1000	2/12/2010	
1,1-Dichloropropene	BQL	1000	72.0	1000	2/12/2010	
cis-1,3-Dichloropropene	BQL	1000	76.0	1000	2/12/2010	
trans-1,3-Dichloropropene	BQL	1000	76.0	1000	2/12/2010	
Dichlorodifluoromethane	BQL	5000	94.0	1000	2/12/2010	
Diisopropyl ether (DIPE)	BQL	1000	73.0	1000	2/12/2010	
Ethylbenzene	BQL	1000	77.0	1000	2/12/2010	
Hexachlorobutadiene	BQL	1000	228	1000	2/12/2010	
2-Hexanone	BQL	5000	720	1000	2/12/2010	
lodomethane	BQL	1000	42.0	1000	2/12/2010	
Isopropylbenzene	BQL	1000	71.0	1000	2/12/2010	
		Page 1 of 2				$\begin{gathered} \text { GCMS } \\ 8260 \end{gathered}$

Results for Volatiles
by GCMS $\mathbf{8 2 6 0}$
Client Sample ID: OW-8D (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-2A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 12:30
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result Compound	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
4-Isopropyltoluene	BQL	1000	48.0	1000	$2 / 12 / 2010$

Comments:

Flags:
BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad Reviewed By: \qquad

SGS North America, Inc.
Results for Volatiles
by GCMS 8260

Client Sample ID: P-2D (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-3A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 13:10
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
Acetone	439	1000	87.2	40	2/12/2010	J
Benzene	BQL	40.0	2.60	40	2/12/2010	
Bromobenzene	BQL	40.0	2.24	40	2/12/2010	
Bromochloromethane	BQL	40.0	4.04	40	2/12/2010	
Bromodichloromethane	BQL	40.0	3.04	40	2/12/2010	
Bromoform	BQL	40.0	4.80	40	2/12/2010	
Bromomethane	BQL	40.0	5.32	40	2/12/2010	
2-Butanone	442	1000	21.8	40	2/12/2010	J
n-Butyibenzene	BQL	40.0	4.36	40	2/12/2010	
sec-Butylbenzene	BQL	40.0	3.36	40	2/12/2010	
tert-Butylbenzene	BQL	40.0	2.00	40	2/12/2010	
Carbon disulfide	BQL	40.0	2.76	40	2/12/2010	
Carbon tetrachloride	BQL	40.0	3.48	40	2/12/2010	
Chlorobenzene	BQL	40.0	3.28	40	2/12/2010	
Chloroethane	BQL	40.0	4.24	40	2/12/2010	
Chloroform	BQL	40.0	3.16	40	2/12/2010	
Chloromethane	BQL	40.0	5.84	40	2/12/2010	
2-Chlorotoluene	BQL	40.0	3.96	40	2/12/2010	
4-Chlorotoluene	BQL	40.0	3.20	40	2/12/2010	
Dibromochloromethane	BQL	40.0	3.60	40	2/12/2010	
1,2-Dibromo-3-chloropropane	BQL	200	48.4	40	2/12/2010	
Dibromomethane	BQL	40.0	4.52	40	2/12/2010	
1,2-Dibromoethane (EDB)	BQL	40.0	4.96	40	2/12/2010	
1,2-Dichlorobenzene	BQL	40.0	5.08	40	2/12/2010	
1,3-Dichlorobenzene	BQL	40.0	3.24	40	2/12/2010	
1,4-Dichlorobenzene	BQL	40.0	3.16	40	2/12/2010	
trans-1,4-Dichloro-2-butene	BQL	200	25.2	40	2/12/2010	
1,1-Dichloroethane	BQL	40.0	2.96	40	2/12/2010	
1,1-Dichloroethene	BQL	40.0	3.56	40	2/12/2010	
1,2-Dichloroethane	BQL	40.0	3.16	40	2/12/2010	
cis-1,2-Dichloroethene	309	40.0	2.60	40	2/12/2010	
trans-1,2-dichloroethene	11.6	40.0	3.56	40	2/12/2010	J
1,2-Dichloropropane	BQL	40.0	3.76	40	2/12/2010	
1,3-Dichloropropane	BQL	40.0	5.08	40	2/12/2010	
2,2-Dichloropropane	BQL	40.0	2.36	40	2/12/2010	
1,1-Dichloropropene	BQL	40.0	2.88	40	2/12/2010	
cis-1,3-Dichloropropene	BQL	40.0	3.04	40	2/12/2010	
trans-1,3-Dichloropropene	BQL	40.0	3.04	40	2/12/2010	
Dichlorodifluoromethane	BQL	200	3.76	40	2/12/2010	
Diisopropyl ether (DIPE)	BQL	40.0	2.92	40	2/12/2010	
Ethylbenzene	BQL	40.0	3.08	40	2/12/2010	
Hexachlorobutadiene	BQL	40.0	9.12	40	2/12/2010	
2-Hexanone	BQL	200	28.8	40	2/12/2010	
lodomethane	BQL	40.0	1.68	40	2/12/2010	
Isopropylbenzene	BQL	40.0	2.84	40	2/12/2010	
		Page 1 of 2				$\underset{8200}{\substack{\text { GCMS }}}$

Results for Volatiles by GCMS 8260

Client Sample ID: P-2D (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-3A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 13:10
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
Compound	BQL	40.0	1.92	40	$2 / 12 / 2010$
4-Isopropyltoluene	BQL	200	3.92	40	$2 / 12 / 2010$
Methylene chloride	BQL	200	22.0	40	$2 / 12 / 2010$
4-Methyl-2-pentanone	BQL	40.0	2.68	40	$2 / 12 / 2010$
Methyl-tert-butyl ether (MTBE)	BQL	40.0	5.32	40	$2 / 12 / 2010$
Naphthalene	BQL	40.0	3.20	40	$2 / 12 / 2010$
n-Propyl benzene	BQL	40.0	3.40	40	$2 / 12 / 2010$
Styrene	BQL	40.0	3.60	40	$2 / 12 / 2010$
1,1,1,2-Tetrachloroethane	BQL	40.0	4.60	40	$2 / 12 / 2010$
1,1,2,2-Tetrachloroethane	BQL	40.0	2.76	40	$2 / 12 / 2010$
Tetrachloroethene	BQL	40.0	3.04	40	$2 / 12 / 2010$
Toluene	BQL	40.0	7.60	40	$2 / 12 / 2010$
1,2,3-Trichlorobenzene	BQL	40.0	4.76	40	$2 / 12 / 2010$
1,2,4-Trichlorobenzene	940	40.0	2.16	40	$2 / 12 / 2010$
Trichloroethene	BQL	40.0	2.16	40	$2 / 12 / 2010$
1,1,1-Trichloroethane	BQL	40.0	7.28	40	$2 / 12 / 2010$
1,1,2-Trichloroethane	BQL	40.0	4.44	40	$2 / 12 / 2010$
Trichlorofluoromethane	BQL	40.0	4.80	40	$2 / 12 / 2010$
1,2,3-Trichloropropane	BQL	40.0	2.60	40	$2 / 12 / 2010$
1,2,4-Trimethylbenzene	BQL	40.0	2.96	40	$2 / 12 / 2010$
1,3,5-Trimethylbenzene	134	40.0	5.96	40	$2 / 12 / 2010$
Vinyl chloride	BQL	80.0	3.92	40	$2 / 12 / 2010$
m-,p-Xylene	BQL	40.0	2.60	40	$2 / 12 / 2010$
o-Xylene					
		Spike	Spike	Percent	
			$3 d d e d$	Result	Recovered

Flag

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad Reviewed By: \qquad
: d.

Results for Volatiles
 by GCMS 8260

Client Sample ID: OW-10D(020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-4A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 13:25
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
Acetone	BQL	25000	2180	1000	2/12/2010	
Benzene	BQL	1000	65.0	1000	2/12/2010	
Bromobenzene	BQL	1000	56.0	1000	2/12/2010	
Bromochloromethane	BQL	1000	101	1000	2/12/2010	
Bromodichloromethane	BQL	1000	76.0	1000	2/12/2010	
Bromoform	BQL	1000	120	1000	2/12/2010	
Bromomethane	BQL	1000	133	1000	2/12/2010	
2-Butanone	BQL	25000	544	1000	2/12/2010	
n-Butylbenzene	BQL	1000	109	1000	2/12/2010	
sec-Butylbenzene	BQL	1000	84.0	1000	2/12/2010	
tert-Butylbenzene	BQL	1000	50.0	1000	2/12/2010	
Carbon disulfide	BQL	1000	69.0	1000	2/12/2010	
Carbon tetrachloride	BQL	1000	87.0	1000	2/12/2010	
Chlorobenzene	BQL	1000	82.0	1000	2/12/2010	
Chloroethane	BQL	1000	106	1000	2/12/2010	
Chloroform	BQL	1000	79.0	1000	2/12/2010	
Chloromethane	BQL	1000	146	1000	2/12/2010	
2-Chlorotoluene	BQL	1000	99.0	1000	2/12/2010	
4-Chlorotoluene	BQL	1000	80.0	1000	2/12/2010	
Dibromochloromethane	BQL	1000	90.0	1000	2/12/2010	
1,2-Dibromo-3-chloropropane	BQL	5000	1210	1000	2/12/2010	
Dibromomethane	BQL	1000	113	1000	2/12/2010	
1,2-Dibromoethane (EDB)	BQL	1000	124	1000	2/12/2010	
1,2-Dichlorobenzene	BQL	1000	127	1000	2/12/2010	
1,3-Dichlorobenzene	BQL	1000	81.0	1000	2/12/2010	
1,4-Dichlorobenzene	BQL	1000	79.0	1000	2/12/2010	
trans-1,4-Dichloro-2-butene	BQL	5000	630	1000	2/12/2010	
1,1-Dichloroethane	BQL	1000	74.0	1000	2/12/2010	
1,1-Dichloroethene	BQL	1000	89.0	1000	2/12/2010	
1,2-Dichloroethane	BQL	1000	79.0	1000	2/12/2010	
cis-1,2-Dichloroethene	14900	1000	65.0	1000	2/12/2010	
trans-1,2-dichloroethene	350	1000	89.0	1000	2/12/2010	J
1,2-Dichloropropane	BQL	1000	94.0	1000	2/12/2010	
1,3-Dichloropropane	BQL	1000	127	1000	2/12/2010	
2,2-Dichloropropane	BQL	1000	59.0	1000	2/12/2010	
1,1-Dichloropropene	BQL	1000	72.0	1000	2/12/2010	
cis-1,3-Dichloropropene	BQL	1000	76.0	1000	2/12/2010	
trans-1,3-Dichloropropene	BQL	1000	76.0	1000	2/12/2010	
Dichlorodifluoromethane	BQL	5000	94.0	1000	2/12/2010	
Diisopropyl ether (DIPE)	BQL	1000	73.0	1000	2/12/2010	
Ethylbenzene	BQL	1000	77.0	1000	2/12/2010	
Hexachlorobutadiene	BQL	1000	228	1000	2/12/2010	
2-Hexanone	BQL	5000	720	1000	2/12/2010	
Iodomethane	BQL	1000	42.0	1000	2/12/2010	
Isopropylbenzene	BQL	1000	71.0	1000	2/12/2010	
		Page 1 of 2				${ }_{\substack{\text { GCMS } \\ 8260}}$

Results for Volatiles
by GCMS $\mathbf{8 2 6 0}$
Client Sample ID: OW-10D(020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-4A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 13:25
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

Comments:

Flags:

BQL = Below Quantitation Limits.
$\mathrm{J}=$ Detected below the quantitation limit.
Analyst: \qquad s. vo

Reviewed By: \qquad

Results for Volatiles
 by GCMS 8260

Client Sample ID: P-1D(020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-5A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 14:30
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
Acetone	BQL	250	21.8	10	2/12/2010
Benzene	BQL	10.0	0.650	10	2/12/2010
Bromobenzene	BQL	10.0	0.560	10	2/12/2010
Bromochloromethane	BQL	10.0	1.01	10	2/12/2010
Bromodichloromethane	BQL	10.0	0.760	10	2/12/2010
Bromoform	BQL	10.0	1.20	10	2/12/2010
Bromomethane	BQL	10.0	1.33	10	2/12/2010
2-Butanone	BQL	250	5.44	10	2/12/2010
n-Butylbenzene	BQL	10.0	1.09	10	2/12/2010
sec-Butylbenzene	BQL	10.0	0.840	10	2/12/2010
tert-Butylbenzene	BQL	10.0	0.500	10	2/12/2010
Carbon disulfide	BQL	10.0	0.690	10	2/12/2010
Carbon tetrachloride	BQL	10.0	0.870	10	2/12/2010
Chlorobenzene	BQL	10.0	0.820	10	2/12/2010
Chloroethane	BQL	10.0	1.06	10	2/12/2010
Chloroform	BQL	10.0	0.790	10	2/12/2010
Chloromethane	BQL	10.0	1.46	10	2/12/2010
2-Chlorotoluene	BQL	10.0	0.990	10	2/12/2010
4-Chlorotoluene	BQL	10.0	0.800	10	2/12/2010
Dibromochloromethane	BQL	10.0	0.900	10	2/12/2010
1,2-Dibromo-3-chloropropane	BQL	50.0	12.1	10	2/12/2010
Dibromomethane	BQL	10.0	1.13	10	2/12/2010
1,2-Dibromoethane (EDB)	BQL	10.0	1.24	10	2/12/2010
1,2-Dichlorobenzene	BQL	10.0	1.27	10	2/12/2010
1,3-Dichlorobenzene	BQL	10.0	0.810	10	2/12/2010
1,4-Dichlorobenzene	BQL	10.0	0.790	10	2/12/2010
trans-1,4-Dichloro-2-butene	BQL	50.0	6.30	10	2/12/2010
1,1-Dichloroethane	BQL	10.0	0.740	10	2/12/2010
1,1-Dichloroethene	BQL	10.0	0.890	10	2/12/2010
1,2-Dichloroethane	BQL	10.0	0.790	10	2/12/2010
cis-1,2-Dichloroethene	110	10.0	0.650	10	2/12/2010
trans-1,2-dichloroethene	BQL	10.0	0.890	10	2/12/2010
1,2-Dichloropropane	BQL	10.0	0.940	10	2/12/2010
1,3-Dichloropropane	BQL	10.0	1.27	10	2/12/2010
2,2-Dichloropropane	BQL	10.0	0.590	10	2/12/2010
1,1-Dichloropropene	BQL	10.0	0.720	10	2/12/2010
cis-1,3-Dichloropropene	BQL	10.0	0.760	10	2/12/2010
trans-1,3-Dichloropropene	BQL	10.0	0.760	10	2/12/2010
Dichlorodifluoromethane	BQL	50.0	0.940	10	2/12/2010
Diisopropyl ether (DIPE)	BQL	10.0	0.730	10	2/12/2010
Ethylbenzene	BQL	10.0	0.770	10	2/12/2010
Hexachlorobutadiene	BQL	10.0	2.28	10	2/12/2010
2-Hexanone	BQL	50.0	7.20	10	2/12/2010
lodomethane	BQL	10.0	0.420	10	2/12/2010
Isopropylbenzene	BQL	10.0	0.710	10	2/12/2010

Flag

Client Sample ID: P-1D(020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-5A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 14:30
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit	MOL $/ L$	Dilution UG/L	Date Factor	Analyzed 2/12/2010
4-lsopropyltoluene	SQL	10.0	0.480	10	10	$2 / 12 / 2010$

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad

Reviewed By: \qquad

Results for Volatiles
by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: OW-9D(020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-6A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 15:10
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL		Date Analyzed	
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
Acetone	BQL	20000	1740	800	2/12/2010	
Benzene	BQL	800	52.0	800	2/12/2010	
Bromobenzene	BQL	800	44.8	800	2/12/2010	
Bromochloromethane	BQL	800	80.8	800	2/12/2010	
Bromodichloromethane	BQL	800	60.8	800	2/12/2010	
Bromoform	BQL	800	96.0	800	2/12/2010	
Bromomethane	BQL	800	106	800	2/12/2010	
2-Butanone	BQL	20000	435	800	2/12/2010	
n-Butylbenzene	BQL	800	87.2	800	2/12/2010	
sec-Butylbenzene	BQL	800	67.2	800	2/12/2010	
tert-Butylbenzene	BQL	800	40.0	800	2/12/2010	
Carbon disulfide	BQL	800	55.2	800	2/12/2010	
Carbon tetrachloride	BQL	800	69.6	800	2/12/2010	
Chlorobenzene	BQL	800	65.6	800	2/12/2010	
Chloroethane	BQL	800	84.8	800	2/12/2010	
Chloroform	BQL	800	63.2	800	2/12/2010	
Chloromethane	BQL	800	117	800	2/12/2010	
2-Chlorotoluene	BQL	800	79.2	800	2/12/2010	
4-Chlorotoluene	BQL	800	64.0	800	2/12/2010	
Dibromochloromethane	BQL	800	72.0	800	2/12/2010	
1,2-Dibromo-3-chloropropane	BQL	4000	968	800	2/12/2010	
Dibromomethane	BQL	800	90.4	800	2/12/2010	
1,2-Dibromoethane (EDB)	BQL	800	99.2	800	2/12/2010	
1,2-Dichlorobenzene	BQL	800	102	800	2/12/2010	
1,3-Dichlorobenzene	BQL	800	64.8	800	2/12/2010	
1,4-Dichlorobenzene	BQL	800	63.2	800	2/12/2010	
trans-1,4-Dichloro-2-butene	BQL	4000	504	800	2/12/2010	
1,1-Dichloroethane	BQL	800	59.2	800	2/12/2010	
1,1-Dichloroethene	BQL	800	71.2	800	2/12/2010	
1,2-Dichloroethane	BQL	800	63.2	800	2/12/2010	
cis-1,2-Dichloroethene	5520	800	52.0	800	2/12/2010	
trans-1,2-dichloroethene	192	800	71.2	800	2/12/2010	J
1,2-Dichloropropane	BQL	800	75.2	800	2/12/2010	
1,3-Dichloropropane	BQL	800	102	800	2/12/2010	
2,2-Dichloropropane	BQL	800	47.2	800	2/12/2010	
1,1-Dichloropropene	BQL	800	57.6	800	2/12/2010	
cis-1,3-Dichloropropene	BQL	800	60.8	800	2/12/2010	
trans-1,3-Dichloropropene	BQL	800	60.8	800	2/12/2010	
Dichlorodifluoromethane	BQL	4000	75.2	800	2/12/2010	
Diisopropyl ether (DIPE)	BQL	800	58.4	800	2/12/2010	
Ethylbenzene	BQL	800	61.6	800	2/12/2010	
Hexachlorobutadiene	BQL	800	182	800	2/12/2010	
2-Hexanone	BQL	4000	576	800	2/12/2010	
lodomethane	BQL	800	33.6	800	2/12/2010	
Isopropylbenzene	BQL	800	56.8	800	2/12/2010	
		Page 1 of 2				${ }_{\substack{\text { GCMS } \\ 8260}}$

Results for Volatiles
 by GCMS 8260

Client Sample ID: OW-9D(020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-6A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 15:10
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-, p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Result	Quantitation	MDL	Dilution	Date
UG/L	Limit UG/L	UG/L	Factor	Analyzed
BQL	800	38.4	800	2/12/2010
BQL	4000	78.4	800	2/12/2010
BQL	4000	440	800	2/12/2010
BQL	800	53.6	800	2/12/2010
BQL	800	106	800	2/12/2010
BQL	800	64.0	800	2/12/2010
BQL	800	68.0	800	2/12/2010
$B Q L$	800	72.0	800	2/12/2010
BQL	800	92.0	800	2/12/2010
BQL	800	55.2	800	2/12/2010
BQL	800	60.8	800	2/12/2010
BQL	800	152	800	2/12/2010
BQL	800	95.2	800	2/12/2010
4590	800	43.2	800	2/12/2010
BQL	800	43.2	800	2/12/2010
BQL	800	146	800	2/12/2010
BQL	800	88.8	800	2/12/2010
BQL	800	96.0	800	2/12/2010
BQL	800	52.0	800	2/12/2010
BQL	800	59.2	800	2/12/2010
3280	800	119	800	2/12/2010
BQL	1600	78.4	800	2/12/2010
BQL	800	52.0	800	2/12/2010
	Spike	Spike	Percent	
	Added	Result	Recovered	
	30	33.2	111	
	30	29.9	100	
	30	28.2	94	

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analys \qquad

Results for Volatiles
 by GCMS 8260

Client Sample ID: DUP (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-9A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 0:00
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL	Dilution		
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
Acetone	BQL	25000	2180	1000	2/12/2010	
Benzene	BQL	1000	65.0	1000	2/12/2010	
Bromobenzene	BQL	1000	56.0	1000	2/12/2010	
Bromochloromethane	BQL	1000	101	1000	2/12/2010	
Bromodichloromethane	BQL	1000	76.0	1000	2/12/2010	
Bromoform	BQL	1000	120	1000	2/12/2010	
Bromomethane	BQL	1000	133	1000	2/12/2010	
2-Butanone	BQL	25000	544	1000	2/12/2010	
n-Butylbenzene	BQL	1000	109	1000	2/12/2010	
sec-Butylbenzene	BQL	1000	84.0	1000	2/12/2010	
tert-Butylbenzene	BQL	1000	50.0	1000	2/12/2010	
Carbon disulfide	BQL	1000	69.0	1000	2/12/2010	
Carbon tetrachloride	BQL	1000	87.0	1000	2/12/2010	
Chlorobenzene	BQL	1000	82.0	1000	2/12/2010	
Chloroethane	BQL	1000	106	1000	2/12/2010	
Chloroform	BQL	1000	79.0	1000	2/12/2010	
Chloromethane	BQL	1000	146	1000	2/12/2010	
2-Chlorotoluene	BQL	1000	99.0	1000	2/12/2010	
4-Chlorotoluene	BQL	1000	80.0	1000	2/12/2010	
Dibromochloromethane	BQL	1000	90.0	1000	2/12/2010	
1,2-Dibromo-3-chloropropane	BQL	5000	1210	1000	2/12/2010	
Dibromomethane	BQL	1000	113	1000	2/12/2010	
1,2-Dibromoethane (EDB)	BQL	1000	124	1000	2/12/2010	
1,2-Dichlorobenzene	BQL	1000	127	1000	2/12/2010	
1,3-Dichlorobenzene	BQL	1000	81.0	1000	2/12/2010	
1,4-Dichlorobenzene	BQL	1000	79.0	1000	2/12/2010	
trans-1,4-Dichloro-2-butene	BQL	5000	630	1000	2/12/2010	
1,1-Dichloroethane	BQL	1000	74.0	1000	2/12/2010	
1,1-Dichloroethene	BQL	1000	89.0	1000	2/12/2010	
1,2-Dichloroethane	BQL	1000	79.0	1000	2/12/2010	
cis-1,2-Dichloroethene	14400	1000	65.0	1000	2/12/2010	
trans-1,2-dichloroethene	320	1000	89.0	1000	2/12/2010	J
1,2-Dichloropropane	BQL	1000	94.0	1000	2/12/2010	
1,3-Dichloropropane	BQL	1000	127	1000	2/12/2010	
2,2-Dichloropropane	BQL	1000	59.0	1000	2/12/2010	
1,1-Dichloropropene	BQL	1000	72.0	1000	2/12/2010	
cis-1,3-Dichloropropene	BQL	1000	76.0	1000	2/12/2010	
trans-1,3-Dichloropropene	BQL	1000	76.0	1000	2/12/2010	
Dichlorodifluoromethane	BQL	5000	94.0	1000	2/12/2010	
Diisopropyl ether (DIPE)	BQL	1000	73.0	1000	2/12/2010	
Ethylbenzene	BQL	1000	77.0	1000	2/12/2010	
Hexachlorobutadiene	BQL	1000	228	1000	2/12/2010	
2-Hexanone	BQL	5000	720	1000	2/12/2010	
lodomethane	BQL	1000	42.0	1000	2/12/2010	
Isopropylbenzene	BQL	1000	71.0	1000	2/12/2010	
		Page 1 of 2				${ }_{88260}^{\text {GCMS }}$

Results for Volatiles
 by GCMS 8260

Client Sample ID: DUP (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-9A
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010 0:00
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

Comments:

Flags:
BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad Reviewed By: \qquad

Results for Volatiles
 by GCMS 8260

Client Sample ID: Trip Blank (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-10B
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
Acetone	BQL	25.0	2.18	1	2/11/2010
Benzene	BQL	1.00	0.0650	1	2/11/2010
Bromobenzene	BQL	1.00	0.0560	1	2/11/2010
Bromochloromethane	BQL	1.00	0.101	1	2/11/2010
Bromodichloromethane	BQL	1.00	0.0760	1	2/11/2010
Bromoform	BQL	1.00	0.120	1	2/11/2010
Bromomethane	BQL	1.00	0.133	1	2/11/2010
2-Butanone	BQL	25.0	0.544	1	2/11/2010
n-Butylbenzene	BQL	1.00	0.109	1	2/11/2010
sec-Butylbenzene	BQL	1.00	0.0840	1	2/11/2010
tert-Butylbenzene	BQL	1.00	0.0500	1	2/11/2010
Carbon disulfide	BQL	1.00	0.0690	1	2/11/2010
Carbon tetrachloride	BQL	1.00	0.0870	1	2/11/2010
Chlorobenzene	BQL	1.00	0.0820	1	2/11/2010
Chloroethane	BQL	1.00	0.106	1	2/11/2010
Chloroform	BQL	1.00	0.0790	1	2/11/2010
Chloromethane	BQL	1.00	0.146	1	2/11/2010
2-Chlorotoluene	BQL	1.00	0.0990	1	2/11/2010
4-Chlorotoluene	BQL	1.00	0.0800	1	2/11/2010
Dibromochloromethane	BQL	1.00	0.0900	1	2/11/2010
1,2-Dibromo-3-chloropropane	BQL	5.00	1.21	1	2/11/2010
Dibromomethane	BQL	1.00	0.113	1	2/11/2010
1,2-Dibromoethane (EDB)	BQL	1.00	0.124	1	2/11/2010
1,2-Dichlorobenzene	BQL	1.00	0.127	1	2/11/2010
1,3-Dichlorobenzene	BQL	1.00	0.0810	1	2/11/2010
1,4-Dichlorobenzene	BQL	1.00	0.0790	1	2/11/2010
trans-1,4-Dichloro-2-butene	BQL	5.00	0.630	1	2/11/2010
1,1-Dichloroethane	BQL	1.00	0.0740	1	2/11/2010
1,1-Dichloroethene	BQL	1.00	0.0890	1	2/11/2010
1,2-Dichloroethane	BQL	1.00	0.0790	1	2/11/2010
cis-1,2-Dichloroethene	BQL	1.00	0.0650	1	2/11/2010
trans-1,2-dichloroethene	BQL	1.00	0.0890	1	2/11/2010
1,2-Dichloropropane	BQL	1.00	0.0940	1	2/11/2010
1,3-Dichloropropane	BQL	1.00	0.127	1	2/11/2010
2,2-Dichloropropane	BQL	1.00	0.0590	1	2/11/2010
1,1-Dichloropropene	BQL	1.00	0.0720	1	2/11/2010
cis-1,3-Dichloropropene	BQL	1.00	0.0760		2/11/2010
trans-1,3-Dichloropropene	BQL	1.00	0.0760	1	2/11/2010
Dichlorodifluoromethane	BQL	5.00	0.0940	1	2/11/2010
Diisopropyl ether (DIPE)	BQL	1.00	0.0730	1	2/11/2010
Ethylbenzene	BQL	1.00	0.0770	1	2/11/2010
Hexachlorobutadiene	BQL	1.00	0.228	1	2/11/2010
2-Hexanone	BQL	5.00	0.720	1	2/11/2010
lodomethane	BQL	1.00	0.0420	1	2/11/2010
Isopropylbenzene	BQL	1.00	0.0710	1	2/11/2010

Analyzed
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
/11/2010
2/11/2010
/11/2010
2/11/2010
2/11/2010
2/11/2010
/11 2010
2/11/2010
/11/2010
2/11/2010
2/11 2010
2/11/2010
211 2010
2/11/2010
$1 / 2010$
2/11/2010
2/11/2010
2/11/2010
2/11/2010

Results for Volatiles
 by GCMS 8260

Client Sample ID: Trip Blank (020510)
Client Project ID: AVX Myrtle Beach, SC
Lab Sample ID: G582-638-10B
Lab Project ID: G582-638

Analyzed By: DVO
Date Collected: 2/5/2010
Date Received: 2/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result CG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed Compound
4-Isopropyltoluene	BQL	1.00	0.0480	1	$2 / 11 / 2010$
Methylene chloride	BQL	5.00	0.0980	1	$2 / 11 / 2010$
4-Methyl-2-pentanone	BQL	5.00	0.550	1	$2 / 11 / 2010$
Methyl-tert-butyl ether (MTBE)	BQL	1.00	0.0670	1	$2 / 11 / 2010$
Naphthalene	BQL	1.00	0.133	1	$2 / 11 / 2010$
n-Propyl benzene	BQL	1.00	0.0800	1	$2 / 11 / 2010$
Styrene	BQL	1.00	0.0850	1	$2 / 11 / 2010$
1,1,1,2-Tetrachloroethane	BQL	1.00	0.0900	1	$2 / 11 / 2010$
1,1,2,2-Tetrachloroethane	BQL	1.00	0.115	1	$2 / 11 / 2010$
Tetrachloroethene	BQL	1.00	0.0690	1	$2 / 11 / 2010$
Toluene	BQL	1.00	0.0760	1	$2 / 11 / 2010$
1,2,3-Trichlorobenzene	BQL	1.00	0.190	1	$2 / 11 / 2010$
1,2,4-Trichlorobenzene	BQL	1.00	0.119	1	$2 / 11 / 2010$
Trichloroethene	BQL	1.00	0.0540	1	$2 / 11 / 2010$
1,1,1-Trichloroethane	BQL	1.00	0.0540	1	$2 / 11 / 2010$
1,1,2-Trichloroethane	BQL	1.00	0.182	1	$2 / 11 / 2010$
Trichlorofluoromethane	BQL	1.00	0.111	1	$2 / 11 / 2010$
1,2,3-Trichloropropane	BQL	1.00	0.120	1	$2 / 11 / 2010$
1,2,4-Trimethylbenzene	BQL	1.00	0.0650	1	$2 / 11 / 2010$
1,3,5-Trimethylbenzene	BQL	1.00	0.0740	1	$2 / 11 / 2010$
Vinyl chloride	BQL	1.00	0.149	1	$2 / 11 / 2010$
m-,p-Xylene	BQL	2.00	0.0980	1	$2 / 11 / 2010$
o-Xylene	BQL	1.00	0.0650	1	$2 / 11 / 2010$
		Spike	Spike	Percent	
Added	Result	Recovered			
1,2-Dichloroethane-d4	10	9.5	95		
Toluene-d8		10	9.93	99	
4-Bromofluorobenzene		10	9.85	98	

Comments:

Flags:

BQL = Below Quantitation Limits.
Analyst: \qquad OVi \qquad

Results for Volatiles
 by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK3021110B Lab Project ID:

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
ci-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1, 1-Dichloropropene
cis-1,3-Dichloropropene
trans-1, -Dichloropropene
Dichloorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	25.0	2.18	1	2/11/2010
BQL	1.00	0.0650	1	2/11/2010
BQL	1.00	0.0560		2/11/2010
BQL	1.00	0.101	1	2/11/2010
BQL	1.00	0.0760	1	2/11/2010
BQL	1.00	0.120	1	2/11/2010
BQL	1.00	0.133	1	2/11/2010
BQL	25.0	0.544	1	2/11/2010
BQL	1.00	0.109	1	2/11/2010
BQL	1.00	0.0840	1	2/11/2010
BQL	1.00	0.0500	1	2/11/2010
BQL	1.00	0.0690	1	2/11/2010
BQL	1.00	0.0870	1	2/11/2010
BQL	1.00	0.0820	1	2/11/2010
BQL	1.00	0.106	1	2/11/2010
BQL	1.00	0.0790	1	2/11/2010
BQL	1.00	0.146	1	2/11/2010
BQL	1.00	0.0990	1	2/11/2010
BQL	1.00	0.0800	1	2/11/2010
BQL	1.00	0.0900	1	2/11/2010
BQL	5.00	1.21	1	2/11/2010
BQL	1.00	0.113	1	2/11/2010
BQL	1.00	0.124	1	2/11/2010
BQL	1.00	0.127	1	2/11/2010
BQL	1.00	0.0810	1	2/11/2010
BQL	1.00	0.0790	1	2/11/2010
BQL	5.00	0.630	1	2/11/2010
BQL	1.00	0.0740	1	2/11/2010
BQL	1.00	0.0890	1	2/11/2010
BQL	1.00	0.0790	1	2/11/2010
BQL	1.00	0.0650	1	2/11/2010
BQL	1.00	0.0890	1	2/11/2010
BQL	1.00	0.0940	1	2/11/2010
BQL	1.00	0.127	1	2/11/2010
BQL	1.00	0.0590	1	2/11/2010
BQL	1.00	0.0720	1	2/11/2010
BQL	1.00	0.0760	1	2/11/2010
BQL	1.00	0.0760	1	2/11/2010
BQL	5.00	0.0940	1	2/11/2010
BQL	1.00	0.0730	1	2/11/2010
BQL	1.00	0.0770	1	2/11/2010
BQL	1.00	0.228	1	2/11/2010
BQL	5.00	0.720	1	2/11/2010
BQL	1.00	0.0420	1	2/11/2010
BQL	1.00	0.0710	1	2/11/201

Flag

2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010
2/11/2010

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK3021110B Lab Project ID:

Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:

$B Q L=$ Below Quantitation Limits.
Analyst: \qquad

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$2 / 11 / 2010$
BQL	5.00	0.0980	1	$2 / 11 / 2010$
BQL	5.00	0.550	1	$2 / 11 / 2010$
BQL	1.00	0.0670	1	$2 / 11 / 2010$
BQL	1.00	0.133	1	$2 / 11 / 2010$
BQL	1.00	0.0800	1	$2 / 11 / 2010$
BQL	1.00	0.0850	1	$2 / 11 / 2010$
BQL	1.00	0.0900	1	$2 / 11 / 2010$
BQL	1.00	0.115	1	$2 / 11 / 2010$
BQL	1.00	0.0690	1	$2 / 11 / 2010$
BQL	1.00	0.0760	1	$2 / 11 / 2010$
BQL	1.00	0.190	1	$2 / 11 / 2010$
BQL	1.00	0.119	1	$2 / 11 / 2010$
BQL	1.00	0.0540	1	$2 / 11 / 2010$
BQL	1.00	0.0540	1	$2 / 11 / 2010$
BQL	1.00	0.182	1	$2 / 11 / 2010$
BQL	1.00	0.111	1	$2 / 11 / 2010$
BQL	1.00	0.120	1	$2 / 11 / 2010$
BQL	1.00	0.0650	1	$2 / 11 / 2010$
BQL	1.00	0.0740	1	$2 / 11 / 2010$
BQL	1.00	0.149	1	$2 / 11 / 2010$
BQL	2.00	0.0980	1	$2 / 11 / 2010$
BQL	1.00	0.0650	1	$2 / 11 / 2010$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.1	101	
	10	10.1	101	
	10	10.1	101	

Flag
Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

SGS North America, Inc.

SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
LCS: LCS3021110日
LCSD: LCS3021110C

COMPOUND		$\begin{gathered} \text { LCS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { LCS } \\ \text { \% } \\ \text { REC \# } \end{gathered}$		$\begin{gathered} \hline \text { LCSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { LCSD } \\ \text { \% } \\ \text { REC } \# \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
acetone	25.0	26.9	108	25.0	26.5	106	1.54	30	23.5-141
acrolein	125	164	131	125	158	127	3.41	30	31.4-182
acrylonitrile	125	122	97.9	125	121	96.6	1.37	30	64.2-140
benzene	5.00	4.91	98.2	5.00	4.94	98,8	0.609	30	76.6-120
bromobenzene	5.00	5.04	101	5.00	4.83	96.6	4.26	30	75.0-122
bromochloromethane	5.00	4.83	96.6	5.00	4.87	97.4	0.825	30	74.8-127
bromodichloromethane	5.00	4.80	96.0	5.00	4.86	97.2	1.24	30	76.4-117
bromoform	5.00	5.09	102	5.00	5.12	102	0.588	30	62.4-127
bromomethane	5.00	4.76	95,2	5.00	4.56	91.2	4.29	30	34.2-166
2-butanone	25.0	29.6	118	25.0	28.9	115	2.53	30	44.9-126
n-butylbenzene	5.00	4.91	98.2	5.00	4.90	98.0	0.204	30	72.0-122
sec-butylbenzene	5.00	4.85	97.0	5.00	4.95	99.0	2.04	30	78.3-116
tert-butylbenzene	5.00	4.76	95.2	5.00	4.78	95.6	0.419	30	53.1-148
Carbon disulfide	5.00	4.86	97.2	5.00	4.90	98.0	0.820	30	69.0-118
carbon tetrachloride	5.00	4.74	94.8	5.00	4.85	97.0	2.29	30	71.7-124
chlorobenzene	5.00	4.89	97.8	5.00	4.73	94.6	3.33	30	75.5-116
chloroethane	5.00	4.83	96.6	5.00	4.78	95.6	1.04	30	78.2-138
2-chloroethyl vinyl ether	125	126	101	125	123	98.7	2.39	30	5.57-235
chloroform	5.00	4.83	96.6	5.00	4.88	97.6	1.03	30	80.6-117
chloromethane	5.00	4.86	97.2	5.00	4.84	96.8	0.412	30	72.6-127
2-chlorotoluene	5.00	4.86	97.2	5.00	4.75	95.0	2.29	30	81.4-117
4-chlorotoluene	5.00	5.02	100	5.00	4.95	99.0	1.40	30	82.1-116
dibromochloromethane	5.00	5.14	103	5.00	4.97	99.4	3.36	30	73.1-117
1,2-dibromo-3-chloropropane	25.0	26.7	107	25.0	26.2	105	2.12	30	58.0-133
1,2-dibromoethane	5.00	5.01	100	5.00	4.98	99.6	0.601	30	75.5-118
dibromomethane	5.00	5.08	102	5.00	4.94	98.8	2.79	30	77.3-124
1,2-dichlorobenzene	5.00	4.73	94.6	5.00	4.86	97.2	2.71	30	76.3-115
1,3-dichlorobenzene	5.00	4.70	94.0	5.00	4.83	96.6	2.73	30	79.1-114
1,4-dichlorobenzene	5.00	4.67	93.4	5.00	4.70	94.0	0.640	30	76.8-115
trans-1,4-Dichloro-2-butene	25.0	25.1	100	25.0	24.9	99.5	0.960	30	52.3-130
dichlorodifluoromethane	5.00	4.67	93.4	5.00	4.67	93.4	0.00	30	69.8-134
1,1-dichloroethane	5.00	4.74	94.8	5.00	4.87	97.4	2.70	30	78.0-120
1,2-dichloroethane	5.00	4.88	97.6	5.00	4.91	98.2	0.613	30	72.8-126
1,1-dichloroethene	5.00	4.78	95.6	5.00	4.90	98.0	2.48	30	74.6-121
cis-1,2-dichloroethene	5.00	4.87	97.4	5.00	5.05	101	3.63	30	78.0-121
trans-1,2-dichloroethene	5.00	4.74	94.8	5.00	4.83	96.6	1.88	30	60.7-144
1,2-dichloropropane	5.00	4.74	94.8	5.00	4.84	96.8	2.09	30	75.8-119
1,3-dichloropropane	5.00	4.77	95.4	5.00	4.86	97.2	1.87	30	78.5-113
2,2-dichloropropane	5.00	5.09	102	5.00	5.13	103	0.783	30	75.6-130
1,1-dichloropropene	5.00	4.84	96.8	5.00	5.08	102	4.84	30	79.7-117
cis-1,3-dichloropropene	5.00	4.96	99.2	5.00	4.76	95.2	4.12	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Dilution: 1
Lab Code: NCOO919
Matrix: Water
LCS: LCS3021110B
Filename: 0211303.D
Date Analyzed: 02/11/10 09:40
LCSD: LCS3021110C
Filename: 0211305.D Date Analyzed: 02/11/10 10:41

COMPOUND	LCS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { LCS } \\ \text { \% } \\ \text { REC } \end{gathered}$	LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	$\overline{\mathrm{LCSD}}$ CONC $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { LCSD } \\ \% \\ \text { REC \# } \\ \hline \end{gathered}$	$\begin{gathered} \% \\ \text { RPD } \\ \hline \end{gathered}$	QC LIMITS	
								RPD	REC
trans-1,3-dichlofopropene	5.00	4.92	98.4	5.00	4.93	98.6	0.203	30	79.0-113
Diisopropyl ether	5.00	4.88	97.6	5.00	4.88	97.6	0.00	30	71.8-115
ethylbenzene	5.00	4.81	96.2	5.00	4.91	98.2	2.06	30	80.5-115
hexachlorobutadiene	5.00	4.84	96.8	5.00	5.32	106	9.45	30	63.3-139
2-hexanone	25.0	29.2	117	25.0	28.6	114	1.97	30	46.8-123
Iodomethane	5.00	4.52	90.4	5.00	4.41	88.2	2.46	30	29.3-156
isopropylbenzene	5.00	4.91	98.2	5.00	4.97	99.4	1.21	30	81.6-114
4-isopropyltoluene	5.00	4.98	99.6	5.00	4.94	98.8	0.806	30	78.4-119
Methyl-tert-butyl ether	5.00	4.79	95.8	5.00	4.82	96.4	0.624	30	76.0-114
methylene chloride	5.00	4.66	93.2	5.00	4.68	93.6	0.428	30	72.9-120
4-methyl-2-pentanone	25.0	24.8	99.0	25.0	23.7	94.9	4.29	30	56.2-124
naphthalene	5.00	5.34	107	5.00	5.52	110	3.31	30	24.8-182
n-propyl benzene	5.00	4.84	96.8	5.00	4.91	98.2	1.44	30	79.0-116
styrene	5.00	6.74	135*	5.00	6.97	139*	3.36	30	64.8-132
1,1,1,2-tetrachloroethane	5.00	4.80	96.0	5.00	4.93	98.6	2.67	30	78.8-118
1,1,2,2-tetrachloroethane	5.00	4.93	98.6	5.00	5.00	100	1.41	30	69.7-119
tetrachloroethene	5.00	4.73	94.6	5.00	4.74	94.8	0.211	30	55.3-144
toluene	5.00	4.92	98.4	5.00	4.92	98.4	0.00	30	78.6-117
1,2,3-trichlorobenzene	5.00	5.31	106	5.00	5.41	108	1.86	30	20.8-193
1,2,4-trichlorobenzene	5.00	5.08	102	5.00	5.08	102	0.00	30	47.9-150
1,1,1-trichloroethane	5.00	4.72	94.4	5.00	4.82	96.4	2.10	30	78.8-120
1,1,2-trichloroethane	5.00	5.10	102	5.00	4.81	96.2	5.85	30	73.6-117
trichloroethene	5.00	4.77	95.4	5.00	4.85	97.0	1.66	30	80.1-116
trichlorofluoromethane	5.00	4.76	95.2	5.00	4.85	97.0	1.87	30	80.5-130
1,2,3-trichloropropane	5.00	5.08	102	5.00	4.87	97.4	4.22	30	35.6-152
1,2,4-trimethylbenzene	5.00	4.77	95.4	5.00	4.72	94.4	1.05	30	77.0-116
1,3,5-trimethylbenzene	5.00	4.89	97.8	5.00	4.98	99.6	1.82	30	79.4-114
Vinyl acetate	12.5	11.8	94.2	12.5	11.7	93.9	0.340	30	60.7-127
vinyl chloride	5.00	4.78	95.6	5.00	4.76	95.2	0.419	30	77.5-126
m/p-xylene	10.0	9.85	98.5	10.0	9.94	99.4	0.910	30	82.9-112
o-xylene	5.00	4.82	96.4	5.00	4.91	98.2	1.85	30	81.3-113
System Monitoring Compound Results	LCS	LCS	LCS	LCSD	LCSD	LCSD			QC LIMITS
	$\begin{aligned} & \text { SPIKE } \\ & (\mu \mathrm{g} / \mathrm{L}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \% \\ \text { REC \# } \end{gathered}$	$\begin{aligned} & \text { SPIKE } \\ & (\mu \mathrm{g} / \mathrm{L}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	REC \#			
460-00-4 ${ }^{\text {4-Bromofluorobenzene }}$	10	10.35	104	10	10.18	102			84.7-115
17060-07-0 1,2 -Dichloroethane-d4	10	10.34	103	10	10.23	102			63.5-140
2037-26-5 Toluene-d8	10	10.01	100	10	10.04	100			$81.8-117$

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

LCS Spike Recovery: 1 failure (a) out of 72. LCSD Spike Recovery: 1 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS: \qquad
\qquad

Analyst: $\quad \mathrm{DV}$ Reviewed by: \qquad

SGS North America, Inc.

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC Iimits

COMMENTS : \qquad

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

COMPOUND	SAMPLE CONC ($\mu \mathrm{g} / \mathrm{L}$)							$\stackrel{\%}{\%}$	QC LIMITS	
									RPD	REC
trans-1,3-dichloropropene	BQL	4000	3770	90.4	4000	3780	90, 8	0.442	30	44.7-144
Diisopropyl ether	BQL	4000	4030	101	4000	3980	99.4	1.40	30	79.4-122
ethylbenzene	BQL	4000	3840	96.0	4000	3820	95.4	0.627	30	73.8-126
hexachlorobutadiene	BQL	4000	3830	95.8	4000	3860	96.6	0.832	30	51.8-134
2-hexanone	BQL	20000	17800	88.8	20000	17900	89.5	0.763	30	41.6-111
Iodomethane	BQL	4000	3380	84.6	4000	3310	82.8	2.15	30	40.6-126
isopropylbenzene	BQL	4000	3900	97.6	4000	3880	97.0	0.617	30	74,3-123
4-isopropyltoluene	BQL	4000	3880	97.0	4000	3910	97.8	0.821	30	74.6-122
Methyl-tert-butyl ether	BQL	4000	4000	100	4000	3900	97.6	2.43	30	66.5-136
methylene chloride	4620	4000	7380	69.2	4000	6410	44.8*	42.8*	30	48.6-155
4-methyl-2-pentanone	BQL	20000	19600	98.0	20000	19400	97.0	2.03	30	6.88-166
naphthalene	BQL	4000	3640	91.0	4000	4100	103	12.0	30	55.1-140
n-propyl benzene	BQL	4000	3810	95.2	4000	3940	98.4	3.30	30	71.6-128
styrene	BQL	4000	5440	136*	4000	5330	133*	2.08	30	73.2-123
1,1,1,2-tetrachloroethane	BQL	4000	3780	94.6	4000	3660	91.4	3.44	30	69.4-120
1,1,2,2-tetrachloroethane	BQL	4000	3790	94.8	4000	3910	97.8	3.12	30	75.7-136
tetrachloroethene	BQL	4000	3570	89.2	4000	3650	91.2	2.22	30	45.8-153
toluene	BQL	4000	4020	100	4000	3980	99.4	1.00	30	66.4-128
1,2,3-trichlorobenzene	BQL	4000	3750	93.8	4000	4020	100	6.80	30	61.0-126
1,2,4-trichlorobenzene	BQL	4000	3710	92.8	4000	3980	99.4	6.87	30	60.6-125
1,1,1-trichloroethane	BQL	4000	3820	95.4	4000	3820	95.6	0.209	30	78.4-121
1,1,2-trichloroethane	BQL	4000	3800	95.0	4000	3820	95.4	0.420	30	64.8-128
trichloroethene	4300	4000	8240	98.6	4000	8140	96.2	2.46	30	84.9-136
trichlorofluoromethane	BQL	4000	3560	89.0	4000	3660	91.4	2.66	30	$76.8 \cdot 132$
1,2,3-trichloropropane	3750	4000	3740	-0.200*	4000	3720	-0.800*	120*	30	10.0-218
1,2,4-trimethylbenzene	BQL	4000	3630	90.8	4000	3730	93.2	2.61	30	31.0-172
1,3,5-trimethylbenzene	BQL	4000	3810	95.2	4000	3870	96.8	1.67	30	67.7-132
Vinyl acetate	BQL	10000	9750	97.5	10000	9530	95.3	2.32	30	0.00-355
vinyl chloride	2830	4000	6530	92.4	4000	6370	88.4	4.42	30	68.1-137
m/p-xylene	BQL	8000	7690	96.1	8000	7690	96.1	0.00	30	79,8-118
o-xylene	BQL	4000	3900	97.6	4000	3870	96.8	0.823	30	80.0-121

System Monitoring Compound Results		$\begin{gathered} M S \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	MS \% REC \#	$\begin{gathered} \text { MSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / L) \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { q. } \\ \text { REC } \end{gathered}$	QC LIMITS REC
460-00-4	4-Bromofluorobenzene	10	10.24	102	10	10.11	101	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	10.58	106	10	10.36	104	63.5-140
2037-26-5	Toluene-d8	10	10.19	102	10	10.32	103	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 3 failure (s) out of 72. MSD Spike Recovery: 4 failure(s) out of 72.
RPD: 2 out of 72 outaide of limits
COMMENTS: \qquad

Analyst: \quad DVO Reviewed by: \qquad
page 2 of 2

Results for Volatiles
 by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK8021210B
Lab Project ID:

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
Acetone	BQL	25.0	2.18	1	2/12/2010	
Benzene	BQL	1.00	0.0650	1	2/12/2010	
Bromobenzene	BQL	1.00	0.0560	1	2/12/2010	
Bromochloromethane	BQL	1.00	0.101	1	2/12/2010	
Bromodichloromethane	BQL	1.00	0.0760	1.	2/12/2010	
Bromoform	BQL	1.00	0.120	1	2/12/2010	
Bromomethane	BQL	1.00	0.133	1	2/12/2010	
2-Butanone	BQL	25.0	0.544	1	2/12/2010	
n-Butylbenzene	BQL	1.00	0.109	1	2/12/2010	
sec-Butylbenzene	BQL	1.00	0.0840	1	2/12/2010	
tert-Butylbenzene	BQL	1.00	0.0500	1	2/12/2010	
Carbon disulfide	BQL	1.00	0.0690	1	2/12/2010	
Carbon tetrachloride	BQL	1.00	0.0870	1	2/12/2010	
Chlorobenzene	BQL	1.00	0.0820	1	2/12/2010	
Chloroethane	BQL	1.00	0.106	1	2/12/2010	
Chloroform	BQL	1.00	0.0790	1	2/12/2010	
Chloromethane	BQL	1.00	0.146	1	2/12/2010	
2-Chlorotoluene	BQL	1.00	0.0990	1	2/12/2010	
4-Chlorotoluene	BQL	1.00	0.0800	1	2/12/2010	
Dibromochloromethane	BQL	1.00	0.0900	1	2/12/2010	
1,2-Dibromo-3-chloropropane	BQL	5.00	1.21	1	2/12/2010	
Dibromomethane	BQL	1.00	0.113	1	2/12/2010	
1,2-Dibromoethane (EDB)	BQL	1.00	0.124	1	2/12/2010	
1,2-Dichlorobenzene	BQL	1.00	0.127	1	2/12/2010	
1,3-Dichlorobenzene	BQL	1.00	0.0810	1	2/12/2010	
1,4-Dichlorobenzene	BQL	1.00	0.0790	1	2/12/2010	
trans-1,4-Dichloro-2-butene	BQL	5.00	0.630	1	2/12/2010	
1,1-Dichloroethane	BQL	1.00	0.0740	1	2/12/2010	
1,1-Dichloroethene	BQL	1.00	0.0890	1	2/12/2010	
1,2-Dichloroethane	BQL	1.00	0.0790	1	2/12/2010	
cis-1,2-Dichloroethene	BQL	1.00	0.0650	1	2/12/2010	
trans-1,2-dichloroethene	BQL	1.00	0.0890	1	2/12/2010	
1,2-Dichloropropane	BQL	1.00	0.0940	1	2/12/2010	
1,3-Dichloropropane	BQL	1.00	0.127	1	2/12/2010	
2,2-Dichloropropane	BQL	1.00	0.0590	1	2/12/2010	
1,1-Dichloropropene	BQL	1.00	0.0720	1	2/12/2010	
cis-1,3-Dichloropropene	BQL	1.00	0.0760	1	2/12/2010	
trans-1,3-Dichloropropene	BQL	1.00	0.0760	1	2/12/2010	
Dichlorodifluoromethane	BQL	5.00	0.0940	1	2/12/2010	
Diisopropyl ether (DIPE)	BQL	1.00	0.0730	1	2/12/2010	
Ethylbenzene	BQL	1.00	0.0770	1	2/12/2010	
Hexachlorobutadiene	BQL	1.00	0.228	1	2/12/2010	
2 -Hexanone	BQL	5.00	0.720	1	2/12/2010	
lodomethane	BQL	1.00	0.0420	1	2/12/2010	
Isopropylbenzene	BQL	1.00	0.0710	1	2/12/2010	
		Page 1 of 2				$\underset{8260}{\substack{\text { Gcms }}}$

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK8021210B Lab Project ID:

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Result UG/L	Quantitation Limit UG/L	BDL UG/L	Dilution Factor	Date Analyzed	Flag
SQL	1.00	0.0480	1	$2 / 12 / 2010$	
SQL	5.00	0.0980	1	$2 / 12 / 2010$	
SQL	5.00	0.560	1	$2 / 122010$	
QL	1.00	0.0670	1	$2 / 1212010$	
SQL	1.00	0.133	1	$2 / 12 / 2010$	
QL	1.00	0.0800	1	$2 / 12 / 2010$	
QL	1.00	0.0850	1	$2 / 12 / 2010$	
SQL	1.00	0.0900	1	$2 / 12 / 2010$	
SQL	1.00	0.115	1	$2 / 12 / 2010$	
SQL	1.00	0.0690	1	$2 / 12 / 2010$	
SQL	1.00	0.0760	1	$2 / 12 / 2010$	
SQL	1.00	0.190	1	$2 / 12 / 2010$	
SQL	1.00	0.119	1	$2 / 12 / 2010$	
SQL	1.00	0.0540	1	$2 / 12 / 2010$	
SQL	1.00	0.0540	1	$2 / 12 / 2010$	
SQL	1.00	0.182	1	$2 / 12 / 2010$	
SQL	1.00	0.111	1	$2 / 12 / 2010$	
SQL	1.00	0.120	1	$2 / 12 / 2010$	
SQL	1.00	0.0650	1	$2 / 12 / 2010$	
SQL	1.00	0.0740	1	$2 / 12 / 2010$	
SQL	1.00	0.149	1	$2 / 12 / 2010$	
SQL	2.00	0.0980	1	$2 / 12 / 2010$	
SQL	1.00	0.0650	1	$2 / 12 / 2010$	
	Spike	Spike	Percent		
	Added	Result	Recovered		
	30	32.1	107		

Comments:

Flags:
$B Q L=$ Below Quantitation Limits.

Reviewed By: \qquad

SGS North America, Inc.
SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
Dilution: 1

LCS: LCS8021210A
LCSD: LCS8021210B
Filename: 0212803.D
Filename: 0212804.D

Matrix: Water
Date Analyzed: 02/12/10 13:47
Date Analyzed; 02/12/10 14:13

COMPOUND				LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { LCSD } \\ \% \\ \text { REC \# } \\ \hline \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
acetone	25.0	27.2	109	25.0	28.2	113	3.72	30	23.5-141
acrolein	125	127	102	125	134	107	5.31	30	31.4-182
acrylonitrile	125	124	98.9	125	129	103	4.33	30	64.2-140
benzene	5.00	5.08	102	5.00	5.10	102	0.00	30	76.6-120
bromobenzene	5.00	5.09	102	5.00	5.18	104	1.75	30	75.0-122
bromochloromethane	5.00	5.17	103	5.00	4.93	98.6	4.75	30	74.8-127
bromodichloromethane	5.00	4.82	96.4	5.00	5.21	104	7.78	30	76.4-117
bromoform	5.00	5.77	115	5.00	5.64	113	2.28	30	62.4-127
bromomethane	5.00	5.97	119	5.00	5.86	117	1.86	30	34.2-166
2-butanone	25.0	26.9	108	25,0	27.6	110	2.53	30	44.9-126
n-butylbenzene	5.00	5.13	103	5.00	5.14	103	0.195	30	72.0-122
sec-butylbenzene	5.00	5.06	101	5.00	5.20	104	2.73	30	78.3-116
tert-butylbenzene	5.00	4.93	98.6	5.00	5.10	102	3.39	30	53.1-148
Carbon disulfide	5.00	5.15	103	5.00	4.94	98.8	4.16	30	69.0-118
carbon tetrachloride	5.00	5.63	113	5.00	5.47	109	2.88	30	71.7-124
chlorobenzene	5.00	4.77	95.4	5.00	4.96	99.2	3.90	30	75.5-116
chloroethane	5.00	5.26	105	5.00	5.72	114	8.38	30	78.2-138
2-chloroethyl vinyl ether	125	126	101	125	132	106	4.82	30	5.57-235
chloroform	5.00	5.22	104	5.00	5.22	104	0.00	30	80.6-117
chloromethane	5.00	5.27	105	5.00	5.39	108	2.25	30	72.6-127
2-chlorotoluene	5.00	5.00	100	5.00	5.19	104	3.73	30	81,4-117
4-chlorotoluene	5.00	4.84	96.8	5.00	5.13	103	5.82	30	82.1-116
dibromochloromethane	5.00	5.22	104	5.00	5.42	108	3.76	30	73.1-117
1,2-dibromo-3-chloropropane	25.0	27.5	110	25.0	27.4	110	0.546	30	58.0-133
1,2-dibromoethane	5.00	4.99	99.8	5.00	5.27	105	5.46	30	75.5-118
dibromomethane	5.00	5.00	100	5.00	4.92	98.4	1.61	30	77.3-124
1,2-dichlorobenzene	5.00	4.84	96.8	5.00	5.08	102	4.84	30	76.3-175
1,3-dichlorobenzene	5.00	4.72	94.4	5.00	4.98	99.6	5.36	30	79.1-114
1,4-dichlorobenzene	5.00	4.75	95.0	5.00	4.95	99.0	4.12	30	76.8-115
trans-1,4-Dichloro-2-butene	25.0	26.7	107	25.0	27.2	109	2.04	30	52.3-130
dichlorodifluoromethane	5.00	5.20	104	5.00	5.52	110	5.97	30	69.8-134
1,1-dichloroethane	5.00	4.93	98.6	5.00	5.10	102	3.39	30	78.0-120
1,2-dichloroethane	5.00	5.02	100	5.00	5.20	104	3.52	30	72.8-126
1,1-dichloroethene	5.00	5.26	105	5.00	4.95	99.0	5.88	30	74.6-121
cis-1,2-dichloroethene	5.00	4.03	80.6	5.00	4.17	83.4	3.41	30	78.0-121
trans-1,2-dichloroethene	5.00	4.98	99.6	5.00	4.93	98.6	1.01	30	60, 7-144
1,2-dichloropropane	5.00	4.79	95.8	5.00	5.00	100	4.29	30	75.8-119
1,3-dichloropropane	5.00	5.11	102	5.00	5.25	105	2.70	30	78.5-113
2,2-dichloropropane	5.00	5.67	113	5.00	5.73	114	1.05	30	75.6-130
1,1-dichloropropene	5.00	5.08	102	5.00	5.02	100	1.19	30	79.7-117
cis-1,3-dichloropropene	5.00	5.11	102	5.00	5.08	102	0.589	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS : \qquad

SGS North America, Inc.
SGS Environmental Sevices
LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
Dilution: 1

LCS: LCS8021210A
LCSD: LCS8021210B

Filename: 0212803.D
Filename: 0212804.D

Matrix: Water
Date Analyzed: 02/12/10 13:47
Date Analyzed: 02/12/10 14:13

COMPOUND	$\begin{gathered} \text { LCS } \\ \text { SPIKE } \end{gathered}$	LCS CONC	$\begin{gathered} \text { LCS } \\ \% \end{gathered}$	$\begin{aligned} & \text { LCSD } \\ & \text { SPIKE } \end{aligned}$	$\begin{aligned} & \text { LCSD } \\ & \text { CONC } \end{aligned}$	$\begin{gathered} \text { LCSD } \\ q \end{gathered}$	$\begin{gathered} \frac{\%}{8} \\ \text { RPD } \end{gathered}$	QC LIMITS	
	($\mu \mathrm{g} / \mathrm{L}$)	($\mu \mathrm{g} / \mathrm{L}$)	REC \#	($\mu \mathrm{g} / \mathrm{L}$)	($\mu \mathrm{g} / \mathrm{L}$)	REC \#		RPD	REC
trans-1,3-dichloropropene	5.00	5.11	102	5.00	5.18	104	1.36	30	79.0-113
Diisopropyl ether	5.00	4.92	98.4	5.00	5.10	102	3.59	30	71.8-115
ethylbenzene	5.00	4.86	97.2	5.00	5.09	102	4.62	30	80.5-115
hexachlorobutadiene	5.00	5.47	109	5.00	5.45	109	0.366	30	63.3-139
2-hexanone	25.0	26.3	105	25.0	28.2	113	6.83	30	46.8-123
Iodomethane	5.00	7.13	143	5.00	7.16	143	0.420	30	29.3-156
isopropylbenzene	5.00	4.92	98.4	5.00	5.17	103	4.96	30	81.6-114
A-isopropyltoluene	5.00	5.14	103	5.00	5.26	105	2.31	30	78.4-119
Methyl-tert-butyl ether	5.00	4.99	99.8	5.00	5.00	100	0.200	30	76.0-114
methylene chloride	5.00	5.08	102	5.00	4.98	99.6	1.99	30	72.9-120
4-methyl-2-pentanone	25.0	25.4	102	25.0	25.9	104	2.03	30	56.2-124
naphthalene	5.00	5.06	101	5.00	4.68	93.6	7.80	30	24.8-182
n-propyl benzene	5.00	4.95	99.0	5.00	5.12	102	3.38	30	79.0-116
styrene	5.00	7.12	142*	5.00	7.60	152*	5.52	30	64,8-132
1, 1, 1, 2-tetrachloroethane	5.00	5.45	109	5.00	5.54	111	1.64	30	78.8-118
1,1,2,2-tetrachloroethane	5.00	4.91	98.2	5.00	5.38	108	9.14	30	69.7-119
tetrachloroethene	5.00	5.01	100	5.00	5.14	103	2.56	30	55.3-144
toluene	5.00	4.93	98.6	5.00	5.08	102	3.39	30	78.6-117
1,2,3-trichlorobenzene	5.00	5.42	108	5.00	5.29	106	2.43	30	20.8-193
1,2,4-trichlorobenzene	5.00	5.00	100	5.00	5.05	101	0.995	30	47.9-150
1, 1, 1-trichloroethane	5.00	5.13	103	5.00	5.07	101	1.18	30	78.8-120
1,1,2-trichloroethane	5.00	5.20	104	5.00	5.28	106	1.53	30	73.6-117
trichloroethene	5.00	5.01	100	5.00	5.00	100	0.00	30	80.1-116
trichlorofluoromethane	5.00	4.83	96.6	5.00	5.02	100	3.86	30	80.5-130
1,2,3-trichloropropane	5.00	4.97	99.4	5.00	5.21	104	4.72	30	35.6-152
1,2,4-trimethylbenzene	5.00	4.83	96.6	5.00	5.03	101	4.06	30	77.0-116
1,3,5-trimethylbenzene	5.00	4.99	99.8	5.00	5.27	105	5.46	30	79.4-114
Vinyl acetate	12.5	10.6	84.5	12.5	10.4	83.5	1.14	30	60.7-127
vinyl chloride	5.00	5.07	101	5.00	5.33	107	5.00	30	77.5-126
m/p-xylene	10.0	9.80	98.0	10.0	10.3	103	5.17	30	82.9-112
o-xylene	5.00	4.86	97.2	5.00	5.20	104	6.76	30	81.3-113

System Monitoring Compound Resulta			$\begin{gathered} \text { LCS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LCS } \\ \text { \% } \\ \text { REC \# } \\ \hline \end{gathered}$			$\begin{gathered} \text { LCSD } \\ \text { \% } \\ \text { REC } \end{gathered}$	$\begin{gathered} \text { QC LIMITS } \\ \text { REC } \end{gathered}$
460-00-4	4-Bromofluorobenzene	30	30.57	102	30	30.66	102	84.7-115
17060-07-0	1,2-Dichloroethane-d4	30	30.05	100	30	30.04	100	63.5-140
2037-26-5	Toluene-d8	30	30.26	101	30	29.87	99.6	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of oc limits

LCS Spike Recovery: 1 failure (s) out of 72. LCSD Spike Recovery: 1 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS: \qquad

Analyst: DVO
Reviewed by: \qquad

SGS North America, Inc.
SGS Environmental Services
$3 A$
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATR RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
Inst: MSD8
EPA Sample No.: Amt. Filenames: Analysis Dates: Batch: 8021210

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: g582-638-6a, g582-638-7a, g582-638-8a
Filenames: 0212819.D, 0212820.D, 0212821.D

Inst: MSD8

Batch: 8021210
Dilution: 800
Matrix: Water

COMPOUND	$\begin{aligned} & \text { SAMPLE } \\ & \text { CONC } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$	MSSPIKE$(\mu \mathrm{g} / \mathrm{L})$	MSCONC$(\mu \mathrm{g} / \mathrm{L})$			$\begin{gathered} \text { MSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	MSD$\%$REC \#	$\begin{gathered} f \\ \text { RPD } \end{gathered}$	QC LIMITS	
									RPD	REC
trans-1,3-dichloropropene	BQL	4000	3700	92.4	4000	4000	100	7.90	30	44.7-144
Diisopropyl ether	BQL	4000	4090	102	4000	4230	106	3.46	30	79.4-122
ethylbenzene	BQL	4000	3780	94.4	4000	4060	102	7.35	30	73.8-126
hexachlorobutadiene	BQL	4000	3780	94.6	4000	4080	102	7.53	30	51.8-134
2-hexanone	BQL	20000	20200	101	20000	20000	99.8	1.16	30	41.6-111
Iodomethane	BQL	4000	5010	125	4000	5490	137*	9.15	30	40.6-126
isopropylbenzene	BQL	4000	3860	96.4	4000	3980	99.6	3.26	30	74.3-123
4-isopropyltoluene	BQL	4000	3940	98.6	4000	4100	102	3.78	30	74.6-122
Methyl-tert-butyl ether	BQL	4000	4100	103	4000	4140	103	0.777	30	66.5-136
methylene chloride	BQL	4000	4080	102	4000	4360	109	6.64	30	48.6-155
4-methyl-2-pentanone	BQL	20000	20700	103	20000	20900	104	1.15	30	6.88-166
naphthalene	BQL	4000	3210	80.2	4000	3360	84.0	4.63	30	55.1-140
n-propyl benzene	BQL	4000	3950	98.8	4000	3970	99.2	0.404	30	71.6-128
styrene	BQL	4000	5540	138*	4000	5770	144*	3.95	30	73.2-123
1,1,1,2-tetrachloroethane	BQL	4000	3890	97.2	4000	4120	103	5.79	30	69.4-120
1,1,2,2-tetrachloroethane	BQL	4000	4080	102	4000	3970	99.2	2.78	30	75.7-136
tetrachloroethene	BQL	4000	4030	101	4000	4050	101	0.396	30	45.8-153
toluene	BQL	4000	4130	103	4000	4240	106	2.68	30	66.4-128
1,2,3-trichlorobenzene	BQL	4000	3700	92.4	4000	3770	94.2	1.93	30	61.0-126
1,2,4-trichlorobenzene	BQL	4000	3440	86.0	4000	3760	94.0	8.89	30	60.6-125
1,1.1-trichloroethane	BQL	4000	4100	103	4000	4310	108	4.94	30	78.4-121
1,1,2-trichloroethane	BQL	4000	4340	108	4000	4370	109	0.735	30	64.8-128
trichloroethene	4590	4000	8900	108	4000	9220	116	7.17	30	84.9-136
trichlorofluoromethane	BQL	4000	4100	102	4000	4150	104	1.36	30	76.8-132
1,2,3-trichloropropane	BQL	4000	4220	105	4000	4270	107	1.32	30	10.0-218
1,2,4-trimethylbenzene	BQL	4000	3850	96.2	4000	3900	97.6	1.44	30	31.0-172
1,3,5-trimethylbenzene	BQL	4000	4000	100	4000	4100	102	2.37	30	67.7-132
Vinyl acetate	BQL	10000	8320	83.2	10000	8640	86.4	3.77	30	0.00-355
vinyl chloride	3280	4000	7480	105	4000	7790	113	7.16	30	68.1-137
m/p-xylene	BQL	8000	7830	97.9	8000	8220	103	4.88	30	79.8-118
o-xylene	BQL	4000	3800	95.0	4000	3940	98.6	3.72	30	80.0-121

System Monitoring Compound Reaults		$\begin{gathered} \text { MS } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { CONC } \\ (\mathrm{\mu g} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { REC \# } \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { \% } \\ \text { REC \# } \end{gathered}$	$\begin{aligned} & \text { QC LIMITS } \\ & \text { REC } \end{aligned}$
460-00-4	4-Bromofluorobenzene	30	30.5	102	30	29.71	99.0	84.7-115
17060-07-0	1,2-Dichloroethane-d4	30	32.18	107	30	32.14	107	63.5-140
2037-26-5	Toluene-d8	30	31.38	105	30	31.39	105	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 3 failure (s) out of 72. MSD Spike Recovery: 4 failure (s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS:

Analyst:

Reviewed by \qquad
SGS North America, Inc.
Chain of custody record SGS North America Inc.
$\begin{array}{ll}\text { Locations Nationwide } \\ \text { - Alaska Maryland } \\ & \text { - New York }\end{array}$
Locations Nationwide
 2
SGS North America Inc

Client Name: Arcadis
Contact: Mark Banish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 12
Lab Proj\#: P1002171
Report Date: 02/22/10
Client Pro Name: B0007393.0000.00006
Client Prof \#: AVXMB

Laboratory Results

Total pages in data package: \qquad

Lab Sample \#	Client Sample ID
P1002171-01	P-1D
P1002171-02	P-2D
P1002171-03	P-3D
P1002171-04	IW-2D
P1002171-05	IW-4D
P1002171-06	OW-10D
P1002171-07	OW-9D
P1002171-08	OW-8D
P1002171-09	OW-7D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.
Approved By:

Date: \qquad
Project Manager: \quad Debbie Hall
The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.

As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description P-1D	Matrix Water	Lab Sample \# P1002171-01			Sampled Date/Time 16 Feb. $1012 \cdot 35$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		13.0	5.0	mg/L	9060	2/19/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-2D }}$	Matrix Water	Lab Sample \# P1002171-02			Sampled Date/Time 16 Feb 10 12:52	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		3600.0	500.0	mg/L	9060	2/19/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix Water	Lab Sample \# P1002171-03			Sampled Date/Time	$\frac{\text { Received }}{17 \text { Feb. } 10 \quad 11: 05}$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		9.6	5.0	mg/L	9060	2/19/10	md

Client Name: Arcadis Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { IW-2D }}$	Matrix Water	Lab Sample \# P1002171-04			$\frac{\text { Sampled Date/Time }}{16 \text { Feb. } 10 \quad 13: 35}$	Received		
					17 Feb.			
Analyte(s)	Flag	Result	PQL	Units		Method \#	Analysis Date	By
WetChem N Total Organic Carbon		2600.0	500.0	mg/L	9060	2/19/10	md	

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{1 W-4 D}$	Matrix Water	Lab Sample \# P1002171-05			Sampled Date/Time 16 Feb. 10 13:43	$\frac{\text { Received }}{17 \text { Feb. } 10 \quad 11: 05}$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		7800.0	1000.0	mg / L	9060	2/20/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-10D	Matrix Water	Lab Sample \# P1002171-06			Sampled Date/Time 16 Feb. 10 13:47	Received 17 Feb. 10 11:05	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		5.1	5.0	mg/L	9060	2/20/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 8 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-9D	Matrix Water	Lab Sample \# P1002171-07			Sampled Date/Time 16 Feb. $1013: 54$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
Wetchem N Total Organic Carbon		70.0	10.0	mg / L	9060	2/20/10	md

Client Name: Arcadis Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-7D }}$	Matrix Water	Lab Sample \# P1002171-09			Sampled Date/Time 16 Feb. 10 14:06	Received 17 Feb. 10 11:05	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		130.0	25.0	mg/L	9060	2/20/10	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M100220001-MB

	Result		TrueSpikeConc.	$\underline{R D L}$	\%Recovery	Ctl Limits	
Total Organic Carbon M100220001-LCS	1.0	mg / L		5.0		- NA	
				Result		TrueSpikeConc.	
Total Organic Carbon	37.0	mg / L	36.00		103.00	$70-130$	

P1002171-01A-DUP

Total Organic Carbon
P1002171-01A-MS

	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Total Organic Carbon	62.0	mg / L	50.00		98.00	$70-130$

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 12 of 12
Lab Proj \#: P1002171
Report Date: 02/22/10
Client Proj Name: B0007393.0000.00006 Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M100221001-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Total Organic Carbon	<5.0	mg / L	5.0		- NA	
M100221001-LCS						

	Result		TrueSpikeConc.	\%Recovery	Cti Limits
Total Organic Carbon	37.0	mg / L	36.00	103.00	70-130

P1002174-01A-DUP

	Result		TrueSpikeConc.	\%Recovery	CtI Limits	RPD	RPD Ctl Limits
Total Organic Carbon	5.4	mg / L			- NA	1.87	0-20
P1002174-01A-MS							
	Result		TrueSpikeConc.	\%Recovery	CtI Limits		
Total Organic Carbon	55.0	mg / L	50.00	99.00	70-130		

Phone (42)826-5245
C2489Z8(Zl)
Microsecps Inc 220 Wiliampiti Way PittsburgheA 5238

$A R C A D I S$

Company :
Co. Address : $724-742.9180$
Fax\#: 724-742-9189
Microseeps
COC cont. \#
.

AVX/B00073930000.00006 Alydhy
Sampler's signature :
: лә6еuew 'fodd
Phone \#:
qunn/əulen 'fo.dd
dorowes

Client Name: Arcadis

Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 13
Lab Pro \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Pro \#: AVXMB

Laboratory Results

Total pages in data package: \qquad

Lab Sample \#	Client Sample ID
	WELL IW-2D
P1003072-02	WELL IW-4D
P1003072-03	WELL OW-7D
P1003072-04	WELL OW-8D
P1003072-05	WELL OW-9D
P1003072-06	WELL OW-10D
P1003072-07	WELL P-1D
P1003072-08	WELL P-2D
P1003072-09	WELL P-3D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

\qquad
$3 \cdot 17 \cdot 10$
Project Manager: Debbie Hello

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1003072-01			Sampled Date/Time	Received	
WELL IW-2D	Water				04 Mar. 10 9:45	08 Mar.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		1500.0	250.0	mg/L	9060	3/10/10	md

Client Name:	Arcadis
Contact:	Mark Hanish
Address:	310 Seven Fields Blvd.
	Suite 210
	Seven Fields, PA 16046

Page: Page 3 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description WFII IW-4D	$\frac{\text { Matrix }}{\text { Water }}$	Lab Sample \# P1003072-02			Sampled Date/Time	Received	
	Water				04 Mar. 10 10:40	08 Mar.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		6300.0	1000.0	mg / L	9060	3/11/10	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1003072-03			$\frac{\text { Sampled Date/Time }}{04 \text { Mar. } 10 \quad 11: 25}$	Received			
WELL OW-7D	Water					08 Mar .			
Analyte(s)	Flag	Result	PQL	Units		Method \#	Analysi	is Date	By
WetChem N Total Organic Carbon		52.0	5.0	mg/L	9060	3/10/10		md	

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description WELL OW-8D	Matrix Water	Lab Sample \# P1003072-04			Sampled Date/ 04 Mar. 10 12	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		2000.0	500.0	mg / L	9060	3/10/10	md
RiskAnalysis N Ethane		1.800	0.025	ug/L	AM20GAX	3/16/10	rw
N Ethene		140.000	0.025	$u g / L$	AM20GAX	3/16/10	TW
N Methane		5700.000	0.100	ug / L	AM20GAX	3/16/10	nw

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description WELL OW-10D	Matrix Water	Lab Sample \# P1003072-06			Sampled Date/Time 04 Mar. 10 15:35	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		8.3	5.0	mg/L	9060	3/11/10	md
RiskAnalysis N Ethane		0.620	0.025	ug/L	AM20GAX	3/16/10	rw
N Ethene		11.000	0.025	ug/L	AM20GAX	3/16/10	IW
N Methane		240.000	0.100	ug/L	AM20GAX	3/16/10	rw

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 11 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M100311020-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctt Limits		
Total Organic Carbon	<5.0	mg / L		5.0		- NA		
M100311020-LCS								
	Result		TrueSpikeConc.		\%Recovery	Ctt Limits		
Total Organic Carbon	35.0	mg / L	36.00		97.00	70-130		
P1003072-05A-DUP								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	21.0	mg / L				- NA	0.00	0-20

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 12 of 13
Lab Proj \#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj\#: AVXMB

Prep Method: Total Organic Carbon
Analysis Method: Total Organic Carbon

M100312012-MB

| | Result | | TrueSpikeConc. | $\underline{R D L}$ | \%Recovery | Ctl Limits |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Organic Carbon | <5.0 | mg / L | | | - NA | |
| M100312012-LCS | | | | | | |
| | Result | | TrueSpikeConc. | | \%Recovery | Ctl Limits |
| Total Organic Carbon | 34.0 | mg / L | 36.00 | | 94.00 | $70-130$ |

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 13 of 13
Lab Proj\#: P1003072
Report Date: 03/17/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Prep Method: In House Dissolved Gas Sample Preparation
Analysis Method: Light Hydrocarbons (C1-C4) in Water

M100316002-MB

| | Result | | TrueSpikeConc. | $\underline{R D L}$ | \%Recovery |
| :--- | :--- | :--- | :--- | :--- | :--- | Ctl Limits

M100316002-LCS

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Ethane	51.000	ugh	45.00	113.00	75-125		
Ethene	46.000	ug/L	40.80	113.00	75-125		
Methane	920.000		825.00	112.00	75-125		
M100316002-LCSD							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Ctl Limits
Ethane	52.000	ug/L	45.00	116.00	75-125	1.94	0-20
Ethene	47.000		40.80	115.00	75-125	2.15	0-20
Methane	930.000	ug/L	825.00	113.00	75-125	1.08	0-20

Mark Hanish
Arcadis
600 Waterfront Dr
Pittsburgh, PA 15222

Report Number: G582-648
Client Project: AVX Myrtle Beach
Dear Mark Hanish,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested

If there are any questions about the report or services performed during this project, please call Barbara Cager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,
SGS North America, Inc.

SGS North America, Inc.

Case Narrative
Arcadis
SGS Project: G582-648
Project Name: AVX Myrtle Beach

SGS North America Inc.

March $\mathbf{2 2}^{\text {nd }}, 2010$

- Six water samples were accepted into the laboratory on March $6^{\text {th }}, 2010$ at 1015 for analyses as indicated on the chain of custody. The samples were received in good condition, with a temperature of $2.4^{\circ} \mathrm{C}$.
- All extractions and analyses were completed within holding time limits, with the following quality control exceptions.

8260 Analyses

- The submitted Trip Blank contains a reported concentration for Methylene Chloride of $0.560 \mu \mathrm{~g} / \mathrm{L}$. Sample P-1D also a reported concentration for Methylene Chloride of 2.30 $\mu \mathrm{g} / \mathrm{L}$.

SGS North America, Inc.
List of Reporting Abbreviations
And Data Qualifiers
$\mathrm{B}=$ Compound also detected in batch blank
$\mathrm{BQL}=$ Below Quantification Limit (RL or MDL)
$\mathrm{DF}=$ Dilution Factor

Dup $=$ Duplicate
$\mathrm{D}=$ Detected, but RPD is $>40 \%$ between results in dual column method.
$E=$ Estimated concentration, exceeds calibration range.
$\mathrm{J}=$ Estimated concentration, below calibration range and above MDL
LCS(D) = Laboratory Control Spike (Duplicate)
MDL $=$ Method Detection Limit
MS(D) = Matrix Spike (Duplicate)
$P Q L=$ Practical Quantitation Limit
RL/CL $=$ Reporting Limit / Control Limit
RPD $=$ Relative Percent Difference
$\mathrm{UJ}=$ Target analytes with recoveries that are $10 \%<\% \mathrm{R}<\mathrm{LCL}$; \# of MEs are allowable and compounds are not detected in the sample.
$\mathrm{mg} / \mathrm{kg}=$ milligram per kilogram, ppm , parts per million
$\mathrm{ug} / \mathrm{kg}=$ micrograms per kilogram, ppb , parts per billion
$\mathrm{mg} / \mathrm{L}=$ milligram per liter, ppm , parts per million
$\mathrm{ug} / \mathrm{L}=$ micrograms per liter, ppb , parts per billion
$\%$ Rec $=$ Percent Recovery
$\%$ soilds $=$ Percent Solids

Special Notes:

1) Metals and mercury samples are digested with a hot block; see the standard operating procedure document for details.
2) Uncertainty for all reported data is less than or equal to 30 percent.

Results for Volatiles by GCMS 8260

Client Sample ID: OW-8D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-1A
Lab Project ID: G582-648

Analyzed By: CLP
Date Collected: 3/4/2010 12:45
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

		Quantitation	MDL		Date	
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
Acetone	BQL	25000	2180	1000	3/12/2010	
Benzene	BQL	1000	65.0	1000	3/12/2010	
Bromobenzene	BQL	1000	56.0	1000	3/12/2010	
Bromochloromethane	BQL	1000	101	1000	3/12/2010	
Bromodichloromethane	BQL	1000	76.0	1000	3/12/2010	
Bromoform	BQL	1000	120	1000	3/12/2010	
Bromomethane	BQL	1000	133	1000	3/12/2010	
2-Butanone	BQL	25000	544	1000	3/12/2010	
n-Butylbenzene	BQL	1000	109	1000	3/12/2010	
sec-Butylbenzene	BQL	1000	84.0	1000	3/12/2010	
tert-Butylbenzene	BQL	1000	50.0	1000	3/12/2010	
Carbon disulfide	BQL	1000	69.0	1000	3/12/2010	
Carbon tetrachloride	BQL	1000	87.0	1000	3/12/2010	
Chlorobenzene	BQL	1000	82.0	1000	3/12/2010	
Chloroethane	BQL	1000	106	1000	3/12/2010	
Chloroform	BQL	1000	79.0	1000	3/12/2010	
Chloromethane	BQL	1000	146	1000	3/12/2010	
2-Chlorotoluene	BQL	1000	99.0	1000	3/12/2010	
4-Chlorotoluene	BQL	1000	80.0	1000	3/12/2010	
Dibromochloromethane	BQL	1000	90.0	1000	3/12/2010	
1,2-Dibromo-3-chloropropane	BQL	5000	1210	1000	3/12/2010	
Dibromomethane	BQL	1000	113	1000	3/12/2010	
1,2-Dibromoethane (EDB)	BQL	1000	124	1000	3/12/2010	
1,2-Dichlorobenzene	BQL	1000	127	1000	3/12/2010	
1,3-Dichlorobenzene	BQL	1000	81.0	1000	3/12/2010	
1,4-Dichlorobenzene	BQL	1000	79.0	1000	3/12/2010	
trans-1,4-Dichloro-2-butene	BQL	5000	630	1000	3/12/2010	
1,1-Dichloroethane	BQL	1000	74.0	1000	3/12/2010	
1,1-Dichloroethene	BQL	1000	89.0	1000	3/12/2010	
1,2-Dichloroethane	BQL	1000	79.0	1000	3/12/2010	
cis-1,2-Dichloroethene	3330	1000	65.0	1000	3/12/2010	
trans-1,2-dichloroethene	BQL	1000	89.0	1000	3/12/2010	
1,2-Dichloropropane	BQL	1000	94.0	1000	3/12/2010	
1,3-Dichloropropane	BQL	1000	127	1000	3/12/2010	
2,2-Dichloropropane	BQL	1000	59.0	1000	3/12/2010	
1,1-Dichloropropene	BQL	1000	72.0	1000	3/12/2010	
cis-1,3-Dichloropropene	BQL	1000	76.0	1000	3/12/2010	
trans-1,3-Dichloropropene	BQL	1000	76.0	1000	3/12/2010	
Dichlorodifluoromethane	BQL	5000	94.0	1000	3/12/2010	
Diisopropyl ether (DIPE)	BQL	1000	73.0	1000	3/12/2010	
Ethylbenzene	BQL	1000	77.0	1000	3/12/2010	
Hexachlorobutadiene	BQL	1000	228	1000	3/12/2010	
2-Hexanone	BQL	5000	720	1000	3/12/2010	
lodomethane	BQL	1000	42.0	1000	3/12/2010	
Isopropylbenzene	BQL	1000	71.0	1000	3/12/2010	
		Page 1 of 2				$\begin{gathered} \text { ISMSD8 } \\ 8260 \end{gathered}$

Results for Volatiles by GCMS 8260

Client Sample ID: OW-8D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-1A
Lab Project ID: G582-648

Analyzed By: CLP
Date Collected: 3/4/2010 12:45
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	1000	48.0	1000	3/12/2010	
Methylene chloride	BQL	5000	98.0	1000	3/12/2010	
4-Methyl-2-pentanone	BQL	5000	550	1000	3/12/2010	
Methyl-tert-butyl ether (MTBE)	BQL	1000	67.0	1000	3/12/2010	
Naphthalene	BQL	1000	133	1000	3/12/2010	
n -Propyl benzene	BQL	1000	80.0	1000	3/12/2010	
Styrene	BQL	1000	85.0	1000	3/12/2010	
1,1,1,2-Tetrachloroethane	BQL	1000	90.0	1000	3/12/2010	
1,1,2,2-Tetrachloroethane	BQL	1000	115	1000	3/12/2010	
Tetrachloroethene	BQL	1000	69.0	1000	3/12/2010	
Toluene	BQL	1000	76.0	1000	3/12/2010	
1,2,3-Trichlorobenzene	BQL	1000	190	1000	3/12/2010	
1,2,4-Trichlorobenzene	BQL	1000	119	1000	3/12/2010	
Trichloroethene	490	1000	54.0	1000	3/12/2010	J
1,1,1-Trichloroethane	BQL	1000	54.0	1000	3/12/2010	
1,1,2-Trichloroethane	BQL	1000	182	1000	3/12/2010	
Trichlorofluoromethane	BQL	1000	111	1000	3/12/2010	
1,2,3-Trichloropropane	BQL	1000	120	1000	3/12/2010	
1,2,4-Trimethylbenzene	BQL	1000	65.0	1000	3/12/2010	
1,3,5-Trimethylbenzene	BQL	1000	74.0	1000	3/12/2010	
Vinyl chloride	4480	1000	149	1000	3/12/2010	
m -, p-Xylene	BQL	2000	98.0	1000	3/12/2010	
o-Xylene	BQL	1000	65.0	1000	3/12/2010	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		30	30.1	100		
Toluene-d8		30	28	93		
4-Bromofluorobenzene		30	26.9	90		

Comments:

Flags:

BQL = Below Quantitation Limits.
$\mathrm{J}=$ Detected below the quantitation limit.
Analyst: \qquad (Jvi)

Flag

1,2-Dichloroethane-d4
4-Bromofluorobenzene

Anast

Client Sample ID: OW-9D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-2A
Lab Project ID: G582-648

Results for Volatiles by GCMS 8260

Analyzed By: CLP
Date Collected: 3/4/2010 14:50
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL
Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene
Cin

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor
BQL	20000	1740	800
BQL	800	52.0	800
BQL	800	44.8	800
BQL	800	80.8	800
BQL	800	60.8	800
BQL	800	96.0	800
BQL	800	106	800
BQL	20000	435	800
BQL	800	87.2	800
BQL	800	67.2	800
BQL	800	40.0	800
BQL	800	55.2	800
BQL	800	69.6	800
BQL	800	65.6	800
BQL	800	84.8	800
BQL	800	63.2	800
BQL	800	117	800
BQL	800	79.2	800
BQL	800	64.0	800
BQL	800	72.0	800
BQL	4000	968	800
BQL	800	90.4	800
BQL	800	99.2	800
BQL	800	102	800
BQL	800	64.8	800
BQL	800	63.2	800
BQL	4000	504	800
BQL	800	59.2	800
BQL	800	71.2	800
BQL	800	63.2	800
2690	800	52.0	800
BQL	800	71.2	800
BQL	800	75.2	800
BQL	800	102	800
BQL	800	47.2	800
BQL	800	57.6	800
BQL	800	60.8	800
BQL	800	60.8	800
BQL	4000	75.2	800
BQL	800	58.4	800
BQL	800	61.6	800
BQL	800	182	800
BQL	4000	576	800
BQL	800	33.6	800
BQL	800	56.8	800

Date
Analyzed
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$

Date
Analyzed Flag

3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010

Results for Volatiles
 by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: OW-9D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-2A
Lab Project ID: G582-648

Analyzed By: CLP
Date Collected: 3/4/2010 14:50
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result CG/L	Quantitation Limit UG $/$ L	MDL UG/L	Dilution Factor	Date Analyzed
Compound	Flag				
4-Isopropyltoluene	BQL	800	38.4	800	$3 / 11 / 2010$
Methylene chloride	BQL	4000	78.4	800	$3 / 11 / 2010$
4-Methyl-2-pentanone	BQL	4000	440	800	$3 / 11 / 2010$
Methyl-tert-butyl ether (MTBE)	BQL	800	53.6	800	$3 / 11 / 2010$
Naphthalene	BQL	800	106	800	$3 / 11 / 2010$
n-Propyl benzene	BQL	800	64.0	800	$3 / 11 / 2010$
Styrene	BQL	800	68.0	800	$3 / 11 / 2010$
1,1,1,2-Tetrachloroethane	BQL	800	72.0	800	$3 / 11 / 2010$
1,1,2,2-Tetrachloroethane	BQL	800	92.0	800	$3 / 11 / 2010$
Tetrachloroethene	BQL	800	55.2	800	$3 / 11 / 2010$
Toluene	BQL	800	60.8	800	$3 / 11 / 2010$
1,2,3-Trichlorobenzene	BQL	800	152	800	$3 / 11 / 2010$
1,2,4-Trichlorobenzene	BQL	800	95.2	800	$3 / 11 / 2010$
Trichloroethene	3310	800	43.2	800	$3 / 11 / 2010$
1,1,1-Trichloroethane	BQL	800	43.2	800	$3 / 11 / 2010$
1,1,2-Trichloroethane	BQL	800	146	800	$3 / 11 / 2010$
Trichlorofluoromethane	BQL	800	88.8	800	$3 / 11 / 2010$
1,2,3-Trichloropropane	BQL	800	96.0	800	$3 / 11 / 2010$
1,2,4-Trimethylbenzene	BQL	800	52.0	800	$3 / 11 / 2010$
1,3,5-Trimethylbenzene	BQL	800	59.2	800	$3 / 11 / 2010$
Vinyl chloride	1970	800	119	800	$3 / 11 / 2010$
m-,p-Xylene	BQL	1600	78.4	800	$3 / 11 / 2010$
0-Xylene	BQL	800	52.0	800	$3 / 11 / 2010$
			Spike	Spike	Percent
		Added	Result	Recovered	
	30	30.6	102		
1,2-Dichloroethane-d4		30	27.9	93	
Toluene-d8		30	27.6	92	
4-Bromofluorobenzene					

Comments:

Flags:

BQL = Below Quantitation Limits.
$\mathrm{J}=$ Detected below the quantitation limit.
Analyst: \qquad Reviewed By: \qquad

Results for Volatiles by GCMS 8260

Client Sample ID: OW-10D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-3A
Lab Project ID: G582-648

Analyzed By: CLP
Date Collected: 3/4/2010 15:35
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
Acetone	BQL	20000	1740	800	3/16/2010
Benzene	BQL	800	52.0	800	3/16/2010
Bromobenzene	BQL	800	44.8	800	3/16/2010
Bromochloromethane	BQL	800	80.8	800	3/16/2010
Bromodichloromethane	BQL	800	60.8	800	3/16/2010
Bromoform	BQL	800	96.0	800	3/16/2010
Bromomethane	BQL	800	106	800	3/16/2010
2-Butanone	BQL	20000	435	800	3/16/2010
n-Butylbenzene	BQL	800	87.2	800	3/16/2010
sec-Butylbenzene	BQL	800	67.2	800	3/16/2010
tert-Butylbenzene	BQL	800	40.0	800	3/16/2010
Carbon disulfide	BQL	800	55.2	800	3/16/2010
Carbon tetrachloride	BQL	800	69.6	800	3/16/2010
Chlorobenzene	BQL	800	65.6	800	3/16/2010
Chloroethane	BQL	800	84.8	800	3/16/2010
Chloroform	BQL	800	63.2	800	3/16/2010
Chloromethane	BQL	800	117	800	3/16/2010
2-Chlorotoluene	BQL	800	79.2	800	3/16/2010
4-Chlorotoluene	BQL	800	64.0	800	3/16/2010
Dibromochloromethane	BQL	800	72.0	800	3/16/2010
1,2-Dibromo-3-chloropropane	BQL	4000	968	800	3/16/2010
Dibromomethane	BQL	800	90.4	800	3/16/2010
1,2-Dibromoethane (EDB)	BQL	800	99.2	800	3/16/2010
1,2-Dichlorobenzene	BQL	800	102	800	3/16/2010
1,3-Dichlorobenzene	BQL	800	64.8	800	3/16/2010
1,4-Dichlorobenzene	BQL	800	63.2	800	3/16/2010
trans-1,4-Dichloro-2-butene	BQL	4000	504	800	3/16/2010
1,1-Dichloroethane	BQL	800	59.2	800	3/16/2010
1,1-Dichloroethene	BQL	800	71.2	800	3/16/2010
1,2-Dichloroethane	BQL	800	63.2	800	3/16/2010
cis-1,2-Dichloroethene	17900	800	52.0	800	3/16/2010
trans-1,2-dichloroethene	344	800	71.2	800	3/16/2010
1,2-Dichloropropane	BQL	800	75.2	800	3/16/2010
1,3-Dichloropropane	BQL	800	102	800	3/16/2010
2,2-Dichloropropane	BQL	800	47.2	800	3/16/2010
1,1-Dichloropropene	BQL	800	57.6	800	3/16/2010
cis-1,3-Dichloropropene	BQL	800	60.8	800	3/16/2010
trans-1,3-Dichloropropene	BQL	800	60.8	800	3/16/2010
Dichlorodifluoromethane	BQL	4000	75.2	800	3/16/2010
Diisopropyl ether (DIPE)	BQL	800	58.4	800	3/16/2010
Ethylbenzene	BQL	800	61.6	800	3/16/2010
Hexachlorobutadiene	BQL	800	182	800	3/16/2010
2-Hexanone	BQL	4000	576	800	3/16/2010
lodomethane	BQL	800	33.6	800	3/16/2010
Isopropylbenzene	BQL	800	56.8	800	3/16/2010

Flag

Results for Volatiles
by GCMS 8260
Client Sample ID: OW-10D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-3A
Lab Project ID: G582-648

Analyzed By: CLP
Date Collected: 3/4/2010 15:35
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation Limit UG/L	MDL	Dilution	Date Analyzed	
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
4-Isopropyltoluene	BQL	800	38.4	800	3/16/2010	
Methylene chloride	BQL	4000	78.4	800	3/16/2010	
4-Methyl-2-pentanone	BQL	4000	440	800	3/16/2010	
Methyl-tert-butyl ether (MTBE)	BQL	800	53.6	800	3/16/2010	
Naphthalene	BQL	800	106	800	3/16/2010	
n-Propyl benzene	BQL	800	64.0	800	3/16/2010	
Styrene	BQL	800	68.0	800	3/16/2010	
1,1,1,2-Tetrachloroethane	BQL	800	72.0	800	3/16/2010	
1,1,2,2-Tetrachloroethane	BQL	800	92.0	800	3/16/2010	
Tetrachloroethene	BQL	800	55.2	800	3/16/2010	
Toluene	BQL	800	60.8	800	3/16/2010	
1,2,3-Trichlorobenzene	BQL	800	152	800	3/16/2010	
1,2,4-Trichlorobenzene	BQL	800	95.2	800	3/16/2010	
Trichloroethene	BQL	800	43.2	800	3/16/2010	
1,1,1-Trichloroethane	BQL	800	43.2	800	3/16/2010	
1,1,2-Trichloroethane	BQL	800	146	800	3/16/2010	
Trichlorofluoromethane	BQL	800	88.8	800	3/16/2010	
1,2,3-Trichloropropane	BQL	800	96.0	800	3/16/2010	
1,2,4-Trimethylbenzene	BQL	800	52.0	800	3/16/2010	
1,3,5-Trimethylbenzene	BQL	800	59.2	800	3/16/2010	
Vinyl chloride	1940	800	119	800	3/16/2010	
m -,p-Xylene	BQL	1600	78.4	800	3/16/2010	
o-Xylene	BQL	800	52.0	800	3/16/2010	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		30	29.7	99		
Toluene-d8		30	27.3	91		
4-Bromofluorobenzene		30	26.5	88		

Comments:

Flags:

BQL = Below Quantitation Limits.
$\mathrm{J}=$ Detected below the quantitation limit.
Analyst: \qquad

Client Sample ID: P-1D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-4A
Lab Project ID: G582-648

Results for Volatiles by GCMS $\mathbf{8 2 6 0}$

Analyzed By: CLP
Date Collected: 3/4/2010 16:40
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL
Compound	UG/L	Limit UG/L	UG/L
Acetone	BQL	250	21.8
Benzene	BQL	10.0	0.650
Bromobenzene	BQL	10.0	0.560
Bromochloromethane	BQL	10.0	1.01
Bromodichloromethane	BQL	10.0	0.760
Bromoform	BQL	10.0	1.20
Bromomethane	BQL	10.0	1.33
2-Butanone	BQL	250	5.44
n-Butylbenzene	BQL	10.0	1.09
sec-Butylbenzene	BQL	10.0	0.840
tert-Butylbenzene	BQL	10.0	0.500
Carbon disulfide	BQL	10.0	0.690
Carbon tetrachloride	BQL	10.0	0.870
Chlorobenzene	BQL	10.0	0.820
Chloroethane	BQL	10.0	1.06
Chloroform	BQL	10.0	0.790
Chloromethane	BQL	10.0	1.46
2-Chlorotoluene	BQL	10.0	0.990
4-Chlorotoluene	BQL	10.0	0.800
Dibromochloromethane	BQL	10.0	0.900
1,2-Dibromo-3-chloropropane	BQL	50.0	12.1
Dibromomethane	BQL	10.0	1.13
1,2-Dibromoethane (EDB)	BQL	10.0	1.24
1,2-Dichlorobenzene	BQL	10.0	1.27
1,3-Dichlorobenzene	BQL	10.0	0.810
1,4-Dichlorobenzene	BQL	10.0	0.790
trans-1,4-Dichloro-2-butene	BQL	50.0	6.30
1,1-Dichloroethane	BQL	10.0	0.740
1,1-Dichloroethene	BQL	10.0	0.890
1,2-Dichloroethane	BQL	10.0	0.790
cis-1,2-Dichloroethene	263	10.0	0.650
trans-1,2-dichloroethene	BQL	10.0	0.890
1,2-Dichloropropane	BQL	10.0	0.940
1,3-Dichloropropane	BQL	10.0	1.27
2,2-Dichloropropane	BQL	10.0	0.590
1,1-Dichloropropene	BQL	10.0	0.720
cis-1,3-Dichloropropene	BQL	10.0	0.760
trans-1,3-Dichloropropene	BQL	10.0	0.760
Dichlorodifluoromethane	BQL	50.0	0.940
Diisopropyl ether (DIPE)	BQL	10.0	0.730
Ethylbenzene	BQL	10.0	0.770
Hexachlorobutadiene	BQL	10.0	2.28
2-Hexanone	BQL	50.0	7.20
lodomethane	BQL	10.0	0.420
Isopropylbenzene	BQL	10.0	0.710

Dilution	Date
Factor	Analyzed
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2011 / 201 / 2010$
10	$3 / 11 / 2010$
10	$3 / 11 / 2010$
10	$3 / 2010$
10	$3 / 2010$
10	3

Flag

Analyzed
3/11/2010
3/11/2010
$3 / 11 / 2010$
$3 / 11 / 2010$
3/11/2010
3/11/2010
$3 / 11 / 2010$
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
$3 / 11 / 2010$
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
3/11/2010
$3 / 11 / 2010$
3/11/2010

3/11/2010
3/11/2010

Results for Volatiles
 by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: P-1D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-4A
Lab Project ID: G582-648

Analyzed By: CLP
Date Collected: 3/4/2010 16:40
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	10.0	0.480	10	3/11/2010	
Methylene chloride	2.30	50.0	0.980	10	3/11/2010	J
4-Methyl-2-pentanone	BQL	50.0	5.50	10	3/11/2010	
Methyl-tert-butyl ether (MTBE)	BQL	10.0	0.670	10	3/11/2010	
Naphthalene	BQL	10.0	1.33	10	3/11/2010	
n -Propyl benzene	BQL	10.0	0.800	10	3/11/2010	
Styrene	BQL	10.0	0.850	10	3/11/2010	
1,1,1,2-Tetrachloroethane	BQL	10.0	0.900	10	3/11/2010	
1,1,2,2-Tetrachloroethane	BQL	10.0	1.15	10	3/11/2010	
Tetrachloroethene	BQL	10.0	0.690	10	3/11/2010	
Toluene	BQL	10.0	0.760	10	3/11/2010	
1,2,3-Trichlorobenzene	BQL	10.0	1.90	10	3/11/2010	
1,2,4-Trichlorobenzene	BQL	10.0	1.19	10	3/11/2010	
Trichloroethene	BQL	10.0	0.540	10	3/11/2010	
1,1,1-Trichloroethane	BQL	10.0	0.540	10	3/11/2010	
1,1,2-Trichloroethane	BQL	10.0	1.82	10	3/11/2010	
Trichlorofluoromethane	BQL	10.0	1.11	10	3/11/2010	
1,2,3-Trichloropropane	BQL	10.0	1.20	10	3/11/2010	
1,2,4-Trimethylbenzene	BQL	10.0	0.650	10	3/11/2010	
1,3,5-Trimethylbenzene	BQL	10.0	0.740	10	3/11/2010	
Vinyl chloride	7.00	10.0	1.49	10	3/11/2010	J
m -,p-Xylene	BQL	20.0	0.980	10	3/11/2010	
o-Xylene	BQL	10.0	0.650	10	3/11/2010	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		30	31.6	105		
Toluene-d8		30	28.3	94		
4-Bromofluorobenzene		30	27.4	91		

Comments:

Flags:

BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad Reviewed By:

Results for Volatiles by GCMS 8260

Client Sample ID: P-2D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-5A
Lab Project ID: G582-648

Analyzed By: DVO
Date Collected: 3/4/2010 18:15
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL	Dilution	Date	
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
Acetone	290	1000	87.2	40	3/17/2010	J
Benzene	BQL	40.0	2.60	40	3/17/2010	
Bromobenzene	BQL	40.0	2.24	40	3/17/2010	
Bromochloromethane	BQL	40.0	4.04	40	3/17/2010	
Bromodichloromethane	BQL	40.0	3.04	40	3/17/2010	
Bromoform	BQL	40.0	4.80	40	3/17/2010	
Bromomethane	BQL	40.0	5.32	40	3/17/2010	
2-Butanone	539	1000	21.8	40	3/17/2010	J
n-Butylbenzene	BQL	40.0	4.36	40	3/17/2010	
sec-Butylbenzene	BQL	40.0	3.36	40	3/17/2010	
tert-Butylbenzene	BQL	40.0	2.00	40	3/17/2010	
Carbon disulfide	BQL	40.0	2.76	40	3/17/2010	
Carbon tetrachloride	BQL	40.0	3.48	40	3/17/2010	
Chlorobenzene	BQL	40.0	3.28	40	3/17/2010	
Chloroethane	BQL	40.0	4.24	40	3/17/2010	
Chloroform	BQL	40.0	3.16	40	3/17/2010	
Chloromethane	BQL	40.0	5.84	40	3/17/2010	
2-Chlorotoluene	BQL	40.0	3.96	40	3/17/2010	
4-Chlorotoluene	BQL	40.0	3.20	40	3/17/2010	
Dibromochloromethane	BQL	40.0	3.60	40	3/17/2010	
1,2-Dibromo-3-chloropropane	BQL	200	48.4	40	3/17/2010	
Dibromomethane	BQL	40.0	4.52	40	3/17/2010	
1,2-Dibromoethane (EDB)	BQL	40.0	4.96	40	3/17/2010	
1,2-Dichlorobenzene	BQL	40.0	5.08	40	3/17/2010	
1,3-Dichlorobenzene	BQL	40.0	3.24	40	3/17/2010	
1,4-Dichlorobenzene	BQL	40.0	3.16	40	3/17/2010	
trans-1,4-Dichloro-2-butene	BQL	200	25.2	40	3/17/2010	
1,1-Dichloroethane	$B Q L$	40.0	2.96	40	$3 / 17 / 2010$	
1,1-Dichloroethene	BQL	40.0	3.56	40	3/17/2010	
1,2-Dichloroethane	BQL	40.0	3.16	40	3/17/2010	
cis-1,2-Dichloroethene	298	40.0	2.60	40	3/17/2010	
trans-1,2-dichloroethene	18.4	40.0	3.56	40	3/17/2010	J
1,2-Dichloropropane	BQL	40.0	3.76	40	3/17/2010	
1,3-Dichloropropane	BQL	40.0	5.08	40	3/17/2010	
2,2-Dichloropropane	BQL	40.0	2.36	40	3/17/2010	
1,1-Dichloropropene	BQL	40.0	2.88	40	3/17/2010	
cis-1,3-Dichloropropene	BQL	40.0	3.04	40	3/17/2010	
trans-1,3-Dichloropropene	BQL	40.0	3.04	40	3/17/2010	
Dichlorodifluoromethane	BQL	200	3.76	40	3/17/2010	
Diisopropyl ether (DIPE)	BQL	40.0	2.92	40	3/17/2010	
Ethylbenzene	6.40	40.0	3.08	40	3/17/2010	J
Hexachlorobutadiene	BQL	40.0	9.12	40	3/17/2010	
2-Hexanone	BQL	200	28.8	40	3/17/2010	
lodomethane	BQL	40.0	1.68	40	3/17/2010	
Isopropylbenzene	BQL	40.0	2.84	40	3/17/2010	
		Page 1 of 2				GCMS 8260

	Result Compound	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
4-Isopropyltoluene	BGL	40.0	1.92	40	$3 / 17 / 2010$

Results for Volatiles
by GCMS 8260
Client Sample ID: P-2D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-5A
Lab Project ID: G582-648

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
BQL $=$ Below Quantitation Limits.
Analyst: \qquad

Analyzed By: DVO
Date Collected: 3/4/2010 18:15
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	40.0	1.92	40	$3 / 17 / 2010$
BQL	200	3.92	40	$3 / 17 / 2010$
BQL	200	22.0	40	$3 / 17 / 2010$
BQL	40.0	2.68	40	$3 / 17 / 2010$
BQL	40.0	5.32	40	$3 / 17 / 2010$
BQL	40.0	3.20	40	$3 / 17 / 2010$
BQL	40.0	3.40	40	$3 / 17 / 2010$
BQL	40.0	3.60	40	$3 / 17 / 2010$
BQL	40.0	4.60	40	$3 / 17 / 2010$
BQL	40.0	2.76	40	$3 / 17 / 2010$
BQL	40.0	3.04	40	$3 / 17 / 2010$
BQL	40.0	7.60	40	$3 / 17 / 2010$
BQL	40.0	4.76	40	$3 / 17 / 2010$
918	40.0	2.16	40	$3 / 17 / 2010$
BQL	40.0	2.16	40	$3 / 17 / 2010$
BQL	40.0	7.28	40	$3 / 17 / 2010$
BQL	40.0	4.44	40	$3 / 17 / 2010$
BQL	40.0	4.80	40	$3 / 17 / 2010$
BQL	40.0	2.60	40	$3 / 17 / 2010$
BQL	40.0	2.96	40	$3 / 17 / 2010$
1730	40.0	5.96	40	$3 / 17 / 2010$
BQL	80.0	3.92	40	$3 / 17 / 2010$
BQL	40.0	2.60	40	$3 / 17 / 2010$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.9	109	
	10	10.1	101	

Flag

Results for Volatiles
 by GCMS 8260

Client Sample ID: P-3D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-6A
Lab Project ID: G582-648

Analyzed By: CLP
Date Collected: 3/5/2010 9:50
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL
Compound	UG/L	Limit UG/L	UG/L
Acetone	BQL	2500	218
Benzene	BQL	100	6.50
Bromobenzene	BQL	100	5.60
Bromochloromethane	BQL	100	10.1
Bromodichloromethane	BQL	100	7.60
Bromoform	BQL	100	12.0
Bromomethane	BQL	100	13.3
2-Butanone	BQL	2500	54.4
n-Butylbenzene	BQL	100	10.9
sec-Butylbenzene	BQL	100	8.40
tert-Butylbenzene	BQL	100	5.00
Carbon disulfide	BQL	100	6.90
Carbon tetrachloride	BQL	100	8.70
Chlorobenzene	BQL	100	8.20
Chloroethane	BQL	100	10.6
Chloroform	BQL	100	7.90
Chloromethane	BQL	100	14.6
2-Chlorotoluene	BQL	100	9.90
4-Chlorotoluene	BQL	100	8.00
Dibromochloromethane	BQL	100	9.00
1,2-Dibromo-3-chloropropane	BQL	500	121
Dibromomethane	BQL	100	11.3
1,2-Dibromoethane (EDB)	BQL	100	12.4
1,2-Dichlorobenzene	BQL	100	12.7
1,3-Dichlorobenzene	BQL	100	8.10
1,4-Dichlorobenzene	BQL	100	7.90
trans-1,4-Dichloro-2-butene	BQL	500	63.0
1,1-Dichloroethane	100	7.40	
1,1-Dichloroethene	BQL	100	8.90
1,2-Dichloroethane	BQL	100	7.90
cis-1,2-Dichloroethene	BQL	624	100
trans-1,2-dichloroethene	BQL	100	8.50
1,2-Dichloropropane	100	9.90	
1,3-Dichloropropane	BQL	100	12.70
2,2-Dichloropropane	BQL	100	5.90
1,1-Dichloropropene	BQL	100	7.20
cis-1,3-Dichloropropene	BQL	100	7.60
trans-1,3-Dichloropropene	BQL	100	7.60
Dichlorodifluoromethane	BQL	100	9.40
Diisopropyl ether (DIPE)	BQL	500	7.30
Ethylbenzene	BQL	100	7.70
Hexachlorobutadiene	BQL	100	7.7
2-Hexanone	BQL	100	22.8
lodomethane	BQL	500	72.0
Isopropylbenzene	100	4.20	
	100	7.10	

Results for Volatiles by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: P-3D
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-6A
Lab Project ID: G582-648

Analyzed By: CLP
Date Collected: 3/5/2010 9:50
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

Comments:

Flags:
BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad Reviewed By: \qquad

SGS North America, Inc.

Results for Volatiles by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: Trip Blank (Not on COC)
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-7A
Lab Project ID: G582-648

Result	Quantitation	MDL
UG/L	Limit UG/L	UG/L
BQL	25.0	2.18
BQL	1.00	0.0650
BQL	1.00	0.0560
BQL	1.00	0.101
BQL	1.00	0.0760
BQL	1.00	0.120
BQL	1.00	0.133
BQL	25.0	0.544
BQL	1.00	0.109
BQL	1.00	0.0840
BQL	1.00	0.0500
$B Q L$	1.00	0.0690
BQL	1.00	0.0870
BQL	1.00	0.0820
BQL	1.00	0.106
BQL	1.00	0.0790
BQL	1.00	0.146
BQL	1.00	0.0990
BQL	1.00	0.0800
BQL	1.00	0.0900
BQL	5.00	1.21
BQL	1.00	0.113
BQL	1.00	0.124
BQL	1.00	0.127
BQL	1.00	0.0810
BQL	1.00	0.0790
BQL	5.00	0.630
BQL	1.00	0.0740
BQL	1.00	0.0890
BQL	1.00	0.0790
BQL	1.00	0.0650
BQL	1.00	0.0890
BQL	1.00	0.0940
BQL	1.00	0.127
BQL	1.00	0.0590
BQL	1.00	0.0720
BQL	1.00	0.0760
BQL	1.00	0.0760
BQL	5.00	0.0940
BQL	1.00	0.0730
BQL	1.00	0.0770
BQL	1.00	0.228
BQL	5.00	0.720
BQL	1.00	0.0420
BQL	1.00	0.0710

Dilution
Factor
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Date
Analyzed Flag
$3 / 11 / 2010$
Date
Analyzed
Flag
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
$3 / 11 / 2010$
3

GCMSMSD8
8260
Page 1 of 2

Results for Volatiles

by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: Trip Blank (Not on COC)
Client Project ID: AVX Myrtle Beach
Lab Sample ID: G582-648-7A
Lab Project ID: G582-648

Analyzed By: CLP
Date Collected: 3/5/2010 0:00
Date Received: 3/6/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	Limit 1.00	0.0480	Factor	$3 / 11 / 2010$	Flag
Methylene chloride	0.560	5.00	0.0980	1	3/11/2010	J
4-Methyl-2-pentanone	BQL	5.00	0.550	1	3/11/2010	
Methyl-tert-butyl ether (MTBE)	BQL	1.00	0.0670	1	3/11/2010	
Naphthalene	BQL	1.00	0.133	1	3/11/2010	
n-Propyl benzene	BQL	1.00	0.0800	1	3/11/2010	
Styrene	BQL	1.00	0.0850	1	3/11/2010	
1,1,1,2-Tetrachloroethane	BQL	1.00	0.0900	1	3/11/2010	
1,1,2,2-Tetrachloroethane	BQL	1.00	0.115	1	3/11/2010	
Tetrachloroethene	BQL	1.00	0.0690	1	3/11/2010	
Toluene	BQL	1.00	0.0760	1	3/11/2010	
1,2,3-Trichlorobenzene	BQL	1.00	0.190	1	3/11/2010	
1,2,4-Trichlorobenzene	BQL	1.00	0.119	1	3/11/2010	
Trichloroethene	BQL	1.00	0.0540	1	3/11/2010	
1,1,1-Trichloroethane	BQL	1.00	0.0540	1	3/11/2010	
1,1,2-Trichloroethane	BQL	1.00	0.182	1	3/11/2010	
Trichlorofluoromethane	BQL	1.00	0.111	1	3/11/2010	
1,2,3-Trichloropropane	BQL	1.00	0.120	1	3/11/2010	
1,2,4-Trimethylbenzene	BQL	1.00	0.0650	1	3/11/2010	
1,3,5-Trimethylbenzene	BQL	1.00	0.0740	1	3/11/2010	
Vinyl chloride	BQL	1.00	0.149	1	3/11/2010	
m-,p-Xylene	BQL	2.00	0.0980	1	3/11/2010	
o-Xylene	BQL	1.00	0.0650	1	3/11/2010	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		30	36.6	122		
Toluene-d8		30	33.3	111		
4-Bromofluorobenzene		30	27.8	93		

Comments:

Flags:
BQL = Below Quantitation Limits.
$J=$ Detected below the quantitation limit.
Analyst: \qquad

Flag

Analyzed
3/11/2010 3/11/2010

Percent O3

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK8031110B
Lab Project ID:

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
Acetone	BQL	25.0	2.18	1	3/11/2010
Benzene	BQL	1.00	0.0650	1	3/11/2010
Bromobenzene	BQL	1.00	0.0560	1	3/11/2010
Bromochloromethane	BQL	1.00	0.101	1	3/11/2010
Bromodichloromethane	BQL	1.00	0.0760	1	3/11/2010
Bromoform	BQL	1.00	0.120	1	3/11/2010
Bromomethane	BQL	1.00	0.133	1	3/11/2010
2-Butanone	BQL	25.0	0.544	1	3/11/2010
n -Butylbenzene	BQL	1.00	0.109	1	3/11/2010
sec-Butylbenzene	BQL	1.00	0.0840	1	3/11/2010
ter-Butylbenzene	BQL	1.00	0.0500	1	3/11/2010
Carbon disulfide	BQL	1.00	0.0690	1	3/11/2010
Carbon tetrachloride	BQL	1.00	0.0870	1	3/11/2010
Chlorobenzene	BQL	1.00	0.0820	1	3/11/2010
Chloroethane	BQL	1.00	0.106	1	3/11/2010
Chloroform	BQL	1.00	0.0790	1	3/11/2010
Chloromethane	BQL	1.00	0.146	1	3/11/2010
2-Chlorotoluene	BQL	1.00	0.0990	1	3/11/2010
4-Chlorotoluene	BQL	1.00	0.0800	1	3/11/2010
Dibromochloromethane	BQL	1.00	0.0900	1	3/11/2010
1,2-Dibromo-3-chloropropane	BQL	5.00	1.21	1	3/11/2010
Dibromomethane	BQL	1.00	0.113	,	3/11/2010
1,2-Dibromoethane (EDB)	BQL	1.00	0.124	1	3/11/2010
1,2-Dichlorobenzene	BQL	1.00	0.127	1	3/11/2010
1,3-Dichlorobenzene	BQL	1.00	0.0810	1	3/11/2010
1,4-Dichlorobenzene	BQL	1.00	0.0790	1	3/11/2010
trans-1,4-Dichloro-2-butene	BQL	5.00	0.630	1	3/11/2010
1,1-Dichloroethane	BQL	1.00	0.0740	1	3/11/2010
1,1-Dichloroethene	BQL	1.00	0.0890	1	3/11/2010
1,2-Dichloroethane	BQL	1.00	0.0790	1	3/11/2010
cis-1,2-Dichloroethene	BQL	1.00	0.0650	1	3/11/2010
trans-1,2-dichloroethene	BQL	1.00	0.0890	1	3/11/2010
1,2-Dichloropropane	BQL	1.00	0.0940	1	3/11/2010
1,3-Dichloropropane	BQL	1.00	0.127	1	3/11/2010
2,2-Dichloropropane	BQL	1.00	0.0590	1	3/11/2010
1,1-Dichloropropene	BQL	1.00	0.0720	1	3/11/2010
cis-1,3-Dichloropropene	BQL	1.00	0.0760	1	3/11/2010
trans-1,3-Dichloropropene	BQL	1.00	0.0760	1	3/11/2010
Dichlorodifluoromethane	BQL	5.00	0.0940		3/11/2010
Diisopropyl ether (DIPE)	BQL	1.00	0.0730	1	3/11/2010
Ethylbenzene	BQL	1.00	0.0770		3/11/2010
Hexachlorobutadiene	BQL	1.00	0.228	1	3/11/2010
2-Hexanone	BQL	5.00	0.720	1	3/11/2010
lodomethane	BQL	1.00	0.0420	1	3/11/2010
Isopropylbenzene	BQL	1.00	0.0710	1	3/11/2010

Results for Volatiles
 by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK8031110B Lab Project ID:
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene
2-Dichloroethane-d4
oluene-d8
-Bromofluorobenzene

Result	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$3 / 11 / 2010$
BQL	5.00	0.0980	1	$3 / 11 / 2010$
BQL	5.00	0.550	1	$3 / 11 / 2010$
BQL	1.00	0.0670	1	$3 / 11 / 2010$
BQL	1.00	0.133	1	$3 / 11 / 2010$
BQL	1.00	0.0800	1	$3 / 11 / 2010$
BQL	1.00	0.0850	1	$3 / 11 / 2010$
BQL	1.00	0.0900	1	$3 / 11 / 2010$
BQL	1.00	0.115	1	$3 / 11 / 2010$
BQL	1.00	0.0690	1	$3 / 11 / 2010$
BQL	1.00	0.0760	1	$3 / 11 / 2010$
BQL	1.00	0.190	1	$3 / 11 / 2010$
BQL	1.00	0.119	1	$3 / 11 / 2010$
BQL	1.00	0.0540	1	$3 / 11 / 2010$
BQL	1.00	0.0540	1	$3 / 11 / 2010$
BQL	1.00	0.182	1	$3 / 11 / 2010$
BQL	1.00	0.111	1	$3 / 11 / 2010$
BQL	1.00	0.120	1	$3 / 11 / 2010$
BQL	1.00	0.0650	1	$3 / 11 / 2010$
BQL	1.00	0.0740	1	$3 / 11 / 2010$
BQL	1.00	0.149	1	$3 / 11 / 2010$
BQL	2.00	0.0980	1	$3 / 11 / 2010$
BQL	1.00	0.0650	1	$3 / 11 / 2010$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	30	29.8	99	
	30	28	93	
	30	27.1	90	

Comments:

Flags:

$\mathrm{BQL}=$ Below Quantitation Limits.
Analyst: \qquad
Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Reviewed By: \qquad

SGS North America, Inc.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
Lab Name: SGS Environmental Dilution: 1

Lab Code: NC00919
Matrix: Water

LCS: LCS8031110A	Filename: 0311803.D	Date Analyzed: 03/11/10 13:37
LCSD: LCS8031110B	Filename: 0311804.D	Date Analyzed: 03/11/10 14:11

COMPOUND			$\begin{gathered} \text { LCS } \\ \text { REC } \end{gathered}$	LCSD SPIRE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { LCSD } \\ \text { \% } \\ \text { REC } \# \end{gathered}$	$\begin{gathered} \% \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
acetone	25.0	26.2	105	25.0	23.9	95.8	9.20	30	23.5-141
acrolein	125	153	123	125	147	118	4.26	30	31.4-182
acrylonitrile	125	132	105	125	126	100	4.73	30	64.2-140
benzene	5.00	5.05	101	5.00	4.85	97.0	4.04	30	76.6-120
bromobenzene	5.00	4.93	98.6	5.00	4.79	95.8	2.88	30	75.0-122
bromochloromethane	5.00	5.62	112	5.00	5.35	107	4.92	30	74.8-127
bromodichloromethane	5.00	6.01	120*	5.00	4.56	91.2	27.4	30	76.4-117
bromoform	5.00	5.19	104	5.00	4.87	97.4	6.36	30	62.4-127
bromomethane	5.00	5.99	120	5.00	5.77	115	3.74	30	34.2-166
2-butanone	25.0	27.2	109	25.0	24.0	96.0	12.3	30	44.9-126
n-butylbenzene	5.00	4.84	96.8	5.00	4.71	94.2	2.72	30	72.0-122
sec-butylbenzene	5.00	4.96	99.2	5.00	4.88	97.6	1.63	30	78.3-116
tert-butylbenzene	5.00	4.77	95.4	5.00	4.79	95.8	0.418	30	53.1-148
Carbon disulfide	5.00	5.33	107	5.00	5.03	101	5.79	30	69.0-118
carbon tetrachloride	5.00	5.30	106	5.00	5.01	100	5.62	30	71.7-124
chlorobenzene	5.00	5.03	101	5.00	4.97	99,4	1.60	30	75.5-116
chloroethane	5.00	5.79	116	5.00	5.71	114	1.39	30	78.2-138
2-chloroethyl vinyl ether	125	125	100	125	122	97.4	2.64	30	5.57-235
chloroform	5.00	5.12	102	5.00	4.95	99.0	3.38	30	80.6-117
chloromethane	5.00	5.41	108	5.00	5,04	101	7.08	30	72,6-127
2-chlorotoluene	5.00	4.99	99.8	5.00	4.96	99.2	0.603	30	81.4-117
4-chlorotoluene	5.00	5.18	104	5.00	5.00	100	3.54	30	82.1-116
dibromochloromethane	5.00	4.87	97.4	5.00	4.52	90.4	7.45	30	73.1-117
1,2-dibromo-3-chloropropane	25.0	24.7	98.9	25.0	23.1	92.3	6.94	30	58.0-133
1,2-dibromoethane	5.00	5.18	104	5.00	4.81	96.2	7.41	30	75.5-118
dibromomethane	5.00	6.35	127*	5.00	5.76	115	9.74	30	77.3-124
1,2-dichlorobenzene	5.00	5.13	103	5.00	5.02	100	2.17	30	76.3-115
1,3-dichlorobenzene	5.00	5.17	103	5.00	5.02	100	2.94	30	79.1-114
1,4-dichlorobenzene	5.00	5.28	106	5.00	5.12	102	3.08	30	76.8-115
trang-1, 4-Dichloro-2-butene	25.0	27.1	108	25.0	24.8	99.4	8.77	30	52.3-130
dichlorodifluoromethane	5.00	5.49	110	5.00	5.52	110	0.545	30	69.8-134
1,1-dichloroethane	5.00	5.13	103	5.00	4.77	95.4	7.27	30	78.0-120
1,2-dichloroethane	5.00	5.12	102	5.00	4.91	98.2	4.19	30	72.8-126
1,1-dichloroethene	5.00	5.29	106	5.00	4.97	99.4	6.43	30	74.6-121
cis-1,2-dichloroethene	5.00	4.98	99.6	5.00	4.69	93.8	6.00	30	78.0-121
trans-1,2-dichloroethene	5.00	5.13	103	5.00	5.07	101	1.18	30	60.7-144
1,2-dichloropropane	5.00	5.75	115	5.00	4.84	96.8	17.2	30	75.8-119
1,3-dichloropropane	5.00	5.17	103	5.00	4.89	97.8	5.57	30	78.5-113
2,2-dichloropropane	5.00	5.07	101	5.00	4.96	99.2	2.19	30	75.6-130
1,1-dichloropropene	5.00	4.97	99.4	5.00	4.85	97.0	2.44	30	79.7-117
cis-1,3-dichloropropene	5.00	5.50	110	5.00	5.18	104	5.99	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
LCS:. LCS8031110A
LCSD: LCS8031110B
COMPOUND

trans-1,3-dichlor
Disopropyl ether

ethylbenzene
hexachlorobutadiene
2-hexanone
Iodomethane
isopropylbenzene
4-isopropyltoluene
Methyl-tert-butyl ether
methylene chloride

4-methyl-2-pentanone
naphthalene

naphthalene
styrene
1,1,1,2-tetrachloroethane
1,1,2,2-tetrachloroethane
tetrachloroethene
toluene
1,2,3-trichlorobenzene
1,2,4-trichlorobenzene
1,1,1-trichloroethane
1,1,2-trichloroethane
trichloroethene
trichlorofluoromethane
1,2,3-trichloropropane
1,2,4-trimethylbenzene
1,3,5-trimethylbenzene
Vinyl acetate
vinyl chloride
m/p-xylene
o-xylene

System Monitoring Compound Results		LCS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	LCS CONC (Lg / L)	$\begin{gathered} \text { LCS } \\ \text { \& } \\ \text { REC \# } \\ \hline \end{gathered}$	LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { LCSD } \\ \text { REC } \end{gathered}$	$\begin{gathered} \text { QC LIMITS } \\ \text { REC } \end{gathered}$
460-00-4	4-Bromofluorobenzene	30	29.64	98.8	30	29.04	96.8	84.7-115
17060-07-0	1,2-Dichloroethane-d4	30	29.95	99.8	30	29.3	97.7	63.5-140
2037-26-5	Toluene-d8	30	29.82	99.4	30	29.66	98.8	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

LCS Spike Recovery: 3 failure (s) out of 72. LCSD Spike Recovery: 0 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS: \qquad
\qquad

page 2 of 2

SGS North America, Inc.

SGS Environmental Services

3A

WATER VOLATILE MATRIX SPIRE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
Inst: MSD8
EPA Sample No.: Amt. Filenames: Analysis Dates:

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad
page 2 of 2
FORM III VOA-I
0LM04. 2

SGS North America, Inc.
SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: g582-648-2a, g582-648-2a, g582-648-2a Filenames: 0311814.D, 0311815.D, 0311816.D

Inst: MSD8
Batch: 8031110
Dilution: 800
Matrix: Water

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 3 failure (s) out of 72. MSD Spike Recovery: 3 failure (s) out of 72.
RFD: 0 out of 72 outside of limits
COMMENTS:

Analyst:
 Reviewed by: \qquad DUO

Results for Volatiles

 by GCMS $\mathbf{8 2 6 0}$Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK8031610B Lab Project ID:

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
1,1-Dichloroethene
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene
Cren

Result UG/L
BQL

Quantitation	MDL UG/L	Dilution Factor	Date Analyzed
25.0	2.18	1	3/16/2010
1.00	0.0650	1	3/16/2010
1.00	0.0560	1	3/16/2010
1.00	0.101	1	3/16/2010
1.00	0.0760	1	3/16/2010
1.00	0.120	1	3/16/2010
1.00	0.133	1	3/16/2010
25.0	0.544	1	3/16/2010
1.00	0.109	1	3/16/2010
1.00	0.0840	1	3/16/2010
1.00	0.0500	1	3/16/2010
1.00	0.0690	1	3/16/2010
1.00	0.0870	1	3/16/2010
1.00	0.0820	1	3/16/2010
1.00	0.106	1	3/16/2010
1.00	0.0790	1	3/16/2010
1.00	0.146	1	3/16/2010
1.00	0.0990	1	3/16/2010
1.00	0.0800	1	3/16/2010
1.00	0.0900	1	3/16/2010
5.00	1.21	1	3/16/2010
1.00	0.113	1	3/16/2010
1.00	0.124	1	3/16/2010
1.00	0.127	1	3/16/2010
1.00	0.0810	1	3/16/2010
1.00	0.0790	1	3/16/2010
5.00	0.630	1	3/16/2010
1.00	0.0740	1	3/16/2010
1.00	0.0890	1	3/16/2010
1.00	0.0790	1	3/16/2010
1.00	0.0650	1	3/16/2010
1.00	0.0890	1	3/16/2010
1.00	0.0940	1	3/16/2010
1.00	0.127	1	3/16/2010
1.00	0.0590	1	3/16/2010
1.00	0.0720	1	3/16/2010
1.00	0.0760	1	3/16/2010
1.00	0.0760	1	3/16/2010
5.00	0.0940	1	3/16/2010
1.00	0.0730	1	3/16/2010
1.00	0.0770	1	3/16/2010
1.00	0.228	1	3/16/2010
5.00	0.720	1	3/16/2010
1.00	0.0420	1	3/16/2010
1.00	0.0710	1	3/16/2010

Flag
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/201
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/2010
3/16/201
3/16/201
3/162010
3/16/2010
3/16/2010
3/16/2010

Results for Volatiles
 by GCMS 8260

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK8031610B Lab Project ID:
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
$1,2,4$-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
$1,1,2-$ Trichloroethane
Trichlorofluoromethane
$1,2,3-$ Trichloropropane
$1,2,4$-Trimethylbenzene
$1,3,5$-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
$0-X y l e n e$

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
$B Q L=$ Below Quantitation Limits.
Analyst: \qquad

Result	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$3 / 16 / 2010$
BQL	5.00	0.0980	1	$3 / 16 / 2010$
BQL	5.00	0.550	1	$3 / 16 / 2010$
BQL	1.00	0.0670	1	$3 / 16 / 2010$
BQL	1.00	0.133	1	$3 / 16 / 2010$
BQL	1.00	0.0800	1	$3 / 16 / 2010$
BQL	1.00	0.0850	1	$3 / 16 / 2010$
BQL	1.00	0.0900	1	$3 / 16 / 2010$
BQL	1.00	0.115	1	$3 / 16 / 2010$
BQL	1.00	0.0690	1	$3 / 16 / 2010$
BQL	1.00	0.0760	1	$3 / 16 / 2010$
BQL	1.00	0.190	1	$3 / 16 / 2010$
BQL	1.00	0.119	1	$3 / 16 / 2010$
BQL	1.00	0.0540	1	$3 / 16 / 2010$
BQL	1.00	0.0540	1	$3 / 16 / 2010$
BQL	1.00	0.182	1	$3 / 16 / 2010$
BQL	1.00	0.111	1	$3 / 16 / 2010$
BQL	1.00	0.120	1	$3 / 16 / 2010$
BQL	1.00	0.0650	1	$3 / 16 / 2010$
BQL	1.00	0.0740	1	$3 / 16 / 2010$
BQL	1.00	0.149	1	$3 / 16 / 2010$
BQL	2.00	0.0980	1	$3 / 16 / 2010$
BQL	1.00	0.0650	1	$3 / 16 / 2010$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	30	29.1	97	
	30	28	93	90

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Flag

SGS North America, Inc.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY
Lab Name: SGS Environmental \quad Dilution: 1
Lab Code: NC00919

LCS: LCS8031610A	Filename: 0316803.D	Date Analyzed: 03/16/10 12:37
LCSD: LCS8031610B	Filename: 0316804.D	Date Analyzed: 03/16/10 13:02

COMPOUND		$\begin{gathered} \text { LCS } \\ \text { CONC } \end{gathered}$$(\mu \mathrm{g} / \mathrm{L})$			LCSD CONC ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { LCSD } \\ \text { \% } \\ \text { REC \# } \end{gathered}$	$\begin{gathered} \% \\ R P D \end{gathered}$	QC LIMITS	
								RPD	REC
acetone	25.0	24.2	97.0	25.0	24.1	96.4	0.662	30	23.5-141
acrolein	125	134	107	125	134	107	0.545	30	31.4-182
acrylonitrile	125	114	90.9	125	114	91.1	0.211	30	64.2-140
benzene	5.00	4.64	92.8	5.00	4.75	95.0	2.34	30	76.6-120
bromobenzene	5.00	4.83	96.6	5.00	4.86	97.2	0.619	30	75.0-122
bromochloromethane	5.00	5.39	108	5.00	5.29	106	1.87	30	74.8-127
bromodichloromethane	5.00	5.00	100	5.00	4.73	94.6	5.55	30	76.4-117
bromoform	5.00	6.08	122	5.00	5.63	113	7.68	30	62.4-127
bromomethane	5.00	5.76	115	5.00	5.49	110	4.80	30	34.2-166
2-butanone	25.0	22.6	90.4	25.0	22.7	90.8	0.530	30	44.9-126
n-butylbenzene	5.00	4.72	94.4	5.00	4.72	94.4	0.00	30	72.0-122
sec-butylbenzene	5.00	4.86	97.2	5.00	4.76	95.2	2.08	30	78.3-116
tert-butylbenzene	5.00	4.61	92.2	5.00	4.74	94.8	2.78	30	53.1-148
Carbon disulfide	5.00	5,00	100	5.00	4,91	98.2	1.82	30	69.0-118
carbon tetrachloride	5.00	5.54	111	5.00	5.46	109	1.45	30	71.7-124
chlorobenzene	5,00	4.66	93.2	5.00	4.62	92.4	0.862	30	75.5-116
chloroethane	5.00	5.88	118	5.00	5.41	108	8.32	30	78.2-138
2-chloroethyl vinyl ether	125	111	88.7	125	113	90.1	1.58	30	5.57-235
chloroform	5.00	4.84	96.8	5.00	4.77	95.4	1,46	30	80.6-117
chloromethane	5.00	5.37	107	5.00	5.04	101	6.34	30	72, 6-127
2-chlorotoluene	5.00	4.61	92.2	5.00	4.88	97.6	5.69	30	81.4-117
4-chlorotoluene	5.00	4.76	95.2	5.00	4.90	98.0	2.90	30	82.1-116
dibromochloromethane	5.00	4.93	98.6	5.00	4.81	96.2	2.46	30	73.1-117
1,2-dibromo-3-chloropropane	25.0	22.2	88.8	25.0	22.0	88.0	0.860	30	58.0-133
1,2-dibromoethane	5,00	4.79	95.8	5.00	4.78	95.6	0.209	30	75.5-118
dibromomethane	5.00	5.83	117	5.00	4.58	91.6	24.0	30	77.3-124
1,2-dichlorobenzene	5.00	4.70	94.0	5.00	4.72	94.4	0.425	30	76.3-115
1,3-dichlorobenzene	5.00	4.74	94.8	5.00	4.72	94.4	0.423	30	79.1-114
1,4-dichlorobenzene	5.00	4.90	98.0	5.00	4.80	96.0	2.06	30	76.8-115
trans-1, 4-Dichloro-2-butene	25.0	23.4	93.5	25.0	23.7	94.8	1.32	30	52.3-130
dichlorodifluoromethane	5.00	5.47	109	5.00	5.11	102	6.80	30	69.8-134
1,1-dichloroethane	5.00	4.94	98.8	5.00	4.71	94.2	4.77	30	78.0-120
1,2-dichloroethane	5.00	4.70	94.0	5.00	4.62	92.4	1.72	30	72.8-126
1,1-dichloroethene	5.00	5.24	105	5.00	5.28	106	0.948	30	74.6-121
cis-1,2-dichloroethene	5.00	4.75	95.0	5.00	4.82	96.4	1.46	30	78.0-121
trans-1,2-dichloroethene	5.00	4.77	95.4	5.00	4.81	96.2	0.835	30	60.7-144
1,2-dichloropropane	5.00	4.91	98.2	5.00	4.28	85.6	13.7	30	75.8-119
1,3-dichloropropane	5.00	4.54	90.8	5.00	4.63	92.6	1.96	30	78.5-113
2,2-dichloropropane	5.00	5.25	105	5.00	5.11	102	2.70	30	75.6-130
1,1-dichloropropene	5.00	4.87	97.4	5.00	4.88	97.6	0.205	30	79.7-117
cis-1,3-dichloropropene	5.00	5,16	103	5.00	4.99	99.8	3.35	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.
SGS Environmental Sevices

LABORATORY CONTROL GAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Dilution: 1
Lab Code: NC00919
Matrix: Water
LCS: LCS8031610A.
Filename: $0316803 . \mathrm{D}$
Filename: $0316804 . \mathrm{D}$

Date Analyzed: 03/16/10 12:37
Date Analyzed: 03/16/10 13:02

COMPOUND	$\begin{gathered} \text { LCS } \\ \text { SPIKE } \\ (\mathrm{\mu g} / \mathrm{L}) \\ \hline \end{gathered}$	LCSCONC$(\mu \mathrm{g} / \mathrm{L})$	LCS \% REC \#				$\stackrel{\%}{\mathrm{RPD}}$	QC LIMITS	
								RPD	REC
trans-1,3-dichloropropene	5.00	5.35	107	5.00	5.20	104	2.84	30	79.0-113
Diisopropyl ether	5.00	4.64	92.8	5.00	4.49	89.8	3.28	30	71.8-115
ethylbenzene	5.00	4.56	91.2	5.00	4.64	92.8	1.74	30	80.5-115
hexachlorobutadiene	5.00	5.26	105	5.00	5.28	106	0.380	30	63.3-139
2-hexanone	25.0	22.7	9.1 .0	25.0	23.7	94.7	4.01	30	46.8-123
Iodomethane	5.00	6.51	130	5.00	6.47	129	0.616	30	29.3-156
isopropylbenzene	5.00	4.57	91.4	5.00	4.55	91.0	0.438	30	81.6-114
4-isopropyltoluene	5.00	4.72	94.4	5.00	4.69	93.8	0.638	30	78.4-119
Methyl-tert-butyl ether	5.00	4.45	89.0	5.00	4.55	91.0	2.22	30	76.0-114
methylene chloride	5.00	4.75	95.0	5.00	4.53	90.6	4.74	30	72.9-120
4 -methyl-2-pentanone	25.0	20.8	83.3	25.0	21.6	86.3	3.54	30	56.2-124
naphthalene	5.00	4.05	81.0	5.00	4.19	83.8	3.40	30	24.8-182
n-propyl benzene	5.00	4.58	91.6	5.00	4.60	92.0	0.436	30	79.0-116
styrene	5.00	4.58	91.6	5.00	4.56	91.2	0.438	30	64.8-132
1,1,1,2-tetrachloroethane	5.00	5.23	105	5.00	5.24	105	0.191	30	78.8-118
1,1,2,2-tetrachloroethane	5.00	4.34	86.8	5.00	4.49	89.8	3.40	30	69.7-119
tetrachloroethene	5.00	5.04	101	5.00	5.01	100	0.597	30	55.3-144
toluene	5.00	4.61	92.2	5.00	4.69	93.8	1.72	30	78.6-117
1,2,3-trichlorobenzene	5.00	4.53	90.6	5.00	4.69	93.8	3.47	30	20.8-193
1,2,4-trichlorobenzene	5.00	4.55	91.0	5.00	4.61	92.2	1.31	30	47.9-150
1,1,1-trichloroethane	5.00	5.10	102	5.00	4.98	99.6	2.38	30	78.8-120
1,1,2-trichloroethane	5.00	4.90	98.0	5.00	4.81	96.2	1.85	30	73.6-117
trichloroethene	5.00	4.86	97.2	5.00	4.71	94.2	3.13	30	80.1-116
trichlorofluoromethane	5.00	6.42	128	5.00	6.17	123	3.97	30	80.5-130
1,2,3-trichloropropane	5.00	4.34	86.8	5.00	4.57	91.4	5.16	30	35.6-152
1,2,4-trimethylbenzene	5.00	4.78	95.6	5.00	4.76	95.2	0.419	30	77.0-116
1,3,5-trimethylbenzene	5.00	4.67	93.4	5.00	4.58	91.6	1.94	30	79.4-114
Vinyl acetate	12.5	11.7	93.4	12.5	11.3	90.3	3.40	30	60.7-127
vinyl chloride	5.00	4.99	99.8	5.00	4.99	99.8	0.00	30	77.5-126
m/p-xylene	10.0	9.21	92.1	10.0	9.47	94.7	2.78	30	82.9-112
O-xylene	5.00	4.46	89.2	5.00	4.45	89.0	0.224	30	81.3-113

Syatem Monitoring Compound Resulta					LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)			$\begin{aligned} & \text { QC LIMITS } \\ & \text { REC } \\ & \hline \end{aligned}$
460-00-4	4-Bromofluorobenzene	30	29.47	98.2	30	29.52	98.4	84.7-115
17060-07-0	1,2-Dichloroethane-d4	30	29.85	99.5	30	28.84	96.1	63.5-140
2037-26-5	Toluene-d8	30	30.22	101	30	29.89	98.6	81.8-117

\# Column to be used to flag recovery and RPD values with an asteriak

* Values outside of QC limits

LCS Spike Recovery: 0 failure (s) out of 72. LCSD Spike Recovery: 0 failure(s) out of 72 .
RPD: 0 out of 72 outside of limits
COMMENTS:

Analyat \qquad Reviewed by:

page 2 of 2

SGS North America, Inc.
SGs Environmental Services
3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental Lab Code: NC00919
EPA Sample No.: Amt. Filenames:

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits
commars: Hirix intiblfertule

SGS North America, Inc.
SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Inst: MSD8
Lab Code: NC00919
Batch: 8031610
EPA Sample No.: g582-648-3a, g582-648-3a, g582-648-3a
Filenames: $0316814 . \mathrm{D}, 0316815 . \mathrm{D}, 0316816 . \mathrm{D}$
Dilution: 800
Macrix: Water

COMPOUND	$\begin{gathered} \text { SAMPLE } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$						MSD\%REC \#	$\begin{gathered} \% \\ \text { RPD } \\ \hline \end{gathered}$	QC LIMITS	
									RPD	REC
trans-1, 3-dichloropropene	BQL	4000	4330	108	4000	4320	108	0.185	30	44,7-144
Disisopropyl ether	BQL	4000	3900	97.6	4000	3860	96.6	1.03	30	79.4-122
ethylbenzene	BQL	4000	3780	94.4	4000	3700	92.4	2.14	30	73,8-126
hexachlorobutadiene	BQL	4000	4380	109	4000	4140	104	5,45	30	51, 8-134
2-hexanone	BQL	20000	15100	75.4	20000	16300	81.5	7.85	30	41.6-111
Iodomethane	BQL	4000	5420	135*	4000	5640	141*	4,05	30	40.6-126
isopropylbenzene	BQL	4000	3680	92.0	4000	3640	91.0	1.09	30	74.3-123
4-isopropyltoluene	BQL	4000	3740	93.4	4000	3660	91.4	2.16	30	74.6-122
Methyl-tert-butyl ether	BQL	4000	3860	96.6	4000	3870	96.8	0.207	30	66.5-136
methylene chloride	BQL	4000	4350	109	4000	4400	110	1.10	30	48.6-155
4-methyl-2-pentanone	BQL	20000	15800	78.8	20000	17200	86.2	8.97	30	6.88-166
naphthalene	BQL	4000	2960	74.0	4000	3130	78.2	5.52	30	55.1-140
n-propyl benzene	BQL	4000	3770	94.2	4000	3690	92.2	2.14	30	71.6-128
styrene	BQL	4000	2560	64.0*	4000	2470	$61.8 *$	3,50	30	73.2-123
1,1,1,2-tetrachloroethane	BQL	4000	4060	101	4000	3900	97.6	3,82	30	69.4-120
1,1,2,2-tetrachloroethane	BOL	4000	3780	94.6	4000	3810	95.2	0.632	30.	75.7-136
tetrachloroethene	BQL	4000	4390	110	4000	4260	107	2.96	30	45.8-153
toluene	BOL	4000	4090	102	4000	3940	98.6	3.58	30	66.4-128
1,2,3-trichlorobenzene	BOL	4000	3720	93.0	4000	3620	90.4	2.84	30	61.0-126
1,2,4-trichlorobenzene	BQL	4000	3640	91.0	4000	3570	89.2	2.00	30	60.6-125
1,1,1-trichloroethane	BQL	4000	4300	108	4000	4230	106	1.69	30	78.4-121
1,1,2-trichloroethane	BQL	4000	4140	104	4000	4140	104	0.00	30	64.8-128
trichloroethene	BQL	4000	4290	107	4000	4290	107	0.00	30	84.9-136
trichlorofluoromethane	BOL	4000	5810	145*	4000	5720	143*	1.53	30	76.8-132
1,2,3-trichloropropane	BQL	4000	3710	92.8	4000	3970	99.2	6.67	30	10.0-218
1,2,4-trimethylbenzene	BQL	4000	4100	102	4000	3850	96.2	6.24	30	31.0-172
1,3,5-trimethylbenzene	BQL	4000	3870	96.8	4000	3700	92.4	4.65	30	67.7-132
Vinyl acetate	BQL	10000	9690	96.9	10000	9900	99.0	2.20	30	0.00-355
vinyl chloride	1940	4000	6630	117	4000	6790	121	3.35	30	68.1-137
m/p-xylene	BQL	8000	7820	97.7	8000	7470	93.4	4.50	30	79.8-118
o-xylene	BQL	4000	3660	91.6	4000	3580	89.6	2.21	30	80.0-121

System Monitoring Compound Results				$\begin{gathered} \text { MS } \\ \text { \% } \\ \text { REC \# } \end{gathered}$	MSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	MSD CONC ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { MSD } \\ \text { \% } \\ \text { REC } \# \end{gathered}$	QC LIMITS
460-00-4	4-Bromofluorobenzene	30	30.1	100	30	29.9	99.7	84.7-115
17060-07-0	1,2-Dichloroethane-d4	30	30.75	102	30	30.52	102	63,5-140
2037-26-5	Toluene-d8	30	30.55	102	30	30.82	103	81.8-117

\# column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 5 failure (s) out of 72. MSD Spike Recovery: 5 failure(s) out of 72 .
RPD: 0 out of 72 outside of limits
COMMENTS:

Analyst: \qquad Reviewed by:

Results for Volatiles
 by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK3031710B Lab Project ID:

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
Acetone	BQL	25.0	2.18	1	3/17/2010
Benzene	BQL	1.00	0.0650	1	3/17/2010
Bromobenzene	BQL	1.00	0.0560	1	3/17/2010
Bromochloromethane	BQL	1.00	0.101	1	3/17/2010
Bromodichloromethane	BQL	1.00	0.0760	1	3/17/2010
Bromoform	BQL	1.00	0.120	1	3/17/2010
Bromomethane	BQL	1.00	0.133	1	3/17/2010
2-Butanone	BQL	25.0	0.544	1	3/17/2010
n-Butylbenzene	BQL	1.00	0.109	1	3/17/2010
sec-Butylbenzene	BQL	1.00	0.0840	1	3/17/2010
tert-Butylbenzene	BQL	1.00	0.0500	1	3/17/2010
Carbon disulfide	BQL	1.00	0.0690	1	3/17/2010
Carbon tetrachloride	BQL	1.00	0.0870	1	3/17/2010
Chlorobenzene	BQL	1.00	0.0820	1	3/17/2010
Chloroethane	BQL	1.00	0.106	1	3/17/2010
Chloroform	BQL	1.00	0.0790	1	3/17/2010
Chloromethane	BQL	1.00	0.146	1	3/17/2010
2-Chlorotoluene	BQL	1.00	0.0990	1	3/17/2010
4-Chlorotoluene	BQL	1.00	0.0800	1	3/17/2010
Dibromochloromethane	BQL	1.00	0.0900	1	3/17/2010
1,2-Dibromo-3-chloropropane	BQL	5.00	1.21	1	3/17/2010
Dibromomethane	BQL	1.00	0.113	1	3/17/2010
1,2-Dibromoethane (EDB)	BQL	1.00	0.124	1	3/17/2010
1,2-Dichlorobenzene	BQL	1.00	0.127	1	3/17/2010
1,3-Dichlorobenzene	BQL	1.00	0.0810	1	3/17/2010
1,4-Dichlorobenzene	BQL	1.00	0.0790	1	3/17/2010
trans-1,4-Dichloro-2-butene	BQL	5.00	0.630	1	3/17/2010
1,1-Dichloroethane	BQL	1.00	0.0740	1	3/17/2010
1,1-Dichloroethene	BQL	1.00	0.0890	1	3/17/2010
1,2-Dichloroethane	BQL	1.00	0.0790	1	3/17/2010
cis-1,2-Dichloroethene	BQL	1.00	0.0650	1	3/17/2010
trans-1,2-dichloroethene	BQL	1.00	0.0890	1	3/17/2010
1,2-Dichloropropane	BQL	1.00	0.0940	1	3/17/2010
1,3-Dichloropropane	BQL	1.00	0.127	1	3/17/2010
2,2-Dichloropropane	BQL	1.00	0.0590	1	3/17/2010
1,1-Dichloropropene	BQL	1.00	0.0720	1	3/17/2010
cis-1,3-Dichloropropene	BQL	1.00	0.0760	1	3/17/2010
trans-1,3-Dichloropropene	BQL	1.00	0.0760	1	3/17/2010
Dichlorodifluoromethane	BQL	5.00	0.0940	1	3/17/2010
Diisopropyl ether (DIPE)	BQL	1.00	0.0730	1	3/17/2010
Ethylbenzene	BQL	1.00	0.0770	1	3/17/2010
Hexachlorobutadiene	BQL	1.00	0.228	1	3/17/2010
2-Hexanone	BQL	5.00	0.720	1	3/17/2010
lodomethane	BQL	1.00	0.0420	,	3/17/2010
Isopropylbenzene	BQL	1.00	0.0710	1	3/17/2010

Results for Volatiles
 by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK3031710B Lab Project ID:
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:

$B Q L=$ Below Quantitation Limits.
Analyst: \qquad

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed BQL
1.00	0.0480	1	$3 / 1 / 7 / 2010$	
BQL	5.00	0.0980	1	$3 / 17 / 2010$
BQL	5.00	0.550	1	$3 / 17 / 2010$
BQL	1.00	0.0670	1	$3 / 17 / 2010$
BQL	1.00	0.133	1	$3 / 17 / 2010$
BQL	1.00	0.0800	1	$3 / 17 / 2010$
BQL	1.00	0.0850	1	$3 / 17 / 2010$
BQL	1.00	0.0900	1	$3 / 17 / 2010$
BQL	1.00	0.115	1	$3 / 17 / 2010$
BQL	1.00	0.0690	1	$3 / 17 / 2010$
BQL	1.00	0.0760	1	$3 / 17 / 2010$
BQL	1.00	0.190	1	$3 / 17 / 2010$
BQL	1.00	0.119	1	$3 / 17 / 2010$
BQL	1.00	0.0540	1	$3 / 17 / 2010$
BQL	1.00	0.0540	1	$3 / 17 / 2010$
BQL	1.00	0.182	1	$3 / 17 / 2010$
BQL	1.00	0.111	1	$3 / 17 / 2010$
BQL	1.00	0.120	1	$3 / 17 / 2010$
BQL	1.00	0.0650	1	$3 / 17 / 2010$
BQL	1.00	0.0740	1	$3 / 17 / 2010$
BQL	1.00	0.149	1	$3 / 17 / 2010$
BQL	2.00	0.0980	1	$3 / 17 / 2010$
BQL	1.00	0.0650	1	$3 / 17 / 2010$
	Spike	SpIke	Percent	
	Added	Result	Recovered	
	10	10.6	106	
	10	9.92	99	
	10	9.72	97	

Flag
Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Reviewed By: \qquad

SGS North America, Inc.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
Dilution: 1
Matrix: Water

```
LCS: LCS3031710A
Filename: 0317303.D
Filename: 0317304.D
LCSD: LCS3031710B
Filename: 0317304.D
```

Date Analyzed: 03/17/10 10:26
Date Analyzed: 03/17/10 10:57

COMPOUND	$\begin{gathered} \text { LCS } \\ \text { SPIKE } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { LCS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$		LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { LCSD } \\ \text { \% } \\ \text { REC \# } \\ \hline \end{gathered}$	$\begin{gathered} \% \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
acetone	25.0	29.2	117	25.0	29.0	116	0.550	30	23.5-141
acrolein	125	109	87.0	125	112	89.8	3.14	30	31.4-182
acrylonitrile	125	120	96.2	125	125	100	3.94	30	64.2-140
benzene	5.00	4.88	97.6	5.00	4.79	95.8	1.86	30	76.6-120
bromobenzene	5.00	4.87	97.4	5.00	4.81	96.2	1.24	30	75.0-122
bromochloromethane	5.00	4.96	99.2	5.00	4.94	98.8	0.404	30	74.8-127
bromodichloromethane	5.00	5.21	104	5.00	5.10	102	2.13	30	76.4-117
bromoform	5.00	4.81	96.2	5.00	4.61	92.2	4.25	30	62.4-127
bromomethane	5.00	5.07	101	5.00	4.85	97.0	4.44	30	34.2-166
2-butanone	25.0	28.1	112	25.0	28.0	112	0.107	30	44.9-126
n-butylbenzene	5.00	4.93	98.6	5.00	4.88	97.6	1.02	30	72.0-122
sec-butylbenzene	5.00	4.83	96.6	5.00	4.78	95.6	1.04	30	78.3-116
tert-butylbenzene	5.00	4.98	99.6	5.00	4.86	97.2	2.44	30	53.1-148
Carbon disulfide	5.00	5.13	103	5.00	5.02	100	2.17	30	69.0-118
carbon tetrachloride	5.00	5.07	101	5.00	4.94	98.8	2.60	30	71.7-124
chlorobenzene	5.00	4.78	95.6	5.00	4.79	95.8	0.209	30	75.5-116
chloroethane	5.00	4.89	97.8	5.00	4.98	99.6	1.82	30	78.2-138
2-chloroethyl vinyl ether	125	131	105	125	130	104	1.14	30	5.57-235
chloroform	5.00	4.99	99.8	5.00	5.07	101	1.59	30	80.6-117
chloromethane	5.00	5.14	103	5.00	5.04	101	1.96	30	72.6-127
2-chlorotoluene	5.00	4.87	97.4	5.00	4.74	94.8	2.70	30	81.4-117
4-chlorotoluene	5.00	5.00	100	5.00	4.98	99.6	0.401	30	82.1-116
dibromochloromethane	5.00	4.71	. 94.2	5.00	4.83	96.6	2.52	30	73.1-117
1,2-dibromo-3-chloropropane	25.0	26.4	106	25.0	27.3	109	3.31	30	58.0-133
1,2-dibromoethane	5.00	4.96	99.2	5.00	4.89	97.8	1.42	30	75.5-118
dibromomethane	5.00	5.12	102	5,00	5.15	103	0.584	30	77.3-124
1,2-dichlorobenzene	5.00	5.06	101	5.00	4.96	99.2	2.00	30	76.3-115
1,3-dichlorobenzene	5.00	4.95	99.0	5.00	4.91	98.2	0.811	30	79.1-114
1,4-dichlorobenzene	5.00	5.15	103	5.00	4.93	98.6	4.36	30	76.8-115
trans-1,4-Dichloro-2-butene	25.0	27.4	110	25.0	25.7	103	6.36	30	52.3-130
dichlorodifluoromethane	5.00	4.53	90.6	5.00	4.67	93.4	3.04	30	69.8-134
1,1-dichloroethane	5.00	5.05	101	5.00	5.02	100	0.596	30	78.0-120
1,2-dichloroethane	5.00	5.12	102	5.00	5.11	102	0.196	30	72.8-126
1,1-dichloroethene	5.00	4.90	98.0	5.00	4.74	94.8	3.32	30	74.6-121
cis-1,2-dichloroethene	5.00	4.92	98.4	5.00	4.81	96.2	2.26	30	78.0-121
trans-1,2-dichloroethene	5.00	4.89	97.8	5.00	4.84	96.8	1.03	30	60.7-144
1,2-dichloropropane	5.00	5.18	104	5.00	5.20	104	0.385	30	75.8-119
1,3-dichloropropane	5.00	4.77	95.4	5.00	4.85	97.0	1.66	30	78.5-113
2,2-dichloropropane	5.00	4.99	99.8	5.00	4.93	98.6	1.21	30	75.6-130
1,1-dichloropropene	5.00	4.87	97.4	5.00	4.82	96.4	1.03	30	79.7-117
cis-1,3-dichloropropene	5.00	5.19	104	5.00	5.18	104	0.193	30	79.8-113
罒 $\sqrt{ }$									

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
LCS: LCS3031710A Filename: 0317303.D
LCSD: LCS3031710B

Filename: 0317304.D

Dilution: 1
Matrix: Water

Date Analyzed: 03/17/10 10:26
Date Analyzed: 03/17/10 10:57

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outaide of $Q C$ limits

ICS Spike Recovery: 0 failure(s) out of 72. LCSD Spike Recovery: 0 failure (s) out of 72 .
RPD: 0 out of 72 outside of limits
COMMENTS: \qquad

Analyst: \qquad Ovo Reviewed by \qquad 1
SG气 North Ame節a，Inc．

SGS

 CHAIN OF CUSTODY RECORD
存象 x

clent arcadis

Samples Received Cold？（Circ（6）YES）NO
Chain＿of Custody Seal：（Circle） INTACT BROKEN INTACT －

Special Instructions：

MATRIX date time

314110	$12: 45$
314	10
$14: 50$	

$3141015: 35$
$3 / 412$ is -35
3141216.40
$3 / 5 / 1019: 50$
－

SAMPLE IDENTIFICATION

	$0 W-8 D$
	$6 N-9 D$
	$P N-10 D$
	$P-1 D$

LAB NO．
Relinquished By：（3）
Relinquished By：（4）

Client Name: Arcadis
Contact: Mark Banish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 12
Lab Pro \#: P1003403
Report Date: 04/12/10
Client Pro Name: B0007393.0000
Client Pro \#: AVXMB

Laboratory Results

Lab Sample \#		Client Sample ID
P1003403-01		IW-2D
P1003403-02	OW-7D	
P1003403-03	IW-4D	
P1003403-04	P-2D	
P1003403-05	OW-8D	
P1003403-06	OW-10D	
P1003403-07	OW-9D	
P1003403-08	P-1D	
P1003403-09	P-3D	

Approved By: \qquad Date:
 Project Manager: Debbie Gallo

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.
Case Narrative: The TOC analyses were performed by Pace Analytical Services

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 12
Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 12
Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description OW-7D	Matrix Water	Lab Sample \# P1003403-02			Sampled Date/Time 29 Mar. 10 10:05	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		3600.0	50	mg/L	9060	4/8/10	pas

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 12
Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { IW-4D }}$	Matrix Water	Lab Sample \# P1003403-03			Sampled Date/Time 29 Mar. 10 10:20	Received		
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysi	sis Date	By
WetChem N Total Organic Carbon		4300.0	100	mg/L	9060	4/8/10		pas

Client Name: Arcadis
Page: Page 5 of 12
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description P-2D	Matrix Water	Lab Sample \# P1003403-04			Sampled Date/ 29 Mar 1010	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4500.0	100	mg/L	9060	4/8/10	pas
RiskAnalysis N Ethane		0.110	0.025	ug/L	AM20GAX	4/9/10	rw
N Ethene		6.600	0.025	ug/L	AM20GAX	4/9/10	rw
N Methane		270.000	0.100	ug/L	AM20GAX	4/9/10	rw

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 12
Lab Proj \#: P1003403
Report Date: $04 / 12 / 10$
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-8D }}$	Matrix Water	Lab Sample \# P1003403-05			Sampled Date/ 29 Mar. 1011	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		2900.0	50	mg/L	9060	4/8/10	pas
RiskAnalysis N Ethane		0.680	0.025	ug/L	AM20GAX	4/9/10	IW
N Ethene		220.000	0.025	ug/L	AM20GAX	4/9/10	rw
N Methane		3500.000	0.100	ug/L	AM20GAX	4/9/10	rw

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 12
Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description OW-10D	Matrix Water	Lab Sample \# P1003403-06			Sampled Date/ 29 Mar. 1011	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4500.0	100	mg/L	9060	4/8/10	pas
RiskAnalysis N Ethane		0.700	0.025	ug/L	AM20GAX	4/9/10	rw
N Ethene		18.000	0.025	ug/L	AM20GAX	4/9/10	rw
N Methane		640.000	0.100	ug/L	AM20GAX	4/9/10	IW

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 12
Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fieids, PA 16046

Page: Page 9 of 12
Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix Water	Lab Sample \# P1003403-08			Sampled Date 29 Mar. 10	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		340.0	50	mg/L	9060	4/8/10	pas
RiskAnalysis N Ethane	J	0.007	0.025	ug/L	AM20GAX	4/9/10	IW
N Ethene		8.700	0.025	ug/L	AM20GAX	4/9/10	rw
N Methane		9300.000	0.100	ug/L	AM20GAX	4/9/10	rw

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fieids, PA 16046

Page: Page 10 of 12
Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-3D }}$	Matrix Water	Lab Sample \# P1003403-09			Sampled Date/ 29 Mar. 1012	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		150.0	50	mg / L	9060	4/8/10	pas
RiskAnalysis N Ethane		0.130	0.025	ug/L	AM20GAX	4/9/10	IW
N Ethene		67.000	0.025	ug/L	AM20GAX	4/9/10	rw
N Methane		3500.000	0.100	ug/L	AM20GAX	4/9/10	rw

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210 Seven Fields, PA 16046

Page: Page 11 of 12
Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Prep Method: In House Dissolved Gas Sample Preparation
Analysis Method: Light Hydrocarbons (C1-C4) in Water

M100409001-MB

	Result		TrueSpikeConc.	RDL	\%Recovery
	Ctl Limits				
Ethane	<0.025	ug / L.	0.025		- NA
Ethene	<0.025	ug / L	0.025	- NA	
Methane	<0.100	ug / L	0.100	- NA	
M100409001-LCS					

	Result		TrueSpikeConc.	\%Recovery	Ctl Limits		
Ethane	50.000	ug / L	45.00	111.00	75-125		
Ethene	45.000	ug/L	40.80	110.00	75-125		
Methane	890.000	ug / L	825.00	108.00	75-125		
M100409001-LCSD							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD Cti Limits
Ethane	51.000	ug/L	45.00	113.00	75-125	1.98	0-20
Ethene	46.000	ug / L	40.80	113.00	75-125	2.20	0-20
Methane	890.000	ug/L	825.00	108.00	75-125	0.00	0-20

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 12 of 12
Lab Proj \#: P1003403
Report Date: 04/12/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

> Prep Method: Total Organic Carbon
> Analysis Method: Total Organic Carbon

M100412019-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits
Total Organic Carbon	< 1.0	$\mathrm{mg} L$		1.0		- NA
M100412019-LCS						
	Result		TrueSpikeConc.		\%Recovery	CtI Limits
Total Organic Carbon	9.6	mg / L	10.01		96.00	5-115

Mark Banish
Arcadis
600 Waterfront Dr.
Pittsburgh, PA 15222

Report Number: G582-661
Client Project: AVX-Myrtle Beach, SC
Dear Mark Hanish,
Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara Wager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America, Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely,
SGS North America, Inc.

SGS North America, Inc.
List of Reporting Abbreviations
And Data Qualifiers
B $=$ Compound also detected in batch blank
$\mathrm{BQL}=$ Below Quantification Limit (RL or MDL)
DF $=$ Dilution Factor

Dup $=$ Duplicate
$\mathrm{D}=$ Detected, but RPD is $>40 \%$ between results in dual column method.
$\mathrm{E}=$ Estimated concentration, exceeds calibration range.
$\mathrm{J}=$ Estimated concentration, below calibration range and above MDL
LCS(D) $=$ Laboratory Control Spike (Duplicate)
MDL $=$ Method Detection Limit
$\operatorname{MS}(D)=$ Matrix Spike (Duplicate)
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{RL} / \mathrm{CL}=$ Reporting Limit $/$ Control Limit
RPD $=$ Relative Percent Difference
$\mathrm{UJ}=$ Target analytes with recoveries that are $10 \%<\% \mathrm{R}<\mathrm{LCL}$; \# of MEs are allowable and compounds are not detected in the sample.
$\mathrm{mg} / \mathrm{Kg}=$ milligram per kilogram, ppm , parts per million
$\mu \mathrm{g} / \mathrm{kg}=$ micrograms per kilogram, ppb, parts per billion
$\mathrm{mg} / \mathrm{L}=$ milligram per liter, ppm , parts per million
$\mu \mathrm{g} / \mathrm{L}=$ micrograms per liter, ppb , parts per billion
$\% \operatorname{Rec}=$ Percent Recovery
$\%$ Soilds $=$ Percent Solids
Special Notes:

1) Metals and mercury samples are digested with a hot block; see the standard operating procedure document for details.
2) Uncertainty for all reported data is less than or equal to 30 percent.

SGS North America, Inc.

Results for Volatiles
 by GCMS 8260

Client Sample ID: P-2D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-1A
Lab Project ID: G582-661

Analyzed By: DVO
Date Collected: 3/29/2010 10:45
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
Acetone	224	1000	87.2	40	4/12/2010	J
Benzene	BQL	40.0	2.60	40	4/12/2010	
Bromobenzene	BQL	40.0	2.24	40	4/12/2010	
Bromochloromethane	BQL	40.0	4.04	40	4/12/2010	
Bromodichloromethane	BQL	40.0	3.04	40	4/12/2010	
Bromoform	BQL	40.0	4.80	40	4/12/2010	
Bromomethane	BQL	40.0	5.32	40	4/12/2010	
2-Butanone	480	1000	21.8	40	4/12/2010	J
n-Butylbenzene	BQL	40.0	4.36	40	4/12/2010	
sec-Butylbenzene	BQL	40.0	3.36	40	4/12/2010	
tert-Butylbenzene	BQL	40.0	2.00	40	4/12/2010	
Carbon disulfide	BQL	40.0	2.76	40	4/12/2010	
Carbon tetrachloride	BQL	40.0	3.48	40	4/12/2010	
Chlorobenzene	BQL	40.0	3.28	40	4/12/2010	
Chloroethane	BQL	40.0	4.24	40	4/12/2010	
Chloroform	BQL	40.0	3.16	40	4/12/2010	
Chloromethane	BQL	40.0	5.84	40	4/12/2010	
2-Chlorotoluene	BQL	40.0	3.96	40	4/12/2010	
4-Chlorotoluene	BQL	40.0	3.20	40	4/12/2010	
Dibromochloromethane	BQL	40.0	3.60	40	4/12/2010	
1,2-Dibromo-3-chloropropane	BQL	200	48.4	40	4/12/2010	
Dibromomethane	BQL	40.0	4.52	40	4/12/2010	
1,2-Dibromoethane (EDB)	BQL	40.0	4.96	40	4/12/2010	
1,2-Dichlorobenzene	BQL	40.0	5.08	40	4/12/2010	
1,3-Dichlorobenzene	BQL	40.0	3.24	40	4/12/2010	
1,4-Dichlorobenzene	BQL	40.0	3.16	40	4/12/2010	
trans-1,4-Dichloro-2-butene	BQL	200	25.2	40	4/12/2010	
1,1-Dichloroethane	BQL	40.0	2.96	40	4/12/2010	
1,1-Dichloroethene	BQL	40.0	3.56	40	4/12/2010	
1,2-Dichloroethane	BQL	40.0	3.16	40	4/12/2010	
cis-1,2-Dichloroethene	215	40.0	2.60	40	4/12/2010	
trans-1,2-dichloroethene	9.60	40.0	3.56	40	4/12/2010	J
1,2-Dichloropropane	BQL	40.0	3.76	40	4/12/2010	
1,3-Dichloropropane	BQL	40.0	5.08	40	4/12/2010	
2,2-Dichloropropane	BQL	40.0	2.36	40	4/12/2010	
1,1-Dichloropropene	BQL	40.0	2.88	40	4/12/2010	
cis-1,3-Dichloropropene	BQL	40.0	3.04	40	4/12/2010	
trans-1,3-Dichloropropene	BQL	40.0	3.04	40	4/12/2010	
Dichlorodifluoromethane	BQL	200	3.76	40	4/12/2010	
Diisopropyl ether (DIPE)	BQL	40.0	2.92	40	4/12/2010	
Ethylbenzene	BQL	40.0	3.08	40	4/12/2010	
Hexachlorobutadiene	BQL	40.0	9.12	40	4/12/2010	
2-Hexanone	BQL	200	28.8	40	4/12/2010	
lodomethane	BQL	40.0	1.68	40	4/12/2010	
Isopropylbenzene	BQL	Page 40 of 2	2.84	40	4/12/2010	$\begin{array}{r} \text { GCMS.xis } \\ 8260 \end{array}$

Results for Volatiles by GCMS 8260
Client Sample ID: P-2D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-1A
Lab Project ID: G582-661
Analyzed By: DVO
Date Collected: 3/29/2010 10:45
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
4-Isopropyltoluene	BQL	40.0	1.92	40	$4 / 12 / 2010$
Methylene chloride	BQL	200	3.92	40	$4 / 12 / 2010$
4-Methyl-2-pentanone	BQL	200	22.0	40	$4 / 12 / 2010$
Methyl-tert-butyl ether (MTBE)	BQL	40.0	2.68	40	$4 / 12 / 2010$
Naphthalene	BQL	40.0	5.32	40	$4 / 12 / 2010$
n-Propyl benzene	BQL	40.0	3.20	40	$4 / 12 / 2010$
Styrene	BQL	40.0	3.40	40	$4 / 12 / 2010$
1,1,1,2-Tetrachloroethane	BQL	40.0	3.60	40	$4 / 12 / 2010$
1,1,2,2-Tetrachloroethane	BQL	40.0	4.60	40	$4 / 12 / 2010$
Tetrachloroethene	BQL	40.0	2.76	40	$4 / 12 / 2010$
Toluene	BQL	40.0	3.04	40	$4 / 12 / 2010$
1,2,3-Trichlorobenzene	BQL	40.0	7.60	40	$4 / 12 / 2010$
1,2,4-Trichlorobenzene	BQL	40.0	4.76	40	$4 / 12 / 2010$
Trichloroethene	571	40.0	2.16	40	$4 / 12 / 2010$
1,1,1-Trichloroethane	BQL	40.0	2.16	40	$4 / 12 / 2010$
1,1,2-Trichloroethane	BQL	40.0	7.28	40	$4 / 12 / 2010$
Trichlorofluoromethane	BQL	40.0	4.44	40	$4 / 12 / 2010$
1,2,3-Trichloropropane	BQL	40.0	4.80	40	$4 / 12 / 2010$
1,2,4-Trimethylbenzene	BQL	40.0	2.60	40	$4 / 12 / 2010$
1,3,5-Trimethylbenzene	BQL	40.0	2.96	40	$4 / 12 / 2010$
Vinyl chloride	716	40.0	5.96	40	$4 / 12 / 2010$
m-,p-Xylene	BQL	80.0	3.92	40	$4 / 12 / 2010$
o-Xylene	BQL	40.0	2.60	40	$4 / 12 / 2010$
			Spike	Spike	Percent

Flag

Percent
Recovered
97
98

Comments:

Not enough sample to confirm low surrogate by reanalysis.
Flags:
BQL = Below Quantitation Limits.
Analyst: \qquad Reviewed By:

SGS North America, Inc.

Results for Volatiles
 by GCMS 8260

Client Sample ID: OW-8D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-2B
Lab Project ID: G582-661

Analyzed By: CLP
Date Collected: 3/29/2010 11:10
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL	Dilution	Date	
Compound	UG/L	Limit UG/L	UG/L	Factor	Analyzed	Flag
Acetone	BQL	5000	436	200	4/12/2010	
Benzene	BQL	200	13.0	200	4/12/2010	
Bromobenzene	BQL	200	11.2	200	4/12/2010	
Bromochloromethane	BQL	200	20.2	200	4/12/2010	
Bromodichloromethane	BQL	200	15.2	200	4/12/2010	
Bromoform	BQL	200	24.0	200	4/12/2010	
Bromomethane	BQL	200	26.6	200	4/12/2010	
2-Butanone	946	5000	109	200	4/12/2010	J
n-Butylbenzene	BQL	200	21.8	200	4/12/2010	
sec-Butylbenzene	BQL	200	16.8	200	4/12/2010	
tert-Butylbenzene	BQL	200	10.0	200	4/12/2010	
Carbon disulfide	BQL	200	13.8	200	4/12/2010	
Carbon tetrachloride	BQL	200	17.4	200	4/12/2010	
Chlorobenzene	BQL	200	16.4	200	4/12/2010	
Chloroethane	BQL	200	21.2	200	4/12/2010	
Chloroform	BQL	200	15.8	200	4/12/2010	
Chloromethane	BQL	200	29.2	200	4/12/2010	
2-Chlorotoluene	BQL	200	19.8	200	4/12/2010	
4-Chlorotoluene	BQL	200	16.0	200	4/12/2010	
Dibromochloromethane	BQL	200	18.0	200	4/12/2010	
1,2-Dibromo-3-chloropropane	BQL	1000	242	200	4/12/2010	
Dibromomethane	BQL	200	22.6	200	4/12/2010	
1,2-Dibromoethane (EDB)	BQL	200	24.8	200	4/12/2010	
1,2-Dichlorobenzene	BQL	200	25.4	200	4/12/2010	
1,3-Dichlorobenzene	BQL	200	16.2	200	4/12/2010	
1,4-Dichlorobenzene	BQL	200	15.8	200	4/12/2010	
trans-1,4-Dichloro-2-butene	BQL	1000	126	200	4/12/2010	
1,1-Dichloroethane	BQL	200	14.8	200	4/12/2010	
1,1-Dichloroethene	BQL	200	17.8	200	4/12/2010	
1,2-Dichloroethane	BQL	200	15.8	200	4/12/2010	
cis-1,2-Dichloroethene	1950	200	13.0	200	4/12/2010	
trans-1,2-dichloroethene	224	200	17.8	200	4/12/2010	
1,2-Dichloropropane	BQL	200	18.8	200	4/12/2010	
1,3-Dichloropropane	BQL	200	25.4	200	4/12/2010	
2,2-Dichloropropane	BQL	200	11.8	200	4/12/2010	
1,1-Dichloropropene	BQL	200	14.4	200	4/12/2010	
cis-1,3-Dichloropropene	BQL	200	15.2	200	4/12/2010	
trans-1,3-Dichloropropene	BQL	200	15.2	200	4/12/2010	
Dichlorodifluoromethane	BQL	1000	18.8	200	4/12/2010	
Diisopropyl ether (DIPE)	BQL	200	14.6	200	4/12/2010	
Ethylbenzene	BQL	200	15.4	200	4/12/2010	
Hexachlorobutadiene	BQL	200	45.6	200	4/12/2010	
2-Hexanone	BQL	1000	144	200	4/12/2010	
lodomethane	BQL	200	8.40	200	4/12/2010	
Isopropylbenzene	BQL	Page ${ }^{200}$ of 2	14.2	200	4/12/2010	GCMS.x/s

Client Sample ID: OW-8D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-2B
Lab Project ID: G582-661

Analyzed By: CLP
Date Collected: 3/29/2010 11:10
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
4-Isopropyltoluene	BQL	200	9.60	200	$4 / 12 / 2010$
Methylene chloride	BQL	1000	19.6	200	$4 / 12 / 2010$
4-Methyl-2-pentanone	BQL	1000	110	200	$4 / 12 / 2010$
Methyl-tert-butyl ether (MTBE)	BQL	200	13.4	200	$4 / 12 / 2010$
Naphthalene	BQL	200	26.6	200	$4 / 12 / 2010$
n-Propyl benzene	BQL	200	16.0	200	$4 / 12 / 2010$
Styrene	BQL	200	17.0	200	$4 / 12 / 2010$
1,1,1,2-Tetrachloroethane	BQL	200	18.0	200	$4 / 12 / 2010$
1,1,2,2-Tetrachloroethane	BQL	200	23.0	200	$4 / 12 / 2010$
Tetrachloroethene	BQL	200	13.8	200	$4 / 12 / 2010$
Toluene	BQL	200	15.2	200	$4 / 12 / 2010$
1,2,3-Trichlorobenzene	BQL	200	38.0	200	$4 / 12 / 2010$
1,2,4-Trichlorobenzene	BQL	200	23.8	200	$4 / 12 / 2010$
Trichloroethene	1530	200	10.8	200	$4 / 12 / 2010$
1,1,1-Trichloroethane	BQL	200	10.8	200	$4 / 12 / 2010$
1,1,2-Trichloroethane	BQL	200	36.4	200	$4 / 12 / 2010$
Trichlorofluoromethane	BQL	200	22.2	200	$4 / 12 / 2010$
1,2,3-Trichloropropane	BQL	200	24.0	200	$4 / 12 / 2010$
1,2,4-Trimethylbenzene	BQL	200	13.0	200	$4 / 12 / 2010$
1,3,5-Trimethylbenzene	BQL	200	14.8	200	$4 / 12 / 2010$
Vinyl chloride	3190	200	29.8	200	$4 / 12 / 2010$
m-,p-Xylene	BQL	400	19.6	200	$4 / 12 / 2010$
0-Xylene	BQL	200	13.0	200	$4 / 12 / 2010$
		Spike	Spike	Percent	
Added	Result	Recovered			
1,2-Dichloroethane-d4	30	29.8	99		
Toluene-d8		30	25.1	84	
4-Bromofluorobenzene				30	100

Comments:

Not enough sample to confirm low surrogate by reanalysis.
Flags:
BQL = Below Quantitation Limits.
Analyst: \qquad Reviewed By: \qquad

SGS North America, Inc.

Results for Volatiles
 by GCMS 8260

Client Sample ID: OW-10D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-3A
Lab Project ID: G582-661

Analyzed By: DVO
Date Collected: 3/29/2010 11:20
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

	Result UG/L	Quantitation Limit UG/L	MDL	Dilution Factor	Date	
Compound			UG/L	Factor	Analyzed	Flag
Acetone	BQL	20000	1740	800	4/11/2010	
Benzene	BQL	800	52.0	800	4/11/2010	
Bromobenzene	BQL	800	44.8	800	4/11/2010	
Bromochloromethane	BQL	800	80.8	800	4/11/2010	
Bromodichloromethane	BQL	800	60.8	800	4/11/2010	
Bromoform	BQL	800	96.0	800	4/11/2010	
Bromomethane	BQL	800	106	800	4/11/2010	
2-Butanone	BQL	20000	435	800	4/11/2010	
n -Butylbenzene	BQL	800	87.2	800	4/11/2010	
sec-Butylbenzene	BQL	800	67.2	800	4/11/2010	
tert-Butylbenzene	BQL	800	40.0	800	4/11/2010	
Carbon disulfide	BQL	800	55.2	800	4/11/2010	
Carbon tetrachloride	BQL	800	69.6	800	4/11/2010	
Chlorobenzene	BQL	800	65.6	800	4/11/2010	
Chloroethane	BQL	800	84.8	800	4/11/2010	
Chloroform	BQL	800	63.2	800	4/11/2010	
Chloromethane	BQL	800	117	800	4/11/2010	
2-Chlorotoluene	BQL	800	79.2	800	4/11/2010	
4-Chlorotoluene	BQL	800	64.0	800	4/11/2010	
Dibromochloromethane	BQL	800	72.0	800	4/11/2010	
1,2-Dibromo-3-chloropropane	BQL	4000	968	800	4/11/2010	
Dibromomethane	BQL	800	90.4	800	4/11/2010	
1,2-Dibromoethane (EDB)	BQL	800	99.2	800	4/11/2010	
1,2-Dichlorobenzene	BQL	800	102	800	4/11/2010	
1,3-Dichlorobenzene	BQL	800	64.8	800	4/11/2010	
1,4-Dichlorobenzene	BQL	800	63.2	800	4/11/2010	
trans-1,4-Dichloro-2-butene	BQL	4000	504	800	4/11/2010	
1,1-Dichloroethane	BQL	800	59.2	800	4/11/2010	
1,1-Dichloroethene	BQL	800	71.2	800	4/11/2010	
1,2-Dichloroethane	BQL	800	63.2	800	4/11/2010	
cis-1,2-Dichloroethene	12800	800	52.0	800	4/11/2010	
trans-1,2-dichloroethene	296	800	71.2	800	4/11/2010	J
1,2-Dichloropropane	BQL	800	75.2	800	4/11/2010	
1,3-Dichloropropane	BQL	800	102	800	4/11/2010	
2,2-Dichloropropane	BQL	800	47.2	800	4/11/2010	
1,1-Dichloropropene	BQL	800	57.6	800	4/11/2010	
cis-1,3-Dichloropropene	BQL	800	60.8	800	4/11/2010	
trans-1,3-Dichloropropene	BQL	800	60.8	800	4/11/2010	
Dichlorodifluoromethane	BQL	4000	75.2	800	4/11/2010	
Diisopropyl ether (DIPE)	BQL	800	58.4	800	4/11/2010	
Ethylbenzene	BQL	800	61.6	800	4/11/2010	
Hexachlorobutadiene	BQL	800	182	800	4/11/2010	
2-Hexanone	BQL	4000	576	800	4/11/2010	
lodomethane	BQL	800	33.6	800	4/11/2010	
Isopropylbenzene	BQL	Pagel of 2	56.8	800	4/11/2010	

Results for Volatiles
by GCMS 8260

Client Sample ID: OW-10D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-3A
Lab Project ID: G582-661

Analyzed By: DVO
Date Collected: 3/29/2010 11:20
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
4-Isopropyltoluene	BQL	800	38.4	800	4/11/2010	
Methylene chloride	176	4000	78.4	800	4/11/2010	J
4-Methyl-2-pentanone	BQL	4000	440	800	4/11/2010	
Methyl-tert-butyl ether (MTBE)	BQL	800	53.6	800	4/11/2010	
Naphthalene	BQL	800	106	800	4/11/2010	
n -Propyl benzene	BQL	800	64.0	800	4/11/2010	
Styrene	BQL	800	68.0	800	4/11/2010	
1,1,1,2-Tetrachloroethane	BQL	800	72.0	800	4/11/2010	
1,1,2,2-Tetrachloroethane	BQL	800	92.0	800	4/11/2010	
Tetrachloroethene	BQL	800	55.2	800	4/11/2010	
Toluene	BQL	800	60.8	800	4/11/2010	
1,2,3-Trichlorobenzene	BQL	800	152	800	4/11/2010	
1,2,4-Trichlorobenzene	BQL	800	95.2	800	4/11/2010	
Trichloroethene	BQL	800	43.2	800	4/11/2010	
1,1,1-Trichloroethane	BQL	800	43.2	800	4/11/2010	
1,1,2-Trichloroethane	BQL	800	146	800	4/11/2010	
Trichlorofluoromethane	BQL	800	88.8	800	4/11/2010	
1,2,3-Trichloropropane	BQL	800	96.0	800	4/11/2010	
1,2,4-Trimethylbenzene	BQL	800	52.0	800	4/11/2010	
1,3,5-Trimethylbenzene	BQL	800	59.2	800	4/11/2010	
Vinyl chloride	3080	800	119	800	4/11/2010	
m -,p-Xylene	BQL	1600	78.4	800	4/11/2010	
o-Xylene	BQL	800	52.0	800	4/11/2010	
		Spike Added	Spike Result	Percent Recovered		
1,2-Dichloroethane-d4		10	8.96	90		
Toluene-d8		10	9.5	95		
4-Bromofluorobenzene		10	10.1	101		

Comments:

Not enough sample to confirm low surrogate by reanalysis.
Flags:
BQL = Below Quantitation Limits.
Analyst: \qquad Reviewed By: \qquad

SGS North America, Inc.

Results for Volatiles by GCMS 8260

Client Sample ID: OW-9D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-4A
Lab Project ID: G582-661

Analyzed By: DVO
Date Collected: 3/29/2010 11:40
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation	MDL UG/L	Dilution	Date	Flag
Acetone	BQL	5000	436	200	4/12/2010	
Benzene	BQL	200	13.0	200	4/12/2010	
Bromobenzene	BQL	200	11.2	200	4/12/2010	
Bromochloromethane	BQL	200	20.2	200	4/12/2010	
Bromodichloromethane	BQL	200	15.2	200	4/12/2010	
Bromoform	BQL	200	24.0	200	4/12/2010	
Bromomethane	BQL	200	26.6	200	4/12/2010	
2-Butanone	BQL	5000	109	200	4/12/2010	
n -Butylbenzene	BQL	200	21.8	200	4/12/2010	
sec-Butylbenzene	BQL	200	16.8	200	4/12/2010	
tert-Butylbenzene	BQL	200	10.0	200	4/12/2010	
Carbon disulfide	BQL	200	13.8	200	4/12/2010	
Carbon tetrachloride	BQL	200	17.4	200	4/12/2010	
Chlorobenzene	BQL	200	16.4	200	4/12/2010	
Chloroethane	BQL	200	21.2	200	4/12/2010	
Chloroform	BQL	200	15.8	200	4/12/2010	
Chloromethane	BQL	200	29.2	200	4/12/2010	
2-Chlorotoluene	BQL	200	19.8	200	4/12/2010	
4-Chlorotoluene	BQL	200	16.0	200	4/12/2010	
Dibromochloromethane	BQL	200	18.0	200	4/12/2010	
1,2-Dibromo-3-chloropropane	BQL	1000	242	200	4/12/2010	
Dibromomethane	BQL	200	22.6	200	4/12/2010	
1,2-Dibromoethane (EDB)	BQL	200	24.8	200	4/12/2010	
1,2-Dichlorobenzene	BQL	200	25.4	200	4/12/2010	
1,3-Dichlorobenzene	BQL	200	16.2	200	4/12/2010	
1,4-Dichlorobenzene	BQL	200	15.8	200	4/12/2010	
trans-1,4-Dichloro-2-butene	BQL	1000	126	200	4/12/2010	
1,1-Dichloroethane	BQL	200	14.8	200	4/12/2010	
1,1-Dichloroethene	BQL	200	17.8	200	4/12/2010	
1,2-Dichloroethane	BQL	200	15.8	200	4/12/2010	
cis-1,2-Dichloroethene	2930	200	13.0	200	4/12/2010	
trans-1,2-dichloroethene	98.0	200	17.8	200	4/12/2010	J
1,2-Dichloropropane	BQL	200	18.8	200	4/12/2010	
1,3-Dichloropropane	BQL	200	25.4	200	4/12/2010	
2,2-Dichloropropane	BQL	200	11.8	200	4/12/2010	
1,1-Dichloropropene	BQL	200	14.4	200	4/12/2010	
cis-1,3-Dichloropropene	BQL	200	15.2	200	4/12/2010	
trans-1,3-Dichloropropene	BQL	200	15.2	200	4/12/2010	
Dichlorodifluoromethane	BQL	1000	18.8	200	4/12/2010	
Diisopropyl ether (DIPE)	BQL	200	14.6	200	4/12/2010	
Ethylbenzene	BQL	200	15.4	200	4/12/2010	
Hexachlorobutadiene	BQL	200	45.6	200	4/12/2010	
2-Hexanone	BQL	1000	144	200	4/12/2010	
lodomethane	BQL	200	8.40	200	4/12/2010	
Isopropylbenzene	BQL	Page ${ }^{200}$ of 2	14.2	200	4/12/2010	

Results for Volatiles by GCMS 8260

Client Sample ID: OW-9D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-4A
Lab Project ID: G582-661

Analyzed By: DVO
Date Collected: 3/29/2010 11:40
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed 4-Isopropyltoluene
Methylene chloride	BQL	200	9.60	200	$4 / 12 / 2010$
4-Methyl-2-pentanone	BQL	1000	19.6	200	$4 / 12 / 2010$
Methyl-tert-butyl ether (MTBE)	BQL	1000	110	200	$4 / 12 / 2010$
Naphthalene	BQL	200	13.4	200	$4 / 12 / 2010$
n-Propyl benzene	BQL	200	26.6	200	$4 / 12 / 2010$
Styrene	BQL	200	16.0	200	$4 / 12 / 2010$
1,1,1,2-Tetrachloroethane	BQL	200	17.0	200	$4 / 12 / 2010$
1,1,2,2-Tetrachloroethane	BQL	200	18.0	200	$4 / 12 / 2010$
Tetrachloroethene	BQL	200	23.0	200	$4 / 12 / 2010$
Toluene	BQL	200	13.8	200	$4 / 12 / 2010$
1,2,3-Trichlorobenzene	BQL	200	15.2	200	$4 / 12 / 2010$
1,2,4-Trichlorobenzene	BQL	200	38.0	200	$4 / 12 / 2010$
Trichloroethene	BQL	200	23.8	200	$4 / 12 / 2010$
1,1,1-Trichloroethane	1530	200	10.8	200	$4 / 12 / 2010$
1,1,2-Trichloroethane	BQL	200	10.8	200	$4 / 12 / 2010$
Trichlorofluoromethane	BQL	200	36.4	200	$4 / 12 / 2010$
1,2,3-Trichloropropane	BQL	200	22.2	200	$4 / 12 / 2010$
1,2,4-Trimethylbenzene	BQL	200	24.0	200	$4 / 12 / 2010$
1,3,5-Trimethylbenzene	BQL	200	13.0	200	$4 / 12 / 2010$
Vinyl chloride	BQL	200	14.8	200	$4 / 12 / 2010$
m-,p-Xylene	2810	200	29.8	200	$4 / 12 / 2010$
0-Xylene	BQL	400	19.6	200	$4 / 12 / 2010$
	BQL	200	13.0	200	$4 / 12 / 2010$
		Spike	Spike	Percent	
1,2-Dichloroethane-d4		10	Result	Recovered	
Toluene-d8	11	110			
4-Bromofluorobenzene		10	9.62	96	

Flag

Comments:

Not enough sample to confirm low surrogate by reanalysis.
Flags:
BQL $=$ Below Quantitation Limits.
Analyst: DVO

Reviewed By:

SGS North America, Inc.

Results for Volatiles
 by GCMS 8260

Client Sample ID: P-1D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-5B
Lab Project ID: G582-661

Analyzed By: CLP
Date Collected: 3/29/2010 11:50
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL	Dilution	Date Compound Cimit UG/L
UGG/L	Factor	Analyzed	Flag		
Acetone	UG/L	BQL	50.0	4.36	2

Results for Volatiles by GCMS 8260

Client Sample ID: P-1D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-5B
Lab Project ID: G582-661

Analyzed By: CLP
Date Collected: 3/29/2010 11:50
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed 4-Isopropyltoluene
Methylene chloride	BQL	2.00	0.0960	2	$4 / 12 / 2010$
4-Methyl-2-pentanone	BQL	10.0	0.196	2	$4 / 12 / 2010$
Methyl-tert-butyl ether (MTBE)	BQL	10.0	1.10	2	$4 / 12 / 2010$
Naphthalene	BQL	2.00	0.134	2	$4 / 12 / 2010$
n-Propyl benzene	BQL	2.00	0.266	2	$4 / 12 / 2010$
Styrene	BQL	2.00	0.160	2	$4 / 12 / 2010$
1,1,1,2-Tetrachloroethane	BQL	2.00	0.170	2	$4 / 12 / 2010$
1,1,2,2-Tetrachloroethane	BQL	2.00	0.180	2	$4 / 12 / 2010$
Tetrachloroethene	BQL	2.00	0.230	2	$4 / 12 / 2010$
Toluene	BQL	2.00	0.138	2	$4 / 12 / 2010$
1,2,3-Trichlorobenzene	BQL	2.00	0.152	2	$4 / 12 / 2010$
1,2,4-Trichlorobenzene	BQL	2.00	0.380	2	$4 / 12 / 2010$
Trichloroethene	BQL	2.00	0.238	2	$4 / 12 / 2010$
1,1,1-Trichloroethane	BQL	2.00	0.108	2	$4 / 12 / 2010$
1,1,2-Trichloroethane	BQL	2.00	0.108	2	$4 / 12 / 2010$
Trichlorofluoromethane	BQL	2.00	0.364	2	$4 / 12 / 2010$
1,2,3-Trichloropropane	BQL	2.00	0.222	2	$4 / 12 / 2010$
1,2,4-Trimethylbenzene	BQL	2.00	0.240	2	$4 / 12 / 2010$
1,3,5-Trimethylbenzene	BQL	2.00	0.130	2	$4 / 12 / 2010$
Vinyl chloride	BQL	2.00	0.148	2	$4 / 12 / 2010$
m-,p-Xylene	34.4	2.00	0.298	2	$4 / 12 / 2010$
0-Xylene	BQL	4.00	0.196	2	$4 / 12 / 2010$
	BQL	2.00	0.130	2	$4 / 12 / 2010$
		Spike	Spike	Percent	
1,2-Dichloroethane-d4		30	Result	Recovered	
Toluene-d8		39.5	98		
4-Bromofluorobenzene		30	25.3	84	
				29.8	99

Flag

Comments:

Not enough sample to confirm low surrogate by reanalysis.
Flags:
BQL $=$ Below Quantitation Limits.
Analyst: \qquad Reviewed By:

Results for Volatiles
 by GCMS 8260

Client Sample ID: P-3D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-6A
Lab Project ID: G582-661

Analyzed By: DVO
Date Collected: 3/29/2010 12:15
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

	Result	Quantitation	MDL
Compound	UG/L	Limit UG/L	UG/L
Acetone	BQL	500	43.6
Benzene	BQL	20.0	1.30
Bromobenzene	BQL	20.0	1.12
Bromochloromethane	BQL	20.0	2.02
Bromodichloromethane	BQL	20.0	1.52
Bromoform	BQL	20.0	2.40
Bromomethane	BQL	20.0	2.66
2-Butanone	B7.6	500	10.9
n-Butylbenzene	BQL	20.0	2.18
sec-Butylbenzene	BQL	20.0	1.68
tert-Butylbenzene	BQL	20.0	1.00
Carbon disulfide	BQL	20.0	1.38
Carbon tetrachloride	BQL	20.0	1.74
Chlorobenzene	BQL	20.0	1.64
Chloroethane	BQL	20.0	2.12
Chloroform	BQL	20.0	1.58
Chloromethane	BQL	20.0	2.92
2-Chlorotoluene	BQL	20.0	1.98
4-Chlorotoluene	BQL	20.0	1.60
Dibromochloromethane	BQL	20.0	1.80
1,2-Dibromo-3-chloropropane	BQL	100	24.2
Dibromomethane	BQL	20.0	2.26
1,2-Dibromoethane (EDB)	BQL	20.0	2.48
1,2-Dichlorobenzene	BQL	20.0	2.54
1,3-Dichlorobenzene	BQL	20.0	1.62
1,4-Dichlorobenzene	BQL	20.0	1.58
trans-1,4-Dichloro-2-butene	BQL	100	12.6
1,1-Dichloroethane	BQL	20.0	1.48
1,1-Dichloroethene	BQL	20.0	1.78
1,2-Dichloroethane	BQL	20.0	1.58
cis-1,2-Dichloroethene	43.6	20.0	1.30
trans-1,2-dichloroethene	BQL	20.0	1.78
1,2-Dichloropropane	BQL	20.0	1.88
1,3-Dichloropropane	BQL	20.0	2.54
2,2-Dichloropropane	BQL	20.0	1.18
1,1-Dichloropropene	BQL	20.0	1.44
cis-1,3-Dichloropropene	BQL	20.0	1.52
trans-1,3-Dichloropropene	BQL	20.0	1.52
Dichlorodifluoromethane	BQL	100	1.88
Diisopropyl ether (DIPE)	BQL	20.0	1.46
Ethylbenzene	BQL	20.0	1.54
Hexachlorobutadiene	BQL	20.0	4.56
2-Hexanone	BQL	100	14.4
lodomethane	BQL	20.0	0.840
Isopropylbenzene	BQL	200	
			1.42
	Page		

Client Sample ID: P-3D
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-6A
Lab Project ID: G582-661

Analyzed By: DVO
Date Collected: 3/29/2010 12:15
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed 4-Isopropyltoluene
Methylene chloride	BQL	20.0	0.960	20	$4 / 12 / 2010$
4-Methyl-2-pentanone	BQL	100	1.96	20	$4 / 12 / 2010$
Methyl-tert-butyl ether (MTBE)	BQL	100	11.0	20	$4 / 12 / 2010$
Naphthalene	BQL	20.0	1.34	20	$4 / 12 / 2010$
n-Propyl benzene	BQL	20.0	2.66	20	$4 / 12 / 2010$
Styrene	BQL	20.0	1.60	20	$4 / 12 / 2010$
1,1,1,2-Tetrachloroethane	BQL	20.0	1.70	20	$4 / 12 / 2010$
1,1,2,2-Tetrachloroethane	BQL	20.0	1.80	20	$4 / 12 / 2010$
Tetrachloroethene	BQL	20.0	2.30	20	$4 / 12 / 2010$
Toluene	BQL	20.0	1.38	20	$4 / 12 / 2010$
1,2,3-Trichlorobenzene	BQL	20.0	1.52	20	$4 / 12 / 2010$
1,2,4-Trichlorobenzene	BQL	20.0	3.80	20	$4 / 12 / 2010$
Trichloroethene	BQL	20.0	2.38	20	$4 / 12 / 2010$
1,1,1-Trichloroethane	BQL	20.0	1.08	20	$4 / 12 / 2010$
1,1,2-Trichloroethane	BQL	20.0	1.08	20	$4 / 12 / 2010$
Trichlorofluoromethane	BQL	20.0	3.64	20	$4 / 12 / 2010$
1,2,3-Trichloropropane	BQL	20.0	2.22	20	$4 / 12 / 2010$
1,2,4-Trimethylbenzene	BQL	20.0	2.40	20	$4 / 12 / 2010$
1,3,5-Trimethylbenzene	BQL	20.0	1.30	20	$4 / 12 / 2010$
Vinyl chloride	BQL	20.0	1.48	20	$4 / 12 / 2010$
m-,p-Xylene	430	20.0	2.98	20	$4 / 12 / 2010$
o-Xylene	BQL	40.0	1.96	20	$4 / 12 / 2010$
	BQL	20.0	1.30	20	$4 / 12 / 2010$
			Spike	Spike	Percent

Flag

Comments:

Not enough sample to confirm low surrogate by reanalysis.
Flags:
BQL $=$ Below Quantitation Limits.
Analyst: \qquad Reviewed By: \qquad

SGS North America, Inc.

Results for Volatiles
 by GCMS 8260

Client Sample ID: Trip Blank
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-7A
Lab Project ID: G582-661

Analyzed By: DVO
Date Collected: 3/29/2010
Date Received: 3/30/2010 Matrix: Water
Sample Amount: 5 mL

Compound	Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed	Flag
Acetone	BQL	25.0	2.18	1	4/11/2010	Fag
Benzene	BQL	1.00	0.0650	1	4/11/2010	
Bromobenzene	BQL	1.00	0.0560	1	4/11/2010	
Bromochloromethane	BQL	1.00	0.101	1	4/11/2010	
Bromodichloromethane	BQL	1.00	0.0760	1	4/11/2010	
Bromoform	BQL	1.00	0.120	1	4/11/2010	
Bromomethane	BQL	1.00	0.133	1	4/11/2010	
2-Butanone	BQL	25.0	0.544	1	4/11/2010	
n -Butylbenzene	BQL	1.00	0.109	1	4/11/2010	
sec-Butylbenzene	BQL	1.00	0.0840	1	4/11/2010	
tert-Butylbenzene	BQL	1.00	0.0500	1	4/11/2010	
Carbon disulfide	BQL	1.00	0.0690	1	4/11/2010	
Carbon tetrachloride	BQL	1.00	0.0870	1	4/11/2010	
Chlorobenzene	BQL	1.00	0.0820	1	4/11/2010	
Chloroethane	BQL	1.00	0.106	1	4/11/2010	
Chloroform	BQL	1.00	0.0790	1	4/11/2010	
Chloromethane	BQL	1.00	0.146	1	4/11/2010	
2-Chlorotoluene	BQL	1.00	0.0990	1	4/11/2010	
4-Chlorotoluene	BQL	1.00	0.0800	1	4/11/2010	
Dibromochloromethane	BQL	1.00	0.0900	1	4/11/2010	
1,2-Dibromo-3-chloropropane	BQL	5.00	1.21	1	4/11/2010	
Dibromomethane	BQL	1.00	0.113	1	4/11/2010	
1,2-Dibromoethane (EDB)	BQL	1.00	0.124	1	4/11/2010	
1,2-Dichlorobenzene	BQL	1.00	0.127	1	4/11/2010	
1,3-Dichlorobenzene	BQL	1.00	0.0810	1	4/11/2010	
1,4-Dichlorobenzene	BQL	1.00	0.0790	1	4/11/2010	
trans-1,4-Dichloro-2-butene	BQL	5.00	0.630	1	4/11/2010	
1,1-Dichloroethane	BQL	1.00	0.0740	1	4/11/2010	
1,1-Dichloroethene	BQL	1.00	0.0890	1	4/11/2010	
1,2-Dichloroethane	BQL	1.00	0.0790	1	4/11/2010	
cis-1,2-Dichloroethene	BQL	1.00	0.0650	1	4/11/2010	
trans-1,2-dichloroethene	BQL	1.00	0.0890	1	4/11/2010	
1,2-Dichloropropane	BQL	1.00	0.0940	1	4/11/2010	
1,3-Dichloropropane	BQL	1.00	0.127	1	4/11/2010	
2,2-Dichloropropane	BQL	1.00	0.0590	1	4/11/2010	
1,1-Dichloropropene	BQL	1.00	0.0720	1	4/11/2010	
cis-1,3-Dichloropropene	BQL	1.00	0.0760	1	4/11/2010	
trans-1,3-Dichloropropene	BQL	1.00	0.0760	1	4/11/2010	
Dichlorodifluoromethane	BQL	5.00	0.0940	1	4/11/2010	
Diisopropyl ether (DIPE)	BQL	1.00	0.0730	1	4/11/2010	
Ethylbenzene	BQL	1.00	0.0770	1	4/11/2010	
Hexachlorobutadiene	BQL	1.00	0.228	1	4/11/2010	
2-Hexanone	BQL	5.00	0.720	1	4/11/2010	
Iodomethane	BQL	1.00	0.0420	1	4/11/2010	
Isopropylbenzene	BQL	Page ${ }^{1} \mathrm{CO}_{\text {of }}$	0.0710	1	4/11/2010	.xs

SGS North America, Inc.

Results for Volatiles
 by GCMS 8260

Client Sample ID: Trip Blank
Client Project ID: AVX-Myrtle Beach, SC
Lab Sample ID: G582-661-7A
Lab Project ID: G582-661

Analyzed By: DVO
Date Collected: 3/29/2010
Date Received: 3/30/2010
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene
1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Not enough sample to confirm low surrogate by reanalysis.
Flags:
BQL = Below Quantitation Limits.
Analyst: \qquad

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$4 / 11 / 2010$
BQL	5.00	0.0980	1	$4 / 11 / 2010$
BQL	5.00	0.550	1	$4 / 11 / 2010$
BQL	1.00	0.0670	1	$4 / 11 / 2010$
BQL	1.00	0.133	1	$4 / 11 / 2010$
BQL	1.00	0.0800	1	$4 / 11 / 2010$
BQL	1.00	0.0850	1	$4 / 11 / 2010$
BQL	1.00	0.0900	1	$4 / 11 / 2010$
BQL	1.00	0.115	1	$4 / 11 / 2010$
BQL	1.00	0.0690	1	$4 / 11 / 2010$
BQL	1.00	0.0760	1	$4 / 11 / 2010$
BQL	1.00	0.190	1	$4 / 11 / 2010$
BQL	1.00	0.119	1	$4 / 11 / 2010$
BQL	1.00	0.0540	1	$4 / 11 / 2010$
BQL	1.00	0.0540	1	$4 / 11 / 2010$
BQL	1.00	0.182	1	$4 / 11 / 2010$
BQL	1.00	0.111	1	$4 / 11 / 2010$
BQL	1.00	0.120	1	$4 / 11 / 2010$
BQL	1.00	0.0650	1	$4 / 11 / 2010$
BQL	1.00	0.0740	1	$4 / 11 / 2010$
BQL	1.00	0.149	1	$4 / 11 / 2010$
BQL	2.00	0.0980	1	$4 / 11 / 2010$
BQL	1.00	0.0650	1	$4 / 11 / 2010$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.5	105	
	10	9.5	95	

Flag

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK3041110B Lab Project ID:

Analyzed By: DVo Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK3041110B Lab Project ID:

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound

4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
$\mathrm{m}-\mathrm{p}$-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$4 / 11 / 2010$
BQL	5.00	0.0980	1	$4 / 111 / 2010$
BQL	5.00	0.550	1	$4 / 11 / 2010$
BQL	1.00	0.0670	1	$4 / 111 / 2010$
BQL	1.00	0.133	1	$4 / 11 / 2010$
BQL	1.00	0.0800	1	$4 / 1112010$
BQL	1.00	0.0850	1	$4 / 11 / 2010$
BQL	1.00	0.0900	1	$4 / 11 / 2010$
BQL	1.00	0.115	1	$4 / 11 / 2010$
BQL	1.00	0.0690	1	$4 / 11 / 2010$
BQL	1.00	0.0760	1	$4 / 1112010$
BQL	1.00	0.190	1	$4 / 1112010$
BQL	1.00	0.119	1	$4 / 1112010$
BQL	1.00	0.0540	1	$4 / 11 / 2010$
BQL	1.00	0.0540	1	$4 / 11 / 2010$
BQL	1.00	0.182	1	$4 / 11 / 2010$
BQL	1.00	0.111	1	$4 / 11 / 2010$
BQL	1.00	0.120	1	$4 / 11 / 2010$
BQL	1.0	0.0650	1	$4 / 1112010$
BQL	1.00	0.0740	1	$4 / 1 / 12010$
BQL	1.00	0.149	1	$4 / 11 / 2010$
BQL	2.00	0.0980	1	$4 / 11 / 2010$
BQL	1.00	0.0650	1	$4 / 11 / 2010$
			1	
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.4	104	
	10	9.48	95	

Comments:

Flags:
$B Q L=$ Below Quantitation Limits.
Analyst: DVO
\qquad

Reviewed By:

Flag Amysa
 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/1/12010 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/11/2010 4/11/2010

Percent Recovered 104

100

SGS North America, Inc.

SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919

LCS: LCS3041110A
LCSD: LCS3041110B
Filename: $0411304 . D$
Filename: 0411305.D

Dilution: 1
Matrix: Water
Date Analyzed: 04/11/10 16:01
Date Analyzed: 04/11/10 16:32

COMPOUND			$\begin{gathered} \text { LCS } \\ \% \\ \text { REC \# } \\ \hline \end{gathered}$	LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { LCSD } \\ \% \\ \text { REC \# } \\ \hline \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
acetone	25.0	25.1	100	25.0	22.9	91.6	9.05	30	23.5-141
acrolein	125	116	92.8	125	109	87.5	5.91	30	31.4-182
acrylonitrile	125	117	93.8	125	113	90.1	4.01	30	64.2-140
benzene	5.00	4.57	91.4	5.00	4.66	93.2	1.95	30	76.6-120
bromobenzene	5.00	5.04	101	5.00	4.91	98.2	2.61	30	75.0-122
bromochloromethane	5.00	4.58	91.6	5.00	4.80	96.0	4.69	30	74.8-127
bromodichloromethane	5.00	4.85	97.0	5.00	5.00	100	3.04	30	76.4-117
bromoform	5.00	5.39	108	5.00	5.00	100	7.51	30	62.4-127
bromomethane	5.00	4.25	85.0	5.00	4.54	90.8	6.60	30	34.2-166
2-butanone	25.0	24.3	97.2	25.0	22.8	91.2	6.28	30	34.2-166
n-butylbenzene	5.00	5.03	101	5.00	4.97	99.4	1.20	30	44.9-126
sec-butylbenzene	5.00	4.95	99.0	5.00	5.07	101	2.40	30	78.3-116
tert-butylbenzene	5.00	4.99	99.8	5.00	5.30	106	6.02	30	53.3-116
Carbon disulfide	5.00	4.45	89.0	5.00	4.55	91.0	2.22	30	69.0-118
carbon tetrachloride	5.00	4.73	94.6	5.00	4.85	97.0	2.50	30	69.0-118
chlorobenzene	5.00	5.00	100	5.00	4.94	98.8	2.50	30	71.7-124
chloroethane	5.00	4.49	89.8	5.00			1.21	30	75.5-116
2-chloroethyl vinyl ether	125	121	97.0	125	116	91.4	1.77	30	78.2-138
chloroform	5.00	4.65			116	92.7	4.55	30	5.57-235
chloromethane	5.00			5.00	4.77	95.4	2.55	30	80.6-117
2-chlorotoluene	5.00		96.0	5.00	4.68	93.6	2.53	30	72.6-127
4-chlorotoluene	5.00		99.6	5.00	5.08	102	1.99	30	81.4-217
dibromochloromethane	5.00	5.14	98.4	5.00	4.95	99.0	0.608	30	82.1-116
1,2-dibromo-3-chloropropane	30.0	34.3	114	5.00	5.03	101	2.16	30	73.1-117
1,2-dibromoethane	5.00	5.24	105	5.00	30.9	103	10.5	30	58.0-133
dibromomethane	5.00	4.72	94.4	5.00	4.90	98.0	6.71	30	75.5-118
1,2-dichlorobenzene	5.00	5.05	101	5.00	4.86	97.2	2.92	30	77.3-124
1,3-dichlorobenzene	5.00	4.91	98.2	5.00	5.86	97.2	3.83	30	76.3-115
1,4-dichlorobenzene	5.00	4.89	97.8	5.00	4.98	100	2.02	30	79.1-114
trans-1,4-Dichloro-2-butene	25.0	22.9	91.6	25.0	25.6	99.8	2.02	30	76.8-115
dichlorodifluoromethane	5.00	4.71	94.2	5.00	4.68	102	11.1	30	52.3-130
1,1-dichloroethane	5.00	4.68	93.6	5.00		93.6	0.639	30	69.8-134
1,2-dichloroethane	5.00	4.89	97.8	5.00		93.8	0.213	30	78.0-120
1,1-dichloroethene	5.00	4.42	88.4	5.00		97.4	0.410	30	72.8-126
cis-1,2-dichloroethene	5.00	4.58	91.6	5.00			0.226	30	74.6-121
trans-1,2-dichloroethene	5.00	4.62	92.4	5.00			1.08	30	78.0-121
1,2-dichloropropane	5.00	4.49	89.8	5.00			1.72	30	60.7-144
1,3-dichloropropane	5.00	5.03	101	5.00			0.00	30	75.8-119
2,2-dichloropropane	5.00	5.03	101	5.00			0.199	30	78.5-113
1,1-dichloropropene	5.00	4.61	92.2	5.00			0.398	30	75.6-130
cis-1,3-dichloropropene	5.00	4.64	92.8	5.00	4.79	95.8	3.83	30	79.7-117
					4.71	94.2	1.50	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of $Q C$ limits

COMMENTS:

SGS North America, Inc.

SGS Environmental Sevices
LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
LCS: LCS3041110A
LCSD: LCS3041110B

Filename: 0411304.D
Filename: 0411305.D

Dilution: 1
Matrix: Water
Date Analyzed: 04/11/10 16:01
Date Analyzed: 04/11/10 16:32

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

LCS Spike Recovery: 0 failure(s) out of 72. LCSD Spike Recovery: 0 failure(s) out of 72. RPD: 0 out of 72 outside of limits
COMMENTS: \qquad
\square

Reviewed by:
page 2 of 2

SGS North America, Inc.

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NCOO919
EPA Sample No.: Amt. Filenames: Analysis Dates:

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: 9582-661-3a, g582-661-3a, 5582-661-3a
Filenames: 0411318.D, 0411321.D, 0411322.D

Inst: MSD3
Batch: 3041110
Dilution: 800
Matrix: Water

COMPOUND	$\begin{gathered} \hline \text { SAMPLE } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$			MS \% REC \#			$\begin{gathered} \text { MSD } \\ \text { f } \\ \text { REC } \end{gathered}$	$\begin{gathered} \text { \& } \\ \text { RPD } \end{gathered}$	QC IIMITS	
									RPD	REC
trans-1,3-dichloropropene	BQL	4000	4290	107	4000	3740	93.4	13.8	30	44.7-144
Diisopropyl ether	BQL	4000	4220	105	4000	3750	93.8	11.6	30	79.4-122
ethylbenzene	BQL	4000	4530	113	4000	3940	98.6	13.8	30	73.8-126
hexachlorobutadiene	BQL	4000	4540	114	4000	3920	98.0	14.7	30	51.8-134
2-hexanone	BQL	20000	15200	76.3	20000	13400	67.0	12.9	30	41.6-111
Iodomethane	BQL	4000	4510	113	4000	4280	107	5.28	30	40.6-126
isopropylbenzene	BQL	4000	4700	117	4000	3890	97.2	18.8	30	74.3-123
4-isopropyltoluene	BQL	4000	4530	116	4000	3900	97.4	17.3	30	74.6-122
Methyl-tert-butyl ether	BQL	4000	4170	104	4000	3730	93.2	11.1	30	66.5-136
methylene chloride	BQL	4000	4110	98.4	4000	3590	85.4	14.1	30	48.6-155
4-methyl-2-pentanone	BQL	20000	20000	100	20000	18400	91.8	8.71	30	6.88-166
naphthalene	BQL	4000	3980	99.6	4000	3800	95.0	4.73	30	55.1-140
n-propyl benzene	BQL	4000	4580	114	4000	3940	98.6	24.8	30	71.6-128
styrene	BQL	4000	4550	114	4000	3960	99.0	13.9	30	73.2-123
1,1,1,2-tetrachloroethane	BQL	4000	4460	112	4000	3890	97.2	13.8	30	69.4-120
1,1,2,2-tetrachloroethane	BQL	4000	4570	114	4000	3900	97.6	15.7	30	75.7-136
tetrachloroethene	BQL	4000	3270	81.8	4000	2770	69.2	16.7	30	45.8-153
toluene	BQL	4000	4230	106	4000	3680	92.0	14.0	30	66.4-128
1,2,3-trichlorobenzene	BQL	4000	4100	102	4000	3840	96.0	6.45	30	61.0-126
1,2,4-trichlorobenzene	BQL	4000	4180	104	4000	3880	97.0	7.35	30	60.6-125
1,1,1-trichloroethane	BQL	4000	4520	113	4000	3870	96.8	15.4	30	78.4-121
1,1,2-trichloroethane	BQL	4000	4500	113	4000	3880	97.0	14.9	30	64.8-128
trichloroethene	BQL	4000	4300	108	4000	3760	94.0	13.5	30	84.9-136
trichlorofluoromethane	BQL	4000	4410	110	4000	3950	98.8	10.9	30	76.8-132
1,2,3-trichloropropane	BQL	4000	4210	105	4000	3700	92.6	12.7	30	10.0-218
1,2,4-trimethylbenzene	BQL	4000	4660	116	4000	4000	100	15.2	30	31.0-172
1,3,5-trimethylbenzene	BQL	4000	4630	116	4000	4020	100	14.2	30	67.7-132
Vinyl acetate	BQL	10000	11300	113	10000	10200	102	20.6	30	0.00-355
vinyl chloride	3080	4000	7880	120	4000	7370	107	11.3	30	68.1-137
m/p-xylene	BQL	8000	9300	116	8000	7900	98.7	16.4	30	79.8-118
0-xylene	BQL	4000	4630	116	4000	3980	99.6	15.0	30	80.0-121

System Monitoring Compound Results						MSD CONC $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { MSD } \\ \% \\ \text { REC \# } \\ \hline \end{gathered}$	$\begin{gathered} \text { QC LIMITS } \\ \text { REC } \end{gathered}$
460-00-4	4-Bromofluorobenzene	10	9.88	98.8	10	9.8	98.0	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	10.66	107	10	10.86	108	63.5-140
2037-26-5	Toluene-d8	10	9.72	97.2	10	9.8	98.0	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 3 failure (s) out of 72. MSD Spike Recovery; 1 failure (s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS: \qquad

Analyst: DVO
Reviewed by: \qquad

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK3041210B Lab Project ID:

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
trans-1,4-Dichloro-2-butene
$1,1-D i c h l o r o e t h a n e ~$
$1,1-D i c h l o r o e t h e n e ~$
1,2-Dichloroethane
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
1,2-Dichloropropane
1,3-Dichloropropane
2,2-Dichloropropane
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result	Quantitation	MDL	Dilution	Date
UG/L	Limit UG/L	UG/L	Factor	Analyzed
BQL	25.0	2.18	1	4/12/2010
BQL	1.00	0.0650	1	4/12/2010
BQL	1.00	0.0560	1	4/12/2010
BQL	1.00	0.101	1	4/12/2010
BQL	1.00	0.0760	1	4/12/2010
BQL	1.00	0.120	1	4/12/2010
BQL	1.00	0.133	1	4/12/2010
BQL	25.0	0.544	1	4/12/2010
BQL	1.00	0.109	1	4/12/2010
BQL	1.00	0.0840	1	4/12/2010
BQL	1.00	0.0500	1	4/12/2010
BQL	1.00	0.0690	1	4/12/2010
BQL	1.00	0.0870	1	4/12/2010
BQL	1.00	0.0820	1	4/12/2010
BQL	1.00	0.106	1	4/12/2010
BQL	1.00	0.0790	1	4/12/2010
BQL	1.00	0.146	1	4/12/2010
BQL	1.00	0.0990	1	4/12/2010
BQL	1.00	0.0800	1	4/12/2010
BQL	1.00	0.0900	1	4/12/2010
BQL	5.00	1.21	1	4/12/2010
BQL.	1.00	0.113	1	4/12/2010
BQL	1.00	0.124	1	4/12/2010
BQL	1.00	0.127	1	4/12/2010
BQL	1.00	0.0810	1	4/12/2010
BQL	1.00	0.0790	1	4/12/2010
BQL	5.00	0.630	1	4/12/2010
BQL	1.00	0.0740	1	4/12/2010
BQL	1.00	0.0890	1	4/12/2010
BQL	1.00	0.0790	1	4/12/2010
BQL	1.00	0.0650	1	4/12/2010
BQL	1.00	0.0890	1	4/12/2010
BQL	1.00	0.0940	1	4/12/2010
BQL	1.00	0.127	1	4/12/2010
BQL	1.00	0.0590	1	4/12/2010
BQL	1.00	0.0720	1	4/12/2010
BQL	1.00	0.0760	1	4/12/2010
BQL	1.00	0.0760	1	4/12/2010
BQL	5.00	0.0940	1	4/12/2010
BQL	1.00	0.0730	1	4/12/2010
BQL	1.00	0.0770	1	4/12/2010
BQL	1.00	0.228	1	4/12/2010
BQL	5.00	0.720	1	4/12/2010
BQL	1.00	0.0420	1	4/12/2010
BQL	1.00	0.0710	1	4/12/2010

Results for Volatiles by GCMS 8260

Client Sample ID: Method Blank Client Project ID:
Lab Sample ID: VBLK3041210B Lab Project ID:

Comments:

Flags:
BQL $=$ Below Quantitation Limits.
Analyst: QO

Analyzed By: DVO
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichoroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
$1,3,5-$ Trimethylbenzene
Vinyl chloride
m-,p-Xlylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Result UG/L	Quantitation Limit UG/L	MDL UG/L	Dilution Factor	Date Analyzed
BQL	1.00	0.0480	1	$4 / 12 / 2010$
BQL	5.00	0.0980	1	$4 / 12 / 2010$
BQL	5.00	0.550	1	$4 / 12 / 2010$
BQL	1.00	0.0670	1	$4 / 2 / 2010$
BQL	1.00	0.133	1	$4 / 12 / 2010$
BQL	1.00	0.0800	1	$4 / 12 / 2010$
BQL	1.00	0.0850	1	$4 / 12 / 2010$
BQL	1.00	0.0900	1	$4 / 12 / 2010$
BQL	1.00	0.115	1	$4 / 12 / 2010$
BQL	1.00	0.0690	1	$4 / 12 / 2010$
BQL	1.00	0.0760	1	$4 / 12 / 2010$
BQL	1.00	0.190	1	$4 / 2 / 2010$
BQL	1.00	0.119	1	$4 / 1212010$
BQL	1.00	0.0540	1	$4 / 12 / 2010$
BQL	1.00	0.0540	1	$4 / 12 / 2010$
BQL	1.00	0.182	1	$4 / 12 / 2010$
BQL	1.00	0.111	1	$4 / 12 / 2010$
BQL	1.00	0.120	1	$4 / 12 / 2010$
BQL	1.00	0.0650	1	$4 / 2 / 2010$
BQL	1.00	0.0740	1	$4 / 122 / 2010$
BQL	1.00	0.149	1	$4 / 1222010$
BQL	2.00	0.0980	1	$4 / 12 / 2010$
BQL	1.00	0.0650	1	$4 / 12 / 2010$
	Spike	Spike	Percent	
	Added	Result	Recovered	
	10	10.9	109	
	10	9.59	96	

Flag

Reviewed By: \qquad

SGS North America, Inc.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
LCS: LCS3041210A
LCSD: LCS3041210B

Filename: $0412303 . \mathrm{D}$
Filename: 0412304.D

Dilution: 1
Matrix: Water

COMPOUND	LCS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)			LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { LCSD } \\ \text { \& } \\ \text { REC \# } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
acetone	25.0	21.2	84.8	25.0	21.8	87.2	2.79	30	23.5-141
acrolein	125	109	87.5	125	109	87.3	0.275	30	31.4-182
acrylonitrile	125	112	89.4	125	115	92.3	3.22	30	64.2-140
benzene	5.00	4.69	93.8	5.00	4.55	91.0	3.03	30	76.6-120
bromobenzene	5.00	4.70	94.0	5.00	4.68	93.6	0.426	30	75.0-122
bromochloromethane	5.00	4.60	92.0	5.00	4.51	90.2	1.98	30	74.8-127
bromodichloromethane	5.00	4.96	99.2	5.00	5.02	100	1.20	30	76.4-117
bromoform	5.00	4.89	97.8	5.00	5.24	105	6.91	30	62.4-127
bromomethane	5.00	4.84	96.8	5.00	4.74	94.8	2.09	30	34.2-166
2-butanone	25.0	22.3	89.2	25.0	23.5	94.0	5.20	30	44.9-126
n-butylbenzene	5.00	5.26	105	5.00	5.07	101	3.68	30	72.0-122
sec-butylbenzene	5.00	5.02	100	5.00	4.97	99.4	1.00	30	78.3-116
tert-butylbenzene	5.00	5.52	110	5.00	5.44	109	1.45	30	53.1-148
Carbon disulfide	5.00	4.50	90.0	5.00	4.40	88.0	2.25	30	69.0-118
carbon tetrachloride	5.00	4.84	96.8	5.00	4.84	96.8	0.00	30	71.7-124
chlorobenzene	5.00	4.78	95.6	5.00	4.85	97.0	1.45	30	75.5-116
chloroethane	5.00	4.60	92.0	5.00	4.43	88.6	3.76	30	78.2-138
2-chloroethyl vinyl ether	125	116	92.6	125	116	92.5	0.112	30	5.57-235
chloroform	5.00	4.82	96.4	5.00	4.81	96.2	0.208	30	80.6-117
chloromethane	5.00	4.80	96.0	5.00	4.64	92.8	3.39	30	72.6-127
2-chlorotoluene	5.00	5.06	101	5.00	5.03	101	0.595	30	81.4-117
4-chlorotoluene	5.00	5.04	101	5.00	5.01	100	0.597	30	82.1-116
dibromochloromethane	5.00	4.94	98.8	5.00	5.05	101	2.20	30	73.1-117
1,2-dibromo-3-chloropropane	30.0	32.1	107	30.0	31.6	105	1.60	30	58.0-133
1,2-dibromoethane	5.00	4.65	93.0	5.00	4.76	95.2	2.34	30	75.5-118
dibromomethane	5.00	4.74	94.8	5.00	4.96	99.2	4.54	30	77.3-124
1,2-dichlorobenzene	5.00	5.10	102	5.00	5.06	101	0.787	30	76.3-115
1,3-dichlorobenzene	5.00	5.05	101	5.00	4.98	99.6	1.40	30	79.1-114
1,4-dichlorobenzene	5.00	4.93	98.6	5.00	5.03	101	2.01	30	76.8-115
trans-1,4-Dichloro-2-butene	25.0	26.6	106	25.0	25.6	102	3.64	30	52.3-130
diehlorodifluoromethane	5.00	4.88	97.6	5.00	4.78	95.6	2.07	30	69.8-134
1,1-dichloroethane	5.00	4.83	96.6	5.00	4.76	95.2	1.46	30	78.0-120
1,2-dichloroethane	5.00	5.10	102	5.00	4.98	99.6	2.38	30	72.8-126
1,1-dichloroethene	5.00	4.55	91.0	5.00	4.34	86.8	4.72	30	74.6-121
cis-1,2-dichloroethene	5.00	4.58	91.6	5.00	4.51	90.2	1.54	30	78.0-121
trans-1,2-dichloroethene	5.00	4.54	90.8	5.00	4.47	89.4	1.55	30	60.7-144
1,2-dichloropropane	5.00	4.67	93.4	5.00	4.49	89.8	3.93	30	75.8-119
1,3-dichloropropane	5.00	4.62	92.4	5.00	5.00	100	7.90	30	78.5-113
2,2-dichloropropane	5.00	5.23	105	5.00	5.14	103	1.74	30	75.6-130
1,1-dichloropropene	5.00	4.88	97.6	5.00	4.75	95.0	2.70	30	79.7-117.
cis-1,3-dichloropropene	5.00	4.77	95.4	5.00	4.66	93.2	2.33	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

SGS Environmental Sevices

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code; NC00919
LCS: LCS3041210A
LCSD: LCS3041210B

COMPOUND	LCS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { LCS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$		LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	LCSD CONC $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { LCSD } \\ \text { \% } \\ \text { REC \# } \end{gathered}$	$\begin{gathered} \text { f } \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
trans-1,3-dichloropropene	5.00	4.91	98.2	5.00	4.90	98.0	0.204	30	79.0-113
Diisopropyl ether	5.00	4.58	91.6	5.00	4.70	94.0	2.59	30	71.8-115
ethylbenzene	5.00	5.01	100	5.00	4.92	98.4	1.81	30	80.5-115
hexachlorobutadiene	5.00	5.60	112	5.00	5.46	109	2.53	30	63.3-139
2-hexanone	25.0	22.3	89.3	25.0	23.8	95.4	6.67	30	46.8-123
Iodomethane	5.00	4.60	92.0	5.00	4.41	88.2	4.22	30	29.3-156
isopropylbenzene	5.00	5.06	101	5.00	5.03	101	0.595	30	81.6-114
4-isopropyltoluene	5.00	5.12	102	5.00	5.10	102	0.391	30	78.4-119
Methyl-tert-butyl ether	5.00	4.64	92.8	5.00	4.76	95.2	2.55	30	76.0-114
methylene chloride	5.00	4.21	84.2	5.00	4.25	85.0	0.946	30	72.9-120
4-methyl-2-pentanone	25.0	23.1	92.5	25.0	24.0	96.0	3.65	30	56.2-124
naphthalene	5.00	5.20	104	5.00	5.31	106	2.09	30	24.8-182
n-propyl benzene	5.00	5.08	102	5.00	5.04	101	0.790	30	79.0-116
styrene	5.00	5.04	101	5.00	4.98	99.6	1.20	30	64.8-132
1,1,1,2-tetrachloroethane	5.00	4.84	96.8	5.00	4.89	97.8	1.03	30	78.8-118
1,1,2,2-tetrachloroethane	5.00	5.23	105	5.00	5.30	106	1.33	30	69.7-119
tetrachloroethene	5.00	3.71	74.2	5.00	3.89	77.8	4.74	30	55.3-144
toluene	5.00	4.71	94.2	5.00	4.42	88.4	6.35	30	78.6-117
1,2,3-trichlorobenzene	5.00	5.42	108	5.00	5.47	109	0.918	30	20.8-193
1,2,4-trichlorobenzene	5.00	5.48	110	5.00	5.05	101	8.17	30	47.9-150
1,1,1-trichloroethane	5.00	4.76	95.2	5.00	4.82	96.4	1.25	30	78.8-120
1,1,2-trichloroethane	5.00	4.85	97.0	5.00	4.91	98.2	1.23	30	73.6-117
trichloroethene	5.00	4.57	91.4	5.00	4.53	90.6	0.879	30	80.1-116
trichlorofluoromethane	5.00	4.94	98.8	5.00	4.91	98.2	0.609	30	80.5-130
1,2,3-trichloropropane	5.00	5.04	101	5.00	5.10	102	1.18	30	35.6-152
1,2,4-trimethyibenzene	5.00	5.15	103	5.00	5.10	102	0.976	30	77.0-116
1,3,5-trimethylbenzene	5.00	5.13	103	5.00	5.11	102	0.391	30	79.4-114
Vinyl acetate	12.5	12.4	99.4	12.5	12.5	100	0.881	30	60.7-127
vinyl chloride	5.00	4.62	92.4	5.00	4.42	88.4	4.42	30	77.5-126
m/p-xylene	10.0	10.1	101	10.0	10.1	101	0.00	30	62.9-112
o-xylene	5.00	5.04	101	5.00	5.07	101	0.593	30	81.3-113
System Monitoring Compound Results			$\begin{gathered} \text { LCS } \\ \text { \% } \\ \text { REC \# } \end{gathered}$			$\begin{gathered} \text { LCSD } \\ \text { \& } \\ \text { REC \# } \end{gathered}$			$\begin{gathered} \text { QC } \quad \text { LIMITS } \\ \text { REC } \end{gathered}$
460-00-4 4-Bromofluorobenzene	10	9.56	95.6	10	9.89	98.9			84.7-115
17060-07-0 1,2-Dichloroethane-d4	10	10.65	106	10	10.73	107			63.5-140
2037-26-5 Toluene-d8	10	9.68	96.8	10	9.6	96.0			81.8-117

COMPOUND	LCS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { LCS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$		LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	LCSD CONC $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { LCSD } \\ \text { \% } \\ \text { REC \# } \end{gathered}$	$\begin{gathered} \text { f } \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
trans-1,3-dichloropropene	5.00	4.91	98.2	5.00	4.90	98.0	0.204	30	79.0-113
Diisopropyl ether	5.00	4.58	91.6	5.00	4.70	94.0	2.59	30	71.8-115
ethylbenzene	5.00	5.01	100	5.00	4.92	98.4	1.81	30	80.5-115
hexachlorobutadiene	5.00	5.60	112	5.00	5.46	109	2.53	30	63.3-139
2-hexanone	25.0	22.3	89.3	25.0	23.8	95.4	6.67	30	46.8-123
Iodomethane	5.00	4.60	92.0	5.00	4.41	88.2	4.22	30	29.3-156
isopropylbenzene	5.00	5.06	101	5.00	5.03	101	0.595	30	81.6-114
4-isopropyltoluene	5.00	5.12	102	5.00	5.10	102	0.391	30	78.4-119
Methyl-tert-butyl ether	5.00	4.64	92.8	5.00	4.76	95.2	2.55	30	76.0-114
methylene chloride	5.00	4.21	84.2	5.00	4.25	85.0	0.946	30	72.9-120
4-methyl-2-pentanone	25.0	23.1	92.5	25.0	24.0	96.0	3.65	30	56.2-124
naphthalene	5.00	5.20	104	5.00	5.31	106	2.09	30	24.8-182
n-propyl benzene	5.00	5.08	102	5.00	5.04	101	0.790	30	79.0-116
styrene	5.00	5.04	101	5.00	4.98	99.6	1.20	30	64.8-132
1,1,1,2-tetrachloroethane	5.00	4.84	96.8	5.00	4.89	97.8	1.03	30	78.8-118
1,1,2,2-tetrachloroethane	5.00	5.23	105	5.00	5.30	106	1.33	30	69.7-119
tetrachloroethene	5.00	3.71	74.2	5.00	3.89	77.8	4.74	30	55.3-144
toluene	5.00	4.71	94.2	5.00	4.42	88.4	6.35	30	78.6-117
1,2,3-trichlorobenzene	5.00	5.42	108	5.00	5.47	109	0.918	30	20.8-193
1,2,4-trichlorobenzene	5.00	5.48	110	5.00	5.05	101	8.17	30	47.9-150
1,1,1-trichloroethane	5.00	4.76	95.2	5.00	4.82	96.4	1.25	30	78.8-120
1,1,2-trichloroethane	5.00	4.85	97.0	5.00	4.91	98.2	1.23	30	73.6-117
trichloroethene	5.00	4.57	91.4	5.00	4.53	90.6	0.879	30	80.1-116
trichlorofluoromethane	5.00	4.94	98.8	5.00	4.91	98.2	0.609	30	80.5-130
1,2,3-trichloropropane	5.00	5.04	101	5.00	5.10	102	1.18	30	35.6-152
1,2,4-trimethyibenzene	5.00	5.15	103	5.00	5.10	102	0.976	30	77.0-116
1,3,5-trimethylbenzene	5.00	5.13	103	5.00	5.11	102	0.391	30	79.4-114
Vinyl acetate	12.5	12.4	99.4	12.5	12.5	100	0.881	30	60.7-127
vinyl chloride	5.00	4.62	92.4	5.00	4.42	88.4	4.42	30	77.5-126
m/p-xylene	10.0	10.1	101	10.0	10.1	101	0.00	30	62.9-112
o-xylene	5.00	5.04	101	5.00	5.07	101	0.593	30	81.3-113
System Monitoring Compound Results			$\begin{gathered} \text { LCS } \\ \text { \% } \\ \text { REC \# } \end{gathered}$			$\begin{gathered} \text { LCSD } \\ \text { \& } \\ \text { REC \# } \end{gathered}$			$\begin{gathered} \text { QC } \quad \text { LIMITS } \\ \text { REC } \end{gathered}$
460-00-4 4-Bromofluorobenzene	10	9.56	95.6	10	9.89	98.9			84.7-115
17060-07-0 1,2-Dichloroethane-d4	10	10.65	106	10	10.73	107			63.5-140
2037-26-5 Toluene-d8	10	9.68	96.8	10	9.6	96.0			81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

LCS Spike Recovery: 0 failure(s) out of 72. LCSD Spike Recovery: 0 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS: \qquad
\qquad

Analyst: \qquad 0.0 Reviewed by: \qquad

Dilution: 1
Matrix: Water

Filename: 0412303.D
Filename: 0412304.D

Date Analyzed: 04/12/10 09:31
Date Analyzed: 04/12/10 10:01
-

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: SGS Environmental
Lab Code: NC00919
Inst: MSD3
EPA Sample No.: Amt. Filenames: Analysis Dates:

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SGS Environmental	Inst: MSD3
Lab Code: NC00919	Batch: $\mathbf{3 0 4 1 2 1 0}$

EPA Sample No.: 9582-661-4a, 9582-661-4a, 9582-661-4a
Filenames: 0412309.D, 0412310.D, 0412311.D
Dilution: 200
Matrix: Water

| |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COMPOUND |

System Monitoring Compound Results		MS SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	MS CONC ($\mu \mathrm{g} / \mathrm{L}$)	MS \% REC \#	MSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	MSD CONC ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { MSD } \\ \text { q } \\ \text { REC \# } \end{gathered}$	$\text { QC } \underset{\text { REC }}{\text { LIMITS }}$
460-00-4	4-Bromofluorobenzene	10	10.18	102	10	10.55	105	84.7-115
17060-07-0	1,2-Dichloroethane-d4	10	11.19	112	10	11.54	115	63.5-140
2037-26-5	Toluene-d8	10	9.57	95.7	10	9.82	98.2	81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

MS Spike Recovery: 1 failure (s) out of 72. MSD Spike Recovery: 1 failure(s) out of 72.
RPD: 0 out of 72 outside of limits
COMMENTS : \qquad

Reviewed by: \qquad

Results for Volatiles by GCMS 8260

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL
Compound
Acetone
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
2-Butanone
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
2-Chlorotoluene
4-Chlorotoluene
Dibromochloromethane
1,2-Dibromo-3-chloropropane
Dibromomethane
1,2-Dibromoethane (EDB)
$1,2-$ Dichlorobenzene
1,3-Dichlorobenzene
$1,4-$ Dichlorobenzene
trans-1,4-Dichloro-2-butene
1,1-Dichloroethane
$1,1-$ Dichloroethene
$1,2-D i c h l o r o e t h a n e ~$
cis-1,2-Dichloroethene
trans-1,2-dichloroethene
$1,2-D i c h l o r o p r o p a n e ~$
$1,3-D i c h l o r o p r o p a n e ~$
$2,2-D i c h l o r o p r o p a n e ~$
1,1-Dichloropropene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Dichlorodifluoromethane
Diisopropyl ether (DIPE)
Ethylbenzene
Hexachlorobutadiene
2-Hexanone
lodomethane
Isopropylbenzene

Result	Quantitation	MDL
UG/L	Limit UG/L	UG/L
BQL	25.0	2.18
BQL	1.00	0.0650
BQL	1.00	0.0560
BQL	1.00	0.101
BQL	1.00	0.0760
BQL	1.00	0.120
BQL	1.00	0.133
BQL	25.0	0.544
BQL	1.00	0.109
BQL	1.00	0.0840
BQL	1.00	0.0500
BQL	1.00	0.0690
BQL	1.00	0.0870
BQL	1.00	0.0820
BQL	1.00	0.106
BQL	1.00	0.0790
BQL	1.00	0.146
BQL	1.00	0.0990
BQL	1.00	0.0800
BQL	1.00	0.0900
BQL	5.00	1.21
BQL	1.00	0.113
BQL	1.00	0.124
BQL	1.00	0.127
BQL	1.00	0.0810
BQL	1.00	0.0790
BQL	5.00	0.630
BQL	1.00	0.0740
BQL	1.00	0.0890
BQL	1.00	0.0710
BQL	1.00	0.0790
BQL	1.00	0.0650
BQL	1.00	0.0890
BQL	1.00	0.0940
BQL	1.00	0.127
BQL	1.00	0.0590
BQL	1.00	0.0720
BQL	1.00	0.0760
BQL	1.00	0.0760
BQL	5.00	0.0940
BQL	1.00	0.0730
BQL	0.0770	
BQ	0.228	
BQ	0.720	
BQ	1.00	0.0420
BQ	1.00	
BQ	100	

Flag
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
4/12/2010
GCMSMSD8.xk

Results for Volatiles
 by GCMS $\mathbf{8 2 6 0}$

Client Sample ID: Method Blank
Client Project ID:
Lab Sample ID: VBLK8041210B Lab Project ID:

Analyzed By: CLP
Date Collected:
Date Received:
Matrix: Water
Sample Amount: 5 mL

Compound
4-Isopropyltoluene
Methylene chloride
4-Methyl-2-pentanone
Methyl-tert-butyl ether (MTBE)
Naphthalene
n-Propyl benzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Trichloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichlorofluoromethane
1,2,3-Trichloropropane
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Vinyl chloride
m-,p-Xylene
o-Xylene

1,2-Dichloroethane-d4
Toluene-d8
4-Bromofluorobenzene

Comments:

Flags:
$B Q L=$ Below Qyantitation Limits.
Analyst: \qquad

SGS North America, Inc.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
Dilution: 1

LCS: LCS8041210A
LCSD: LCS8041210B

Filename: $0412803 . \mathrm{D}$
Filename: 0412804.D

Matrix: Water
Date Analyzed: 04/12/10 09:31
Date Analyzed: 04/12/10 09:56

COMPOUND			$\begin{gathered} \text { LCS } \\ \% \\ \text { REC \# } \\ \hline \end{gathered}$	LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)		$\begin{gathered} \text { LCSD } \\ \% \\ \text { REC \# } \\ \hline \end{gathered}$	\%	QC LIMITS	
								RFD	REC
acetone	25.0	24.2	97.0	25.0	25.7	103	5.77	30	23.5-141
acrolein	125	124	99.3	125	129	104	4.19	30	31.4-182
acrylonitrile	125	126	101	125	134	107	5.42	30	64.2-140
benzene	5.00	5.21	104	5.00	5.20	104	0.00	30	76.6-120
bromobenzene	5.00	4.83	96.6	5.00	4.78	95.6	1.04	30	75.0-122
bromochloromethane	5.00	4.85	97.2	5.00	4.78	95.6	1.66	30	74.8-127
bromodichloromethane	5.00	5.03	101	5.00	5.13	103	1.97	30	76.4-117
bromoform	5.00	5.60	112	5.00	5.59	112	0.179	30	62.4-127
bromomethane	5.00	5.97	119	5.00	5.46	109	8.92	30	34.2-166
2-butanone	25.0	23.4	93.8	25.0	24.2	96.6	2.94	30	44.9-126
n-butylbenzene	5.00	5.03	101	5.00	4.83	96.6	4.06	30	72.0-122
sec-butylbenzene	5.00	5.16	103	5.00	5.15	103	0.194	30	78.3-116
tert-butylbenzene	5.00	5.07	101	5.00	5.01	100	1.19	30	53.1-148
Carbon disulfide	5.00	5.27	105	5.00	5.11	102	3.08	30	69.0-118
carbon tetrachloride	5.00	5.52	110	5.00	5.56	111	0.722	30	71.7-124
chlorobenzene	5.00	4.98	99.6	5.00	5.11	102	2.38	30	75.5-116
chloroethane	5.00	5.01	100	5.00	5.14	103	2.56	30	78.2-138
2-chloroethyl vinyl ether	125	125	100	125	138	110	9.28	30	5.57-235
chloroform	5.00	4.93	98.6	5.00	4.85	97.0	1.64	30	80.6-117
chloromethane	5.00	5.18	104	5.00	5.37	107	3.60	30	72.6-127
2-chlorotoluene	5.00	5.08	102	5.00	4.88	97.6	4.02	30	81.4-117
4-chlorotoluene	5.00	5.01	100	5.00	4.91	98.2	2.02	30	82.1-116
dibromochloromethane	5.00	5.40	108	5.00	5.50	110	1.83	30	73.1-117
1,2-dibromo-3-chloropropane	30.0	32.3	108	30.0	33.2	110	2,60	30	58.0-133
1,2-dibromoethane	5.00	5,23	105	5.00	5.25	105	0.382	30	75.5-118
dibromomethane	5.00	4.91	98.2	5.00	4.84	96.8	1.44	30	77.3-124
1,2-dichlorobenzene	5.00	5.07	101	5.00	5.11	102	0.786	30	76.3-115
1,3-dichlorobenzene	5.00	5.13	103	5.00	5.09	102	0.783	30	79.1-114
1,4-dichlorobenzene	5.00	4.97	99.4	5.00	5.00	100	0.602	30	76.8-115
trans-1,4-Dichloro-2-butene	25.0	25.8	103	25.0	27.3	109	5.60	30	52.3-130
dichlorodifluoromethane	5.00	5.39	108	5.00	5.43	108	0.739	30	69.8-134
1.1-dichloroethane	5.00	4.78	95.6	5.00	4.83	96.6	1.04	30	78.0-120
1,2-dichloroethane	5.00	4.87	97.4	5.00	4.79	95.8	1.66	30	72.8-126
1,1-dichloroethene	5,00	4.90	98.0	5.00	4.85	97.0	1.02	30	74.6-121
c1s-1,2-dichloroethene	5.00	4.82	96.4	5.00	4.56	91.2	5.54	30	78.0-121
trans-1,2-dichloroethene	5.00	4.93	98.6	5.00	4.91	98.2	0.406	30	60.7-144
1,2-dichloropropane	5.00	5.33	107	5.00	5.29	106	0.753	30	75.8-119
1,3-dichloropropane	5.00	5.18	104	5.00	5.13	103	0.970	30	78.5-113
2,2-dichloropropane	5.00	5.23	105	5.00	5.18	104	0.961	30	75.6-130
1,1-dichloropropene	5.00	5.31	106	5.00	5.24	105	1.33	30	79.7-117
cis-1,3-dichloropropene	5.00	4.95	99.0	5.00	4.94	98.8	0.202	30	79.8-113

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS: \qquad

SGS North America, Inc.

SGS Environmental Sevices
LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
LCS: LCS8041210A
LCSD: LCS8041210B

Dilution: 1
Matrix: Water
Date Analyzed: 04/12/10 09:31
Date Analyzed: 04/12/10 09:56

COMPOUND		LCS CONC ($\mu \mathrm{g} / \mathrm{L}$)		LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	LCSD CONC $(\mu \mathrm{g} / \mathrm{L})$	$\begin{gathered} \text { LCSD } \\ \text { f } \\ \text { REC } \end{gathered}$	$\begin{gathered} \text { \& } \\ \text { RPD } \end{gathered}$	QC LIMITS	
								RPD	REC
trans-1,3-dichloropropene	5.00	5.10	102	5.00	5.26	105	3.09	30	79.0-113
ethylbenzene	5.00	5.00	100	5.00	5.02	100	0.399	30	71.8-115
	5.00	4.98	99.6	5.00	5.02	100	0.800	30	80.5-115
hexachlorobutadiene	5.00	5.60	112	5.00	5.43	108	3.08	30	63.3-139
2-hexanone	25.0	22.9	91.8	25.0	24.6	98.4	6.98	30	46.8-123
Iodomethane	5.00	4.26	85.2	5.00	4.13	82.6	3.10	30	29.3-156
isopropylbenzene	5.00	5.01	100	5.00	5.08	102	1.39	30	81.6-114
4-isopropyitoluene	5.00	5.02	100	5.00	5.05	101	0.596	30	78.4-119
Methyl-tert-butyl ether	5.00	4.89	97.8	5.00	4.97	99.4	1.62	30	76.0-114
methylene chloride	5.00	4.78	95.6	5.00	4.64	92.8	2.97	30	72.9-120
4-methyl-2-pentanone	25.0	22.5	90.0	25.0	24.3	97.4	7.81	30	56.2-124
naphthalene	5.00	4.97	99.4	5.00	5.01	100	0.802	30	24.8-182
n-propyl benzene	5.00	5.06	101	5.00	5.03	101	0.595	30	79.0-116
styrene	5.00	4.91	98.2	5.00	5.04	101	2.61	30	64.8-132
1,1,1,2-tetrachloroethane	5.00	5.59	112	5.00	5.28	106	5.70	30	78.8-118
1,1,2,2-tetrachloroethane	5.00	4.97	99.4	5.00	5.35	107	7.36	30	69.7-119
tetrachloroethene	5.00	5.46	109	5.00	5.48	110	0.366	30	55.3-144
toluene	5.00	4.91	98.2	5.00	4.92	98.4	0.203	30	78.6-117
1,2,3-trichlorobenzene	5.00	5.05	101	5.00	5.00	100	0.995	30	20.8-193
1,2,4-trichlorobenzene	5.00	5.03	101	5.00	4.91	98.2	2.41	30	47.9-150
1,1,1-trichloroethane	5.00	5.29	106	5.00	5.25	105	0.759	30	78.8-120
1,1,2-trichloroethane	5.00	5.22	104	5.00	5.23	105	0.191	30	73.6-117
trichloroethene	5.00	5.18	104	5.00	5.14	103	0.966	30	80.1-116
trichlorofluoromethane	5.00	5.57	111	5.00	5.42	108	2.73	30	80.5-130
1,2,3-trichloropropane	5.00	5.39	108	5.00	5.01	100	7.31	30	35,6-152
1,2,4-trimethylbenzene	5.00	5.03	101	5.00	5.00	100	0.598	30	77.0-116
1,3,5-trimethylbenzene	5.00	5.06	101	5.00	5.02	100	0.794	30	79.4-114
Vinyl acetate	12.5	10.9	87.4	12.5	10.8	86.5	1.10	30	60.7-127
vinyl chloride	5.00	5.48	110	5.00	5.39	108	1.66	30	77.5-126
m/p-xylene	10.0	10.1	101	10.0	10.4	104	2.24	30	82.9-112
o-xylene	5.00	4.90	98.0	5.00	4.78	95.6	2.48	30	81.3-113
System Monitoring Compound Results							\checkmark		
	SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { LCS } \\ \text { CONC } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { LCS } \\ \text { REC \# } \end{gathered}$	LCSD SPIKE ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{aligned} & \text { LCSD } \\ & \text { CONC } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$	$\begin{gathered} \text { LCSD } \\ \text { \& } \\ \text { REC } \end{gathered}$			QC LIMITS
460-00-4 4-Bromofluorobenzene	30	31.75	106	30	30.64	102			84.7-115
17060-07-0 ${ }^{\text {1,2-Dichloroethane-d4 }}$	30	28.43	94.8	30	28.35	94.5			63.5-140
2037-26-5 Toluene-d8	30	28.87	96.2	30	29.44	08.1			81.8-117

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outaide of QC limits

LCS Spike Recovery: 0 failure(s) out of 72. LCSD Spike Recovery: 0 failure (s) out of 72 .
RPD: 0 out of 72 outside of limits
COMMENTS: \qquad
\qquad

Reviewed by: \qquad

SGS North America, Inc.

SGS Environmental Services

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:

SGS North America, Inc.

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SGS Environmental
Lab Code: NC00919
EPA Sample No.: g375-121-8a, g375-121-16a, g375-121-17a
Filenames: 0412日12.D, 0412813.D, 0412814.D

Inst: MSD8
Batch: 8041210
Dilution: 2
Matrix: Water

	SAMPLE CONC	$\begin{gathered} \text { MS } \\ \text { SPIKE } \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { CONC } \end{gathered}$	MS	$\begin{gathered} \text { MSD } \\ \text { SPIKE } \end{gathered}$	MSD CONC	MSD 1	\%	QC LIMITS	
COMPOUND	($\mu \mathrm{g} / \mathrm{L}$)	($\mu \mathrm{g} / \mathrm{L}$)	($\mu \mathrm{g} / \mathrm{L}$)	REC \#	($\mu \mathrm{g} / \mathrm{L}$)	($\mu \mathrm{g} / \mathrm{L}$)	REC \#	RPD	RPD	REC
trans-1,3-dichloropropene	BQL	10.0	9.32	93.2	10.0	9.68	96.8	3.79	30	44.7-144
Diisopropyl ether	BOL	10.0	9.54	95.4	10.0	10.4	104	8.82	30	79.4-122
ethylbenzene	BQL	10.0	9.74	97.4	10.0	9.90	99.0	1.63	30	73.8-126
hexachlorobutadiene	BOL	10.0	10.9	109	10.0	10.7	207	1.86	30	51.8-134
2-hexanone	BOL	50.0	34.6	69.3	50.0	36.9	73.8	6.21	30	41.6-111
Iodomethane	BQL,	10.0	8.68	86.8	10.0	10.1	101	15.5	30	40.6-126
isopropylbenzene	BQL	10.0	9.90	99.0	10.0	9.82	98.2	0.811	30	74.3-123
4-isopropyltoluene	BQL	10.0	9.88	98.8	10.0	9.92	99.2	0.404	30	74.6-122
Methyl-tert-butyl ether	BQL	10.0	9.26	92.6	10.0	10.2	102	10.0	30	66.5-135
methylene chloride	BQL	20.0	9.50	95.0	10.0	10.8	108	12.6	30	48.6-155
4-methyl-2-pentanone	BQL	50.0	41.8	83.6	50.0	44.9	89.8	7.15	30	6.88-165
naphthalene	BQL	10.0	9.62	96.2	10.0	9.50	95.0	1.26	30	55.1-140
n-propyl benzene	BQL	10.0	9.86	98.6	10.0	10.1	101	2,40	30	71.6-128
styrene	BQL	10.0	9.66	96.6	10.0	9.86	98.6	2.05	30	73.2-123
1,1,1,2-tetrachloroethane	BQL	10.0	10.4	104	10.0	10.2	102	1.56	30	69.4-120
1,1,2,2-tetrachloroethane	BOL	10.0	10.5	105	10.0	10.7	107	1.88	30	75.7-136
tetrachloroethene	BQL	10.0	11.1	111	10.0	11.7	117	5.42	30	45.8-153
toluene	BOL	10.0	9.12	91.2	10.0	9.92	99.2	8.40	30	66.4-128
1,2,3-trichlorobenzene	BQL	10.0	9.94	99.4	10.0	10.3	103	3.36	30	61.0-126
1,2,4-trichlorobenzene	BOL	10.0	9.76	97.6	10.0	9.82	98.2	0.613	30	60.6-125
1,1,1-trichloroethane	3.08	10.0	11.4	83.2	10.0	12.4	93.6	11.8	30	78.4-121
1,1,2-trichloroethane	BQL	10.0	10.1	101	10.0	10.7	107	5.58	30	64.8-128
trichloroethene	33.4	10.0	38.8	54.0*	10.0	41.5	81.2*	40.2*	30	84.9-136
trichlorofluoromethane	BQL	10.0	10.9	108	10.0	11.7	117	7.62	30	76.8-132
1,2,3-trichloropropane	BQL	10.0	10.2	102	10.0	11.4	114	12.0	30	10.0-218
1,2,4-trimethylbenzene	BQL	10.0	10.1	101	10.0	10.3	103	2.16	30	31.0-172
1,3,5-trimethylbenzene	BQL	10.0	9.94	99.4	10.0	10.0	100	1.00	30	67.7-132
Vinyl acetate	BQL	25.0	21.1	84.4	25.0	22.8	91.3	7.83	30	0.00-355
vinyl chloride	BQL	10.0	10.4	104	10.0	10.9	109	4.88	30	68.1-137
m/p-xylene	BQL	20.0	19.6	97.8	20.0	20.5	102	4.50	30	79.8-118
o-xylene	BQL	10.0	9.48	94.8	10.0	9.66	96.6	1.88	30	80.0-121

System Monitoring Compound Reaults						MSD CONC ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { MSD } \\ \text { \& } \\ \text { REC } \# \end{gathered}$	QC $\underset{\text { REC }}{\text { LIMITS }}$
460-00-4	4-Bromofluorobenzene	30	32.4	108	30	32.4	108	84.7-115
17060-07-0	1,2-Dichloroethane-d4	30	28.82	96.1	30	29.61	98.7	63.5-140
2037-26-5	Toluene-d8	30	25.95	86.5	30	27.59	92.0	81.8-117

\# Column to be used to flag recovery and RPD values with an asteriak

* Values outside of QC limits

MS Spike Recovery: 3 failure(s) out of 72. MSD Spike Recovery: 2 failure(g) out of 72.
RPD: 3 out of 72 outside of limits
COMMENTS:

SGS North America, Inc.

Client Name: Arcadis
Contact: Mark Banish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 13
Lab Pro \#: P1004320
Report Date: 04/30/10
Client Pro Name: B0007393.0000.00006
Client Proj \#: AVXMB

Laboratory Results

Lab Sample \#	Client Sample ID
P1004320-01	OW-7D
P1004320-02	OW-10D
P1004320-03	P-2D
P1004320-04	OW-9D
P1004320-05	OW-8D
P1004320-06	P-1D
P1004320-07	P-3D
P1004320-08	BATCH CONFIRM 4D
P1004320-14	BATCH CONFIRM
	WW-5D
P1004320-22	BATCH CONFIRM
	IW-4D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By: \qquad Date: 5-3.10

Project Manager:

Debbie Hello

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-7D	Matrix Water	Lab Sample \# P1004320-01			Sampled Date/Time 13 Apr. 10 11:00	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		460.0	250	mg/L	9060	4/28/10	pas

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish Address: 310 Seven Fields Blvd.

Suite 210
Seven Fields, PA 16046

Page: Page 3 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-10D	Matrix Water	Lab Sample \#P1004320-02			$\frac{\text { Sampled Date/Time }}{13 \text { Apr. } 10 \quad 11: 15}$	$21 \frac{\text { Received }}{\text { Apr. } 10 \quad 12: 15}$	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		1700.0	250	mg / L	9060	4/28/10	pas

Data Qualifiers: J - estimated value, U-Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-2D }}$	Matrix Water	Lab Sample \# P1004320-03			$\frac{\text { Sampled Date/Time }}{13 \text { Apr. } 10 \quad 11: 20}$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		5200.0	1000.0	mg/L	9060	4/29/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1004320-04			Sampled Date/Tim	Received	
OW-9D	Water				13 Apr. 10 11:32	21 Apr.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4000.0	500.0	mg/L	9060	4/29/10	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \#P1004320-05			Sampled Date/Time	Received	
OW-8D	Water				13 Apr. 10 11:40	21 Apr. 1	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		1000.0	250	mg/L	9060	4/28/10	pas

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1004320-06			Sampled Date/Time 13 Apr. 10 11:55	Received		
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analys	is Date	By
WetChem N Total Organic Carbon		170.0	25.0	mg/L	9060	4/29/10		md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N-NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-3D }}$	Matrix Water	Lab Sample \# P1004320-07			Sampled Date/Time 13 Apr. 10 12:05	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		14.0	5	mg/L	9060	4/29/10	pas

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L-Subcontracted Lab used, N-NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description BATCH CONFIRM 4D	Matrix Water	Lab Sample \# P1004320-08			$\frac{\text { Sampled Date/Time }}{13 \text { Apr } 10 \quad 13: 45}$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method\#	Analysis Date	By
WetChem N Total Organic Carbon		8300.0	1000.0	mg / L	9060	4/29/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 10 of 13
Lab Proj\#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1004320-14		Sampled Date/Time		Received		
BATCH CONFIRM MW-5D	Water				17 Apr. 10 7:30		21 Apr.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analys	is Date	By
WetChem N Total Organic Carbon		7000.0	1000.0	mg/L	9060	4/29/10		md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1004320-22			Sampled Date/Time	Received	
BATCH CONFIRM IW-4D	Water				18 Apr. 10 8:05	21 Apr.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		7900.0	1000.0	mg/L	9060	4/29/10	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 12 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
Analysis Method: Total Organic Carbon

M100429016-MB

| | Result | | TrueSpikeConc. | RDL | \%Recovery | Ctl Limits |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Organic Carbon | <5.0 | mg / L | | 5 | | - NA |
| M100429016-LCS | | | | | | |
| | Result | | TrueSpikeConc. | | \%Recovery | Ctl Limits |
| Total Organic Carbon | 36.0 | mg / L | 36.00 | | 100.00 | $70-130$ |

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 13 of 13
Lab Proj \#: P1004320
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep. Method: Total Organic Carbon
 Analysis Method: Totàl Organic Carbon

M100430020-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	CtI Limits
Total Organic Carbon	0.8	mg/L		5.0		- NA
M100430020-LCS						
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Total Organic Carbon	37.0	mg / L	36.00		103.00	70-130

	Result		TrueSpikeConc.	\%Recovery	CtI Limits	RPD	RPD CtI Limits
Total Organic Carbon	5100.0	mg / L			- NA	1.94	0-20
P1004320-04A-DUP							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	3600.0	mg / L			- NA	10.53	0-20
P1004321-13A-DUP							
	Result		TrueSpikeConc.	\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	7900.0	mg / L			- NA	0.00	0-20

Microseeps
Lab. Proj. \#

From:
McDonough, Jeffrey [Jeffrey.McDonough@arcadis-us.com]
Sent: Thursday, April 22, 2010 4:56 PM
To:
Debbie Hallo
Subject:
Attachments:
FW: Chain of Custody Change - HOLD samples
img-4221544-0001.pdf; img-4221543-0001.pdf; img-4221543-0001.pdf;
img-4221543-0001.pdf

From: McDonough, Jeffrey
Sent: Thursday, April 22, 2010 4:44 PM
To: 'hhauser@microseeps.com'
Subject: Chain of Custody Change - HOLD samples
Hi Heather,

Please see the attached COCs with the updated HOLDs on several samples. I apologize for sending them as individual PDFs, but the file is much to large if I merge them all together.

Please send me a quick confirmation that you got this. And I am the person to contact if there are any questions. We will be in touch of which HOLD samples to run and when. Please note that if no HOLD remark was added, the samples may be run as normal. Additionally, what is your policy on holding samples? (i.e., how long do we have to decide if we will run the samples?)

Thanks
Jeff

Jeffrey McDonough | Staff Environmental Engineer | Jeffrey.McDonough@arcadis-us.com
ARCADIS U.S., Inc. | 6 Terry Drive, Suite 300 | Newtown PA 18940
T. 267.685.1854 | M. 267.615.1863 | F. 267.685.1801
www.arcadis-us.com
ARCADIS, Imagine the result
Please consider the environment before printing this email.

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this email or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates. Nothing herein is intended to constitute the offering or performance of services where otherwise restricted by law.

(

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Laboratory Results

Lab Sample\#	Client Sample ID
P1004321-01	BATCH CONFIRM
	IW-4D
P1004321-09	BATCH CONFIRM
	IW-5D
P1004321-13	BATCH CONFIRM
	IW-4D
P1004321-16	OW-7D
P1004321-17	P-2D
P1004321-18	OW-10D
P1004321-19	OW-9D
P1004321-20	OW-8D
P1004321-21	P-1D
P1004321-22	P-3D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.
As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fieids Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description BATCH CONFIRM IW-4D	Matrix Water	Lab Sample \# P1004321-01			Sampled Date/Time 14 Apr. 10 20:00	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		7600.0	1000.0	mg / L	9060	4/29/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description BATCH CONFIRM IW-5D	Matrix Water	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P1004321-09 } \end{aligned}$		Sampled Date/Time		Received		
					16 Apr. 10 7:20		21 Apr.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analy	sis Date	By
WetChem N Total Organic Carbon		7700.0	1000.0	mg / L	9060	4/29/10		md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 4 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description	Matrix Water	Lab Sample \# P1004321-13		Sampled Date/Time		Received	
BATCH CONFIRM IW-4D					19 Apr. 10 7:16	21 Apr.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem - N Total Organic Carbon		7900.0	1000.0	mg / L	9060	4/29/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd:
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-7D	Matrix Water	Lab Sample \# P1004321-16			Sampled Date/Time 19 Apr. 10 20:11	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		1500.0	500.0	mg/L	9060	4/29/10	md

Client Name: Arcadis
Page: Page 6 of 12
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Lab Proj \#: P1004321
Report Date: 04/30/10
Suite 210
Seven Fields, PA 16046
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\mathrm{P}-2 \mathrm{D}}$	Matrix Water	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P1004321-17 } \end{aligned}$			Sampled Date $/$ Time	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		5200.0	500.0	mg/L	9060	4/29/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 7 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Sample Description OW-10D	Matrix Water	Lab Sample \# P1004321-18			Sampled Date/Time 19 Apr. 10 20:40	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4800.0	500.0	mg/L	9060	4/29/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-9D }}$	Matrix Water	Lab Sample \# P1004321-19			$\frac{\text { Sampled Date/Time }}{19 \text { Apr. } 1020: 48}$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		4100.0	500.0	mg / L	9060	4/29/10	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { OW-8D }}$	Matrix Water	$\begin{aligned} & \text { Lab Sample \# } \\ & \text { P1004321-20 } \end{aligned}$			Sampled Date/Time 19 Apr. 10 20:56	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		3800.0	500.0	mg/L	9060	4/29/10	md

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210
Seven Fields, PA 16046

Page: Page 10 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\text { P-1D }}$	Matrix Water	Lab Sample \# P1004321-21			Sampled Date/ 19 Apr. 1021	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		140.0	25.0	mg / L	9060	4/29/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{\mathrm{P}-3 \mathrm{D}}$	Matrix Water	Lab Sample \# P1004321-22			Sampled Date/Time 19 Apr. 10 21:20	Received 21 Apr. 10 12:15	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		2700.0	500.0	mg / L	9060	4/29/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd. Suite 210 Seven Fields, PA 16046

Page: Page 12 of 12
Lab Proj \#: P1004321
Report Date: 04/30/10
Client Proj Name: B0007393.0000.00006
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M100430020-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	CtI Limits
Total Organic Carbon	0.8	mg / L		5.0		- NA
M100430020-LCS						
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits
Total Organic Carbon	37.0	mg / L	36.00		103.00	70-130
P1004320-03A-DUP						

| | Result | TrueSpikeConc. | \%Recovery | Ctl Limits | RPD | RPD Ctl Limits |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Total Organic Carbon | 5100.0 | $\mathrm{mg} /$ | | - NA | 1.94 | $0-20$ |

Lab. Proj. \#

Microseeps
Lab. Proj. \#
P1O 124218265245 Company : R :

From:
Sent:
To:
Subject:
Attachments:
McDonough, Jeffrey [Jeffrey.McDonough@arcadis-us.com]
Thursday, April 22, 2010 4:56 PM
Debbie Hallo
FW: Chain of Custody Change - HOLD samples
img-4221544-0001.pdf; img-4221543-0001.pdf; img-4221543-0001.pdf;
img-4221543-0001.pdf

From: McDonough, Jeffrey
Sent: Thursday, April 22, 2010 4:44 PM
To: 'hhauser@microseeps.com'
Subject: Chain of Custody Change - HOLD samples
Hi Heather,

Please see the attached COCs with the updated HOLDs on several samples. I apologize for sending them as individual PDFs, but the file is much to large if I merge them all together.

Please send me a quick confirmation that you got this. And I am the person to contact if there are any questions. We will be in touch of which HOLD samples to run and when. Please note that if no HOLD remark was added, the samples may be run as normal. Additionally, what is your policy on holding samples? (i.e., how long do we have to decide if we will run the samples?)

Thanks
Jeff

Jeffrey McDonough | Staff Environmental Engineer | Jeffrey.McDonough@arcadis-us.com
ARCADIS U.S., Inc. | 6 Terry Drive, Suite 300 | Newtown PA 18940
T. 267.685.1854 | M. 267.615.1863 | F. 267.685.1801
www.arcadis-us.com
ARCADIS, Imagine the result
Please consider the environment before printing this email.

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this email or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates. Nothing herein is intended to constitute the offering or performance of services where otherwise restricted by law.

[^1]Client Name: Arcadis
Contact: Mark Banish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 1 of 12
Lab Pro \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Pro \#: AVXMB

Laboratory Results

Total pages in data package:

Lab Sample \#	Client Sample ID
P1004402-01	OW-7D
P1004402-02	PZ-2D
P1004402-03	OW-7D
P1004402-04	PZ-2D
P1004402-05	OW-7D
P1004402-06	OW-7D
P1004402-07	PZ-2D
P1004402-08	OW-7D

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:

Date:
$5.11-10$

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.

As a valued client we would appreciate your comments on our service.
Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 2 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1004402-01			Sampled Date/Time	Received			
OW-7D	Water					28 Apr.			
Analyte(s)	Flag	Result	PQL	Units		Method \#	Analys	Sis Date	By
WetChem N Total Organic Carbon		330.0	50.0	mg/L	9060	5/7/10		md	

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 3 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1004402-02			Sampled Date/Time	Received	
PZ-2D	Water				16 Apr. 10 7:51	28 Apr.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		5700.0	1000.0	mg / L	9060	5/7/10	md

Page: Page 4 of 12
Lab Proj \#: P1004402
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix Water	Lab Sample \# P1004402-03			Sampled Date/Time 16 Apr. 10 20:20	Received 28 Apr. 10 12:38	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		87.0	25.0	mg / L	9060	5/7/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 5 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj\#: AVXMB

Sample Description	Matrix	Lab Sample \# P1004402-04			Sampled Date/Time	Received	
PZ-2D	Water				16 Apr. 10 20:39	28 Apr.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		5600.0	1000.0	mg/L	9060	5/7/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 6 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \#P1004402-05			Sampled Date/Time	Received		
OW-7D	Water				28 Apr.			
Analyte(s)	Flag	Result	PQL	Units		Method \#	Analysis Date	By
WetChem N Total Organic Carbon		76.0	25.0	mg/L	9060	5/7/10	md	

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fieids, PA 16046

Page: Page 7 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj\#: AVXMB

Sample Description OW-7D	Matrix Water	Lab Sample \# P1004402-06			Sampled Date/Time 18 Apr $1020 \cdot 30$	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		940.0	250.0	mg / L	9060	5/7/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 8 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

$\frac{\text { Sample Description }}{P Z-2 D}$	Matrix Water	Lab Sample \# P1004402-07			Sampled Date/Time	Received	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		5900.0	1000.0	mg / L	9060	5/10/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 9 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Sample Description	Matrix	Lab Sample \# P1004402-08			Sampled Date/Time	Received	
OW-7D	Water				19 Apr. 10 7:50	28 Apr.	
Analyte(s)	Flag	Result	PQL	Units	Method \#	Analysis Date	By
WetChem N Total Organic Carbon		1100.0	250.0	mg / L	9060	5/6/10	md

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 10 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
 Analysis Method: Total Organic Carbon

M100507041-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctt Limits		
Total Organic Carbon	<2.0	mg / L		2.0		- NA		
M100507041-LCS								
	Result		TrueSpikeConc.		\%Recovery	Ctt Limits		
Total Organic Carbon	36.0	mg / L	36.00		100.00	70-130		
P1004398-01A-DUP								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits	RPD	RPD CtI Limits
Total Organic Carbon	6.5	mg / L				- NA	1.53	0-20
P1004398-01A-MS								
	Result		TrueSpikeConc.		\%Recovery	CtI Limits		
Total Organic Carbon	27.0	mg / L	20.00		102.00	70-130		

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 11 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB

Prep Method: Total Organic Carbon
Analysis Method: Total Organic Carbon

M100510003-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits		
Total Organic Carbon	<2.0	mg / L		2.0		- NA		
M100510003-LCS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
. Total Organic Carbon	36.0	mg / L	36.00		100.00	70-130		
P1004402-03A-DUP								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	$\underline{R P D}$	RPD Ctl Limits
Total Organic Carbon	88.0	mg / L				- NA	1.14	0-20

Client Name: Arcadis
Contact: Mark Hanish
Address: 310 Seven Fields Blvd.
Suite 210
Seven Fields, PA 16046

Page: Page 12 of 12
Lab Proj \#: P1004402
Report Date: 05/11/10
Client Proj Name: B0007393.0000
Client Proj \#: AVXMB
Prep Method: Total Organic Carbon
Analysis Method: Total Organic Carbon

M100511008-MB

	Result		TrueSpikeConc.	RDL	\%Recovery	Ctl Limits		
Total Organic Carbon	<2.0	mg / L		2.0		- NA		
M100511008-LCS								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits		
Total Organic Carbon	37.0	mg / L	36.00		103.00	70-130		
P1004413-02A-DUP								
	Result		TrueSpikeConc.		\%Recovery	Ctl Limits	RPD	RPD CtI Limits
Total Organic Carbon	<2.0	mg / L				- NA	0.00	0-20
P1004413-02A-MS								
	Result		TrueSpikeConc.		\%Recovery	Ct\| Limits		
Total Organic Carbon	21.0	mg / L	20.00		105.00	70-130		

From:
Sent:
To:
Cc:
Subject:

Hi Debbie, McDonough, Jeffrey [Jeffrey.McDonough@arcadis-us.com] Wednesday, April 28, 2010 11:00 AM
Debbie Hall
Mator, Richard; Hanish, Mark; Nelson, Denice
TOC Samples to run

Per our conversation last week about holding TOC samples for the Myrtle Beach sample set, please run the following samples previously placed on HOLD:

PZ-2D 4/16/1007:51 P|00432/•11
ow-7D 4/16/10 20:20 P1004321.12
PZ-2D 4/16/10 20:39 P1004 $320-13$
ow-7D 4/17/1007:44 P1004320.15
6 ow-7D 4/18/10 20:30 Pl $004320 \cdot 23$
1 PZ-2D 4/19/1007:29 P 1604321 - 14
γ ow-7D 4/19/1007:50 P1004321.15
I will follow up with a phone call as well in case you have any questions.
Thanks

Jeffrey McDonough | Staff Environmental Engineer | Jeffrey.McDonough@arcadis-us.com
ARCADIS U.S., Inc. | 6 Terry Drive, Suite 300 | Newtown PA 18940

T. 267.685.1854 | M. 267.615.1863 | F. 267.685.1801
www.arcadis-us.com
ARCADIS, Imagine the result
Please consider the environment before printing this email.

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipients) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this email or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates. Nothing herein is intended to constitute the offering or performance of services where otherwise restricted by law.

Debbie Hallo

From:	McDonough, Jeffrey [Jeffrey.McDonough@arcadis-us.com]
Sent:	Wednesday, April 28, 2010 11:03 AM
To:	Debbie Hallo
Cc:	Mator, Richard; Hanish, Mark; Nelson, Denice
Subject:	RE: TOC Samples to run

Debbie,
Please discard the remaining samples as we will not run them.
Thank you.
Jeff

From: McDonough, Jeffrey

Sent: Wednesday, April 28, 2010 11:00 AM
To: 'Debbie Hallo'
Cc: Mator, Richard; Hanish, Mark; Nelson, Denice
Subject: TOC Samples to run
Hi Debbie,
Per our conversation last week about holding TOC samples for the Myrtle Beach sample set, please run the following samples previously placed on HOLD:

OW-7D 4/16/10 07:37
PZ-2D 4/16/10 07:51

OW-7D 4/16/10 20:20
PZ-2D 4/16/10 20:39
OW-7D 4/17/10 07:44
OW-7D 4/18/10 20:30
PZ-2D 4/19/10 07:29
OW-7D 4/19/10 07:50
I will follow up with a phone call as well in case you have any questions.
Thanks

Jeffrey McDonough | Staff Environmental Engineer | Jeffrey.McDonough@arcadis-us.com
ARCADIS U.S., Inc. | 6 Terry Drive, Suite 300 | Newtown PA 18940
T. 267.685.1854 | M. 267.615.1863 | F. 267.685.1801
www.arcadis-us.com
ARCADIS, Imagine the result

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this email or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates. Nothing herein is intended to constitute the offering or performance of services where otherwise restricted by law.

[^0]:

[^1]: 4, *

